1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76
77 /*
78 * The default value should be high enough to not crash a system that randomly
79 * crashes its kernel from time to time, but low enough to at least not permit
80 * overflowing 32-bit refcounts or the ldsem writer count.
81 */
82 static unsigned int oops_limit = 10000;
83
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86 {
87 .procname = "oops_limit",
88 .data = &oops_limit,
89 .maxlen = sizeof(oops_limit),
90 .mode = 0644,
91 .proc_handler = proc_douintvec,
92 },
93 { }
94 };
95
kernel_exit_sysctls_init(void)96 static __init int kernel_exit_sysctls_init(void)
97 {
98 register_sysctl_init("kernel", kern_exit_table);
99 return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103
104 static atomic_t oops_count = ATOMIC_INIT(0);
105
106 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108 char *page)
109 {
110 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114
kernel_exit_sysfs_init(void)115 static __init int kernel_exit_sysfs_init(void)
116 {
117 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118 return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122
__unhash_process(struct task_struct * p,bool group_dead)123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125 nr_threads--;
126 detach_pid(p, PIDTYPE_PID);
127 if (group_dead) {
128 detach_pid(p, PIDTYPE_TGID);
129 detach_pid(p, PIDTYPE_PGID);
130 detach_pid(p, PIDTYPE_SID);
131
132 list_del_rcu(&p->tasks);
133 list_del_init(&p->sibling);
134 __this_cpu_dec(process_counts);
135 }
136 list_del_rcu(&p->thread_group);
137 list_del_rcu(&p->thread_node);
138 }
139
140 /*
141 * This function expects the tasklist_lock write-locked.
142 */
__exit_signal(struct task_struct * tsk)143 static void __exit_signal(struct task_struct *tsk)
144 {
145 struct signal_struct *sig = tsk->signal;
146 bool group_dead = thread_group_leader(tsk);
147 struct sighand_struct *sighand;
148 struct tty_struct *tty;
149 u64 utime, stime;
150
151 sighand = rcu_dereference_check(tsk->sighand,
152 lockdep_tasklist_lock_is_held());
153 spin_lock(&sighand->siglock);
154
155 #ifdef CONFIG_POSIX_TIMERS
156 posix_cpu_timers_exit(tsk);
157 if (group_dead)
158 posix_cpu_timers_exit_group(tsk);
159 #endif
160
161 if (group_dead) {
162 tty = sig->tty;
163 sig->tty = NULL;
164 } else {
165 /*
166 * If there is any task waiting for the group exit
167 * then notify it:
168 */
169 if (sig->notify_count > 0 && !--sig->notify_count)
170 wake_up_process(sig->group_exec_task);
171
172 if (tsk == sig->curr_target)
173 sig->curr_target = next_thread(tsk);
174 }
175
176 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 sizeof(unsigned long long));
178
179 /*
180 * Accumulate here the counters for all threads as they die. We could
181 * skip the group leader because it is the last user of signal_struct,
182 * but we want to avoid the race with thread_group_cputime() which can
183 * see the empty ->thread_head list.
184 */
185 task_cputime(tsk, &utime, &stime);
186 write_seqlock(&sig->stats_lock);
187 sig->utime += utime;
188 sig->stime += stime;
189 sig->gtime += task_gtime(tsk);
190 sig->min_flt += tsk->min_flt;
191 sig->maj_flt += tsk->maj_flt;
192 sig->nvcsw += tsk->nvcsw;
193 sig->nivcsw += tsk->nivcsw;
194 sig->inblock += task_io_get_inblock(tsk);
195 sig->oublock += task_io_get_oublock(tsk);
196 task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198 sig->nr_threads--;
199 __unhash_process(tsk, group_dead);
200 write_sequnlock(&sig->stats_lock);
201
202 /*
203 * Do this under ->siglock, we can race with another thread
204 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205 */
206 flush_sigqueue(&tsk->pending);
207 tsk->sighand = NULL;
208 spin_unlock(&sighand->siglock);
209
210 __cleanup_sighand(sighand);
211 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212 if (group_dead) {
213 flush_sigqueue(&sig->shared_pending);
214 tty_kref_put(tty);
215 }
216 }
217
delayed_put_task_struct(struct rcu_head * rhp)218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221
222 kprobe_flush_task(tsk);
223 rethook_flush_task(tsk);
224 perf_event_delayed_put(tsk);
225 trace_sched_process_free(tsk);
226 put_task_struct(tsk);
227 }
228
put_task_struct_rcu_user(struct task_struct * task)229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231 if (refcount_dec_and_test(&task->rcu_users))
232 call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234
release_thread(struct task_struct * dead_task)235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238
release_task(struct task_struct * p)239 void release_task(struct task_struct *p)
240 {
241 struct task_struct *leader;
242 struct pid *thread_pid;
243 int zap_leader;
244 repeat:
245 /* don't need to get the RCU readlock here - the process is dead and
246 * can't be modifying its own credentials. But shut RCU-lockdep up */
247 rcu_read_lock();
248 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249 rcu_read_unlock();
250
251 cgroup_release(p);
252
253 write_lock_irq(&tasklist_lock);
254 ptrace_release_task(p);
255 thread_pid = get_pid(p->thread_pid);
256 __exit_signal(p);
257
258 /*
259 * If we are the last non-leader member of the thread
260 * group, and the leader is zombie, then notify the
261 * group leader's parent process. (if it wants notification.)
262 */
263 zap_leader = 0;
264 leader = p->group_leader;
265 if (leader != p && thread_group_empty(leader)
266 && leader->exit_state == EXIT_ZOMBIE) {
267 /*
268 * If we were the last child thread and the leader has
269 * exited already, and the leader's parent ignores SIGCHLD,
270 * then we are the one who should release the leader.
271 */
272 zap_leader = do_notify_parent(leader, leader->exit_signal);
273 if (zap_leader)
274 leader->exit_state = EXIT_DEAD;
275 }
276
277 write_unlock_irq(&tasklist_lock);
278 seccomp_filter_release(p);
279 proc_flush_pid(thread_pid);
280 put_pid(thread_pid);
281 release_thread(p);
282 put_task_struct_rcu_user(p);
283
284 p = leader;
285 if (unlikely(zap_leader))
286 goto repeat;
287 }
288
rcuwait_wake_up(struct rcuwait * w)289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291 int ret = 0;
292 struct task_struct *task;
293
294 rcu_read_lock();
295
296 /*
297 * Order condition vs @task, such that everything prior to the load
298 * of @task is visible. This is the condition as to why the user called
299 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 * barrier (A) in rcuwait_wait_event().
301 *
302 * WAIT WAKE
303 * [S] tsk = current [S] cond = true
304 * MB (A) MB (B)
305 * [L] cond [L] tsk
306 */
307 smp_mb(); /* (B) */
308
309 task = rcu_dereference(w->task);
310 if (task)
311 ret = wake_up_process(task);
312 rcu_read_unlock();
313
314 return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317
318 /*
319 * Determine if a process group is "orphaned", according to the POSIX
320 * definition in 2.2.2.52. Orphaned process groups are not to be affected
321 * by terminal-generated stop signals. Newly orphaned process groups are
322 * to receive a SIGHUP and a SIGCONT.
323 *
324 * "I ask you, have you ever known what it is to be an orphan?"
325 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 struct task_struct *ignored_task)
328 {
329 struct task_struct *p;
330
331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 if ((p == ignored_task) ||
333 (p->exit_state && thread_group_empty(p)) ||
334 is_global_init(p->real_parent))
335 continue;
336
337 if (task_pgrp(p->real_parent) != pgrp &&
338 task_session(p->real_parent) == task_session(p))
339 return 0;
340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342 return 1;
343 }
344
is_current_pgrp_orphaned(void)345 int is_current_pgrp_orphaned(void)
346 {
347 int retval;
348
349 read_lock(&tasklist_lock);
350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 read_unlock(&tasklist_lock);
352
353 return retval;
354 }
355
has_stopped_jobs(struct pid * pgrp)356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358 struct task_struct *p;
359
360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 return true;
363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364
365 return false;
366 }
367
368 /*
369 * Check to see if any process groups have become orphaned as
370 * a result of our exiting, and if they have any stopped jobs,
371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372 */
373 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376 struct pid *pgrp = task_pgrp(tsk);
377 struct task_struct *ignored_task = tsk;
378
379 if (!parent)
380 /* exit: our father is in a different pgrp than
381 * we are and we were the only connection outside.
382 */
383 parent = tsk->real_parent;
384 else
385 /* reparent: our child is in a different pgrp than
386 * we are, and it was the only connection outside.
387 */
388 ignored_task = NULL;
389
390 if (task_pgrp(parent) != pgrp &&
391 task_session(parent) == task_session(tsk) &&
392 will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 has_stopped_jobs(pgrp)) {
394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 }
397 }
398
coredump_task_exit(struct task_struct * tsk)399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401 struct core_state *core_state;
402
403 /*
404 * Serialize with any possible pending coredump.
405 * We must hold siglock around checking core_state
406 * and setting PF_POSTCOREDUMP. The core-inducing thread
407 * will increment ->nr_threads for each thread in the
408 * group without PF_POSTCOREDUMP set.
409 */
410 spin_lock_irq(&tsk->sighand->siglock);
411 tsk->flags |= PF_POSTCOREDUMP;
412 core_state = tsk->signal->core_state;
413 spin_unlock_irq(&tsk->sighand->siglock);
414
415 /* The vhost_worker does not particpate in coredumps */
416 if (core_state &&
417 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 struct core_thread self;
419
420 self.task = current;
421 if (self.task->flags & PF_SIGNALED)
422 self.next = xchg(&core_state->dumper.next, &self);
423 else
424 self.task = NULL;
425 /*
426 * Implies mb(), the result of xchg() must be visible
427 * to core_state->dumper.
428 */
429 if (atomic_dec_and_test(&core_state->nr_threads))
430 complete(&core_state->startup);
431
432 for (;;) {
433 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 if (!self.task) /* see coredump_finish() */
435 break;
436 schedule();
437 }
438 __set_current_state(TASK_RUNNING);
439 }
440 }
441
442 #ifdef CONFIG_MEMCG
443 /*
444 * A task is exiting. If it owned this mm, find a new owner for the mm.
445 */
mm_update_next_owner(struct mm_struct * mm)446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448 struct task_struct *c, *g, *p = current;
449
450 retry:
451 /*
452 * If the exiting or execing task is not the owner, it's
453 * someone else's problem.
454 */
455 if (mm->owner != p)
456 return;
457 /*
458 * The current owner is exiting/execing and there are no other
459 * candidates. Do not leave the mm pointing to a possibly
460 * freed task structure.
461 */
462 if (atomic_read(&mm->mm_users) <= 1) {
463 WRITE_ONCE(mm->owner, NULL);
464 return;
465 }
466
467 read_lock(&tasklist_lock);
468 /*
469 * Search in the children
470 */
471 list_for_each_entry(c, &p->children, sibling) {
472 if (c->mm == mm)
473 goto assign_new_owner;
474 }
475
476 /*
477 * Search in the siblings
478 */
479 list_for_each_entry(c, &p->real_parent->children, sibling) {
480 if (c->mm == mm)
481 goto assign_new_owner;
482 }
483
484 /*
485 * Search through everything else, we should not get here often.
486 */
487 for_each_process(g) {
488 if (g->flags & PF_KTHREAD)
489 continue;
490 for_each_thread(g, c) {
491 if (c->mm == mm)
492 goto assign_new_owner;
493 if (c->mm)
494 break;
495 }
496 }
497 read_unlock(&tasklist_lock);
498 /*
499 * We found no owner yet mm_users > 1: this implies that we are
500 * most likely racing with swapoff (try_to_unuse()) or /proc or
501 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
502 */
503 WRITE_ONCE(mm->owner, NULL);
504 return;
505
506 assign_new_owner:
507 BUG_ON(c == p);
508 get_task_struct(c);
509 /*
510 * The task_lock protects c->mm from changing.
511 * We always want mm->owner->mm == mm
512 */
513 task_lock(c);
514 /*
515 * Delay read_unlock() till we have the task_lock()
516 * to ensure that c does not slip away underneath us
517 */
518 read_unlock(&tasklist_lock);
519 if (c->mm != mm) {
520 task_unlock(c);
521 put_task_struct(c);
522 goto retry;
523 }
524 WRITE_ONCE(mm->owner, c);
525 lru_gen_migrate_mm(mm);
526 task_unlock(c);
527 put_task_struct(c);
528 }
529 #endif /* CONFIG_MEMCG */
530
531 /*
532 * Turn us into a lazy TLB process if we
533 * aren't already..
534 */
exit_mm(void)535 static void exit_mm(void)
536 {
537 struct mm_struct *mm = current->mm;
538
539 exit_mm_release(current, mm);
540 if (!mm)
541 return;
542 sync_mm_rss(mm);
543 mmap_read_lock(mm);
544 mmgrab_lazy_tlb(mm);
545 BUG_ON(mm != current->active_mm);
546 /* more a memory barrier than a real lock */
547 task_lock(current);
548 /*
549 * When a thread stops operating on an address space, the loop
550 * in membarrier_private_expedited() may not observe that
551 * tsk->mm, and the loop in membarrier_global_expedited() may
552 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553 * rq->membarrier_state, so those would not issue an IPI.
554 * Membarrier requires a memory barrier after accessing
555 * user-space memory, before clearing tsk->mm or the
556 * rq->membarrier_state.
557 */
558 smp_mb__after_spinlock();
559 local_irq_disable();
560 current->mm = NULL;
561 membarrier_update_current_mm(NULL);
562 enter_lazy_tlb(mm, current);
563 local_irq_enable();
564 task_unlock(current);
565 mmap_read_unlock(mm);
566 mm_update_next_owner(mm);
567 mmput(mm);
568 if (test_thread_flag(TIF_MEMDIE))
569 exit_oom_victim();
570 }
571
find_alive_thread(struct task_struct * p)572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574 struct task_struct *t;
575
576 for_each_thread(p, t) {
577 if (!(t->flags & PF_EXITING))
578 return t;
579 }
580 return NULL;
581 }
582
find_child_reaper(struct task_struct * father,struct list_head * dead)583 static struct task_struct *find_child_reaper(struct task_struct *father,
584 struct list_head *dead)
585 __releases(&tasklist_lock)
586 __acquires(&tasklist_lock)
587 {
588 struct pid_namespace *pid_ns = task_active_pid_ns(father);
589 struct task_struct *reaper = pid_ns->child_reaper;
590 struct task_struct *p, *n;
591
592 if (likely(reaper != father))
593 return reaper;
594
595 reaper = find_alive_thread(father);
596 if (reaper) {
597 pid_ns->child_reaper = reaper;
598 return reaper;
599 }
600
601 write_unlock_irq(&tasklist_lock);
602
603 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604 list_del_init(&p->ptrace_entry);
605 release_task(p);
606 }
607
608 zap_pid_ns_processes(pid_ns);
609 write_lock_irq(&tasklist_lock);
610
611 return father;
612 }
613
614 /*
615 * When we die, we re-parent all our children, and try to:
616 * 1. give them to another thread in our thread group, if such a member exists
617 * 2. give it to the first ancestor process which prctl'd itself as a
618 * child_subreaper for its children (like a service manager)
619 * 3. give it to the init process (PID 1) in our pid namespace
620 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)621 static struct task_struct *find_new_reaper(struct task_struct *father,
622 struct task_struct *child_reaper)
623 {
624 struct task_struct *thread, *reaper;
625
626 thread = find_alive_thread(father);
627 if (thread)
628 return thread;
629
630 if (father->signal->has_child_subreaper) {
631 unsigned int ns_level = task_pid(father)->level;
632 /*
633 * Find the first ->is_child_subreaper ancestor in our pid_ns.
634 * We can't check reaper != child_reaper to ensure we do not
635 * cross the namespaces, the exiting parent could be injected
636 * by setns() + fork().
637 * We check pid->level, this is slightly more efficient than
638 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639 */
640 for (reaper = father->real_parent;
641 task_pid(reaper)->level == ns_level;
642 reaper = reaper->real_parent) {
643 if (reaper == &init_task)
644 break;
645 if (!reaper->signal->is_child_subreaper)
646 continue;
647 thread = find_alive_thread(reaper);
648 if (thread)
649 return thread;
650 }
651 }
652
653 return child_reaper;
654 }
655
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660 struct list_head *dead)
661 {
662 if (unlikely(p->exit_state == EXIT_DEAD))
663 return;
664
665 /* We don't want people slaying init. */
666 p->exit_signal = SIGCHLD;
667
668 /* If it has exited notify the new parent about this child's death. */
669 if (!p->ptrace &&
670 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671 if (do_notify_parent(p, p->exit_signal)) {
672 p->exit_state = EXIT_DEAD;
673 list_add(&p->ptrace_entry, dead);
674 }
675 }
676
677 kill_orphaned_pgrp(p, father);
678 }
679
680 /*
681 * This does two things:
682 *
683 * A. Make init inherit all the child processes
684 * B. Check to see if any process groups have become orphaned
685 * as a result of our exiting, and if they have any stopped
686 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
687 */
forget_original_parent(struct task_struct * father,struct list_head * dead)688 static void forget_original_parent(struct task_struct *father,
689 struct list_head *dead)
690 {
691 struct task_struct *p, *t, *reaper;
692
693 if (unlikely(!list_empty(&father->ptraced)))
694 exit_ptrace(father, dead);
695
696 /* Can drop and reacquire tasklist_lock */
697 reaper = find_child_reaper(father, dead);
698 if (list_empty(&father->children))
699 return;
700
701 reaper = find_new_reaper(father, reaper);
702 list_for_each_entry(p, &father->children, sibling) {
703 for_each_thread(p, t) {
704 RCU_INIT_POINTER(t->real_parent, reaper);
705 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706 if (likely(!t->ptrace))
707 t->parent = t->real_parent;
708 if (t->pdeath_signal)
709 group_send_sig_info(t->pdeath_signal,
710 SEND_SIG_NOINFO, t,
711 PIDTYPE_TGID);
712 }
713 /*
714 * If this is a threaded reparent there is no need to
715 * notify anyone anything has happened.
716 */
717 if (!same_thread_group(reaper, father))
718 reparent_leader(father, p, dead);
719 }
720 list_splice_tail_init(&father->children, &reaper->children);
721 }
722
723 /*
724 * Send signals to all our closest relatives so that they know
725 * to properly mourn us..
726 */
exit_notify(struct task_struct * tsk,int group_dead)727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729 bool autoreap;
730 struct task_struct *p, *n;
731 LIST_HEAD(dead);
732
733 write_lock_irq(&tasklist_lock);
734 forget_original_parent(tsk, &dead);
735
736 if (group_dead)
737 kill_orphaned_pgrp(tsk->group_leader, NULL);
738
739 tsk->exit_state = EXIT_ZOMBIE;
740 if (unlikely(tsk->ptrace)) {
741 int sig = thread_group_leader(tsk) &&
742 thread_group_empty(tsk) &&
743 !ptrace_reparented(tsk) ?
744 tsk->exit_signal : SIGCHLD;
745 autoreap = do_notify_parent(tsk, sig);
746 } else if (thread_group_leader(tsk)) {
747 autoreap = thread_group_empty(tsk) &&
748 do_notify_parent(tsk, tsk->exit_signal);
749 } else {
750 autoreap = true;
751 }
752
753 if (autoreap) {
754 tsk->exit_state = EXIT_DEAD;
755 list_add(&tsk->ptrace_entry, &dead);
756 }
757
758 /* mt-exec, de_thread() is waiting for group leader */
759 if (unlikely(tsk->signal->notify_count < 0))
760 wake_up_process(tsk->signal->group_exec_task);
761 write_unlock_irq(&tasklist_lock);
762
763 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764 list_del_init(&p->ptrace_entry);
765 release_task(p);
766 }
767 }
768
769 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)770 static void check_stack_usage(void)
771 {
772 static DEFINE_SPINLOCK(low_water_lock);
773 static int lowest_to_date = THREAD_SIZE;
774 unsigned long free;
775
776 free = stack_not_used(current);
777
778 if (free >= lowest_to_date)
779 return;
780
781 spin_lock(&low_water_lock);
782 if (free < lowest_to_date) {
783 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784 current->comm, task_pid_nr(current), free);
785 lowest_to_date = free;
786 }
787 spin_unlock(&low_water_lock);
788 }
789 #else
check_stack_usage(void)790 static inline void check_stack_usage(void) {}
791 #endif
792
synchronize_group_exit(struct task_struct * tsk,long code)793 static void synchronize_group_exit(struct task_struct *tsk, long code)
794 {
795 struct sighand_struct *sighand = tsk->sighand;
796 struct signal_struct *signal = tsk->signal;
797
798 spin_lock_irq(&sighand->siglock);
799 signal->quick_threads--;
800 if ((signal->quick_threads == 0) &&
801 !(signal->flags & SIGNAL_GROUP_EXIT)) {
802 signal->flags = SIGNAL_GROUP_EXIT;
803 signal->group_exit_code = code;
804 signal->group_stop_count = 0;
805 }
806 spin_unlock_irq(&sighand->siglock);
807 }
808
do_exit(long code)809 void __noreturn do_exit(long code)
810 {
811 struct task_struct *tsk = current;
812 int group_dead;
813
814 WARN_ON(irqs_disabled());
815
816 synchronize_group_exit(tsk, code);
817
818 WARN_ON(tsk->plug);
819
820 kcov_task_exit(tsk);
821 kmsan_task_exit(tsk);
822
823 coredump_task_exit(tsk);
824 ptrace_event(PTRACE_EVENT_EXIT, code);
825 user_events_exit(tsk);
826
827 validate_creds_for_do_exit(tsk);
828
829 io_uring_files_cancel();
830 exit_signals(tsk); /* sets PF_EXITING */
831
832 /* sync mm's RSS info before statistics gathering */
833 if (tsk->mm)
834 sync_mm_rss(tsk->mm);
835 acct_update_integrals(tsk);
836 group_dead = atomic_dec_and_test(&tsk->signal->live);
837 if (group_dead) {
838 /*
839 * If the last thread of global init has exited, panic
840 * immediately to get a useable coredump.
841 */
842 if (unlikely(is_global_init(tsk)))
843 panic("Attempted to kill init! exitcode=0x%08x\n",
844 tsk->signal->group_exit_code ?: (int)code);
845
846 #ifdef CONFIG_POSIX_TIMERS
847 hrtimer_cancel(&tsk->signal->real_timer);
848 exit_itimers(tsk);
849 #endif
850 if (tsk->mm)
851 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852 }
853 acct_collect(code, group_dead);
854 if (group_dead)
855 tty_audit_exit();
856 audit_free(tsk);
857
858 tsk->exit_code = code;
859 taskstats_exit(tsk, group_dead);
860
861 exit_mm();
862
863 if (group_dead)
864 acct_process();
865 trace_sched_process_exit(tsk);
866
867 exit_sem(tsk);
868 exit_shm(tsk);
869 exit_files(tsk);
870 exit_fs(tsk);
871 if (group_dead)
872 disassociate_ctty(1);
873 exit_task_namespaces(tsk);
874 exit_task_work(tsk);
875 exit_thread(tsk);
876
877 /*
878 * Flush inherited counters to the parent - before the parent
879 * gets woken up by child-exit notifications.
880 *
881 * because of cgroup mode, must be called before cgroup_exit()
882 */
883 perf_event_exit_task(tsk);
884
885 sched_autogroup_exit_task(tsk);
886 cgroup_exit(tsk);
887
888 /*
889 * FIXME: do that only when needed, using sched_exit tracepoint
890 */
891 flush_ptrace_hw_breakpoint(tsk);
892
893 exit_tasks_rcu_start();
894 exit_notify(tsk, group_dead);
895 proc_exit_connector(tsk);
896 mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898 if (unlikely(current->pi_state_cache))
899 kfree(current->pi_state_cache);
900 #endif
901 /*
902 * Make sure we are holding no locks:
903 */
904 debug_check_no_locks_held();
905
906 if (tsk->io_context)
907 exit_io_context(tsk);
908
909 if (tsk->splice_pipe)
910 free_pipe_info(tsk->splice_pipe);
911
912 if (tsk->task_frag.page)
913 put_page(tsk->task_frag.page);
914
915 validate_creds_for_do_exit(tsk);
916 exit_task_stack_account(tsk);
917
918 check_stack_usage();
919 preempt_disable();
920 if (tsk->nr_dirtied)
921 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922 exit_rcu();
923 exit_tasks_rcu_finish();
924
925 lockdep_free_task(tsk);
926 do_task_dead();
927 }
928
make_task_dead(int signr)929 void __noreturn make_task_dead(int signr)
930 {
931 /*
932 * Take the task off the cpu after something catastrophic has
933 * happened.
934 *
935 * We can get here from a kernel oops, sometimes with preemption off.
936 * Start by checking for critical errors.
937 * Then fix up important state like USER_DS and preemption.
938 * Then do everything else.
939 */
940 struct task_struct *tsk = current;
941 unsigned int limit;
942
943 if (unlikely(in_interrupt()))
944 panic("Aiee, killing interrupt handler!");
945 if (unlikely(!tsk->pid))
946 panic("Attempted to kill the idle task!");
947
948 if (unlikely(irqs_disabled())) {
949 pr_info("note: %s[%d] exited with irqs disabled\n",
950 current->comm, task_pid_nr(current));
951 local_irq_enable();
952 }
953 if (unlikely(in_atomic())) {
954 pr_info("note: %s[%d] exited with preempt_count %d\n",
955 current->comm, task_pid_nr(current),
956 preempt_count());
957 preempt_count_set(PREEMPT_ENABLED);
958 }
959
960 /*
961 * Every time the system oopses, if the oops happens while a reference
962 * to an object was held, the reference leaks.
963 * If the oops doesn't also leak memory, repeated oopsing can cause
964 * reference counters to wrap around (if they're not using refcount_t).
965 * This means that repeated oopsing can make unexploitable-looking bugs
966 * exploitable through repeated oopsing.
967 * To make sure this can't happen, place an upper bound on how often the
968 * kernel may oops without panic().
969 */
970 limit = READ_ONCE(oops_limit);
971 if (atomic_inc_return(&oops_count) >= limit && limit)
972 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
973
974 /*
975 * We're taking recursive faults here in make_task_dead. Safest is to just
976 * leave this task alone and wait for reboot.
977 */
978 if (unlikely(tsk->flags & PF_EXITING)) {
979 pr_alert("Fixing recursive fault but reboot is needed!\n");
980 futex_exit_recursive(tsk);
981 tsk->exit_state = EXIT_DEAD;
982 refcount_inc(&tsk->rcu_users);
983 do_task_dead();
984 }
985
986 do_exit(signr);
987 }
988
SYSCALL_DEFINE1(exit,int,error_code)989 SYSCALL_DEFINE1(exit, int, error_code)
990 {
991 do_exit((error_code&0xff)<<8);
992 }
993
994 /*
995 * Take down every thread in the group. This is called by fatal signals
996 * as well as by sys_exit_group (below).
997 */
998 void __noreturn
do_group_exit(int exit_code)999 do_group_exit(int exit_code)
1000 {
1001 struct signal_struct *sig = current->signal;
1002
1003 if (sig->flags & SIGNAL_GROUP_EXIT)
1004 exit_code = sig->group_exit_code;
1005 else if (sig->group_exec_task)
1006 exit_code = 0;
1007 else {
1008 struct sighand_struct *const sighand = current->sighand;
1009
1010 spin_lock_irq(&sighand->siglock);
1011 if (sig->flags & SIGNAL_GROUP_EXIT)
1012 /* Another thread got here before we took the lock. */
1013 exit_code = sig->group_exit_code;
1014 else if (sig->group_exec_task)
1015 exit_code = 0;
1016 else {
1017 sig->group_exit_code = exit_code;
1018 sig->flags = SIGNAL_GROUP_EXIT;
1019 zap_other_threads(current);
1020 }
1021 spin_unlock_irq(&sighand->siglock);
1022 }
1023
1024 do_exit(exit_code);
1025 /* NOTREACHED */
1026 }
1027
1028 /*
1029 * this kills every thread in the thread group. Note that any externally
1030 * wait4()-ing process will get the correct exit code - even if this
1031 * thread is not the thread group leader.
1032 */
SYSCALL_DEFINE1(exit_group,int,error_code)1033 SYSCALL_DEFINE1(exit_group, int, error_code)
1034 {
1035 do_group_exit((error_code & 0xff) << 8);
1036 /* NOTREACHED */
1037 return 0;
1038 }
1039
1040 struct waitid_info {
1041 pid_t pid;
1042 uid_t uid;
1043 int status;
1044 int cause;
1045 };
1046
1047 struct wait_opts {
1048 enum pid_type wo_type;
1049 int wo_flags;
1050 struct pid *wo_pid;
1051
1052 struct waitid_info *wo_info;
1053 int wo_stat;
1054 struct rusage *wo_rusage;
1055
1056 wait_queue_entry_t child_wait;
1057 int notask_error;
1058 };
1059
eligible_pid(struct wait_opts * wo,struct task_struct * p)1060 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1061 {
1062 return wo->wo_type == PIDTYPE_MAX ||
1063 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1064 }
1065
1066 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1067 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1068 {
1069 if (!eligible_pid(wo, p))
1070 return 0;
1071
1072 /*
1073 * Wait for all children (clone and not) if __WALL is set or
1074 * if it is traced by us.
1075 */
1076 if (ptrace || (wo->wo_flags & __WALL))
1077 return 1;
1078
1079 /*
1080 * Otherwise, wait for clone children *only* if __WCLONE is set;
1081 * otherwise, wait for non-clone children *only*.
1082 *
1083 * Note: a "clone" child here is one that reports to its parent
1084 * using a signal other than SIGCHLD, or a non-leader thread which
1085 * we can only see if it is traced by us.
1086 */
1087 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1088 return 0;
1089
1090 return 1;
1091 }
1092
1093 /*
1094 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1095 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1096 * the lock and this task is uninteresting. If we return nonzero, we have
1097 * released the lock and the system call should return.
1098 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1099 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1100 {
1101 int state, status;
1102 pid_t pid = task_pid_vnr(p);
1103 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1104 struct waitid_info *infop;
1105
1106 if (!likely(wo->wo_flags & WEXITED))
1107 return 0;
1108
1109 if (unlikely(wo->wo_flags & WNOWAIT)) {
1110 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1111 ? p->signal->group_exit_code : p->exit_code;
1112 get_task_struct(p);
1113 read_unlock(&tasklist_lock);
1114 sched_annotate_sleep();
1115 if (wo->wo_rusage)
1116 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1117 put_task_struct(p);
1118 goto out_info;
1119 }
1120 /*
1121 * Move the task's state to DEAD/TRACE, only one thread can do this.
1122 */
1123 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1124 EXIT_TRACE : EXIT_DEAD;
1125 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1126 return 0;
1127 /*
1128 * We own this thread, nobody else can reap it.
1129 */
1130 read_unlock(&tasklist_lock);
1131 sched_annotate_sleep();
1132
1133 /*
1134 * Check thread_group_leader() to exclude the traced sub-threads.
1135 */
1136 if (state == EXIT_DEAD && thread_group_leader(p)) {
1137 struct signal_struct *sig = p->signal;
1138 struct signal_struct *psig = current->signal;
1139 unsigned long maxrss;
1140 u64 tgutime, tgstime;
1141
1142 /*
1143 * The resource counters for the group leader are in its
1144 * own task_struct. Those for dead threads in the group
1145 * are in its signal_struct, as are those for the child
1146 * processes it has previously reaped. All these
1147 * accumulate in the parent's signal_struct c* fields.
1148 *
1149 * We don't bother to take a lock here to protect these
1150 * p->signal fields because the whole thread group is dead
1151 * and nobody can change them.
1152 *
1153 * psig->stats_lock also protects us from our sub-threads
1154 * which can reap other children at the same time. Until
1155 * we change k_getrusage()-like users to rely on this lock
1156 * we have to take ->siglock as well.
1157 *
1158 * We use thread_group_cputime_adjusted() to get times for
1159 * the thread group, which consolidates times for all threads
1160 * in the group including the group leader.
1161 */
1162 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1163 spin_lock_irq(¤t->sighand->siglock);
1164 write_seqlock(&psig->stats_lock);
1165 psig->cutime += tgutime + sig->cutime;
1166 psig->cstime += tgstime + sig->cstime;
1167 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1168 psig->cmin_flt +=
1169 p->min_flt + sig->min_flt + sig->cmin_flt;
1170 psig->cmaj_flt +=
1171 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1172 psig->cnvcsw +=
1173 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1174 psig->cnivcsw +=
1175 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1176 psig->cinblock +=
1177 task_io_get_inblock(p) +
1178 sig->inblock + sig->cinblock;
1179 psig->coublock +=
1180 task_io_get_oublock(p) +
1181 sig->oublock + sig->coublock;
1182 maxrss = max(sig->maxrss, sig->cmaxrss);
1183 if (psig->cmaxrss < maxrss)
1184 psig->cmaxrss = maxrss;
1185 task_io_accounting_add(&psig->ioac, &p->ioac);
1186 task_io_accounting_add(&psig->ioac, &sig->ioac);
1187 write_sequnlock(&psig->stats_lock);
1188 spin_unlock_irq(¤t->sighand->siglock);
1189 }
1190
1191 if (wo->wo_rusage)
1192 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1193 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1194 ? p->signal->group_exit_code : p->exit_code;
1195 wo->wo_stat = status;
1196
1197 if (state == EXIT_TRACE) {
1198 write_lock_irq(&tasklist_lock);
1199 /* We dropped tasklist, ptracer could die and untrace */
1200 ptrace_unlink(p);
1201
1202 /* If parent wants a zombie, don't release it now */
1203 state = EXIT_ZOMBIE;
1204 if (do_notify_parent(p, p->exit_signal))
1205 state = EXIT_DEAD;
1206 p->exit_state = state;
1207 write_unlock_irq(&tasklist_lock);
1208 }
1209 if (state == EXIT_DEAD)
1210 release_task(p);
1211
1212 out_info:
1213 infop = wo->wo_info;
1214 if (infop) {
1215 if ((status & 0x7f) == 0) {
1216 infop->cause = CLD_EXITED;
1217 infop->status = status >> 8;
1218 } else {
1219 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 infop->status = status & 0x7f;
1221 }
1222 infop->pid = pid;
1223 infop->uid = uid;
1224 }
1225
1226 return pid;
1227 }
1228
task_stopped_code(struct task_struct * p,bool ptrace)1229 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1230 {
1231 if (ptrace) {
1232 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1233 return &p->exit_code;
1234 } else {
1235 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1236 return &p->signal->group_exit_code;
1237 }
1238 return NULL;
1239 }
1240
1241 /**
1242 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1243 * @wo: wait options
1244 * @ptrace: is the wait for ptrace
1245 * @p: task to wait for
1246 *
1247 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1248 *
1249 * CONTEXT:
1250 * read_lock(&tasklist_lock), which is released if return value is
1251 * non-zero. Also, grabs and releases @p->sighand->siglock.
1252 *
1253 * RETURNS:
1254 * 0 if wait condition didn't exist and search for other wait conditions
1255 * should continue. Non-zero return, -errno on failure and @p's pid on
1256 * success, implies that tasklist_lock is released and wait condition
1257 * search should terminate.
1258 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1259 static int wait_task_stopped(struct wait_opts *wo,
1260 int ptrace, struct task_struct *p)
1261 {
1262 struct waitid_info *infop;
1263 int exit_code, *p_code, why;
1264 uid_t uid = 0; /* unneeded, required by compiler */
1265 pid_t pid;
1266
1267 /*
1268 * Traditionally we see ptrace'd stopped tasks regardless of options.
1269 */
1270 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1271 return 0;
1272
1273 if (!task_stopped_code(p, ptrace))
1274 return 0;
1275
1276 exit_code = 0;
1277 spin_lock_irq(&p->sighand->siglock);
1278
1279 p_code = task_stopped_code(p, ptrace);
1280 if (unlikely(!p_code))
1281 goto unlock_sig;
1282
1283 exit_code = *p_code;
1284 if (!exit_code)
1285 goto unlock_sig;
1286
1287 if (!unlikely(wo->wo_flags & WNOWAIT))
1288 *p_code = 0;
1289
1290 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1291 unlock_sig:
1292 spin_unlock_irq(&p->sighand->siglock);
1293 if (!exit_code)
1294 return 0;
1295
1296 /*
1297 * Now we are pretty sure this task is interesting.
1298 * Make sure it doesn't get reaped out from under us while we
1299 * give up the lock and then examine it below. We don't want to
1300 * keep holding onto the tasklist_lock while we call getrusage and
1301 * possibly take page faults for user memory.
1302 */
1303 get_task_struct(p);
1304 pid = task_pid_vnr(p);
1305 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1306 read_unlock(&tasklist_lock);
1307 sched_annotate_sleep();
1308 if (wo->wo_rusage)
1309 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1310 put_task_struct(p);
1311
1312 if (likely(!(wo->wo_flags & WNOWAIT)))
1313 wo->wo_stat = (exit_code << 8) | 0x7f;
1314
1315 infop = wo->wo_info;
1316 if (infop) {
1317 infop->cause = why;
1318 infop->status = exit_code;
1319 infop->pid = pid;
1320 infop->uid = uid;
1321 }
1322 return pid;
1323 }
1324
1325 /*
1326 * Handle do_wait work for one task in a live, non-stopped state.
1327 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1328 * the lock and this task is uninteresting. If we return nonzero, we have
1329 * released the lock and the system call should return.
1330 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1331 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1332 {
1333 struct waitid_info *infop;
1334 pid_t pid;
1335 uid_t uid;
1336
1337 if (!unlikely(wo->wo_flags & WCONTINUED))
1338 return 0;
1339
1340 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1341 return 0;
1342
1343 spin_lock_irq(&p->sighand->siglock);
1344 /* Re-check with the lock held. */
1345 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1346 spin_unlock_irq(&p->sighand->siglock);
1347 return 0;
1348 }
1349 if (!unlikely(wo->wo_flags & WNOWAIT))
1350 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1351 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1352 spin_unlock_irq(&p->sighand->siglock);
1353
1354 pid = task_pid_vnr(p);
1355 get_task_struct(p);
1356 read_unlock(&tasklist_lock);
1357 sched_annotate_sleep();
1358 if (wo->wo_rusage)
1359 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1360 put_task_struct(p);
1361
1362 infop = wo->wo_info;
1363 if (!infop) {
1364 wo->wo_stat = 0xffff;
1365 } else {
1366 infop->cause = CLD_CONTINUED;
1367 infop->pid = pid;
1368 infop->uid = uid;
1369 infop->status = SIGCONT;
1370 }
1371 return pid;
1372 }
1373
1374 /*
1375 * Consider @p for a wait by @parent.
1376 *
1377 * -ECHILD should be in ->notask_error before the first call.
1378 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1379 * Returns zero if the search for a child should continue;
1380 * then ->notask_error is 0 if @p is an eligible child,
1381 * or still -ECHILD.
1382 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1383 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1384 struct task_struct *p)
1385 {
1386 /*
1387 * We can race with wait_task_zombie() from another thread.
1388 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1389 * can't confuse the checks below.
1390 */
1391 int exit_state = READ_ONCE(p->exit_state);
1392 int ret;
1393
1394 if (unlikely(exit_state == EXIT_DEAD))
1395 return 0;
1396
1397 ret = eligible_child(wo, ptrace, p);
1398 if (!ret)
1399 return ret;
1400
1401 if (unlikely(exit_state == EXIT_TRACE)) {
1402 /*
1403 * ptrace == 0 means we are the natural parent. In this case
1404 * we should clear notask_error, debugger will notify us.
1405 */
1406 if (likely(!ptrace))
1407 wo->notask_error = 0;
1408 return 0;
1409 }
1410
1411 if (likely(!ptrace) && unlikely(p->ptrace)) {
1412 /*
1413 * If it is traced by its real parent's group, just pretend
1414 * the caller is ptrace_do_wait() and reap this child if it
1415 * is zombie.
1416 *
1417 * This also hides group stop state from real parent; otherwise
1418 * a single stop can be reported twice as group and ptrace stop.
1419 * If a ptracer wants to distinguish these two events for its
1420 * own children it should create a separate process which takes
1421 * the role of real parent.
1422 */
1423 if (!ptrace_reparented(p))
1424 ptrace = 1;
1425 }
1426
1427 /* slay zombie? */
1428 if (exit_state == EXIT_ZOMBIE) {
1429 /* we don't reap group leaders with subthreads */
1430 if (!delay_group_leader(p)) {
1431 /*
1432 * A zombie ptracee is only visible to its ptracer.
1433 * Notification and reaping will be cascaded to the
1434 * real parent when the ptracer detaches.
1435 */
1436 if (unlikely(ptrace) || likely(!p->ptrace))
1437 return wait_task_zombie(wo, p);
1438 }
1439
1440 /*
1441 * Allow access to stopped/continued state via zombie by
1442 * falling through. Clearing of notask_error is complex.
1443 *
1444 * When !@ptrace:
1445 *
1446 * If WEXITED is set, notask_error should naturally be
1447 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1448 * so, if there are live subthreads, there are events to
1449 * wait for. If all subthreads are dead, it's still safe
1450 * to clear - this function will be called again in finite
1451 * amount time once all the subthreads are released and
1452 * will then return without clearing.
1453 *
1454 * When @ptrace:
1455 *
1456 * Stopped state is per-task and thus can't change once the
1457 * target task dies. Only continued and exited can happen.
1458 * Clear notask_error if WCONTINUED | WEXITED.
1459 */
1460 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1461 wo->notask_error = 0;
1462 } else {
1463 /*
1464 * @p is alive and it's gonna stop, continue or exit, so
1465 * there always is something to wait for.
1466 */
1467 wo->notask_error = 0;
1468 }
1469
1470 /*
1471 * Wait for stopped. Depending on @ptrace, different stopped state
1472 * is used and the two don't interact with each other.
1473 */
1474 ret = wait_task_stopped(wo, ptrace, p);
1475 if (ret)
1476 return ret;
1477
1478 /*
1479 * Wait for continued. There's only one continued state and the
1480 * ptracer can consume it which can confuse the real parent. Don't
1481 * use WCONTINUED from ptracer. You don't need or want it.
1482 */
1483 return wait_task_continued(wo, p);
1484 }
1485
1486 /*
1487 * Do the work of do_wait() for one thread in the group, @tsk.
1488 *
1489 * -ECHILD should be in ->notask_error before the first call.
1490 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1491 * Returns zero if the search for a child should continue; then
1492 * ->notask_error is 0 if there were any eligible children,
1493 * or still -ECHILD.
1494 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1495 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1496 {
1497 struct task_struct *p;
1498
1499 list_for_each_entry(p, &tsk->children, sibling) {
1500 int ret = wait_consider_task(wo, 0, p);
1501
1502 if (ret)
1503 return ret;
1504 }
1505
1506 return 0;
1507 }
1508
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1509 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1510 {
1511 struct task_struct *p;
1512
1513 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1514 int ret = wait_consider_task(wo, 1, p);
1515
1516 if (ret)
1517 return ret;
1518 }
1519
1520 return 0;
1521 }
1522
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1523 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1524 int sync, void *key)
1525 {
1526 struct wait_opts *wo = container_of(wait, struct wait_opts,
1527 child_wait);
1528 struct task_struct *p = key;
1529
1530 if (!eligible_pid(wo, p))
1531 return 0;
1532
1533 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1534 return 0;
1535
1536 return default_wake_function(wait, mode, sync, key);
1537 }
1538
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1539 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1540 {
1541 __wake_up_sync_key(&parent->signal->wait_chldexit,
1542 TASK_INTERRUPTIBLE, p);
1543 }
1544
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1545 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1546 struct task_struct *target)
1547 {
1548 struct task_struct *parent =
1549 !ptrace ? target->real_parent : target->parent;
1550
1551 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1552 same_thread_group(current, parent));
1553 }
1554
1555 /*
1556 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1557 * and tracee lists to find the target task.
1558 */
do_wait_pid(struct wait_opts * wo)1559 static int do_wait_pid(struct wait_opts *wo)
1560 {
1561 bool ptrace;
1562 struct task_struct *target;
1563 int retval;
1564
1565 ptrace = false;
1566 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1567 if (target && is_effectively_child(wo, ptrace, target)) {
1568 retval = wait_consider_task(wo, ptrace, target);
1569 if (retval)
1570 return retval;
1571 }
1572
1573 ptrace = true;
1574 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1575 if (target && target->ptrace &&
1576 is_effectively_child(wo, ptrace, target)) {
1577 retval = wait_consider_task(wo, ptrace, target);
1578 if (retval)
1579 return retval;
1580 }
1581
1582 return 0;
1583 }
1584
do_wait(struct wait_opts * wo)1585 static long do_wait(struct wait_opts *wo)
1586 {
1587 int retval;
1588
1589 trace_sched_process_wait(wo->wo_pid);
1590
1591 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1592 wo->child_wait.private = current;
1593 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1594 repeat:
1595 /*
1596 * If there is nothing that can match our criteria, just get out.
1597 * We will clear ->notask_error to zero if we see any child that
1598 * might later match our criteria, even if we are not able to reap
1599 * it yet.
1600 */
1601 wo->notask_error = -ECHILD;
1602 if ((wo->wo_type < PIDTYPE_MAX) &&
1603 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1604 goto notask;
1605
1606 set_current_state(TASK_INTERRUPTIBLE);
1607 read_lock(&tasklist_lock);
1608
1609 if (wo->wo_type == PIDTYPE_PID) {
1610 retval = do_wait_pid(wo);
1611 if (retval)
1612 goto end;
1613 } else {
1614 struct task_struct *tsk = current;
1615
1616 do {
1617 retval = do_wait_thread(wo, tsk);
1618 if (retval)
1619 goto end;
1620
1621 retval = ptrace_do_wait(wo, tsk);
1622 if (retval)
1623 goto end;
1624
1625 if (wo->wo_flags & __WNOTHREAD)
1626 break;
1627 } while_each_thread(current, tsk);
1628 }
1629 read_unlock(&tasklist_lock);
1630
1631 notask:
1632 retval = wo->notask_error;
1633 if (!retval && !(wo->wo_flags & WNOHANG)) {
1634 retval = -ERESTARTSYS;
1635 if (!signal_pending(current)) {
1636 schedule();
1637 goto repeat;
1638 }
1639 }
1640 end:
1641 __set_current_state(TASK_RUNNING);
1642 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1643 return retval;
1644 }
1645
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1646 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1647 int options, struct rusage *ru)
1648 {
1649 struct wait_opts wo;
1650 struct pid *pid = NULL;
1651 enum pid_type type;
1652 long ret;
1653 unsigned int f_flags = 0;
1654
1655 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1656 __WNOTHREAD|__WCLONE|__WALL))
1657 return -EINVAL;
1658 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1659 return -EINVAL;
1660
1661 switch (which) {
1662 case P_ALL:
1663 type = PIDTYPE_MAX;
1664 break;
1665 case P_PID:
1666 type = PIDTYPE_PID;
1667 if (upid <= 0)
1668 return -EINVAL;
1669
1670 pid = find_get_pid(upid);
1671 break;
1672 case P_PGID:
1673 type = PIDTYPE_PGID;
1674 if (upid < 0)
1675 return -EINVAL;
1676
1677 if (upid)
1678 pid = find_get_pid(upid);
1679 else
1680 pid = get_task_pid(current, PIDTYPE_PGID);
1681 break;
1682 case P_PIDFD:
1683 type = PIDTYPE_PID;
1684 if (upid < 0)
1685 return -EINVAL;
1686
1687 pid = pidfd_get_pid(upid, &f_flags);
1688 if (IS_ERR(pid))
1689 return PTR_ERR(pid);
1690
1691 break;
1692 default:
1693 return -EINVAL;
1694 }
1695
1696 wo.wo_type = type;
1697 wo.wo_pid = pid;
1698 wo.wo_flags = options;
1699 wo.wo_info = infop;
1700 wo.wo_rusage = ru;
1701 if (f_flags & O_NONBLOCK)
1702 wo.wo_flags |= WNOHANG;
1703
1704 ret = do_wait(&wo);
1705 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1706 ret = -EAGAIN;
1707
1708 put_pid(pid);
1709 return ret;
1710 }
1711
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1712 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1713 infop, int, options, struct rusage __user *, ru)
1714 {
1715 struct rusage r;
1716 struct waitid_info info = {.status = 0};
1717 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1718 int signo = 0;
1719
1720 if (err > 0) {
1721 signo = SIGCHLD;
1722 err = 0;
1723 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724 return -EFAULT;
1725 }
1726 if (!infop)
1727 return err;
1728
1729 if (!user_write_access_begin(infop, sizeof(*infop)))
1730 return -EFAULT;
1731
1732 unsafe_put_user(signo, &infop->si_signo, Efault);
1733 unsafe_put_user(0, &infop->si_errno, Efault);
1734 unsafe_put_user(info.cause, &infop->si_code, Efault);
1735 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1736 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1737 unsafe_put_user(info.status, &infop->si_status, Efault);
1738 user_write_access_end();
1739 return err;
1740 Efault:
1741 user_write_access_end();
1742 return -EFAULT;
1743 }
1744
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1745 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1746 struct rusage *ru)
1747 {
1748 struct wait_opts wo;
1749 struct pid *pid = NULL;
1750 enum pid_type type;
1751 long ret;
1752
1753 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1754 __WNOTHREAD|__WCLONE|__WALL))
1755 return -EINVAL;
1756
1757 /* -INT_MIN is not defined */
1758 if (upid == INT_MIN)
1759 return -ESRCH;
1760
1761 if (upid == -1)
1762 type = PIDTYPE_MAX;
1763 else if (upid < 0) {
1764 type = PIDTYPE_PGID;
1765 pid = find_get_pid(-upid);
1766 } else if (upid == 0) {
1767 type = PIDTYPE_PGID;
1768 pid = get_task_pid(current, PIDTYPE_PGID);
1769 } else /* upid > 0 */ {
1770 type = PIDTYPE_PID;
1771 pid = find_get_pid(upid);
1772 }
1773
1774 wo.wo_type = type;
1775 wo.wo_pid = pid;
1776 wo.wo_flags = options | WEXITED;
1777 wo.wo_info = NULL;
1778 wo.wo_stat = 0;
1779 wo.wo_rusage = ru;
1780 ret = do_wait(&wo);
1781 put_pid(pid);
1782 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1783 ret = -EFAULT;
1784
1785 return ret;
1786 }
1787
kernel_wait(pid_t pid,int * stat)1788 int kernel_wait(pid_t pid, int *stat)
1789 {
1790 struct wait_opts wo = {
1791 .wo_type = PIDTYPE_PID,
1792 .wo_pid = find_get_pid(pid),
1793 .wo_flags = WEXITED,
1794 };
1795 int ret;
1796
1797 ret = do_wait(&wo);
1798 if (ret > 0 && wo.wo_stat)
1799 *stat = wo.wo_stat;
1800 put_pid(wo.wo_pid);
1801 return ret;
1802 }
1803
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1804 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1805 int, options, struct rusage __user *, ru)
1806 {
1807 struct rusage r;
1808 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1809
1810 if (err > 0) {
1811 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1812 return -EFAULT;
1813 }
1814 return err;
1815 }
1816
1817 #ifdef __ARCH_WANT_SYS_WAITPID
1818
1819 /*
1820 * sys_waitpid() remains for compatibility. waitpid() should be
1821 * implemented by calling sys_wait4() from libc.a.
1822 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1823 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1824 {
1825 return kernel_wait4(pid, stat_addr, options, NULL);
1826 }
1827
1828 #endif
1829
1830 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1831 COMPAT_SYSCALL_DEFINE4(wait4,
1832 compat_pid_t, pid,
1833 compat_uint_t __user *, stat_addr,
1834 int, options,
1835 struct compat_rusage __user *, ru)
1836 {
1837 struct rusage r;
1838 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1839 if (err > 0) {
1840 if (ru && put_compat_rusage(&r, ru))
1841 return -EFAULT;
1842 }
1843 return err;
1844 }
1845
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1846 COMPAT_SYSCALL_DEFINE5(waitid,
1847 int, which, compat_pid_t, pid,
1848 struct compat_siginfo __user *, infop, int, options,
1849 struct compat_rusage __user *, uru)
1850 {
1851 struct rusage ru;
1852 struct waitid_info info = {.status = 0};
1853 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1854 int signo = 0;
1855 if (err > 0) {
1856 signo = SIGCHLD;
1857 err = 0;
1858 if (uru) {
1859 /* kernel_waitid() overwrites everything in ru */
1860 if (COMPAT_USE_64BIT_TIME)
1861 err = copy_to_user(uru, &ru, sizeof(ru));
1862 else
1863 err = put_compat_rusage(&ru, uru);
1864 if (err)
1865 return -EFAULT;
1866 }
1867 }
1868
1869 if (!infop)
1870 return err;
1871
1872 if (!user_write_access_begin(infop, sizeof(*infop)))
1873 return -EFAULT;
1874
1875 unsafe_put_user(signo, &infop->si_signo, Efault);
1876 unsafe_put_user(0, &infop->si_errno, Efault);
1877 unsafe_put_user(info.cause, &infop->si_code, Efault);
1878 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1879 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1880 unsafe_put_user(info.status, &infop->si_status, Efault);
1881 user_write_access_end();
1882 return err;
1883 Efault:
1884 user_write_access_end();
1885 return -EFAULT;
1886 }
1887 #endif
1888
1889 /**
1890 * thread_group_exited - check that a thread group has exited
1891 * @pid: tgid of thread group to be checked.
1892 *
1893 * Test if the thread group represented by tgid has exited (all
1894 * threads are zombies, dead or completely gone).
1895 *
1896 * Return: true if the thread group has exited. false otherwise.
1897 */
thread_group_exited(struct pid * pid)1898 bool thread_group_exited(struct pid *pid)
1899 {
1900 struct task_struct *task;
1901 bool exited;
1902
1903 rcu_read_lock();
1904 task = pid_task(pid, PIDTYPE_PID);
1905 exited = !task ||
1906 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1907 rcu_read_unlock();
1908
1909 return exited;
1910 }
1911 EXPORT_SYMBOL(thread_group_exited);
1912
1913 /*
1914 * This needs to be __function_aligned as GCC implicitly makes any
1915 * implementation of abort() cold and drops alignment specified by
1916 * -falign-functions=N.
1917 *
1918 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1919 */
abort(void)1920 __weak __function_aligned void abort(void)
1921 {
1922 BUG();
1923
1924 /* if that doesn't kill us, halt */
1925 panic("Oops failed to kill thread");
1926 }
1927 EXPORT_SYMBOL(abort);
1928