1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
43
44 #include <asm/page.h>
45 #include <asm/sections.h>
46
47 #include <crypto/hash.h>
48 #include "kexec_internal.h"
49
50 atomic_t __kexec_lock = ATOMIC_INIT(0);
51
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress = false;
54
55
56 /* Location of the reserved area for the crash kernel */
57 struct resource crashk_res = {
58 .name = "Crash kernel",
59 .start = 0,
60 .end = 0,
61 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
62 .desc = IORES_DESC_CRASH_KERNEL
63 };
64 struct resource crashk_low_res = {
65 .name = "Crash kernel",
66 .start = 0,
67 .end = 0,
68 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
69 .desc = IORES_DESC_CRASH_KERNEL
70 };
71
kexec_should_crash(struct task_struct * p)72 int kexec_should_crash(struct task_struct *p)
73 {
74 /*
75 * If crash_kexec_post_notifiers is enabled, don't run
76 * crash_kexec() here yet, which must be run after panic
77 * notifiers in panic().
78 */
79 if (crash_kexec_post_notifiers)
80 return 0;
81 /*
82 * There are 4 panic() calls in make_task_dead() path, each of which
83 * corresponds to each of these 4 conditions.
84 */
85 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
86 return 1;
87 return 0;
88 }
89
kexec_crash_loaded(void)90 int kexec_crash_loaded(void)
91 {
92 return !!kexec_crash_image;
93 }
94 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
95
96 /*
97 * When kexec transitions to the new kernel there is a one-to-one
98 * mapping between physical and virtual addresses. On processors
99 * where you can disable the MMU this is trivial, and easy. For
100 * others it is still a simple predictable page table to setup.
101 *
102 * In that environment kexec copies the new kernel to its final
103 * resting place. This means I can only support memory whose
104 * physical address can fit in an unsigned long. In particular
105 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
106 * If the assembly stub has more restrictive requirements
107 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
108 * defined more restrictively in <asm/kexec.h>.
109 *
110 * The code for the transition from the current kernel to the
111 * new kernel is placed in the control_code_buffer, whose size
112 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
113 * page of memory is necessary, but some architectures require more.
114 * Because this memory must be identity mapped in the transition from
115 * virtual to physical addresses it must live in the range
116 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
117 * modifiable.
118 *
119 * The assembly stub in the control code buffer is passed a linked list
120 * of descriptor pages detailing the source pages of the new kernel,
121 * and the destination addresses of those source pages. As this data
122 * structure is not used in the context of the current OS, it must
123 * be self-contained.
124 *
125 * The code has been made to work with highmem pages and will use a
126 * destination page in its final resting place (if it happens
127 * to allocate it). The end product of this is that most of the
128 * physical address space, and most of RAM can be used.
129 *
130 * Future directions include:
131 * - allocating a page table with the control code buffer identity
132 * mapped, to simplify machine_kexec and make kexec_on_panic more
133 * reliable.
134 */
135
136 /*
137 * KIMAGE_NO_DEST is an impossible destination address..., for
138 * allocating pages whose destination address we do not care about.
139 */
140 #define KIMAGE_NO_DEST (-1UL)
141 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
142
143 static struct page *kimage_alloc_page(struct kimage *image,
144 gfp_t gfp_mask,
145 unsigned long dest);
146
sanity_check_segment_list(struct kimage * image)147 int sanity_check_segment_list(struct kimage *image)
148 {
149 int i;
150 unsigned long nr_segments = image->nr_segments;
151 unsigned long total_pages = 0;
152 unsigned long nr_pages = totalram_pages();
153
154 /*
155 * Verify we have good destination addresses. The caller is
156 * responsible for making certain we don't attempt to load
157 * the new image into invalid or reserved areas of RAM. This
158 * just verifies it is an address we can use.
159 *
160 * Since the kernel does everything in page size chunks ensure
161 * the destination addresses are page aligned. Too many
162 * special cases crop of when we don't do this. The most
163 * insidious is getting overlapping destination addresses
164 * simply because addresses are changed to page size
165 * granularity.
166 */
167 for (i = 0; i < nr_segments; i++) {
168 unsigned long mstart, mend;
169
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
172 if (mstart > mend)
173 return -EADDRNOTAVAIL;
174 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
175 return -EADDRNOTAVAIL;
176 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
177 return -EADDRNOTAVAIL;
178 }
179
180 /* Verify our destination addresses do not overlap.
181 * If we alloed overlapping destination addresses
182 * through very weird things can happen with no
183 * easy explanation as one segment stops on another.
184 */
185 for (i = 0; i < nr_segments; i++) {
186 unsigned long mstart, mend;
187 unsigned long j;
188
189 mstart = image->segment[i].mem;
190 mend = mstart + image->segment[i].memsz;
191 for (j = 0; j < i; j++) {
192 unsigned long pstart, pend;
193
194 pstart = image->segment[j].mem;
195 pend = pstart + image->segment[j].memsz;
196 /* Do the segments overlap ? */
197 if ((mend > pstart) && (mstart < pend))
198 return -EINVAL;
199 }
200 }
201
202 /* Ensure our buffer sizes are strictly less than
203 * our memory sizes. This should always be the case,
204 * and it is easier to check up front than to be surprised
205 * later on.
206 */
207 for (i = 0; i < nr_segments; i++) {
208 if (image->segment[i].bufsz > image->segment[i].memsz)
209 return -EINVAL;
210 }
211
212 /*
213 * Verify that no more than half of memory will be consumed. If the
214 * request from userspace is too large, a large amount of time will be
215 * wasted allocating pages, which can cause a soft lockup.
216 */
217 for (i = 0; i < nr_segments; i++) {
218 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
219 return -EINVAL;
220
221 total_pages += PAGE_COUNT(image->segment[i].memsz);
222 }
223
224 if (total_pages > nr_pages / 2)
225 return -EINVAL;
226
227 /*
228 * Verify we have good destination addresses. Normally
229 * the caller is responsible for making certain we don't
230 * attempt to load the new image into invalid or reserved
231 * areas of RAM. But crash kernels are preloaded into a
232 * reserved area of ram. We must ensure the addresses
233 * are in the reserved area otherwise preloading the
234 * kernel could corrupt things.
235 */
236
237 if (image->type == KEXEC_TYPE_CRASH) {
238 for (i = 0; i < nr_segments; i++) {
239 unsigned long mstart, mend;
240
241 mstart = image->segment[i].mem;
242 mend = mstart + image->segment[i].memsz - 1;
243 /* Ensure we are within the crash kernel limits */
244 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
245 (mend > phys_to_boot_phys(crashk_res.end)))
246 return -EADDRNOTAVAIL;
247 }
248 }
249
250 return 0;
251 }
252
do_kimage_alloc_init(void)253 struct kimage *do_kimage_alloc_init(void)
254 {
255 struct kimage *image;
256
257 /* Allocate a controlling structure */
258 image = kzalloc(sizeof(*image), GFP_KERNEL);
259 if (!image)
260 return NULL;
261
262 image->head = 0;
263 image->entry = &image->head;
264 image->last_entry = &image->head;
265 image->control_page = ~0; /* By default this does not apply */
266 image->type = KEXEC_TYPE_DEFAULT;
267
268 /* Initialize the list of control pages */
269 INIT_LIST_HEAD(&image->control_pages);
270
271 /* Initialize the list of destination pages */
272 INIT_LIST_HEAD(&image->dest_pages);
273
274 /* Initialize the list of unusable pages */
275 INIT_LIST_HEAD(&image->unusable_pages);
276
277 #ifdef CONFIG_CRASH_HOTPLUG
278 image->hp_action = KEXEC_CRASH_HP_NONE;
279 image->elfcorehdr_index = -1;
280 image->elfcorehdr_updated = false;
281 #endif
282
283 return image;
284 }
285
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)286 int kimage_is_destination_range(struct kimage *image,
287 unsigned long start,
288 unsigned long end)
289 {
290 unsigned long i;
291
292 for (i = 0; i < image->nr_segments; i++) {
293 unsigned long mstart, mend;
294
295 mstart = image->segment[i].mem;
296 mend = mstart + image->segment[i].memsz;
297 if ((end > mstart) && (start < mend))
298 return 1;
299 }
300
301 return 0;
302 }
303
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)304 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
305 {
306 struct page *pages;
307
308 if (fatal_signal_pending(current))
309 return NULL;
310 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
311 if (pages) {
312 unsigned int count, i;
313
314 pages->mapping = NULL;
315 set_page_private(pages, order);
316 count = 1 << order;
317 for (i = 0; i < count; i++)
318 SetPageReserved(pages + i);
319
320 arch_kexec_post_alloc_pages(page_address(pages), count,
321 gfp_mask);
322
323 if (gfp_mask & __GFP_ZERO)
324 for (i = 0; i < count; i++)
325 clear_highpage(pages + i);
326 }
327
328 return pages;
329 }
330
kimage_free_pages(struct page * page)331 static void kimage_free_pages(struct page *page)
332 {
333 unsigned int order, count, i;
334
335 order = page_private(page);
336 count = 1 << order;
337
338 arch_kexec_pre_free_pages(page_address(page), count);
339
340 for (i = 0; i < count; i++)
341 ClearPageReserved(page + i);
342 __free_pages(page, order);
343 }
344
kimage_free_page_list(struct list_head * list)345 void kimage_free_page_list(struct list_head *list)
346 {
347 struct page *page, *next;
348
349 list_for_each_entry_safe(page, next, list, lru) {
350 list_del(&page->lru);
351 kimage_free_pages(page);
352 }
353 }
354
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)355 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
356 unsigned int order)
357 {
358 /* Control pages are special, they are the intermediaries
359 * that are needed while we copy the rest of the pages
360 * to their final resting place. As such they must
361 * not conflict with either the destination addresses
362 * or memory the kernel is already using.
363 *
364 * The only case where we really need more than one of
365 * these are for architectures where we cannot disable
366 * the MMU and must instead generate an identity mapped
367 * page table for all of the memory.
368 *
369 * At worst this runs in O(N) of the image size.
370 */
371 struct list_head extra_pages;
372 struct page *pages;
373 unsigned int count;
374
375 count = 1 << order;
376 INIT_LIST_HEAD(&extra_pages);
377
378 /* Loop while I can allocate a page and the page allocated
379 * is a destination page.
380 */
381 do {
382 unsigned long pfn, epfn, addr, eaddr;
383
384 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
385 if (!pages)
386 break;
387 pfn = page_to_boot_pfn(pages);
388 epfn = pfn + count;
389 addr = pfn << PAGE_SHIFT;
390 eaddr = epfn << PAGE_SHIFT;
391 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
392 kimage_is_destination_range(image, addr, eaddr)) {
393 list_add(&pages->lru, &extra_pages);
394 pages = NULL;
395 }
396 } while (!pages);
397
398 if (pages) {
399 /* Remember the allocated page... */
400 list_add(&pages->lru, &image->control_pages);
401
402 /* Because the page is already in it's destination
403 * location we will never allocate another page at
404 * that address. Therefore kimage_alloc_pages
405 * will not return it (again) and we don't need
406 * to give it an entry in image->segment[].
407 */
408 }
409 /* Deal with the destination pages I have inadvertently allocated.
410 *
411 * Ideally I would convert multi-page allocations into single
412 * page allocations, and add everything to image->dest_pages.
413 *
414 * For now it is simpler to just free the pages.
415 */
416 kimage_free_page_list(&extra_pages);
417
418 return pages;
419 }
420
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)421 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
422 unsigned int order)
423 {
424 /* Control pages are special, they are the intermediaries
425 * that are needed while we copy the rest of the pages
426 * to their final resting place. As such they must
427 * not conflict with either the destination addresses
428 * or memory the kernel is already using.
429 *
430 * Control pages are also the only pags we must allocate
431 * when loading a crash kernel. All of the other pages
432 * are specified by the segments and we just memcpy
433 * into them directly.
434 *
435 * The only case where we really need more than one of
436 * these are for architectures where we cannot disable
437 * the MMU and must instead generate an identity mapped
438 * page table for all of the memory.
439 *
440 * Given the low demand this implements a very simple
441 * allocator that finds the first hole of the appropriate
442 * size in the reserved memory region, and allocates all
443 * of the memory up to and including the hole.
444 */
445 unsigned long hole_start, hole_end, size;
446 struct page *pages;
447
448 pages = NULL;
449 size = (1 << order) << PAGE_SHIFT;
450 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
451 hole_end = hole_start + size - 1;
452 while (hole_end <= crashk_res.end) {
453 unsigned long i;
454
455 cond_resched();
456
457 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
458 break;
459 /* See if I overlap any of the segments */
460 for (i = 0; i < image->nr_segments; i++) {
461 unsigned long mstart, mend;
462
463 mstart = image->segment[i].mem;
464 mend = mstart + image->segment[i].memsz - 1;
465 if ((hole_end >= mstart) && (hole_start <= mend)) {
466 /* Advance the hole to the end of the segment */
467 hole_start = (mend + (size - 1)) & ~(size - 1);
468 hole_end = hole_start + size - 1;
469 break;
470 }
471 }
472 /* If I don't overlap any segments I have found my hole! */
473 if (i == image->nr_segments) {
474 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
475 image->control_page = hole_end;
476 break;
477 }
478 }
479
480 /* Ensure that these pages are decrypted if SME is enabled. */
481 if (pages)
482 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
483
484 return pages;
485 }
486
487
kimage_alloc_control_pages(struct kimage * image,unsigned int order)488 struct page *kimage_alloc_control_pages(struct kimage *image,
489 unsigned int order)
490 {
491 struct page *pages = NULL;
492
493 switch (image->type) {
494 case KEXEC_TYPE_DEFAULT:
495 pages = kimage_alloc_normal_control_pages(image, order);
496 break;
497 case KEXEC_TYPE_CRASH:
498 pages = kimage_alloc_crash_control_pages(image, order);
499 break;
500 }
501
502 return pages;
503 }
504
kimage_crash_copy_vmcoreinfo(struct kimage * image)505 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
506 {
507 struct page *vmcoreinfo_page;
508 void *safecopy;
509
510 if (image->type != KEXEC_TYPE_CRASH)
511 return 0;
512
513 /*
514 * For kdump, allocate one vmcoreinfo safe copy from the
515 * crash memory. as we have arch_kexec_protect_crashkres()
516 * after kexec syscall, we naturally protect it from write
517 * (even read) access under kernel direct mapping. But on
518 * the other hand, we still need to operate it when crash
519 * happens to generate vmcoreinfo note, hereby we rely on
520 * vmap for this purpose.
521 */
522 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
523 if (!vmcoreinfo_page) {
524 pr_warn("Could not allocate vmcoreinfo buffer\n");
525 return -ENOMEM;
526 }
527 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
528 if (!safecopy) {
529 pr_warn("Could not vmap vmcoreinfo buffer\n");
530 return -ENOMEM;
531 }
532
533 image->vmcoreinfo_data_copy = safecopy;
534 crash_update_vmcoreinfo_safecopy(safecopy);
535
536 return 0;
537 }
538
kimage_add_entry(struct kimage * image,kimage_entry_t entry)539 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
540 {
541 if (*image->entry != 0)
542 image->entry++;
543
544 if (image->entry == image->last_entry) {
545 kimage_entry_t *ind_page;
546 struct page *page;
547
548 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
549 if (!page)
550 return -ENOMEM;
551
552 ind_page = page_address(page);
553 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
554 image->entry = ind_page;
555 image->last_entry = ind_page +
556 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
557 }
558 *image->entry = entry;
559 image->entry++;
560 *image->entry = 0;
561
562 return 0;
563 }
564
kimage_set_destination(struct kimage * image,unsigned long destination)565 static int kimage_set_destination(struct kimage *image,
566 unsigned long destination)
567 {
568 destination &= PAGE_MASK;
569
570 return kimage_add_entry(image, destination | IND_DESTINATION);
571 }
572
573
kimage_add_page(struct kimage * image,unsigned long page)574 static int kimage_add_page(struct kimage *image, unsigned long page)
575 {
576 page &= PAGE_MASK;
577
578 return kimage_add_entry(image, page | IND_SOURCE);
579 }
580
581
kimage_free_extra_pages(struct kimage * image)582 static void kimage_free_extra_pages(struct kimage *image)
583 {
584 /* Walk through and free any extra destination pages I may have */
585 kimage_free_page_list(&image->dest_pages);
586
587 /* Walk through and free any unusable pages I have cached */
588 kimage_free_page_list(&image->unusable_pages);
589
590 }
591
kimage_terminate(struct kimage * image)592 void kimage_terminate(struct kimage *image)
593 {
594 if (*image->entry != 0)
595 image->entry++;
596
597 *image->entry = IND_DONE;
598 }
599
600 #define for_each_kimage_entry(image, ptr, entry) \
601 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
602 ptr = (entry & IND_INDIRECTION) ? \
603 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
604
kimage_free_entry(kimage_entry_t entry)605 static void kimage_free_entry(kimage_entry_t entry)
606 {
607 struct page *page;
608
609 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
610 kimage_free_pages(page);
611 }
612
kimage_free(struct kimage * image)613 void kimage_free(struct kimage *image)
614 {
615 kimage_entry_t *ptr, entry;
616 kimage_entry_t ind = 0;
617
618 if (!image)
619 return;
620
621 if (image->vmcoreinfo_data_copy) {
622 crash_update_vmcoreinfo_safecopy(NULL);
623 vunmap(image->vmcoreinfo_data_copy);
624 }
625
626 kimage_free_extra_pages(image);
627 for_each_kimage_entry(image, ptr, entry) {
628 if (entry & IND_INDIRECTION) {
629 /* Free the previous indirection page */
630 if (ind & IND_INDIRECTION)
631 kimage_free_entry(ind);
632 /* Save this indirection page until we are
633 * done with it.
634 */
635 ind = entry;
636 } else if (entry & IND_SOURCE)
637 kimage_free_entry(entry);
638 }
639 /* Free the final indirection page */
640 if (ind & IND_INDIRECTION)
641 kimage_free_entry(ind);
642
643 /* Handle any machine specific cleanup */
644 machine_kexec_cleanup(image);
645
646 /* Free the kexec control pages... */
647 kimage_free_page_list(&image->control_pages);
648
649 /*
650 * Free up any temporary buffers allocated. This might hit if
651 * error occurred much later after buffer allocation.
652 */
653 if (image->file_mode)
654 kimage_file_post_load_cleanup(image);
655
656 kfree(image);
657 }
658
kimage_dst_used(struct kimage * image,unsigned long page)659 static kimage_entry_t *kimage_dst_used(struct kimage *image,
660 unsigned long page)
661 {
662 kimage_entry_t *ptr, entry;
663 unsigned long destination = 0;
664
665 for_each_kimage_entry(image, ptr, entry) {
666 if (entry & IND_DESTINATION)
667 destination = entry & PAGE_MASK;
668 else if (entry & IND_SOURCE) {
669 if (page == destination)
670 return ptr;
671 destination += PAGE_SIZE;
672 }
673 }
674
675 return NULL;
676 }
677
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)678 static struct page *kimage_alloc_page(struct kimage *image,
679 gfp_t gfp_mask,
680 unsigned long destination)
681 {
682 /*
683 * Here we implement safeguards to ensure that a source page
684 * is not copied to its destination page before the data on
685 * the destination page is no longer useful.
686 *
687 * To do this we maintain the invariant that a source page is
688 * either its own destination page, or it is not a
689 * destination page at all.
690 *
691 * That is slightly stronger than required, but the proof
692 * that no problems will not occur is trivial, and the
693 * implementation is simply to verify.
694 *
695 * When allocating all pages normally this algorithm will run
696 * in O(N) time, but in the worst case it will run in O(N^2)
697 * time. If the runtime is a problem the data structures can
698 * be fixed.
699 */
700 struct page *page;
701 unsigned long addr;
702
703 /*
704 * Walk through the list of destination pages, and see if I
705 * have a match.
706 */
707 list_for_each_entry(page, &image->dest_pages, lru) {
708 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
709 if (addr == destination) {
710 list_del(&page->lru);
711 return page;
712 }
713 }
714 page = NULL;
715 while (1) {
716 kimage_entry_t *old;
717
718 /* Allocate a page, if we run out of memory give up */
719 page = kimage_alloc_pages(gfp_mask, 0);
720 if (!page)
721 return NULL;
722 /* If the page cannot be used file it away */
723 if (page_to_boot_pfn(page) >
724 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
725 list_add(&page->lru, &image->unusable_pages);
726 continue;
727 }
728 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
729
730 /* If it is the destination page we want use it */
731 if (addr == destination)
732 break;
733
734 /* If the page is not a destination page use it */
735 if (!kimage_is_destination_range(image, addr,
736 addr + PAGE_SIZE))
737 break;
738
739 /*
740 * I know that the page is someones destination page.
741 * See if there is already a source page for this
742 * destination page. And if so swap the source pages.
743 */
744 old = kimage_dst_used(image, addr);
745 if (old) {
746 /* If so move it */
747 unsigned long old_addr;
748 struct page *old_page;
749
750 old_addr = *old & PAGE_MASK;
751 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
752 copy_highpage(page, old_page);
753 *old = addr | (*old & ~PAGE_MASK);
754
755 /* The old page I have found cannot be a
756 * destination page, so return it if it's
757 * gfp_flags honor the ones passed in.
758 */
759 if (!(gfp_mask & __GFP_HIGHMEM) &&
760 PageHighMem(old_page)) {
761 kimage_free_pages(old_page);
762 continue;
763 }
764 page = old_page;
765 break;
766 }
767 /* Place the page on the destination list, to be used later */
768 list_add(&page->lru, &image->dest_pages);
769 }
770
771 return page;
772 }
773
kimage_load_normal_segment(struct kimage * image,struct kexec_segment * segment)774 static int kimage_load_normal_segment(struct kimage *image,
775 struct kexec_segment *segment)
776 {
777 unsigned long maddr;
778 size_t ubytes, mbytes;
779 int result;
780 unsigned char __user *buf = NULL;
781 unsigned char *kbuf = NULL;
782
783 if (image->file_mode)
784 kbuf = segment->kbuf;
785 else
786 buf = segment->buf;
787 ubytes = segment->bufsz;
788 mbytes = segment->memsz;
789 maddr = segment->mem;
790
791 result = kimage_set_destination(image, maddr);
792 if (result < 0)
793 goto out;
794
795 while (mbytes) {
796 struct page *page;
797 char *ptr;
798 size_t uchunk, mchunk;
799
800 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
801 if (!page) {
802 result = -ENOMEM;
803 goto out;
804 }
805 result = kimage_add_page(image, page_to_boot_pfn(page)
806 << PAGE_SHIFT);
807 if (result < 0)
808 goto out;
809
810 ptr = kmap_local_page(page);
811 /* Start with a clear page */
812 clear_page(ptr);
813 ptr += maddr & ~PAGE_MASK;
814 mchunk = min_t(size_t, mbytes,
815 PAGE_SIZE - (maddr & ~PAGE_MASK));
816 uchunk = min(ubytes, mchunk);
817
818 /* For file based kexec, source pages are in kernel memory */
819 if (image->file_mode)
820 memcpy(ptr, kbuf, uchunk);
821 else
822 result = copy_from_user(ptr, buf, uchunk);
823 kunmap_local(ptr);
824 if (result) {
825 result = -EFAULT;
826 goto out;
827 }
828 ubytes -= uchunk;
829 maddr += mchunk;
830 if (image->file_mode)
831 kbuf += mchunk;
832 else
833 buf += mchunk;
834 mbytes -= mchunk;
835
836 cond_resched();
837 }
838 out:
839 return result;
840 }
841
kimage_load_crash_segment(struct kimage * image,struct kexec_segment * segment)842 static int kimage_load_crash_segment(struct kimage *image,
843 struct kexec_segment *segment)
844 {
845 /* For crash dumps kernels we simply copy the data from
846 * user space to it's destination.
847 * We do things a page at a time for the sake of kmap.
848 */
849 unsigned long maddr;
850 size_t ubytes, mbytes;
851 int result;
852 unsigned char __user *buf = NULL;
853 unsigned char *kbuf = NULL;
854
855 result = 0;
856 if (image->file_mode)
857 kbuf = segment->kbuf;
858 else
859 buf = segment->buf;
860 ubytes = segment->bufsz;
861 mbytes = segment->memsz;
862 maddr = segment->mem;
863 while (mbytes) {
864 struct page *page;
865 char *ptr;
866 size_t uchunk, mchunk;
867
868 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
869 if (!page) {
870 result = -ENOMEM;
871 goto out;
872 }
873 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
874 ptr = kmap_local_page(page);
875 ptr += maddr & ~PAGE_MASK;
876 mchunk = min_t(size_t, mbytes,
877 PAGE_SIZE - (maddr & ~PAGE_MASK));
878 uchunk = min(ubytes, mchunk);
879 if (mchunk > uchunk) {
880 /* Zero the trailing part of the page */
881 memset(ptr + uchunk, 0, mchunk - uchunk);
882 }
883
884 /* For file based kexec, source pages are in kernel memory */
885 if (image->file_mode)
886 memcpy(ptr, kbuf, uchunk);
887 else
888 result = copy_from_user(ptr, buf, uchunk);
889 kexec_flush_icache_page(page);
890 kunmap_local(ptr);
891 arch_kexec_pre_free_pages(page_address(page), 1);
892 if (result) {
893 result = -EFAULT;
894 goto out;
895 }
896 ubytes -= uchunk;
897 maddr += mchunk;
898 if (image->file_mode)
899 kbuf += mchunk;
900 else
901 buf += mchunk;
902 mbytes -= mchunk;
903
904 cond_resched();
905 }
906 out:
907 return result;
908 }
909
kimage_load_segment(struct kimage * image,struct kexec_segment * segment)910 int kimage_load_segment(struct kimage *image,
911 struct kexec_segment *segment)
912 {
913 int result = -ENOMEM;
914
915 switch (image->type) {
916 case KEXEC_TYPE_DEFAULT:
917 result = kimage_load_normal_segment(image, segment);
918 break;
919 case KEXEC_TYPE_CRASH:
920 result = kimage_load_crash_segment(image, segment);
921 break;
922 }
923
924 return result;
925 }
926
927 struct kexec_load_limit {
928 /* Mutex protects the limit count. */
929 struct mutex mutex;
930 int limit;
931 };
932
933 static struct kexec_load_limit load_limit_reboot = {
934 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
935 .limit = -1,
936 };
937
938 static struct kexec_load_limit load_limit_panic = {
939 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
940 .limit = -1,
941 };
942
943 struct kimage *kexec_image;
944 struct kimage *kexec_crash_image;
945 static int kexec_load_disabled;
946
947 #ifdef CONFIG_SYSCTL
kexec_limit_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)948 static int kexec_limit_handler(struct ctl_table *table, int write,
949 void *buffer, size_t *lenp, loff_t *ppos)
950 {
951 struct kexec_load_limit *limit = table->data;
952 int val;
953 struct ctl_table tmp = {
954 .data = &val,
955 .maxlen = sizeof(val),
956 .mode = table->mode,
957 };
958 int ret;
959
960 if (write) {
961 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
962 if (ret)
963 return ret;
964
965 if (val < 0)
966 return -EINVAL;
967
968 mutex_lock(&limit->mutex);
969 if (limit->limit != -1 && val >= limit->limit)
970 ret = -EINVAL;
971 else
972 limit->limit = val;
973 mutex_unlock(&limit->mutex);
974
975 return ret;
976 }
977
978 mutex_lock(&limit->mutex);
979 val = limit->limit;
980 mutex_unlock(&limit->mutex);
981
982 return proc_dointvec(&tmp, write, buffer, lenp, ppos);
983 }
984
985 static struct ctl_table kexec_core_sysctls[] = {
986 {
987 .procname = "kexec_load_disabled",
988 .data = &kexec_load_disabled,
989 .maxlen = sizeof(int),
990 .mode = 0644,
991 /* only handle a transition from default "0" to "1" */
992 .proc_handler = proc_dointvec_minmax,
993 .extra1 = SYSCTL_ONE,
994 .extra2 = SYSCTL_ONE,
995 },
996 {
997 .procname = "kexec_load_limit_panic",
998 .data = &load_limit_panic,
999 .mode = 0644,
1000 .proc_handler = kexec_limit_handler,
1001 },
1002 {
1003 .procname = "kexec_load_limit_reboot",
1004 .data = &load_limit_reboot,
1005 .mode = 0644,
1006 .proc_handler = kexec_limit_handler,
1007 },
1008 { }
1009 };
1010
kexec_core_sysctl_init(void)1011 static int __init kexec_core_sysctl_init(void)
1012 {
1013 register_sysctl_init("kernel", kexec_core_sysctls);
1014 return 0;
1015 }
1016 late_initcall(kexec_core_sysctl_init);
1017 #endif
1018
kexec_load_permitted(int kexec_image_type)1019 bool kexec_load_permitted(int kexec_image_type)
1020 {
1021 struct kexec_load_limit *limit;
1022
1023 /*
1024 * Only the superuser can use the kexec syscall and if it has not
1025 * been disabled.
1026 */
1027 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1028 return false;
1029
1030 /* Check limit counter and decrease it.*/
1031 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1032 &load_limit_panic : &load_limit_reboot;
1033 mutex_lock(&limit->mutex);
1034 if (!limit->limit) {
1035 mutex_unlock(&limit->mutex);
1036 return false;
1037 }
1038 if (limit->limit != -1)
1039 limit->limit--;
1040 mutex_unlock(&limit->mutex);
1041
1042 return true;
1043 }
1044
1045 /*
1046 * No panic_cpu check version of crash_kexec(). This function is called
1047 * only when panic_cpu holds the current CPU number; this is the only CPU
1048 * which processes crash_kexec routines.
1049 */
__crash_kexec(struct pt_regs * regs)1050 void __noclone __crash_kexec(struct pt_regs *regs)
1051 {
1052 /* Take the kexec_lock here to prevent sys_kexec_load
1053 * running on one cpu from replacing the crash kernel
1054 * we are using after a panic on a different cpu.
1055 *
1056 * If the crash kernel was not located in a fixed area
1057 * of memory the xchg(&kexec_crash_image) would be
1058 * sufficient. But since I reuse the memory...
1059 */
1060 if (kexec_trylock()) {
1061 if (kexec_crash_image) {
1062 struct pt_regs fixed_regs;
1063
1064 crash_setup_regs(&fixed_regs, regs);
1065 crash_save_vmcoreinfo();
1066 machine_crash_shutdown(&fixed_regs);
1067 machine_kexec(kexec_crash_image);
1068 }
1069 kexec_unlock();
1070 }
1071 }
1072 STACK_FRAME_NON_STANDARD(__crash_kexec);
1073
crash_kexec(struct pt_regs * regs)1074 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
1075 {
1076 int old_cpu, this_cpu;
1077
1078 /*
1079 * Only one CPU is allowed to execute the crash_kexec() code as with
1080 * panic(). Otherwise parallel calls of panic() and crash_kexec()
1081 * may stop each other. To exclude them, we use panic_cpu here too.
1082 */
1083 this_cpu = raw_smp_processor_id();
1084 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
1085 if (old_cpu == PANIC_CPU_INVALID) {
1086 /* This is the 1st CPU which comes here, so go ahead. */
1087 __crash_kexec(regs);
1088
1089 /*
1090 * Reset panic_cpu to allow another panic()/crash_kexec()
1091 * call.
1092 */
1093 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
1094 }
1095 }
1096
crash_resource_size(const struct resource * res)1097 static inline resource_size_t crash_resource_size(const struct resource *res)
1098 {
1099 return !res->end ? 0 : resource_size(res);
1100 }
1101
crash_get_memory_size(void)1102 ssize_t crash_get_memory_size(void)
1103 {
1104 ssize_t size = 0;
1105
1106 if (!kexec_trylock())
1107 return -EBUSY;
1108
1109 size += crash_resource_size(&crashk_res);
1110 size += crash_resource_size(&crashk_low_res);
1111
1112 kexec_unlock();
1113 return size;
1114 }
1115
__crash_shrink_memory(struct resource * old_res,unsigned long new_size)1116 static int __crash_shrink_memory(struct resource *old_res,
1117 unsigned long new_size)
1118 {
1119 struct resource *ram_res;
1120
1121 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1122 if (!ram_res)
1123 return -ENOMEM;
1124
1125 ram_res->start = old_res->start + new_size;
1126 ram_res->end = old_res->end;
1127 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1128 ram_res->name = "System RAM";
1129
1130 if (!new_size) {
1131 release_resource(old_res);
1132 old_res->start = 0;
1133 old_res->end = 0;
1134 } else {
1135 crashk_res.end = ram_res->start - 1;
1136 }
1137
1138 crash_free_reserved_phys_range(ram_res->start, ram_res->end);
1139 insert_resource(&iomem_resource, ram_res);
1140
1141 return 0;
1142 }
1143
crash_shrink_memory(unsigned long new_size)1144 int crash_shrink_memory(unsigned long new_size)
1145 {
1146 int ret = 0;
1147 unsigned long old_size, low_size;
1148
1149 if (!kexec_trylock())
1150 return -EBUSY;
1151
1152 if (kexec_crash_image) {
1153 ret = -ENOENT;
1154 goto unlock;
1155 }
1156
1157 low_size = crash_resource_size(&crashk_low_res);
1158 old_size = crash_resource_size(&crashk_res) + low_size;
1159 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
1160 if (new_size >= old_size) {
1161 ret = (new_size == old_size) ? 0 : -EINVAL;
1162 goto unlock;
1163 }
1164
1165 /*
1166 * (low_size > new_size) implies that low_size is greater than zero.
1167 * This also means that if low_size is zero, the else branch is taken.
1168 *
1169 * If low_size is greater than 0, (low_size > new_size) indicates that
1170 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
1171 * needs to be shrunken.
1172 */
1173 if (low_size > new_size) {
1174 ret = __crash_shrink_memory(&crashk_res, 0);
1175 if (ret)
1176 goto unlock;
1177
1178 ret = __crash_shrink_memory(&crashk_low_res, new_size);
1179 } else {
1180 ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
1181 }
1182
1183 /* Swap crashk_res and crashk_low_res if needed */
1184 if (!crashk_res.end && crashk_low_res.end) {
1185 crashk_res.start = crashk_low_res.start;
1186 crashk_res.end = crashk_low_res.end;
1187 release_resource(&crashk_low_res);
1188 crashk_low_res.start = 0;
1189 crashk_low_res.end = 0;
1190 insert_resource(&iomem_resource, &crashk_res);
1191 }
1192
1193 unlock:
1194 kexec_unlock();
1195 return ret;
1196 }
1197
crash_save_cpu(struct pt_regs * regs,int cpu)1198 void crash_save_cpu(struct pt_regs *regs, int cpu)
1199 {
1200 struct elf_prstatus prstatus;
1201 u32 *buf;
1202
1203 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1204 return;
1205
1206 /* Using ELF notes here is opportunistic.
1207 * I need a well defined structure format
1208 * for the data I pass, and I need tags
1209 * on the data to indicate what information I have
1210 * squirrelled away. ELF notes happen to provide
1211 * all of that, so there is no need to invent something new.
1212 */
1213 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1214 if (!buf)
1215 return;
1216 memset(&prstatus, 0, sizeof(prstatus));
1217 prstatus.common.pr_pid = current->pid;
1218 elf_core_copy_regs(&prstatus.pr_reg, regs);
1219 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1220 &prstatus, sizeof(prstatus));
1221 final_note(buf);
1222 }
1223
1224 /*
1225 * Move into place and start executing a preloaded standalone
1226 * executable. If nothing was preloaded return an error.
1227 */
kernel_kexec(void)1228 int kernel_kexec(void)
1229 {
1230 int error = 0;
1231
1232 if (!kexec_trylock())
1233 return -EBUSY;
1234 if (!kexec_image) {
1235 error = -EINVAL;
1236 goto Unlock;
1237 }
1238
1239 #ifdef CONFIG_KEXEC_JUMP
1240 if (kexec_image->preserve_context) {
1241 pm_prepare_console();
1242 error = freeze_processes();
1243 if (error) {
1244 error = -EBUSY;
1245 goto Restore_console;
1246 }
1247 suspend_console();
1248 error = dpm_suspend_start(PMSG_FREEZE);
1249 if (error)
1250 goto Resume_console;
1251 /* At this point, dpm_suspend_start() has been called,
1252 * but *not* dpm_suspend_end(). We *must* call
1253 * dpm_suspend_end() now. Otherwise, drivers for
1254 * some devices (e.g. interrupt controllers) become
1255 * desynchronized with the actual state of the
1256 * hardware at resume time, and evil weirdness ensues.
1257 */
1258 error = dpm_suspend_end(PMSG_FREEZE);
1259 if (error)
1260 goto Resume_devices;
1261 error = suspend_disable_secondary_cpus();
1262 if (error)
1263 goto Enable_cpus;
1264 local_irq_disable();
1265 error = syscore_suspend();
1266 if (error)
1267 goto Enable_irqs;
1268 } else
1269 #endif
1270 {
1271 kexec_in_progress = true;
1272 kernel_restart_prepare("kexec reboot");
1273 migrate_to_reboot_cpu();
1274
1275 /*
1276 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1277 * no further code needs to use CPU hotplug (which is true in
1278 * the reboot case). However, the kexec path depends on using
1279 * CPU hotplug again; so re-enable it here.
1280 */
1281 cpu_hotplug_enable();
1282 pr_notice("Starting new kernel\n");
1283 machine_shutdown();
1284 }
1285
1286 kmsg_dump(KMSG_DUMP_SHUTDOWN);
1287 machine_kexec(kexec_image);
1288
1289 #ifdef CONFIG_KEXEC_JUMP
1290 if (kexec_image->preserve_context) {
1291 syscore_resume();
1292 Enable_irqs:
1293 local_irq_enable();
1294 Enable_cpus:
1295 suspend_enable_secondary_cpus();
1296 dpm_resume_start(PMSG_RESTORE);
1297 Resume_devices:
1298 dpm_resume_end(PMSG_RESTORE);
1299 Resume_console:
1300 resume_console();
1301 thaw_processes();
1302 Restore_console:
1303 pm_restore_console();
1304 }
1305 #endif
1306
1307 Unlock:
1308 kexec_unlock();
1309 return error;
1310 }
1311