1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55
56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
62
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70 }
71
72 /*
73 * Compute the csum of a btree block and store the result to provided buffer.
74 */
csum_tree_block(struct extent_buffer * buf,u8 * result)75 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 {
77 struct btrfs_fs_info *fs_info = buf->fs_info;
78 const int num_pages = num_extent_pages(buf);
79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81 char *kaddr;
82 int i;
83
84 shash->tfm = fs_info->csum_shash;
85 crypto_shash_init(shash);
86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88 first_page_part - BTRFS_CSUM_SIZE);
89
90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91 kaddr = page_address(buf->pages[i]);
92 crypto_shash_update(shash, kaddr, PAGE_SIZE);
93 }
94 memset(result, 0, BTRFS_CSUM_SIZE);
95 crypto_shash_final(shash, result);
96 }
97
98 /*
99 * we can't consider a given block up to date unless the transid of the
100 * block matches the transid in the parent node's pointer. This is how we
101 * detect blocks that either didn't get written at all or got written
102 * in the wrong place.
103 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 {
106 if (!extent_buffer_uptodate(eb))
107 return 0;
108
109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 return 1;
111
112 if (atomic)
113 return -EAGAIN;
114
115 if (!extent_buffer_uptodate(eb) ||
116 btrfs_header_generation(eb) != parent_transid) {
117 btrfs_err_rl(eb->fs_info,
118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 eb->start, eb->read_mirror,
120 parent_transid, btrfs_header_generation(eb));
121 clear_extent_buffer_uptodate(eb);
122 return 0;
123 }
124 return 1;
125 }
126
btrfs_supported_super_csum(u16 csum_type)127 static bool btrfs_supported_super_csum(u16 csum_type)
128 {
129 switch (csum_type) {
130 case BTRFS_CSUM_TYPE_CRC32:
131 case BTRFS_CSUM_TYPE_XXHASH:
132 case BTRFS_CSUM_TYPE_SHA256:
133 case BTRFS_CSUM_TYPE_BLAKE2:
134 return true;
135 default:
136 return false;
137 }
138 }
139
140 /*
141 * Return 0 if the superblock checksum type matches the checksum value of that
142 * algorithm. Pass the raw disk superblock data.
143 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 const struct btrfs_super_block *disk_sb)
146 {
147 char result[BTRFS_CSUM_SIZE];
148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150 shash->tfm = fs_info->csum_shash;
151
152 /*
153 * The super_block structure does not span the whole
154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 * filled with zeros and is included in the checksum.
156 */
157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159
160 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161 return 1;
162
163 return 0;
164 }
165
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 int mirror_num)
168 {
169 struct btrfs_fs_info *fs_info = eb->fs_info;
170 int i, num_pages = num_extent_pages(eb);
171 int ret = 0;
172
173 if (sb_rdonly(fs_info->sb))
174 return -EROFS;
175
176 for (i = 0; i < num_pages; i++) {
177 struct page *p = eb->pages[i];
178 u64 start = max_t(u64, eb->start, page_offset(p));
179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 u32 len = end - start;
181
182 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 start, p, offset_in_page(start), mirror_num);
184 if (ret)
185 break;
186 }
187
188 return ret;
189 }
190
191 /*
192 * helper to read a given tree block, doing retries as required when
193 * the checksums don't match and we have alternate mirrors to try.
194 *
195 * @check: expected tree parentness check, see the comments of the
196 * structure for details.
197 */
btrfs_read_extent_buffer(struct extent_buffer * eb,struct btrfs_tree_parent_check * check)198 int btrfs_read_extent_buffer(struct extent_buffer *eb,
199 struct btrfs_tree_parent_check *check)
200 {
201 struct btrfs_fs_info *fs_info = eb->fs_info;
202 int failed = 0;
203 int ret;
204 int num_copies = 0;
205 int mirror_num = 0;
206 int failed_mirror = 0;
207
208 ASSERT(check);
209
210 while (1) {
211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 if (!ret)
214 break;
215
216 num_copies = btrfs_num_copies(fs_info,
217 eb->start, eb->len);
218 if (num_copies == 1)
219 break;
220
221 if (!failed_mirror) {
222 failed = 1;
223 failed_mirror = eb->read_mirror;
224 }
225
226 mirror_num++;
227 if (mirror_num == failed_mirror)
228 mirror_num++;
229
230 if (mirror_num > num_copies)
231 break;
232 }
233
234 if (failed && !ret && failed_mirror)
235 btrfs_repair_eb_io_failure(eb, failed_mirror);
236
237 return ret;
238 }
239
240 /*
241 * Checksum a dirty tree block before IO.
242 */
btree_csum_one_bio(struct btrfs_bio * bbio)243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 {
245 struct extent_buffer *eb = bbio->private;
246 struct btrfs_fs_info *fs_info = eb->fs_info;
247 u64 found_start = btrfs_header_bytenr(eb);
248 u8 result[BTRFS_CSUM_SIZE];
249 int ret;
250
251 /* Btree blocks are always contiguous on disk. */
252 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 return BLK_STS_IOERR;
254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 return BLK_STS_IOERR;
256
257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 WARN_ON_ONCE(found_start != 0);
259 return BLK_STS_OK;
260 }
261
262 if (WARN_ON_ONCE(found_start != eb->start))
263 return BLK_STS_IOERR;
264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 eb->len)))
266 return BLK_STS_IOERR;
267
268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 offsetof(struct btrfs_header, fsid),
270 BTRFS_FSID_SIZE) == 0);
271 csum_tree_block(eb, result);
272
273 if (btrfs_header_level(eb))
274 ret = btrfs_check_node(eb);
275 else
276 ret = btrfs_check_leaf(eb);
277
278 if (ret < 0)
279 goto error;
280
281 /*
282 * Also check the generation, the eb reached here must be newer than
283 * last committed. Or something seriously wrong happened.
284 */
285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 ret = -EUCLEAN;
287 btrfs_err(fs_info,
288 "block=%llu bad generation, have %llu expect > %llu",
289 eb->start, btrfs_header_generation(eb),
290 fs_info->last_trans_committed);
291 goto error;
292 }
293 write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 return BLK_STS_OK;
295
296 error:
297 btrfs_print_tree(eb, 0);
298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 eb->start);
300 /*
301 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 * a transaction in case there's a bad log tree extent buffer, we just
303 * fallback to a transaction commit. Still we want to know when there is
304 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 */
306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 return errno_to_blk_status(ret);
309 }
310
check_tree_block_fsid(struct extent_buffer * eb)311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313 struct btrfs_fs_info *fs_info = eb->fs_info;
314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 u8 fsid[BTRFS_FSID_SIZE];
316
317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE);
319
320 /*
321 * alloc_fs_devices() copies the fsid into metadata_uuid if the
322 * metadata_uuid is unset in the superblock, including for a seed device.
323 * So, we can use fs_devices->metadata_uuid.
324 */
325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
326 return false;
327
328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
330 return false;
331
332 return true;
333 }
334
335 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,struct btrfs_tree_parent_check * check)336 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337 struct btrfs_tree_parent_check *check)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 u64 found_start;
341 const u32 csum_size = fs_info->csum_size;
342 u8 found_level;
343 u8 result[BTRFS_CSUM_SIZE];
344 const u8 *header_csum;
345 int ret = 0;
346
347 ASSERT(check);
348
349 found_start = btrfs_header_bytenr(eb);
350 if (found_start != eb->start) {
351 btrfs_err_rl(fs_info,
352 "bad tree block start, mirror %u want %llu have %llu",
353 eb->read_mirror, eb->start, found_start);
354 ret = -EIO;
355 goto out;
356 }
357 if (check_tree_block_fsid(eb)) {
358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359 eb->start, eb->read_mirror);
360 ret = -EIO;
361 goto out;
362 }
363 found_level = btrfs_header_level(eb);
364 if (found_level >= BTRFS_MAX_LEVEL) {
365 btrfs_err(fs_info,
366 "bad tree block level, mirror %u level %d on logical %llu",
367 eb->read_mirror, btrfs_header_level(eb), eb->start);
368 ret = -EIO;
369 goto out;
370 }
371
372 csum_tree_block(eb, result);
373 header_csum = page_address(eb->pages[0]) +
374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
375
376 if (memcmp(result, header_csum, csum_size) != 0) {
377 btrfs_warn_rl(fs_info,
378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379 eb->start, eb->read_mirror,
380 CSUM_FMT_VALUE(csum_size, header_csum),
381 CSUM_FMT_VALUE(csum_size, result),
382 btrfs_header_level(eb));
383 ret = -EUCLEAN;
384 goto out;
385 }
386
387 if (found_level != check->level) {
388 btrfs_err(fs_info,
389 "level verify failed on logical %llu mirror %u wanted %u found %u",
390 eb->start, eb->read_mirror, check->level, found_level);
391 ret = -EIO;
392 goto out;
393 }
394 if (unlikely(check->transid &&
395 btrfs_header_generation(eb) != check->transid)) {
396 btrfs_err_rl(eb->fs_info,
397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398 eb->start, eb->read_mirror, check->transid,
399 btrfs_header_generation(eb));
400 ret = -EIO;
401 goto out;
402 }
403 if (check->has_first_key) {
404 struct btrfs_key *expect_key = &check->first_key;
405 struct btrfs_key found_key;
406
407 if (found_level)
408 btrfs_node_key_to_cpu(eb, &found_key, 0);
409 else
410 btrfs_item_key_to_cpu(eb, &found_key, 0);
411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412 btrfs_err(fs_info,
413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414 eb->start, check->transid,
415 expect_key->objectid,
416 expect_key->type, expect_key->offset,
417 found_key.objectid, found_key.type,
418 found_key.offset);
419 ret = -EUCLEAN;
420 goto out;
421 }
422 }
423 if (check->owner_root) {
424 ret = btrfs_check_eb_owner(eb, check->owner_root);
425 if (ret < 0)
426 goto out;
427 }
428
429 /*
430 * If this is a leaf block and it is corrupt, set the corrupt bit so
431 * that we don't try and read the other copies of this block, just
432 * return -EIO.
433 */
434 if (found_level == 0 && btrfs_check_leaf(eb)) {
435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436 ret = -EIO;
437 }
438
439 if (found_level > 0 && btrfs_check_node(eb))
440 ret = -EIO;
441
442 if (ret)
443 btrfs_err(fs_info,
444 "read time tree block corruption detected on logical %llu mirror %u",
445 eb->start, eb->read_mirror);
446 out:
447 return ret;
448 }
449
450 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)451 static int btree_migrate_folio(struct address_space *mapping,
452 struct folio *dst, struct folio *src, enum migrate_mode mode)
453 {
454 /*
455 * we can't safely write a btree page from here,
456 * we haven't done the locking hook
457 */
458 if (folio_test_dirty(src))
459 return -EAGAIN;
460 /*
461 * Buffers may be managed in a filesystem specific way.
462 * We must have no buffers or drop them.
463 */
464 if (folio_get_private(src) &&
465 !filemap_release_folio(src, GFP_KERNEL))
466 return -EAGAIN;
467 return migrate_folio(mapping, dst, src, mode);
468 }
469 #else
470 #define btree_migrate_folio NULL
471 #endif
472
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)473 static int btree_writepages(struct address_space *mapping,
474 struct writeback_control *wbc)
475 {
476 struct btrfs_fs_info *fs_info;
477 int ret;
478
479 if (wbc->sync_mode == WB_SYNC_NONE) {
480
481 if (wbc->for_kupdate)
482 return 0;
483
484 fs_info = BTRFS_I(mapping->host)->root->fs_info;
485 /* this is a bit racy, but that's ok */
486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487 BTRFS_DIRTY_METADATA_THRESH,
488 fs_info->dirty_metadata_batch);
489 if (ret < 0)
490 return 0;
491 }
492 return btree_write_cache_pages(mapping, wbc);
493 }
494
btree_release_folio(struct folio * folio,gfp_t gfp_flags)495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
496 {
497 if (folio_test_writeback(folio) || folio_test_dirty(folio))
498 return false;
499
500 return try_release_extent_buffer(&folio->page);
501 }
502
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)503 static void btree_invalidate_folio(struct folio *folio, size_t offset,
504 size_t length)
505 {
506 struct extent_io_tree *tree;
507 tree = &BTRFS_I(folio->mapping->host)->io_tree;
508 extent_invalidate_folio(tree, folio, offset);
509 btree_release_folio(folio, GFP_NOFS);
510 if (folio_get_private(folio)) {
511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512 "folio private not zero on folio %llu",
513 (unsigned long long)folio_pos(folio));
514 folio_detach_private(folio);
515 }
516 }
517
518 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)519 static bool btree_dirty_folio(struct address_space *mapping,
520 struct folio *folio)
521 {
522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
523 struct btrfs_subpage_info *spi = fs_info->subpage_info;
524 struct btrfs_subpage *subpage;
525 struct extent_buffer *eb;
526 int cur_bit = 0;
527 u64 page_start = folio_pos(folio);
528
529 if (fs_info->sectorsize == PAGE_SIZE) {
530 eb = folio_get_private(folio);
531 BUG_ON(!eb);
532 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
533 BUG_ON(!atomic_read(&eb->refs));
534 btrfs_assert_tree_write_locked(eb);
535 return filemap_dirty_folio(mapping, folio);
536 }
537
538 ASSERT(spi);
539 subpage = folio_get_private(folio);
540
541 for (cur_bit = spi->dirty_offset;
542 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
543 cur_bit++) {
544 unsigned long flags;
545 u64 cur;
546
547 spin_lock_irqsave(&subpage->lock, flags);
548 if (!test_bit(cur_bit, subpage->bitmaps)) {
549 spin_unlock_irqrestore(&subpage->lock, flags);
550 continue;
551 }
552 spin_unlock_irqrestore(&subpage->lock, flags);
553 cur = page_start + cur_bit * fs_info->sectorsize;
554
555 eb = find_extent_buffer(fs_info, cur);
556 ASSERT(eb);
557 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 ASSERT(atomic_read(&eb->refs));
559 btrfs_assert_tree_write_locked(eb);
560 free_extent_buffer(eb);
561
562 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
563 }
564 return filemap_dirty_folio(mapping, folio);
565 }
566 #else
567 #define btree_dirty_folio filemap_dirty_folio
568 #endif
569
570 static const struct address_space_operations btree_aops = {
571 .writepages = btree_writepages,
572 .release_folio = btree_release_folio,
573 .invalidate_folio = btree_invalidate_folio,
574 .migrate_folio = btree_migrate_folio,
575 .dirty_folio = btree_dirty_folio,
576 };
577
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)578 struct extent_buffer *btrfs_find_create_tree_block(
579 struct btrfs_fs_info *fs_info,
580 u64 bytenr, u64 owner_root,
581 int level)
582 {
583 if (btrfs_is_testing(fs_info))
584 return alloc_test_extent_buffer(fs_info, bytenr);
585 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
586 }
587
588 /*
589 * Read tree block at logical address @bytenr and do variant basic but critical
590 * verification.
591 *
592 * @check: expected tree parentness check, see comments of the
593 * structure for details.
594 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
596 struct btrfs_tree_parent_check *check)
597 {
598 struct extent_buffer *buf = NULL;
599 int ret;
600
601 ASSERT(check);
602
603 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
604 check->level);
605 if (IS_ERR(buf))
606 return buf;
607
608 ret = btrfs_read_extent_buffer(buf, check);
609 if (ret) {
610 free_extent_buffer_stale(buf);
611 return ERR_PTR(ret);
612 }
613 if (btrfs_check_eb_owner(buf, check->owner_root)) {
614 free_extent_buffer_stale(buf);
615 return ERR_PTR(-EUCLEAN);
616 }
617 return buf;
618
619 }
620
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
622 u64 objectid)
623 {
624 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
625
626 memset(&root->root_key, 0, sizeof(root->root_key));
627 memset(&root->root_item, 0, sizeof(root->root_item));
628 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
629 root->fs_info = fs_info;
630 root->root_key.objectid = objectid;
631 root->node = NULL;
632 root->commit_root = NULL;
633 root->state = 0;
634 RB_CLEAR_NODE(&root->rb_node);
635
636 root->last_trans = 0;
637 root->free_objectid = 0;
638 root->nr_delalloc_inodes = 0;
639 root->nr_ordered_extents = 0;
640 root->inode_tree = RB_ROOT;
641 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
642
643 btrfs_init_root_block_rsv(root);
644
645 INIT_LIST_HEAD(&root->dirty_list);
646 INIT_LIST_HEAD(&root->root_list);
647 INIT_LIST_HEAD(&root->delalloc_inodes);
648 INIT_LIST_HEAD(&root->delalloc_root);
649 INIT_LIST_HEAD(&root->ordered_extents);
650 INIT_LIST_HEAD(&root->ordered_root);
651 INIT_LIST_HEAD(&root->reloc_dirty_list);
652 INIT_LIST_HEAD(&root->logged_list[0]);
653 INIT_LIST_HEAD(&root->logged_list[1]);
654 spin_lock_init(&root->inode_lock);
655 spin_lock_init(&root->delalloc_lock);
656 spin_lock_init(&root->ordered_extent_lock);
657 spin_lock_init(&root->accounting_lock);
658 spin_lock_init(&root->log_extents_lock[0]);
659 spin_lock_init(&root->log_extents_lock[1]);
660 spin_lock_init(&root->qgroup_meta_rsv_lock);
661 mutex_init(&root->objectid_mutex);
662 mutex_init(&root->log_mutex);
663 mutex_init(&root->ordered_extent_mutex);
664 mutex_init(&root->delalloc_mutex);
665 init_waitqueue_head(&root->qgroup_flush_wait);
666 init_waitqueue_head(&root->log_writer_wait);
667 init_waitqueue_head(&root->log_commit_wait[0]);
668 init_waitqueue_head(&root->log_commit_wait[1]);
669 INIT_LIST_HEAD(&root->log_ctxs[0]);
670 INIT_LIST_HEAD(&root->log_ctxs[1]);
671 atomic_set(&root->log_commit[0], 0);
672 atomic_set(&root->log_commit[1], 0);
673 atomic_set(&root->log_writers, 0);
674 atomic_set(&root->log_batch, 0);
675 refcount_set(&root->refs, 1);
676 atomic_set(&root->snapshot_force_cow, 0);
677 atomic_set(&root->nr_swapfiles, 0);
678 root->log_transid = 0;
679 root->log_transid_committed = -1;
680 root->last_log_commit = 0;
681 root->anon_dev = 0;
682 if (!dummy) {
683 extent_io_tree_init(fs_info, &root->dirty_log_pages,
684 IO_TREE_ROOT_DIRTY_LOG_PAGES);
685 extent_io_tree_init(fs_info, &root->log_csum_range,
686 IO_TREE_LOG_CSUM_RANGE);
687 }
688
689 spin_lock_init(&root->root_item_lock);
690 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
691 #ifdef CONFIG_BTRFS_DEBUG
692 INIT_LIST_HEAD(&root->leak_list);
693 spin_lock(&fs_info->fs_roots_radix_lock);
694 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
695 spin_unlock(&fs_info->fs_roots_radix_lock);
696 #endif
697 }
698
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
700 u64 objectid, gfp_t flags)
701 {
702 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
703 if (root)
704 __setup_root(root, fs_info, objectid);
705 return root;
706 }
707
708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
709 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
711 {
712 struct btrfs_root *root;
713
714 if (!fs_info)
715 return ERR_PTR(-EINVAL);
716
717 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
718 if (!root)
719 return ERR_PTR(-ENOMEM);
720
721 /* We don't use the stripesize in selftest, set it as sectorsize */
722 root->alloc_bytenr = 0;
723
724 return root;
725 }
726 #endif
727
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
729 {
730 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
731 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
732
733 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
734 }
735
global_root_key_cmp(const void * k,const struct rb_node * node)736 static int global_root_key_cmp(const void *k, const struct rb_node *node)
737 {
738 const struct btrfs_key *key = k;
739 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
740
741 return btrfs_comp_cpu_keys(key, &root->root_key);
742 }
743
btrfs_global_root_insert(struct btrfs_root * root)744 int btrfs_global_root_insert(struct btrfs_root *root)
745 {
746 struct btrfs_fs_info *fs_info = root->fs_info;
747 struct rb_node *tmp;
748 int ret = 0;
749
750 write_lock(&fs_info->global_root_lock);
751 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
752 write_unlock(&fs_info->global_root_lock);
753
754 if (tmp) {
755 ret = -EEXIST;
756 btrfs_warn(fs_info, "global root %llu %llu already exists",
757 root->root_key.objectid, root->root_key.offset);
758 }
759 return ret;
760 }
761
btrfs_global_root_delete(struct btrfs_root * root)762 void btrfs_global_root_delete(struct btrfs_root *root)
763 {
764 struct btrfs_fs_info *fs_info = root->fs_info;
765
766 write_lock(&fs_info->global_root_lock);
767 rb_erase(&root->rb_node, &fs_info->global_root_tree);
768 write_unlock(&fs_info->global_root_lock);
769 }
770
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
772 struct btrfs_key *key)
773 {
774 struct rb_node *node;
775 struct btrfs_root *root = NULL;
776
777 read_lock(&fs_info->global_root_lock);
778 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
779 if (node)
780 root = container_of(node, struct btrfs_root, rb_node);
781 read_unlock(&fs_info->global_root_lock);
782
783 return root;
784 }
785
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
787 {
788 struct btrfs_block_group *block_group;
789 u64 ret;
790
791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
792 return 0;
793
794 if (bytenr)
795 block_group = btrfs_lookup_block_group(fs_info, bytenr);
796 else
797 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
798 ASSERT(block_group);
799 if (!block_group)
800 return 0;
801 ret = block_group->global_root_id;
802 btrfs_put_block_group(block_group);
803
804 return ret;
805 }
806
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809 struct btrfs_key key = {
810 .objectid = BTRFS_CSUM_TREE_OBJECTID,
811 .type = BTRFS_ROOT_ITEM_KEY,
812 .offset = btrfs_global_root_id(fs_info, bytenr),
813 };
814
815 return btrfs_global_root(fs_info, &key);
816 }
817
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
819 {
820 struct btrfs_key key = {
821 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
822 .type = BTRFS_ROOT_ITEM_KEY,
823 .offset = btrfs_global_root_id(fs_info, bytenr),
824 };
825
826 return btrfs_global_root(fs_info, &key);
827 }
828
btrfs_block_group_root(struct btrfs_fs_info * fs_info)829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
830 {
831 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
832 return fs_info->block_group_root;
833 return btrfs_extent_root(fs_info, 0);
834 }
835
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
837 u64 objectid)
838 {
839 struct btrfs_fs_info *fs_info = trans->fs_info;
840 struct extent_buffer *leaf;
841 struct btrfs_root *tree_root = fs_info->tree_root;
842 struct btrfs_root *root;
843 struct btrfs_key key;
844 unsigned int nofs_flag;
845 int ret = 0;
846
847 /*
848 * We're holding a transaction handle, so use a NOFS memory allocation
849 * context to avoid deadlock if reclaim happens.
850 */
851 nofs_flag = memalloc_nofs_save();
852 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
853 memalloc_nofs_restore(nofs_flag);
854 if (!root)
855 return ERR_PTR(-ENOMEM);
856
857 root->root_key.objectid = objectid;
858 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
859 root->root_key.offset = 0;
860
861 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
862 BTRFS_NESTING_NORMAL);
863 if (IS_ERR(leaf)) {
864 ret = PTR_ERR(leaf);
865 leaf = NULL;
866 goto fail;
867 }
868
869 root->node = leaf;
870 btrfs_mark_buffer_dirty(leaf);
871
872 root->commit_root = btrfs_root_node(root);
873 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
874
875 btrfs_set_root_flags(&root->root_item, 0);
876 btrfs_set_root_limit(&root->root_item, 0);
877 btrfs_set_root_bytenr(&root->root_item, leaf->start);
878 btrfs_set_root_generation(&root->root_item, trans->transid);
879 btrfs_set_root_level(&root->root_item, 0);
880 btrfs_set_root_refs(&root->root_item, 1);
881 btrfs_set_root_used(&root->root_item, leaf->len);
882 btrfs_set_root_last_snapshot(&root->root_item, 0);
883 btrfs_set_root_dirid(&root->root_item, 0);
884 if (is_fstree(objectid))
885 generate_random_guid(root->root_item.uuid);
886 else
887 export_guid(root->root_item.uuid, &guid_null);
888 btrfs_set_root_drop_level(&root->root_item, 0);
889
890 btrfs_tree_unlock(leaf);
891
892 key.objectid = objectid;
893 key.type = BTRFS_ROOT_ITEM_KEY;
894 key.offset = 0;
895 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
896 if (ret)
897 goto fail;
898
899 return root;
900
901 fail:
902 btrfs_put_root(root);
903
904 return ERR_PTR(ret);
905 }
906
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
908 struct btrfs_fs_info *fs_info)
909 {
910 struct btrfs_root *root;
911
912 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
913 if (!root)
914 return ERR_PTR(-ENOMEM);
915
916 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
917 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
918 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
919
920 return root;
921 }
922
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root)
925 {
926 struct extent_buffer *leaf;
927
928 /*
929 * DON'T set SHAREABLE bit for log trees.
930 *
931 * Log trees are not exposed to user space thus can't be snapshotted,
932 * and they go away before a real commit is actually done.
933 *
934 * They do store pointers to file data extents, and those reference
935 * counts still get updated (along with back refs to the log tree).
936 */
937
938 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
939 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
940 if (IS_ERR(leaf))
941 return PTR_ERR(leaf);
942
943 root->node = leaf;
944
945 btrfs_mark_buffer_dirty(root->node);
946 btrfs_tree_unlock(root->node);
947
948 return 0;
949 }
950
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
952 struct btrfs_fs_info *fs_info)
953 {
954 struct btrfs_root *log_root;
955
956 log_root = alloc_log_tree(trans, fs_info);
957 if (IS_ERR(log_root))
958 return PTR_ERR(log_root);
959
960 if (!btrfs_is_zoned(fs_info)) {
961 int ret = btrfs_alloc_log_tree_node(trans, log_root);
962
963 if (ret) {
964 btrfs_put_root(log_root);
965 return ret;
966 }
967 }
968
969 WARN_ON(fs_info->log_root_tree);
970 fs_info->log_root_tree = log_root;
971 return 0;
972 }
973
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
975 struct btrfs_root *root)
976 {
977 struct btrfs_fs_info *fs_info = root->fs_info;
978 struct btrfs_root *log_root;
979 struct btrfs_inode_item *inode_item;
980 int ret;
981
982 log_root = alloc_log_tree(trans, fs_info);
983 if (IS_ERR(log_root))
984 return PTR_ERR(log_root);
985
986 ret = btrfs_alloc_log_tree_node(trans, log_root);
987 if (ret) {
988 btrfs_put_root(log_root);
989 return ret;
990 }
991
992 log_root->last_trans = trans->transid;
993 log_root->root_key.offset = root->root_key.objectid;
994
995 inode_item = &log_root->root_item.inode;
996 btrfs_set_stack_inode_generation(inode_item, 1);
997 btrfs_set_stack_inode_size(inode_item, 3);
998 btrfs_set_stack_inode_nlink(inode_item, 1);
999 btrfs_set_stack_inode_nbytes(inode_item,
1000 fs_info->nodesize);
1001 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1002
1003 btrfs_set_root_node(&log_root->root_item, log_root->node);
1004
1005 WARN_ON(root->log_root);
1006 root->log_root = log_root;
1007 root->log_transid = 0;
1008 root->log_transid_committed = -1;
1009 root->last_log_commit = 0;
1010 return 0;
1011 }
1012
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1014 struct btrfs_path *path,
1015 struct btrfs_key *key)
1016 {
1017 struct btrfs_root *root;
1018 struct btrfs_tree_parent_check check = { 0 };
1019 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1020 u64 generation;
1021 int ret;
1022 int level;
1023
1024 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1025 if (!root)
1026 return ERR_PTR(-ENOMEM);
1027
1028 ret = btrfs_find_root(tree_root, key, path,
1029 &root->root_item, &root->root_key);
1030 if (ret) {
1031 if (ret > 0)
1032 ret = -ENOENT;
1033 goto fail;
1034 }
1035
1036 generation = btrfs_root_generation(&root->root_item);
1037 level = btrfs_root_level(&root->root_item);
1038 check.level = level;
1039 check.transid = generation;
1040 check.owner_root = key->objectid;
1041 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1042 &check);
1043 if (IS_ERR(root->node)) {
1044 ret = PTR_ERR(root->node);
1045 root->node = NULL;
1046 goto fail;
1047 }
1048 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1049 ret = -EIO;
1050 goto fail;
1051 }
1052
1053 /*
1054 * For real fs, and not log/reloc trees, root owner must
1055 * match its root node owner
1056 */
1057 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1058 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1059 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1060 root->root_key.objectid != btrfs_header_owner(root->node)) {
1061 btrfs_crit(fs_info,
1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1063 root->root_key.objectid, root->node->start,
1064 btrfs_header_owner(root->node),
1065 root->root_key.objectid);
1066 ret = -EUCLEAN;
1067 goto fail;
1068 }
1069 root->commit_root = btrfs_root_node(root);
1070 return root;
1071 fail:
1072 btrfs_put_root(root);
1073 return ERR_PTR(ret);
1074 }
1075
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1077 struct btrfs_key *key)
1078 {
1079 struct btrfs_root *root;
1080 struct btrfs_path *path;
1081
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return ERR_PTR(-ENOMEM);
1085 root = read_tree_root_path(tree_root, path, key);
1086 btrfs_free_path(path);
1087
1088 return root;
1089 }
1090
1091 /*
1092 * Initialize subvolume root in-memory structure
1093 *
1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1095 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1097 {
1098 int ret;
1099
1100 btrfs_drew_lock_init(&root->snapshot_lock);
1101
1102 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1103 !btrfs_is_data_reloc_root(root) &&
1104 is_fstree(root->root_key.objectid)) {
1105 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1106 btrfs_check_and_init_root_item(&root->root_item);
1107 }
1108
1109 /*
1110 * Don't assign anonymous block device to roots that are not exposed to
1111 * userspace, the id pool is limited to 1M
1112 */
1113 if (is_fstree(root->root_key.objectid) &&
1114 btrfs_root_refs(&root->root_item) > 0) {
1115 if (!anon_dev) {
1116 ret = get_anon_bdev(&root->anon_dev);
1117 if (ret)
1118 goto fail;
1119 } else {
1120 root->anon_dev = anon_dev;
1121 }
1122 }
1123
1124 mutex_lock(&root->objectid_mutex);
1125 ret = btrfs_init_root_free_objectid(root);
1126 if (ret) {
1127 mutex_unlock(&root->objectid_mutex);
1128 goto fail;
1129 }
1130
1131 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1132
1133 mutex_unlock(&root->objectid_mutex);
1134
1135 return 0;
1136 fail:
1137 /* The caller is responsible to call btrfs_free_fs_root */
1138 return ret;
1139 }
1140
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 u64 root_id)
1143 {
1144 struct btrfs_root *root;
1145
1146 spin_lock(&fs_info->fs_roots_radix_lock);
1147 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 (unsigned long)root_id);
1149 root = btrfs_grab_root(root);
1150 spin_unlock(&fs_info->fs_roots_radix_lock);
1151 return root;
1152 }
1153
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 u64 objectid)
1156 {
1157 struct btrfs_key key = {
1158 .objectid = objectid,
1159 .type = BTRFS_ROOT_ITEM_KEY,
1160 .offset = 0,
1161 };
1162
1163 switch (objectid) {
1164 case BTRFS_ROOT_TREE_OBJECTID:
1165 return btrfs_grab_root(fs_info->tree_root);
1166 case BTRFS_EXTENT_TREE_OBJECTID:
1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 case BTRFS_CHUNK_TREE_OBJECTID:
1169 return btrfs_grab_root(fs_info->chunk_root);
1170 case BTRFS_DEV_TREE_OBJECTID:
1171 return btrfs_grab_root(fs_info->dev_root);
1172 case BTRFS_CSUM_TREE_OBJECTID:
1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 case BTRFS_QUOTA_TREE_OBJECTID:
1175 return btrfs_grab_root(fs_info->quota_root);
1176 case BTRFS_UUID_TREE_OBJECTID:
1177 return btrfs_grab_root(fs_info->uuid_root);
1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 return btrfs_grab_root(fs_info->block_group_root);
1180 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 default:
1183 return NULL;
1184 }
1185 }
1186
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1187 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1188 struct btrfs_root *root)
1189 {
1190 int ret;
1191
1192 ret = radix_tree_preload(GFP_NOFS);
1193 if (ret)
1194 return ret;
1195
1196 spin_lock(&fs_info->fs_roots_radix_lock);
1197 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1198 (unsigned long)root->root_key.objectid,
1199 root);
1200 if (ret == 0) {
1201 btrfs_grab_root(root);
1202 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1203 }
1204 spin_unlock(&fs_info->fs_roots_radix_lock);
1205 radix_tree_preload_end();
1206
1207 return ret;
1208 }
1209
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1210 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1211 {
1212 #ifdef CONFIG_BTRFS_DEBUG
1213 struct btrfs_root *root;
1214
1215 while (!list_empty(&fs_info->allocated_roots)) {
1216 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1217
1218 root = list_first_entry(&fs_info->allocated_roots,
1219 struct btrfs_root, leak_list);
1220 btrfs_err(fs_info, "leaked root %s refcount %d",
1221 btrfs_root_name(&root->root_key, buf),
1222 refcount_read(&root->refs));
1223 while (refcount_read(&root->refs) > 1)
1224 btrfs_put_root(root);
1225 btrfs_put_root(root);
1226 }
1227 #endif
1228 }
1229
free_global_roots(struct btrfs_fs_info * fs_info)1230 static void free_global_roots(struct btrfs_fs_info *fs_info)
1231 {
1232 struct btrfs_root *root;
1233 struct rb_node *node;
1234
1235 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1236 root = rb_entry(node, struct btrfs_root, rb_node);
1237 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1238 btrfs_put_root(root);
1239 }
1240 }
1241
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1242 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1243 {
1244 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1245 percpu_counter_destroy(&fs_info->delalloc_bytes);
1246 percpu_counter_destroy(&fs_info->ordered_bytes);
1247 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1248 btrfs_free_csum_hash(fs_info);
1249 btrfs_free_stripe_hash_table(fs_info);
1250 btrfs_free_ref_cache(fs_info);
1251 kfree(fs_info->balance_ctl);
1252 kfree(fs_info->delayed_root);
1253 free_global_roots(fs_info);
1254 btrfs_put_root(fs_info->tree_root);
1255 btrfs_put_root(fs_info->chunk_root);
1256 btrfs_put_root(fs_info->dev_root);
1257 btrfs_put_root(fs_info->quota_root);
1258 btrfs_put_root(fs_info->uuid_root);
1259 btrfs_put_root(fs_info->fs_root);
1260 btrfs_put_root(fs_info->data_reloc_root);
1261 btrfs_put_root(fs_info->block_group_root);
1262 btrfs_check_leaked_roots(fs_info);
1263 btrfs_extent_buffer_leak_debug_check(fs_info);
1264 kfree(fs_info->super_copy);
1265 kfree(fs_info->super_for_commit);
1266 kfree(fs_info->subpage_info);
1267 kvfree(fs_info);
1268 }
1269
1270
1271 /*
1272 * Get an in-memory reference of a root structure.
1273 *
1274 * For essential trees like root/extent tree, we grab it from fs_info directly.
1275 * For subvolume trees, we check the cached filesystem roots first. If not
1276 * found, then read it from disk and add it to cached fs roots.
1277 *
1278 * Caller should release the root by calling btrfs_put_root() after the usage.
1279 *
1280 * NOTE: Reloc and log trees can't be read by this function as they share the
1281 * same root objectid.
1282 *
1283 * @objectid: root id
1284 * @anon_dev: preallocated anonymous block device number for new roots,
1285 * pass 0 for new allocation.
1286 * @check_ref: whether to check root item references, If true, return -ENOENT
1287 * for orphan roots
1288 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1289 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1290 u64 objectid, dev_t anon_dev,
1291 bool check_ref)
1292 {
1293 struct btrfs_root *root;
1294 struct btrfs_path *path;
1295 struct btrfs_key key;
1296 int ret;
1297
1298 root = btrfs_get_global_root(fs_info, objectid);
1299 if (root)
1300 return root;
1301
1302 /*
1303 * If we're called for non-subvolume trees, and above function didn't
1304 * find one, do not try to read it from disk.
1305 *
1306 * This is namely for free-space-tree and quota tree, which can change
1307 * at runtime and should only be grabbed from fs_info.
1308 */
1309 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1310 return ERR_PTR(-ENOENT);
1311 again:
1312 root = btrfs_lookup_fs_root(fs_info, objectid);
1313 if (root) {
1314 /* Shouldn't get preallocated anon_dev for cached roots */
1315 ASSERT(!anon_dev);
1316 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1317 btrfs_put_root(root);
1318 return ERR_PTR(-ENOENT);
1319 }
1320 return root;
1321 }
1322
1323 key.objectid = objectid;
1324 key.type = BTRFS_ROOT_ITEM_KEY;
1325 key.offset = (u64)-1;
1326 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1327 if (IS_ERR(root))
1328 return root;
1329
1330 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1331 ret = -ENOENT;
1332 goto fail;
1333 }
1334
1335 ret = btrfs_init_fs_root(root, anon_dev);
1336 if (ret)
1337 goto fail;
1338
1339 path = btrfs_alloc_path();
1340 if (!path) {
1341 ret = -ENOMEM;
1342 goto fail;
1343 }
1344 key.objectid = BTRFS_ORPHAN_OBJECTID;
1345 key.type = BTRFS_ORPHAN_ITEM_KEY;
1346 key.offset = objectid;
1347
1348 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1349 btrfs_free_path(path);
1350 if (ret < 0)
1351 goto fail;
1352 if (ret == 0)
1353 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1354
1355 ret = btrfs_insert_fs_root(fs_info, root);
1356 if (ret) {
1357 if (ret == -EEXIST) {
1358 btrfs_put_root(root);
1359 goto again;
1360 }
1361 goto fail;
1362 }
1363 return root;
1364 fail:
1365 /*
1366 * If our caller provided us an anonymous device, then it's his
1367 * responsibility to free it in case we fail. So we have to set our
1368 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1369 * and once again by our caller.
1370 */
1371 if (anon_dev)
1372 root->anon_dev = 0;
1373 btrfs_put_root(root);
1374 return ERR_PTR(ret);
1375 }
1376
1377 /*
1378 * Get in-memory reference of a root structure
1379 *
1380 * @objectid: tree objectid
1381 * @check_ref: if set, verify that the tree exists and the item has at least
1382 * one reference
1383 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1384 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1385 u64 objectid, bool check_ref)
1386 {
1387 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1388 }
1389
1390 /*
1391 * Get in-memory reference of a root structure, created as new, optionally pass
1392 * the anonymous block device id
1393 *
1394 * @objectid: tree objectid
1395 * @anon_dev: if zero, allocate a new anonymous block device or use the
1396 * parameter value
1397 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1398 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1399 u64 objectid, dev_t anon_dev)
1400 {
1401 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1402 }
1403
1404 /*
1405 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1406 * @fs_info: the fs_info
1407 * @objectid: the objectid we need to lookup
1408 *
1409 * This is exclusively used for backref walking, and exists specifically because
1410 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1411 * creation time, which means we may have to read the tree_root in order to look
1412 * up a fs root that is not in memory. If the root is not in memory we will
1413 * read the tree root commit root and look up the fs root from there. This is a
1414 * temporary root, it will not be inserted into the radix tree as it doesn't
1415 * have the most uptodate information, it'll simply be discarded once the
1416 * backref code is finished using the root.
1417 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1418 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1419 struct btrfs_path *path,
1420 u64 objectid)
1421 {
1422 struct btrfs_root *root;
1423 struct btrfs_key key;
1424
1425 ASSERT(path->search_commit_root && path->skip_locking);
1426
1427 /*
1428 * This can return -ENOENT if we ask for a root that doesn't exist, but
1429 * since this is called via the backref walking code we won't be looking
1430 * up a root that doesn't exist, unless there's corruption. So if root
1431 * != NULL just return it.
1432 */
1433 root = btrfs_get_global_root(fs_info, objectid);
1434 if (root)
1435 return root;
1436
1437 root = btrfs_lookup_fs_root(fs_info, objectid);
1438 if (root)
1439 return root;
1440
1441 key.objectid = objectid;
1442 key.type = BTRFS_ROOT_ITEM_KEY;
1443 key.offset = (u64)-1;
1444 root = read_tree_root_path(fs_info->tree_root, path, &key);
1445 btrfs_release_path(path);
1446
1447 return root;
1448 }
1449
cleaner_kthread(void * arg)1450 static int cleaner_kthread(void *arg)
1451 {
1452 struct btrfs_fs_info *fs_info = arg;
1453 int again;
1454
1455 while (1) {
1456 again = 0;
1457
1458 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1459
1460 /* Make the cleaner go to sleep early. */
1461 if (btrfs_need_cleaner_sleep(fs_info))
1462 goto sleep;
1463
1464 /*
1465 * Do not do anything if we might cause open_ctree() to block
1466 * before we have finished mounting the filesystem.
1467 */
1468 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1469 goto sleep;
1470
1471 if (!mutex_trylock(&fs_info->cleaner_mutex))
1472 goto sleep;
1473
1474 /*
1475 * Avoid the problem that we change the status of the fs
1476 * during the above check and trylock.
1477 */
1478 if (btrfs_need_cleaner_sleep(fs_info)) {
1479 mutex_unlock(&fs_info->cleaner_mutex);
1480 goto sleep;
1481 }
1482
1483 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1484 btrfs_sysfs_feature_update(fs_info);
1485
1486 btrfs_run_delayed_iputs(fs_info);
1487
1488 again = btrfs_clean_one_deleted_snapshot(fs_info);
1489 mutex_unlock(&fs_info->cleaner_mutex);
1490
1491 /*
1492 * The defragger has dealt with the R/O remount and umount,
1493 * needn't do anything special here.
1494 */
1495 btrfs_run_defrag_inodes(fs_info);
1496
1497 /*
1498 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1499 * with relocation (btrfs_relocate_chunk) and relocation
1500 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1501 * after acquiring fs_info->reclaim_bgs_lock. So we
1502 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1503 * unused block groups.
1504 */
1505 btrfs_delete_unused_bgs(fs_info);
1506
1507 /*
1508 * Reclaim block groups in the reclaim_bgs list after we deleted
1509 * all unused block_groups. This possibly gives us some more free
1510 * space.
1511 */
1512 btrfs_reclaim_bgs(fs_info);
1513 sleep:
1514 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1515 if (kthread_should_park())
1516 kthread_parkme();
1517 if (kthread_should_stop())
1518 return 0;
1519 if (!again) {
1520 set_current_state(TASK_INTERRUPTIBLE);
1521 schedule();
1522 __set_current_state(TASK_RUNNING);
1523 }
1524 }
1525 }
1526
transaction_kthread(void * arg)1527 static int transaction_kthread(void *arg)
1528 {
1529 struct btrfs_root *root = arg;
1530 struct btrfs_fs_info *fs_info = root->fs_info;
1531 struct btrfs_trans_handle *trans;
1532 struct btrfs_transaction *cur;
1533 u64 transid;
1534 time64_t delta;
1535 unsigned long delay;
1536 bool cannot_commit;
1537
1538 do {
1539 cannot_commit = false;
1540 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1541 mutex_lock(&fs_info->transaction_kthread_mutex);
1542
1543 spin_lock(&fs_info->trans_lock);
1544 cur = fs_info->running_transaction;
1545 if (!cur) {
1546 spin_unlock(&fs_info->trans_lock);
1547 goto sleep;
1548 }
1549
1550 delta = ktime_get_seconds() - cur->start_time;
1551 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1552 cur->state < TRANS_STATE_COMMIT_PREP &&
1553 delta < fs_info->commit_interval) {
1554 spin_unlock(&fs_info->trans_lock);
1555 delay -= msecs_to_jiffies((delta - 1) * 1000);
1556 delay = min(delay,
1557 msecs_to_jiffies(fs_info->commit_interval * 1000));
1558 goto sleep;
1559 }
1560 transid = cur->transid;
1561 spin_unlock(&fs_info->trans_lock);
1562
1563 /* If the file system is aborted, this will always fail. */
1564 trans = btrfs_attach_transaction(root);
1565 if (IS_ERR(trans)) {
1566 if (PTR_ERR(trans) != -ENOENT)
1567 cannot_commit = true;
1568 goto sleep;
1569 }
1570 if (transid == trans->transid) {
1571 btrfs_commit_transaction(trans);
1572 } else {
1573 btrfs_end_transaction(trans);
1574 }
1575 sleep:
1576 wake_up_process(fs_info->cleaner_kthread);
1577 mutex_unlock(&fs_info->transaction_kthread_mutex);
1578
1579 if (BTRFS_FS_ERROR(fs_info))
1580 btrfs_cleanup_transaction(fs_info);
1581 if (!kthread_should_stop() &&
1582 (!btrfs_transaction_blocked(fs_info) ||
1583 cannot_commit))
1584 schedule_timeout_interruptible(delay);
1585 } while (!kthread_should_stop());
1586 return 0;
1587 }
1588
1589 /*
1590 * This will find the highest generation in the array of root backups. The
1591 * index of the highest array is returned, or -EINVAL if we can't find
1592 * anything.
1593 *
1594 * We check to make sure the array is valid by comparing the
1595 * generation of the latest root in the array with the generation
1596 * in the super block. If they don't match we pitch it.
1597 */
find_newest_super_backup(struct btrfs_fs_info * info)1598 static int find_newest_super_backup(struct btrfs_fs_info *info)
1599 {
1600 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1601 u64 cur;
1602 struct btrfs_root_backup *root_backup;
1603 int i;
1604
1605 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1606 root_backup = info->super_copy->super_roots + i;
1607 cur = btrfs_backup_tree_root_gen(root_backup);
1608 if (cur == newest_gen)
1609 return i;
1610 }
1611
1612 return -EINVAL;
1613 }
1614
1615 /*
1616 * copy all the root pointers into the super backup array.
1617 * this will bump the backup pointer by one when it is
1618 * done
1619 */
backup_super_roots(struct btrfs_fs_info * info)1620 static void backup_super_roots(struct btrfs_fs_info *info)
1621 {
1622 const int next_backup = info->backup_root_index;
1623 struct btrfs_root_backup *root_backup;
1624
1625 root_backup = info->super_for_commit->super_roots + next_backup;
1626
1627 /*
1628 * make sure all of our padding and empty slots get zero filled
1629 * regardless of which ones we use today
1630 */
1631 memset(root_backup, 0, sizeof(*root_backup));
1632
1633 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1634
1635 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1636 btrfs_set_backup_tree_root_gen(root_backup,
1637 btrfs_header_generation(info->tree_root->node));
1638
1639 btrfs_set_backup_tree_root_level(root_backup,
1640 btrfs_header_level(info->tree_root->node));
1641
1642 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1643 btrfs_set_backup_chunk_root_gen(root_backup,
1644 btrfs_header_generation(info->chunk_root->node));
1645 btrfs_set_backup_chunk_root_level(root_backup,
1646 btrfs_header_level(info->chunk_root->node));
1647
1648 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1649 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1650 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1651
1652 btrfs_set_backup_extent_root(root_backup,
1653 extent_root->node->start);
1654 btrfs_set_backup_extent_root_gen(root_backup,
1655 btrfs_header_generation(extent_root->node));
1656 btrfs_set_backup_extent_root_level(root_backup,
1657 btrfs_header_level(extent_root->node));
1658
1659 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1660 btrfs_set_backup_csum_root_gen(root_backup,
1661 btrfs_header_generation(csum_root->node));
1662 btrfs_set_backup_csum_root_level(root_backup,
1663 btrfs_header_level(csum_root->node));
1664 }
1665
1666 /*
1667 * we might commit during log recovery, which happens before we set
1668 * the fs_root. Make sure it is valid before we fill it in.
1669 */
1670 if (info->fs_root && info->fs_root->node) {
1671 btrfs_set_backup_fs_root(root_backup,
1672 info->fs_root->node->start);
1673 btrfs_set_backup_fs_root_gen(root_backup,
1674 btrfs_header_generation(info->fs_root->node));
1675 btrfs_set_backup_fs_root_level(root_backup,
1676 btrfs_header_level(info->fs_root->node));
1677 }
1678
1679 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1680 btrfs_set_backup_dev_root_gen(root_backup,
1681 btrfs_header_generation(info->dev_root->node));
1682 btrfs_set_backup_dev_root_level(root_backup,
1683 btrfs_header_level(info->dev_root->node));
1684
1685 btrfs_set_backup_total_bytes(root_backup,
1686 btrfs_super_total_bytes(info->super_copy));
1687 btrfs_set_backup_bytes_used(root_backup,
1688 btrfs_super_bytes_used(info->super_copy));
1689 btrfs_set_backup_num_devices(root_backup,
1690 btrfs_super_num_devices(info->super_copy));
1691
1692 /*
1693 * if we don't copy this out to the super_copy, it won't get remembered
1694 * for the next commit
1695 */
1696 memcpy(&info->super_copy->super_roots,
1697 &info->super_for_commit->super_roots,
1698 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1699 }
1700
1701 /*
1702 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1703 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1704 *
1705 * fs_info - filesystem whose backup roots need to be read
1706 * priority - priority of backup root required
1707 *
1708 * Returns backup root index on success and -EINVAL otherwise.
1709 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1710 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1711 {
1712 int backup_index = find_newest_super_backup(fs_info);
1713 struct btrfs_super_block *super = fs_info->super_copy;
1714 struct btrfs_root_backup *root_backup;
1715
1716 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1717 if (priority == 0)
1718 return backup_index;
1719
1720 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1721 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1722 } else {
1723 return -EINVAL;
1724 }
1725
1726 root_backup = super->super_roots + backup_index;
1727
1728 btrfs_set_super_generation(super,
1729 btrfs_backup_tree_root_gen(root_backup));
1730 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1731 btrfs_set_super_root_level(super,
1732 btrfs_backup_tree_root_level(root_backup));
1733 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1734
1735 /*
1736 * Fixme: the total bytes and num_devices need to match or we should
1737 * need a fsck
1738 */
1739 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1740 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1741
1742 return backup_index;
1743 }
1744
1745 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1746 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1747 {
1748 btrfs_destroy_workqueue(fs_info->fixup_workers);
1749 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1750 btrfs_destroy_workqueue(fs_info->workers);
1751 if (fs_info->endio_workers)
1752 destroy_workqueue(fs_info->endio_workers);
1753 if (fs_info->rmw_workers)
1754 destroy_workqueue(fs_info->rmw_workers);
1755 if (fs_info->compressed_write_workers)
1756 destroy_workqueue(fs_info->compressed_write_workers);
1757 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1758 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1759 btrfs_destroy_workqueue(fs_info->delayed_workers);
1760 btrfs_destroy_workqueue(fs_info->caching_workers);
1761 btrfs_destroy_workqueue(fs_info->flush_workers);
1762 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1763 if (fs_info->discard_ctl.discard_workers)
1764 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1765 /*
1766 * Now that all other work queues are destroyed, we can safely destroy
1767 * the queues used for metadata I/O, since tasks from those other work
1768 * queues can do metadata I/O operations.
1769 */
1770 if (fs_info->endio_meta_workers)
1771 destroy_workqueue(fs_info->endio_meta_workers);
1772 }
1773
free_root_extent_buffers(struct btrfs_root * root)1774 static void free_root_extent_buffers(struct btrfs_root *root)
1775 {
1776 if (root) {
1777 free_extent_buffer(root->node);
1778 free_extent_buffer(root->commit_root);
1779 root->node = NULL;
1780 root->commit_root = NULL;
1781 }
1782 }
1783
free_global_root_pointers(struct btrfs_fs_info * fs_info)1784 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1785 {
1786 struct btrfs_root *root, *tmp;
1787
1788 rbtree_postorder_for_each_entry_safe(root, tmp,
1789 &fs_info->global_root_tree,
1790 rb_node)
1791 free_root_extent_buffers(root);
1792 }
1793
1794 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1795 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1796 {
1797 free_root_extent_buffers(info->tree_root);
1798
1799 free_global_root_pointers(info);
1800 free_root_extent_buffers(info->dev_root);
1801 free_root_extent_buffers(info->quota_root);
1802 free_root_extent_buffers(info->uuid_root);
1803 free_root_extent_buffers(info->fs_root);
1804 free_root_extent_buffers(info->data_reloc_root);
1805 free_root_extent_buffers(info->block_group_root);
1806 if (free_chunk_root)
1807 free_root_extent_buffers(info->chunk_root);
1808 }
1809
btrfs_put_root(struct btrfs_root * root)1810 void btrfs_put_root(struct btrfs_root *root)
1811 {
1812 if (!root)
1813 return;
1814
1815 if (refcount_dec_and_test(&root->refs)) {
1816 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1817 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1818 if (root->anon_dev)
1819 free_anon_bdev(root->anon_dev);
1820 free_root_extent_buffers(root);
1821 #ifdef CONFIG_BTRFS_DEBUG
1822 spin_lock(&root->fs_info->fs_roots_radix_lock);
1823 list_del_init(&root->leak_list);
1824 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1825 #endif
1826 kfree(root);
1827 }
1828 }
1829
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1830 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1831 {
1832 int ret;
1833 struct btrfs_root *gang[8];
1834 int i;
1835
1836 while (!list_empty(&fs_info->dead_roots)) {
1837 gang[0] = list_entry(fs_info->dead_roots.next,
1838 struct btrfs_root, root_list);
1839 list_del(&gang[0]->root_list);
1840
1841 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1842 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1843 btrfs_put_root(gang[0]);
1844 }
1845
1846 while (1) {
1847 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1848 (void **)gang, 0,
1849 ARRAY_SIZE(gang));
1850 if (!ret)
1851 break;
1852 for (i = 0; i < ret; i++)
1853 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1854 }
1855 }
1856
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1857 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1858 {
1859 mutex_init(&fs_info->scrub_lock);
1860 atomic_set(&fs_info->scrubs_running, 0);
1861 atomic_set(&fs_info->scrub_pause_req, 0);
1862 atomic_set(&fs_info->scrubs_paused, 0);
1863 atomic_set(&fs_info->scrub_cancel_req, 0);
1864 init_waitqueue_head(&fs_info->scrub_pause_wait);
1865 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1866 }
1867
btrfs_init_balance(struct btrfs_fs_info * fs_info)1868 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1869 {
1870 spin_lock_init(&fs_info->balance_lock);
1871 mutex_init(&fs_info->balance_mutex);
1872 atomic_set(&fs_info->balance_pause_req, 0);
1873 atomic_set(&fs_info->balance_cancel_req, 0);
1874 fs_info->balance_ctl = NULL;
1875 init_waitqueue_head(&fs_info->balance_wait_q);
1876 atomic_set(&fs_info->reloc_cancel_req, 0);
1877 }
1878
btrfs_init_btree_inode(struct super_block * sb)1879 static int btrfs_init_btree_inode(struct super_block *sb)
1880 {
1881 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1882 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1883 fs_info->tree_root);
1884 struct inode *inode;
1885
1886 inode = new_inode(sb);
1887 if (!inode)
1888 return -ENOMEM;
1889
1890 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1891 set_nlink(inode, 1);
1892 /*
1893 * we set the i_size on the btree inode to the max possible int.
1894 * the real end of the address space is determined by all of
1895 * the devices in the system
1896 */
1897 inode->i_size = OFFSET_MAX;
1898 inode->i_mapping->a_ops = &btree_aops;
1899 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1900
1901 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1902 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1903 IO_TREE_BTREE_INODE_IO);
1904 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1905
1906 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1907 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1908 BTRFS_I(inode)->location.type = 0;
1909 BTRFS_I(inode)->location.offset = 0;
1910 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1911 __insert_inode_hash(inode, hash);
1912 fs_info->btree_inode = inode;
1913
1914 return 0;
1915 }
1916
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1917 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1918 {
1919 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1920 init_rwsem(&fs_info->dev_replace.rwsem);
1921 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1922 }
1923
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1924 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1925 {
1926 spin_lock_init(&fs_info->qgroup_lock);
1927 mutex_init(&fs_info->qgroup_ioctl_lock);
1928 fs_info->qgroup_tree = RB_ROOT;
1929 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1930 fs_info->qgroup_seq = 1;
1931 fs_info->qgroup_ulist = NULL;
1932 fs_info->qgroup_rescan_running = false;
1933 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1934 mutex_init(&fs_info->qgroup_rescan_lock);
1935 }
1936
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1937 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1938 {
1939 u32 max_active = fs_info->thread_pool_size;
1940 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1941 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1942
1943 fs_info->workers =
1944 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1945
1946 fs_info->delalloc_workers =
1947 btrfs_alloc_workqueue(fs_info, "delalloc",
1948 flags, max_active, 2);
1949
1950 fs_info->flush_workers =
1951 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1952 flags, max_active, 0);
1953
1954 fs_info->caching_workers =
1955 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1956
1957 fs_info->fixup_workers =
1958 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1959
1960 fs_info->endio_workers =
1961 alloc_workqueue("btrfs-endio", flags, max_active);
1962 fs_info->endio_meta_workers =
1963 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1964 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1965 fs_info->endio_write_workers =
1966 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1967 max_active, 2);
1968 fs_info->compressed_write_workers =
1969 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1970 fs_info->endio_freespace_worker =
1971 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1972 max_active, 0);
1973 fs_info->delayed_workers =
1974 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1975 max_active, 0);
1976 fs_info->qgroup_rescan_workers =
1977 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1978 ordered_flags);
1979 fs_info->discard_ctl.discard_workers =
1980 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1981
1982 if (!(fs_info->workers &&
1983 fs_info->delalloc_workers && fs_info->flush_workers &&
1984 fs_info->endio_workers && fs_info->endio_meta_workers &&
1985 fs_info->compressed_write_workers &&
1986 fs_info->endio_write_workers &&
1987 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1988 fs_info->caching_workers && fs_info->fixup_workers &&
1989 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1990 fs_info->discard_ctl.discard_workers)) {
1991 return -ENOMEM;
1992 }
1993
1994 return 0;
1995 }
1996
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)1997 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
1998 {
1999 struct crypto_shash *csum_shash;
2000 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2001
2002 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2003
2004 if (IS_ERR(csum_shash)) {
2005 btrfs_err(fs_info, "error allocating %s hash for checksum",
2006 csum_driver);
2007 return PTR_ERR(csum_shash);
2008 }
2009
2010 fs_info->csum_shash = csum_shash;
2011
2012 /*
2013 * Check if the checksum implementation is a fast accelerated one.
2014 * As-is this is a bit of a hack and should be replaced once the csum
2015 * implementations provide that information themselves.
2016 */
2017 switch (csum_type) {
2018 case BTRFS_CSUM_TYPE_CRC32:
2019 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2020 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2021 break;
2022 case BTRFS_CSUM_TYPE_XXHASH:
2023 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2024 break;
2025 default:
2026 break;
2027 }
2028
2029 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2030 btrfs_super_csum_name(csum_type),
2031 crypto_shash_driver_name(csum_shash));
2032 return 0;
2033 }
2034
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2035 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2036 struct btrfs_fs_devices *fs_devices)
2037 {
2038 int ret;
2039 struct btrfs_tree_parent_check check = { 0 };
2040 struct btrfs_root *log_tree_root;
2041 struct btrfs_super_block *disk_super = fs_info->super_copy;
2042 u64 bytenr = btrfs_super_log_root(disk_super);
2043 int level = btrfs_super_log_root_level(disk_super);
2044
2045 if (fs_devices->rw_devices == 0) {
2046 btrfs_warn(fs_info, "log replay required on RO media");
2047 return -EIO;
2048 }
2049
2050 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2051 GFP_KERNEL);
2052 if (!log_tree_root)
2053 return -ENOMEM;
2054
2055 check.level = level;
2056 check.transid = fs_info->generation + 1;
2057 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2058 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2059 if (IS_ERR(log_tree_root->node)) {
2060 btrfs_warn(fs_info, "failed to read log tree");
2061 ret = PTR_ERR(log_tree_root->node);
2062 log_tree_root->node = NULL;
2063 btrfs_put_root(log_tree_root);
2064 return ret;
2065 }
2066 if (!extent_buffer_uptodate(log_tree_root->node)) {
2067 btrfs_err(fs_info, "failed to read log tree");
2068 btrfs_put_root(log_tree_root);
2069 return -EIO;
2070 }
2071
2072 /* returns with log_tree_root freed on success */
2073 ret = btrfs_recover_log_trees(log_tree_root);
2074 if (ret) {
2075 btrfs_handle_fs_error(fs_info, ret,
2076 "Failed to recover log tree");
2077 btrfs_put_root(log_tree_root);
2078 return ret;
2079 }
2080
2081 if (sb_rdonly(fs_info->sb)) {
2082 ret = btrfs_commit_super(fs_info);
2083 if (ret)
2084 return ret;
2085 }
2086
2087 return 0;
2088 }
2089
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2090 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2091 struct btrfs_path *path, u64 objectid,
2092 const char *name)
2093 {
2094 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2095 struct btrfs_root *root;
2096 u64 max_global_id = 0;
2097 int ret;
2098 struct btrfs_key key = {
2099 .objectid = objectid,
2100 .type = BTRFS_ROOT_ITEM_KEY,
2101 .offset = 0,
2102 };
2103 bool found = false;
2104
2105 /* If we have IGNOREDATACSUMS skip loading these roots. */
2106 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2107 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2108 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2109 return 0;
2110 }
2111
2112 while (1) {
2113 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2114 if (ret < 0)
2115 break;
2116
2117 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2118 ret = btrfs_next_leaf(tree_root, path);
2119 if (ret) {
2120 if (ret > 0)
2121 ret = 0;
2122 break;
2123 }
2124 }
2125 ret = 0;
2126
2127 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2128 if (key.objectid != objectid)
2129 break;
2130 btrfs_release_path(path);
2131
2132 /*
2133 * Just worry about this for extent tree, it'll be the same for
2134 * everybody.
2135 */
2136 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2137 max_global_id = max(max_global_id, key.offset);
2138
2139 found = true;
2140 root = read_tree_root_path(tree_root, path, &key);
2141 if (IS_ERR(root)) {
2142 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2143 ret = PTR_ERR(root);
2144 break;
2145 }
2146 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2147 ret = btrfs_global_root_insert(root);
2148 if (ret) {
2149 btrfs_put_root(root);
2150 break;
2151 }
2152 key.offset++;
2153 }
2154 btrfs_release_path(path);
2155
2156 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2157 fs_info->nr_global_roots = max_global_id + 1;
2158
2159 if (!found || ret) {
2160 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2161 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2162
2163 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2164 ret = ret ? ret : -ENOENT;
2165 else
2166 ret = 0;
2167 btrfs_err(fs_info, "failed to load root %s", name);
2168 }
2169 return ret;
2170 }
2171
load_global_roots(struct btrfs_root * tree_root)2172 static int load_global_roots(struct btrfs_root *tree_root)
2173 {
2174 struct btrfs_path *path;
2175 int ret = 0;
2176
2177 path = btrfs_alloc_path();
2178 if (!path)
2179 return -ENOMEM;
2180
2181 ret = load_global_roots_objectid(tree_root, path,
2182 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2183 if (ret)
2184 goto out;
2185 ret = load_global_roots_objectid(tree_root, path,
2186 BTRFS_CSUM_TREE_OBJECTID, "csum");
2187 if (ret)
2188 goto out;
2189 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2190 goto out;
2191 ret = load_global_roots_objectid(tree_root, path,
2192 BTRFS_FREE_SPACE_TREE_OBJECTID,
2193 "free space");
2194 out:
2195 btrfs_free_path(path);
2196 return ret;
2197 }
2198
btrfs_read_roots(struct btrfs_fs_info * fs_info)2199 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2200 {
2201 struct btrfs_root *tree_root = fs_info->tree_root;
2202 struct btrfs_root *root;
2203 struct btrfs_key location;
2204 int ret;
2205
2206 BUG_ON(!fs_info->tree_root);
2207
2208 ret = load_global_roots(tree_root);
2209 if (ret)
2210 return ret;
2211
2212 location.type = BTRFS_ROOT_ITEM_KEY;
2213 location.offset = 0;
2214
2215 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2216 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2217 root = btrfs_read_tree_root(tree_root, &location);
2218 if (IS_ERR(root)) {
2219 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2220 ret = PTR_ERR(root);
2221 goto out;
2222 }
2223 } else {
2224 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2225 fs_info->block_group_root = root;
2226 }
2227 }
2228
2229 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2230 root = btrfs_read_tree_root(tree_root, &location);
2231 if (IS_ERR(root)) {
2232 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2233 ret = PTR_ERR(root);
2234 goto out;
2235 }
2236 } else {
2237 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2238 fs_info->dev_root = root;
2239 }
2240 /* Initialize fs_info for all devices in any case */
2241 ret = btrfs_init_devices_late(fs_info);
2242 if (ret)
2243 goto out;
2244
2245 /*
2246 * This tree can share blocks with some other fs tree during relocation
2247 * and we need a proper setup by btrfs_get_fs_root
2248 */
2249 root = btrfs_get_fs_root(tree_root->fs_info,
2250 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2251 if (IS_ERR(root)) {
2252 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2253 ret = PTR_ERR(root);
2254 goto out;
2255 }
2256 } else {
2257 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2258 fs_info->data_reloc_root = root;
2259 }
2260
2261 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2262 root = btrfs_read_tree_root(tree_root, &location);
2263 if (!IS_ERR(root)) {
2264 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2265 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2266 fs_info->quota_root = root;
2267 }
2268
2269 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2270 root = btrfs_read_tree_root(tree_root, &location);
2271 if (IS_ERR(root)) {
2272 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2273 ret = PTR_ERR(root);
2274 if (ret != -ENOENT)
2275 goto out;
2276 }
2277 } else {
2278 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279 fs_info->uuid_root = root;
2280 }
2281
2282 return 0;
2283 out:
2284 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2285 location.objectid, ret);
2286 return ret;
2287 }
2288
2289 /*
2290 * Real super block validation
2291 * NOTE: super csum type and incompat features will not be checked here.
2292 *
2293 * @sb: super block to check
2294 * @mirror_num: the super block number to check its bytenr:
2295 * 0 the primary (1st) sb
2296 * 1, 2 2nd and 3rd backup copy
2297 * -1 skip bytenr check
2298 */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2299 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2300 struct btrfs_super_block *sb, int mirror_num)
2301 {
2302 u64 nodesize = btrfs_super_nodesize(sb);
2303 u64 sectorsize = btrfs_super_sectorsize(sb);
2304 int ret = 0;
2305
2306 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2307 btrfs_err(fs_info, "no valid FS found");
2308 ret = -EINVAL;
2309 }
2310 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2311 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2312 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2313 ret = -EINVAL;
2314 }
2315 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2316 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2317 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2318 ret = -EINVAL;
2319 }
2320 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2321 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2322 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2323 ret = -EINVAL;
2324 }
2325 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2326 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2327 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2328 ret = -EINVAL;
2329 }
2330
2331 /*
2332 * Check sectorsize and nodesize first, other check will need it.
2333 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2334 */
2335 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2336 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2337 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2338 ret = -EINVAL;
2339 }
2340
2341 /*
2342 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2343 *
2344 * We can support 16K sectorsize with 64K page size without problem,
2345 * but such sectorsize/pagesize combination doesn't make much sense.
2346 * 4K will be our future standard, PAGE_SIZE is supported from the very
2347 * beginning.
2348 */
2349 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2350 btrfs_err(fs_info,
2351 "sectorsize %llu not yet supported for page size %lu",
2352 sectorsize, PAGE_SIZE);
2353 ret = -EINVAL;
2354 }
2355
2356 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2357 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2358 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2359 ret = -EINVAL;
2360 }
2361 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2362 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2363 le32_to_cpu(sb->__unused_leafsize), nodesize);
2364 ret = -EINVAL;
2365 }
2366
2367 /* Root alignment check */
2368 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2369 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2370 btrfs_super_root(sb));
2371 ret = -EINVAL;
2372 }
2373 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2374 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2375 btrfs_super_chunk_root(sb));
2376 ret = -EINVAL;
2377 }
2378 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2379 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2380 btrfs_super_log_root(sb));
2381 ret = -EINVAL;
2382 }
2383
2384 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2385 btrfs_err(fs_info,
2386 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2387 sb->fsid, fs_info->fs_devices->fsid);
2388 ret = -EINVAL;
2389 }
2390
2391 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2392 BTRFS_FSID_SIZE) != 0) {
2393 btrfs_err(fs_info,
2394 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2395 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2396 ret = -EINVAL;
2397 }
2398
2399 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2400 BTRFS_FSID_SIZE) != 0) {
2401 btrfs_err(fs_info,
2402 "dev_item UUID does not match metadata fsid: %pU != %pU",
2403 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2404 ret = -EINVAL;
2405 }
2406
2407 /*
2408 * Artificial requirement for block-group-tree to force newer features
2409 * (free-space-tree, no-holes) so the test matrix is smaller.
2410 */
2411 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2412 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2413 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2414 btrfs_err(fs_info,
2415 "block-group-tree feature requires fres-space-tree and no-holes");
2416 ret = -EINVAL;
2417 }
2418
2419 /*
2420 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2421 * done later
2422 */
2423 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2424 btrfs_err(fs_info, "bytes_used is too small %llu",
2425 btrfs_super_bytes_used(sb));
2426 ret = -EINVAL;
2427 }
2428 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2429 btrfs_err(fs_info, "invalid stripesize %u",
2430 btrfs_super_stripesize(sb));
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_num_devices(sb) > (1UL << 31))
2434 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2435 btrfs_super_num_devices(sb));
2436 if (btrfs_super_num_devices(sb) == 0) {
2437 btrfs_err(fs_info, "number of devices is 0");
2438 ret = -EINVAL;
2439 }
2440
2441 if (mirror_num >= 0 &&
2442 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2443 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2444 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2445 ret = -EINVAL;
2446 }
2447
2448 /*
2449 * Obvious sys_chunk_array corruptions, it must hold at least one key
2450 * and one chunk
2451 */
2452 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2453 btrfs_err(fs_info, "system chunk array too big %u > %u",
2454 btrfs_super_sys_array_size(sb),
2455 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2456 ret = -EINVAL;
2457 }
2458 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2459 + sizeof(struct btrfs_chunk)) {
2460 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2461 btrfs_super_sys_array_size(sb),
2462 sizeof(struct btrfs_disk_key)
2463 + sizeof(struct btrfs_chunk));
2464 ret = -EINVAL;
2465 }
2466
2467 /*
2468 * The generation is a global counter, we'll trust it more than the others
2469 * but it's still possible that it's the one that's wrong.
2470 */
2471 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2472 btrfs_warn(fs_info,
2473 "suspicious: generation < chunk_root_generation: %llu < %llu",
2474 btrfs_super_generation(sb),
2475 btrfs_super_chunk_root_generation(sb));
2476 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2477 && btrfs_super_cache_generation(sb) != (u64)-1)
2478 btrfs_warn(fs_info,
2479 "suspicious: generation < cache_generation: %llu < %llu",
2480 btrfs_super_generation(sb),
2481 btrfs_super_cache_generation(sb));
2482
2483 return ret;
2484 }
2485
2486 /*
2487 * Validation of super block at mount time.
2488 * Some checks already done early at mount time, like csum type and incompat
2489 * flags will be skipped.
2490 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2492 {
2493 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2494 }
2495
2496 /*
2497 * Validation of super block at write time.
2498 * Some checks like bytenr check will be skipped as their values will be
2499 * overwritten soon.
2500 * Extra checks like csum type and incompat flags will be done here.
2501 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2503 struct btrfs_super_block *sb)
2504 {
2505 int ret;
2506
2507 ret = btrfs_validate_super(fs_info, sb, -1);
2508 if (ret < 0)
2509 goto out;
2510 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2511 ret = -EUCLEAN;
2512 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2513 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2514 goto out;
2515 }
2516 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2517 ret = -EUCLEAN;
2518 btrfs_err(fs_info,
2519 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2520 btrfs_super_incompat_flags(sb),
2521 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2522 goto out;
2523 }
2524 out:
2525 if (ret < 0)
2526 btrfs_err(fs_info,
2527 "super block corruption detected before writing it to disk");
2528 return ret;
2529 }
2530
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2531 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2532 {
2533 struct btrfs_tree_parent_check check = {
2534 .level = level,
2535 .transid = gen,
2536 .owner_root = root->root_key.objectid
2537 };
2538 int ret = 0;
2539
2540 root->node = read_tree_block(root->fs_info, bytenr, &check);
2541 if (IS_ERR(root->node)) {
2542 ret = PTR_ERR(root->node);
2543 root->node = NULL;
2544 return ret;
2545 }
2546 if (!extent_buffer_uptodate(root->node)) {
2547 free_extent_buffer(root->node);
2548 root->node = NULL;
2549 return -EIO;
2550 }
2551
2552 btrfs_set_root_node(&root->root_item, root->node);
2553 root->commit_root = btrfs_root_node(root);
2554 btrfs_set_root_refs(&root->root_item, 1);
2555 return ret;
2556 }
2557
load_important_roots(struct btrfs_fs_info * fs_info)2558 static int load_important_roots(struct btrfs_fs_info *fs_info)
2559 {
2560 struct btrfs_super_block *sb = fs_info->super_copy;
2561 u64 gen, bytenr;
2562 int level, ret;
2563
2564 bytenr = btrfs_super_root(sb);
2565 gen = btrfs_super_generation(sb);
2566 level = btrfs_super_root_level(sb);
2567 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2568 if (ret) {
2569 btrfs_warn(fs_info, "couldn't read tree root");
2570 return ret;
2571 }
2572 return 0;
2573 }
2574
init_tree_roots(struct btrfs_fs_info * fs_info)2575 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2576 {
2577 int backup_index = find_newest_super_backup(fs_info);
2578 struct btrfs_super_block *sb = fs_info->super_copy;
2579 struct btrfs_root *tree_root = fs_info->tree_root;
2580 bool handle_error = false;
2581 int ret = 0;
2582 int i;
2583
2584 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2585 if (handle_error) {
2586 if (!IS_ERR(tree_root->node))
2587 free_extent_buffer(tree_root->node);
2588 tree_root->node = NULL;
2589
2590 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2591 break;
2592
2593 free_root_pointers(fs_info, 0);
2594
2595 /*
2596 * Don't use the log in recovery mode, it won't be
2597 * valid
2598 */
2599 btrfs_set_super_log_root(sb, 0);
2600
2601 /* We can't trust the free space cache either */
2602 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2603
2604 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2605 ret = read_backup_root(fs_info, i);
2606 backup_index = ret;
2607 if (ret < 0)
2608 return ret;
2609 }
2610
2611 ret = load_important_roots(fs_info);
2612 if (ret) {
2613 handle_error = true;
2614 continue;
2615 }
2616
2617 /*
2618 * No need to hold btrfs_root::objectid_mutex since the fs
2619 * hasn't been fully initialised and we are the only user
2620 */
2621 ret = btrfs_init_root_free_objectid(tree_root);
2622 if (ret < 0) {
2623 handle_error = true;
2624 continue;
2625 }
2626
2627 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2628
2629 ret = btrfs_read_roots(fs_info);
2630 if (ret < 0) {
2631 handle_error = true;
2632 continue;
2633 }
2634
2635 /* All successful */
2636 fs_info->generation = btrfs_header_generation(tree_root->node);
2637 fs_info->last_trans_committed = fs_info->generation;
2638 fs_info->last_reloc_trans = 0;
2639
2640 /* Always begin writing backup roots after the one being used */
2641 if (backup_index < 0) {
2642 fs_info->backup_root_index = 0;
2643 } else {
2644 fs_info->backup_root_index = backup_index + 1;
2645 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2646 }
2647 break;
2648 }
2649
2650 return ret;
2651 }
2652
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2653 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2654 {
2655 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657 INIT_LIST_HEAD(&fs_info->trans_list);
2658 INIT_LIST_HEAD(&fs_info->dead_roots);
2659 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662 spin_lock_init(&fs_info->delalloc_root_lock);
2663 spin_lock_init(&fs_info->trans_lock);
2664 spin_lock_init(&fs_info->fs_roots_radix_lock);
2665 spin_lock_init(&fs_info->delayed_iput_lock);
2666 spin_lock_init(&fs_info->defrag_inodes_lock);
2667 spin_lock_init(&fs_info->super_lock);
2668 spin_lock_init(&fs_info->buffer_lock);
2669 spin_lock_init(&fs_info->unused_bgs_lock);
2670 spin_lock_init(&fs_info->treelog_bg_lock);
2671 spin_lock_init(&fs_info->zone_active_bgs_lock);
2672 spin_lock_init(&fs_info->relocation_bg_lock);
2673 rwlock_init(&fs_info->tree_mod_log_lock);
2674 rwlock_init(&fs_info->global_root_lock);
2675 mutex_init(&fs_info->unused_bg_unpin_mutex);
2676 mutex_init(&fs_info->reclaim_bgs_lock);
2677 mutex_init(&fs_info->reloc_mutex);
2678 mutex_init(&fs_info->delalloc_root_mutex);
2679 mutex_init(&fs_info->zoned_meta_io_lock);
2680 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2681 seqlock_init(&fs_info->profiles_lock);
2682
2683 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2684 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2685 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2686 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2687 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2688 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2689 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2690 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2691 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2692 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2693 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2694 BTRFS_LOCKDEP_TRANS_COMPLETED);
2695
2696 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2697 INIT_LIST_HEAD(&fs_info->space_info);
2698 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2699 INIT_LIST_HEAD(&fs_info->unused_bgs);
2700 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2701 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2702 #ifdef CONFIG_BTRFS_DEBUG
2703 INIT_LIST_HEAD(&fs_info->allocated_roots);
2704 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2705 spin_lock_init(&fs_info->eb_leak_lock);
2706 #endif
2707 extent_map_tree_init(&fs_info->mapping_tree);
2708 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2709 BTRFS_BLOCK_RSV_GLOBAL);
2710 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2711 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2712 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2713 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2714 BTRFS_BLOCK_RSV_DELOPS);
2715 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2716 BTRFS_BLOCK_RSV_DELREFS);
2717
2718 atomic_set(&fs_info->async_delalloc_pages, 0);
2719 atomic_set(&fs_info->defrag_running, 0);
2720 atomic_set(&fs_info->nr_delayed_iputs, 0);
2721 atomic64_set(&fs_info->tree_mod_seq, 0);
2722 fs_info->global_root_tree = RB_ROOT;
2723 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2724 fs_info->metadata_ratio = 0;
2725 fs_info->defrag_inodes = RB_ROOT;
2726 atomic64_set(&fs_info->free_chunk_space, 0);
2727 fs_info->tree_mod_log = RB_ROOT;
2728 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2729 btrfs_init_ref_verify(fs_info);
2730
2731 fs_info->thread_pool_size = min_t(unsigned long,
2732 num_online_cpus() + 2, 8);
2733
2734 INIT_LIST_HEAD(&fs_info->ordered_roots);
2735 spin_lock_init(&fs_info->ordered_root_lock);
2736
2737 btrfs_init_scrub(fs_info);
2738 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2739 fs_info->check_integrity_print_mask = 0;
2740 #endif
2741 btrfs_init_balance(fs_info);
2742 btrfs_init_async_reclaim_work(fs_info);
2743
2744 rwlock_init(&fs_info->block_group_cache_lock);
2745 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2746
2747 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2748 IO_TREE_FS_EXCLUDED_EXTENTS);
2749
2750 mutex_init(&fs_info->ordered_operations_mutex);
2751 mutex_init(&fs_info->tree_log_mutex);
2752 mutex_init(&fs_info->chunk_mutex);
2753 mutex_init(&fs_info->transaction_kthread_mutex);
2754 mutex_init(&fs_info->cleaner_mutex);
2755 mutex_init(&fs_info->ro_block_group_mutex);
2756 init_rwsem(&fs_info->commit_root_sem);
2757 init_rwsem(&fs_info->cleanup_work_sem);
2758 init_rwsem(&fs_info->subvol_sem);
2759 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2760
2761 btrfs_init_dev_replace_locks(fs_info);
2762 btrfs_init_qgroup(fs_info);
2763 btrfs_discard_init(fs_info);
2764
2765 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2766 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2767
2768 init_waitqueue_head(&fs_info->transaction_throttle);
2769 init_waitqueue_head(&fs_info->transaction_wait);
2770 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2771 init_waitqueue_head(&fs_info->async_submit_wait);
2772 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2773
2774 /* Usable values until the real ones are cached from the superblock */
2775 fs_info->nodesize = 4096;
2776 fs_info->sectorsize = 4096;
2777 fs_info->sectorsize_bits = ilog2(4096);
2778 fs_info->stripesize = 4096;
2779
2780 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2781
2782 spin_lock_init(&fs_info->swapfile_pins_lock);
2783 fs_info->swapfile_pins = RB_ROOT;
2784
2785 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2786 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2787 }
2788
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2789 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2790 {
2791 int ret;
2792
2793 fs_info->sb = sb;
2794 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2795 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2796
2797 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2798 if (ret)
2799 return ret;
2800
2801 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2802 if (ret)
2803 return ret;
2804
2805 fs_info->dirty_metadata_batch = PAGE_SIZE *
2806 (1 + ilog2(nr_cpu_ids));
2807
2808 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2809 if (ret)
2810 return ret;
2811
2812 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2813 GFP_KERNEL);
2814 if (ret)
2815 return ret;
2816
2817 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2818 GFP_KERNEL);
2819 if (!fs_info->delayed_root)
2820 return -ENOMEM;
2821 btrfs_init_delayed_root(fs_info->delayed_root);
2822
2823 if (sb_rdonly(sb))
2824 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2825
2826 return btrfs_alloc_stripe_hash_table(fs_info);
2827 }
2828
btrfs_uuid_rescan_kthread(void * data)2829 static int btrfs_uuid_rescan_kthread(void *data)
2830 {
2831 struct btrfs_fs_info *fs_info = data;
2832 int ret;
2833
2834 /*
2835 * 1st step is to iterate through the existing UUID tree and
2836 * to delete all entries that contain outdated data.
2837 * 2nd step is to add all missing entries to the UUID tree.
2838 */
2839 ret = btrfs_uuid_tree_iterate(fs_info);
2840 if (ret < 0) {
2841 if (ret != -EINTR)
2842 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2843 ret);
2844 up(&fs_info->uuid_tree_rescan_sem);
2845 return ret;
2846 }
2847 return btrfs_uuid_scan_kthread(data);
2848 }
2849
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2850 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2851 {
2852 struct task_struct *task;
2853
2854 down(&fs_info->uuid_tree_rescan_sem);
2855 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2856 if (IS_ERR(task)) {
2857 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2858 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2859 up(&fs_info->uuid_tree_rescan_sem);
2860 return PTR_ERR(task);
2861 }
2862
2863 return 0;
2864 }
2865
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2866 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2867 {
2868 u64 root_objectid = 0;
2869 struct btrfs_root *gang[8];
2870 int i = 0;
2871 int err = 0;
2872 unsigned int ret = 0;
2873
2874 while (1) {
2875 spin_lock(&fs_info->fs_roots_radix_lock);
2876 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2877 (void **)gang, root_objectid,
2878 ARRAY_SIZE(gang));
2879 if (!ret) {
2880 spin_unlock(&fs_info->fs_roots_radix_lock);
2881 break;
2882 }
2883 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2884
2885 for (i = 0; i < ret; i++) {
2886 /* Avoid to grab roots in dead_roots. */
2887 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2888 gang[i] = NULL;
2889 continue;
2890 }
2891 /* Grab all the search result for later use. */
2892 gang[i] = btrfs_grab_root(gang[i]);
2893 }
2894 spin_unlock(&fs_info->fs_roots_radix_lock);
2895
2896 for (i = 0; i < ret; i++) {
2897 if (!gang[i])
2898 continue;
2899 root_objectid = gang[i]->root_key.objectid;
2900 err = btrfs_orphan_cleanup(gang[i]);
2901 if (err)
2902 goto out;
2903 btrfs_put_root(gang[i]);
2904 }
2905 root_objectid++;
2906 }
2907 out:
2908 /* Release the uncleaned roots due to error. */
2909 for (; i < ret; i++) {
2910 if (gang[i])
2911 btrfs_put_root(gang[i]);
2912 }
2913 return err;
2914 }
2915
2916 /*
2917 * Some options only have meaning at mount time and shouldn't persist across
2918 * remounts, or be displayed. Clear these at the end of mount and remount
2919 * code paths.
2920 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)2921 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2922 {
2923 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2924 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2925 }
2926
2927 /*
2928 * Mounting logic specific to read-write file systems. Shared by open_ctree
2929 * and btrfs_remount when remounting from read-only to read-write.
2930 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)2931 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2932 {
2933 int ret;
2934 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2935 bool rebuild_free_space_tree = false;
2936
2937 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2938 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2939 rebuild_free_space_tree = true;
2940 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2941 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2942 btrfs_warn(fs_info, "free space tree is invalid");
2943 rebuild_free_space_tree = true;
2944 }
2945
2946 if (rebuild_free_space_tree) {
2947 btrfs_info(fs_info, "rebuilding free space tree");
2948 ret = btrfs_rebuild_free_space_tree(fs_info);
2949 if (ret) {
2950 btrfs_warn(fs_info,
2951 "failed to rebuild free space tree: %d", ret);
2952 goto out;
2953 }
2954 }
2955
2956 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2957 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2958 btrfs_info(fs_info, "disabling free space tree");
2959 ret = btrfs_delete_free_space_tree(fs_info);
2960 if (ret) {
2961 btrfs_warn(fs_info,
2962 "failed to disable free space tree: %d", ret);
2963 goto out;
2964 }
2965 }
2966
2967 /*
2968 * btrfs_find_orphan_roots() is responsible for finding all the dead
2969 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2970 * them into the fs_info->fs_roots_radix tree. This must be done before
2971 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2972 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2973 * item before the root's tree is deleted - this means that if we unmount
2974 * or crash before the deletion completes, on the next mount we will not
2975 * delete what remains of the tree because the orphan item does not
2976 * exists anymore, which is what tells us we have a pending deletion.
2977 */
2978 ret = btrfs_find_orphan_roots(fs_info);
2979 if (ret)
2980 goto out;
2981
2982 ret = btrfs_cleanup_fs_roots(fs_info);
2983 if (ret)
2984 goto out;
2985
2986 down_read(&fs_info->cleanup_work_sem);
2987 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2988 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2989 up_read(&fs_info->cleanup_work_sem);
2990 goto out;
2991 }
2992 up_read(&fs_info->cleanup_work_sem);
2993
2994 mutex_lock(&fs_info->cleaner_mutex);
2995 ret = btrfs_recover_relocation(fs_info);
2996 mutex_unlock(&fs_info->cleaner_mutex);
2997 if (ret < 0) {
2998 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2999 goto out;
3000 }
3001
3002 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3003 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3004 btrfs_info(fs_info, "creating free space tree");
3005 ret = btrfs_create_free_space_tree(fs_info);
3006 if (ret) {
3007 btrfs_warn(fs_info,
3008 "failed to create free space tree: %d", ret);
3009 goto out;
3010 }
3011 }
3012
3013 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3014 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3015 if (ret)
3016 goto out;
3017 }
3018
3019 ret = btrfs_resume_balance_async(fs_info);
3020 if (ret)
3021 goto out;
3022
3023 ret = btrfs_resume_dev_replace_async(fs_info);
3024 if (ret) {
3025 btrfs_warn(fs_info, "failed to resume dev_replace");
3026 goto out;
3027 }
3028
3029 btrfs_qgroup_rescan_resume(fs_info);
3030
3031 if (!fs_info->uuid_root) {
3032 btrfs_info(fs_info, "creating UUID tree");
3033 ret = btrfs_create_uuid_tree(fs_info);
3034 if (ret) {
3035 btrfs_warn(fs_info,
3036 "failed to create the UUID tree %d", ret);
3037 goto out;
3038 }
3039 }
3040
3041 out:
3042 return ret;
3043 }
3044
3045 /*
3046 * Do various sanity and dependency checks of different features.
3047 *
3048 * @is_rw_mount: If the mount is read-write.
3049 *
3050 * This is the place for less strict checks (like for subpage or artificial
3051 * feature dependencies).
3052 *
3053 * For strict checks or possible corruption detection, see
3054 * btrfs_validate_super().
3055 *
3056 * This should be called after btrfs_parse_options(), as some mount options
3057 * (space cache related) can modify on-disk format like free space tree and
3058 * screw up certain feature dependencies.
3059 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3060 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3061 {
3062 struct btrfs_super_block *disk_super = fs_info->super_copy;
3063 u64 incompat = btrfs_super_incompat_flags(disk_super);
3064 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3065 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3066
3067 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3068 btrfs_err(fs_info,
3069 "cannot mount because of unknown incompat features (0x%llx)",
3070 incompat);
3071 return -EINVAL;
3072 }
3073
3074 /* Runtime limitation for mixed block groups. */
3075 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3076 (fs_info->sectorsize != fs_info->nodesize)) {
3077 btrfs_err(fs_info,
3078 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3079 fs_info->nodesize, fs_info->sectorsize);
3080 return -EINVAL;
3081 }
3082
3083 /* Mixed backref is an always-enabled feature. */
3084 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3085
3086 /* Set compression related flags just in case. */
3087 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3088 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3089 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3090 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3091
3092 /*
3093 * An ancient flag, which should really be marked deprecated.
3094 * Such runtime limitation doesn't really need a incompat flag.
3095 */
3096 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3097 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3098
3099 if (compat_ro_unsupp && is_rw_mount) {
3100 btrfs_err(fs_info,
3101 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3102 compat_ro);
3103 return -EINVAL;
3104 }
3105
3106 /*
3107 * We have unsupported RO compat features, although RO mounted, we
3108 * should not cause any metadata writes, including log replay.
3109 * Or we could screw up whatever the new feature requires.
3110 */
3111 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3112 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3113 btrfs_err(fs_info,
3114 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3115 compat_ro);
3116 return -EINVAL;
3117 }
3118
3119 /*
3120 * Artificial limitations for block group tree, to force
3121 * block-group-tree to rely on no-holes and free-space-tree.
3122 */
3123 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3124 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3125 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3126 btrfs_err(fs_info,
3127 "block-group-tree feature requires no-holes and free-space-tree features");
3128 return -EINVAL;
3129 }
3130
3131 /*
3132 * Subpage runtime limitation on v1 cache.
3133 *
3134 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3135 * we're already defaulting to v2 cache, no need to bother v1 as it's
3136 * going to be deprecated anyway.
3137 */
3138 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3139 btrfs_warn(fs_info,
3140 "v1 space cache is not supported for page size %lu with sectorsize %u",
3141 PAGE_SIZE, fs_info->sectorsize);
3142 return -EINVAL;
3143 }
3144
3145 /* This can be called by remount, we need to protect the super block. */
3146 spin_lock(&fs_info->super_lock);
3147 btrfs_set_super_incompat_flags(disk_super, incompat);
3148 spin_unlock(&fs_info->super_lock);
3149
3150 return 0;
3151 }
3152
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3153 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3154 char *options)
3155 {
3156 u32 sectorsize;
3157 u32 nodesize;
3158 u32 stripesize;
3159 u64 generation;
3160 u64 features;
3161 u16 csum_type;
3162 struct btrfs_super_block *disk_super;
3163 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3164 struct btrfs_root *tree_root;
3165 struct btrfs_root *chunk_root;
3166 int ret;
3167 int level;
3168
3169 ret = init_mount_fs_info(fs_info, sb);
3170 if (ret)
3171 goto fail;
3172
3173 /* These need to be init'ed before we start creating inodes and such. */
3174 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3175 GFP_KERNEL);
3176 fs_info->tree_root = tree_root;
3177 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3178 GFP_KERNEL);
3179 fs_info->chunk_root = chunk_root;
3180 if (!tree_root || !chunk_root) {
3181 ret = -ENOMEM;
3182 goto fail;
3183 }
3184
3185 ret = btrfs_init_btree_inode(sb);
3186 if (ret)
3187 goto fail;
3188
3189 invalidate_bdev(fs_devices->latest_dev->bdev);
3190
3191 /*
3192 * Read super block and check the signature bytes only
3193 */
3194 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3195 if (IS_ERR(disk_super)) {
3196 ret = PTR_ERR(disk_super);
3197 goto fail_alloc;
3198 }
3199
3200 /*
3201 * Verify the type first, if that or the checksum value are
3202 * corrupted, we'll find out
3203 */
3204 csum_type = btrfs_super_csum_type(disk_super);
3205 if (!btrfs_supported_super_csum(csum_type)) {
3206 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3207 csum_type);
3208 ret = -EINVAL;
3209 btrfs_release_disk_super(disk_super);
3210 goto fail_alloc;
3211 }
3212
3213 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3214
3215 ret = btrfs_init_csum_hash(fs_info, csum_type);
3216 if (ret) {
3217 btrfs_release_disk_super(disk_super);
3218 goto fail_alloc;
3219 }
3220
3221 /*
3222 * We want to check superblock checksum, the type is stored inside.
3223 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3224 */
3225 if (btrfs_check_super_csum(fs_info, disk_super)) {
3226 btrfs_err(fs_info, "superblock checksum mismatch");
3227 ret = -EINVAL;
3228 btrfs_release_disk_super(disk_super);
3229 goto fail_alloc;
3230 }
3231
3232 /*
3233 * super_copy is zeroed at allocation time and we never touch the
3234 * following bytes up to INFO_SIZE, the checksum is calculated from
3235 * the whole block of INFO_SIZE
3236 */
3237 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3238 btrfs_release_disk_super(disk_super);
3239
3240 disk_super = fs_info->super_copy;
3241
3242
3243 features = btrfs_super_flags(disk_super);
3244 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3245 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3246 btrfs_set_super_flags(disk_super, features);
3247 btrfs_info(fs_info,
3248 "found metadata UUID change in progress flag, clearing");
3249 }
3250
3251 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3252 sizeof(*fs_info->super_for_commit));
3253
3254 ret = btrfs_validate_mount_super(fs_info);
3255 if (ret) {
3256 btrfs_err(fs_info, "superblock contains fatal errors");
3257 ret = -EINVAL;
3258 goto fail_alloc;
3259 }
3260
3261 if (!btrfs_super_root(disk_super)) {
3262 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3263 ret = -EINVAL;
3264 goto fail_alloc;
3265 }
3266
3267 /* check FS state, whether FS is broken. */
3268 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3269 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3270
3271 /*
3272 * In the long term, we'll store the compression type in the super
3273 * block, and it'll be used for per file compression control.
3274 */
3275 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3276
3277
3278 /* Set up fs_info before parsing mount options */
3279 nodesize = btrfs_super_nodesize(disk_super);
3280 sectorsize = btrfs_super_sectorsize(disk_super);
3281 stripesize = sectorsize;
3282 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3283 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3284
3285 fs_info->nodesize = nodesize;
3286 fs_info->sectorsize = sectorsize;
3287 fs_info->sectorsize_bits = ilog2(sectorsize);
3288 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3289 fs_info->stripesize = stripesize;
3290
3291 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3292 if (ret)
3293 goto fail_alloc;
3294
3295 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3296 if (ret < 0)
3297 goto fail_alloc;
3298
3299 if (sectorsize < PAGE_SIZE) {
3300 struct btrfs_subpage_info *subpage_info;
3301
3302 /*
3303 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3304 * going to be deprecated.
3305 *
3306 * Force to use v2 cache for subpage case.
3307 */
3308 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3309 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3310 "forcing free space tree for sector size %u with page size %lu",
3311 sectorsize, PAGE_SIZE);
3312
3313 btrfs_warn(fs_info,
3314 "read-write for sector size %u with page size %lu is experimental",
3315 sectorsize, PAGE_SIZE);
3316 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3317 if (!subpage_info) {
3318 ret = -ENOMEM;
3319 goto fail_alloc;
3320 }
3321 btrfs_init_subpage_info(subpage_info, sectorsize);
3322 fs_info->subpage_info = subpage_info;
3323 }
3324
3325 ret = btrfs_init_workqueues(fs_info);
3326 if (ret)
3327 goto fail_sb_buffer;
3328
3329 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3330 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3331
3332 sb->s_blocksize = sectorsize;
3333 sb->s_blocksize_bits = blksize_bits(sectorsize);
3334 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3335
3336 mutex_lock(&fs_info->chunk_mutex);
3337 ret = btrfs_read_sys_array(fs_info);
3338 mutex_unlock(&fs_info->chunk_mutex);
3339 if (ret) {
3340 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3341 goto fail_sb_buffer;
3342 }
3343
3344 generation = btrfs_super_chunk_root_generation(disk_super);
3345 level = btrfs_super_chunk_root_level(disk_super);
3346 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3347 generation, level);
3348 if (ret) {
3349 btrfs_err(fs_info, "failed to read chunk root");
3350 goto fail_tree_roots;
3351 }
3352
3353 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3354 offsetof(struct btrfs_header, chunk_tree_uuid),
3355 BTRFS_UUID_SIZE);
3356
3357 ret = btrfs_read_chunk_tree(fs_info);
3358 if (ret) {
3359 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3360 goto fail_tree_roots;
3361 }
3362
3363 /*
3364 * At this point we know all the devices that make this filesystem,
3365 * including the seed devices but we don't know yet if the replace
3366 * target is required. So free devices that are not part of this
3367 * filesystem but skip the replace target device which is checked
3368 * below in btrfs_init_dev_replace().
3369 */
3370 btrfs_free_extra_devids(fs_devices);
3371 if (!fs_devices->latest_dev->bdev) {
3372 btrfs_err(fs_info, "failed to read devices");
3373 ret = -EIO;
3374 goto fail_tree_roots;
3375 }
3376
3377 ret = init_tree_roots(fs_info);
3378 if (ret)
3379 goto fail_tree_roots;
3380
3381 /*
3382 * Get zone type information of zoned block devices. This will also
3383 * handle emulation of a zoned filesystem if a regular device has the
3384 * zoned incompat feature flag set.
3385 */
3386 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3387 if (ret) {
3388 btrfs_err(fs_info,
3389 "zoned: failed to read device zone info: %d", ret);
3390 goto fail_block_groups;
3391 }
3392
3393 /*
3394 * If we have a uuid root and we're not being told to rescan we need to
3395 * check the generation here so we can set the
3396 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3397 * transaction during a balance or the log replay without updating the
3398 * uuid generation, and then if we crash we would rescan the uuid tree,
3399 * even though it was perfectly fine.
3400 */
3401 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3402 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3403 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3404
3405 ret = btrfs_verify_dev_extents(fs_info);
3406 if (ret) {
3407 btrfs_err(fs_info,
3408 "failed to verify dev extents against chunks: %d",
3409 ret);
3410 goto fail_block_groups;
3411 }
3412 ret = btrfs_recover_balance(fs_info);
3413 if (ret) {
3414 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3415 goto fail_block_groups;
3416 }
3417
3418 ret = btrfs_init_dev_stats(fs_info);
3419 if (ret) {
3420 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3421 goto fail_block_groups;
3422 }
3423
3424 ret = btrfs_init_dev_replace(fs_info);
3425 if (ret) {
3426 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3427 goto fail_block_groups;
3428 }
3429
3430 ret = btrfs_check_zoned_mode(fs_info);
3431 if (ret) {
3432 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3433 ret);
3434 goto fail_block_groups;
3435 }
3436
3437 ret = btrfs_sysfs_add_fsid(fs_devices);
3438 if (ret) {
3439 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3440 ret);
3441 goto fail_block_groups;
3442 }
3443
3444 ret = btrfs_sysfs_add_mounted(fs_info);
3445 if (ret) {
3446 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3447 goto fail_fsdev_sysfs;
3448 }
3449
3450 ret = btrfs_init_space_info(fs_info);
3451 if (ret) {
3452 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3453 goto fail_sysfs;
3454 }
3455
3456 ret = btrfs_read_block_groups(fs_info);
3457 if (ret) {
3458 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3459 goto fail_sysfs;
3460 }
3461
3462 btrfs_free_zone_cache(fs_info);
3463
3464 btrfs_check_active_zone_reservation(fs_info);
3465
3466 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3467 !btrfs_check_rw_degradable(fs_info, NULL)) {
3468 btrfs_warn(fs_info,
3469 "writable mount is not allowed due to too many missing devices");
3470 ret = -EINVAL;
3471 goto fail_sysfs;
3472 }
3473
3474 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3475 "btrfs-cleaner");
3476 if (IS_ERR(fs_info->cleaner_kthread)) {
3477 ret = PTR_ERR(fs_info->cleaner_kthread);
3478 goto fail_sysfs;
3479 }
3480
3481 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3482 tree_root,
3483 "btrfs-transaction");
3484 if (IS_ERR(fs_info->transaction_kthread)) {
3485 ret = PTR_ERR(fs_info->transaction_kthread);
3486 goto fail_cleaner;
3487 }
3488
3489 if (!btrfs_test_opt(fs_info, NOSSD) &&
3490 !fs_info->fs_devices->rotating) {
3491 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3492 }
3493
3494 /*
3495 * For devices supporting discard turn on discard=async automatically,
3496 * unless it's already set or disabled. This could be turned off by
3497 * nodiscard for the same mount.
3498 *
3499 * The zoned mode piggy backs on the discard functionality for
3500 * resetting a zone. There is no reason to delay the zone reset as it is
3501 * fast enough. So, do not enable async discard for zoned mode.
3502 */
3503 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3504 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3505 btrfs_test_opt(fs_info, NODISCARD)) &&
3506 fs_info->fs_devices->discardable &&
3507 !btrfs_is_zoned(fs_info)) {
3508 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3509 "auto enabling async discard");
3510 }
3511
3512 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3513 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3514 ret = btrfsic_mount(fs_info, fs_devices,
3515 btrfs_test_opt(fs_info,
3516 CHECK_INTEGRITY_DATA) ? 1 : 0,
3517 fs_info->check_integrity_print_mask);
3518 if (ret)
3519 btrfs_warn(fs_info,
3520 "failed to initialize integrity check module: %d",
3521 ret);
3522 }
3523 #endif
3524 ret = btrfs_read_qgroup_config(fs_info);
3525 if (ret)
3526 goto fail_trans_kthread;
3527
3528 if (btrfs_build_ref_tree(fs_info))
3529 btrfs_err(fs_info, "couldn't build ref tree");
3530
3531 /* do not make disk changes in broken FS or nologreplay is given */
3532 if (btrfs_super_log_root(disk_super) != 0 &&
3533 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3534 btrfs_info(fs_info, "start tree-log replay");
3535 ret = btrfs_replay_log(fs_info, fs_devices);
3536 if (ret)
3537 goto fail_qgroup;
3538 }
3539
3540 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3541 if (IS_ERR(fs_info->fs_root)) {
3542 ret = PTR_ERR(fs_info->fs_root);
3543 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3544 fs_info->fs_root = NULL;
3545 goto fail_qgroup;
3546 }
3547
3548 if (sb_rdonly(sb))
3549 goto clear_oneshot;
3550
3551 ret = btrfs_start_pre_rw_mount(fs_info);
3552 if (ret) {
3553 close_ctree(fs_info);
3554 return ret;
3555 }
3556 btrfs_discard_resume(fs_info);
3557
3558 if (fs_info->uuid_root &&
3559 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3560 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3561 btrfs_info(fs_info, "checking UUID tree");
3562 ret = btrfs_check_uuid_tree(fs_info);
3563 if (ret) {
3564 btrfs_warn(fs_info,
3565 "failed to check the UUID tree: %d", ret);
3566 close_ctree(fs_info);
3567 return ret;
3568 }
3569 }
3570
3571 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3572
3573 /* Kick the cleaner thread so it'll start deleting snapshots. */
3574 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3575 wake_up_process(fs_info->cleaner_kthread);
3576
3577 clear_oneshot:
3578 btrfs_clear_oneshot_options(fs_info);
3579 return 0;
3580
3581 fail_qgroup:
3582 btrfs_free_qgroup_config(fs_info);
3583 fail_trans_kthread:
3584 kthread_stop(fs_info->transaction_kthread);
3585 btrfs_cleanup_transaction(fs_info);
3586 btrfs_free_fs_roots(fs_info);
3587 fail_cleaner:
3588 kthread_stop(fs_info->cleaner_kthread);
3589
3590 /*
3591 * make sure we're done with the btree inode before we stop our
3592 * kthreads
3593 */
3594 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3595
3596 fail_sysfs:
3597 btrfs_sysfs_remove_mounted(fs_info);
3598
3599 fail_fsdev_sysfs:
3600 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3601
3602 fail_block_groups:
3603 btrfs_put_block_group_cache(fs_info);
3604
3605 fail_tree_roots:
3606 if (fs_info->data_reloc_root)
3607 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3608 free_root_pointers(fs_info, true);
3609 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3610
3611 fail_sb_buffer:
3612 btrfs_stop_all_workers(fs_info);
3613 btrfs_free_block_groups(fs_info);
3614 fail_alloc:
3615 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3616
3617 iput(fs_info->btree_inode);
3618 fail:
3619 btrfs_close_devices(fs_info->fs_devices);
3620 ASSERT(ret < 0);
3621 return ret;
3622 }
3623 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3624
btrfs_end_super_write(struct bio * bio)3625 static void btrfs_end_super_write(struct bio *bio)
3626 {
3627 struct btrfs_device *device = bio->bi_private;
3628 struct bio_vec *bvec;
3629 struct bvec_iter_all iter_all;
3630 struct page *page;
3631
3632 bio_for_each_segment_all(bvec, bio, iter_all) {
3633 page = bvec->bv_page;
3634
3635 if (bio->bi_status) {
3636 btrfs_warn_rl_in_rcu(device->fs_info,
3637 "lost page write due to IO error on %s (%d)",
3638 btrfs_dev_name(device),
3639 blk_status_to_errno(bio->bi_status));
3640 ClearPageUptodate(page);
3641 SetPageError(page);
3642 btrfs_dev_stat_inc_and_print(device,
3643 BTRFS_DEV_STAT_WRITE_ERRS);
3644 } else {
3645 SetPageUptodate(page);
3646 }
3647
3648 put_page(page);
3649 unlock_page(page);
3650 }
3651
3652 bio_put(bio);
3653 }
3654
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3655 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3656 int copy_num, bool drop_cache)
3657 {
3658 struct btrfs_super_block *super;
3659 struct page *page;
3660 u64 bytenr, bytenr_orig;
3661 struct address_space *mapping = bdev->bd_inode->i_mapping;
3662 int ret;
3663
3664 bytenr_orig = btrfs_sb_offset(copy_num);
3665 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3666 if (ret == -ENOENT)
3667 return ERR_PTR(-EINVAL);
3668 else if (ret)
3669 return ERR_PTR(ret);
3670
3671 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3672 return ERR_PTR(-EINVAL);
3673
3674 if (drop_cache) {
3675 /* This should only be called with the primary sb. */
3676 ASSERT(copy_num == 0);
3677
3678 /*
3679 * Drop the page of the primary superblock, so later read will
3680 * always read from the device.
3681 */
3682 invalidate_inode_pages2_range(mapping,
3683 bytenr >> PAGE_SHIFT,
3684 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3685 }
3686
3687 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3688 if (IS_ERR(page))
3689 return ERR_CAST(page);
3690
3691 super = page_address(page);
3692 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3693 btrfs_release_disk_super(super);
3694 return ERR_PTR(-ENODATA);
3695 }
3696
3697 if (btrfs_super_bytenr(super) != bytenr_orig) {
3698 btrfs_release_disk_super(super);
3699 return ERR_PTR(-EINVAL);
3700 }
3701
3702 return super;
3703 }
3704
3705
btrfs_read_dev_super(struct block_device * bdev)3706 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3707 {
3708 struct btrfs_super_block *super, *latest = NULL;
3709 int i;
3710 u64 transid = 0;
3711
3712 /* we would like to check all the supers, but that would make
3713 * a btrfs mount succeed after a mkfs from a different FS.
3714 * So, we need to add a special mount option to scan for
3715 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3716 */
3717 for (i = 0; i < 1; i++) {
3718 super = btrfs_read_dev_one_super(bdev, i, false);
3719 if (IS_ERR(super))
3720 continue;
3721
3722 if (!latest || btrfs_super_generation(super) > transid) {
3723 if (latest)
3724 btrfs_release_disk_super(super);
3725
3726 latest = super;
3727 transid = btrfs_super_generation(super);
3728 }
3729 }
3730
3731 return super;
3732 }
3733
3734 /*
3735 * Write superblock @sb to the @device. Do not wait for completion, all the
3736 * pages we use for writing are locked.
3737 *
3738 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3739 * the expected device size at commit time. Note that max_mirrors must be
3740 * same for write and wait phases.
3741 *
3742 * Return number of errors when page is not found or submission fails.
3743 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3744 static int write_dev_supers(struct btrfs_device *device,
3745 struct btrfs_super_block *sb, int max_mirrors)
3746 {
3747 struct btrfs_fs_info *fs_info = device->fs_info;
3748 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3749 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3750 int i;
3751 int errors = 0;
3752 int ret;
3753 u64 bytenr, bytenr_orig;
3754
3755 if (max_mirrors == 0)
3756 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3757
3758 shash->tfm = fs_info->csum_shash;
3759
3760 for (i = 0; i < max_mirrors; i++) {
3761 struct page *page;
3762 struct bio *bio;
3763 struct btrfs_super_block *disk_super;
3764
3765 bytenr_orig = btrfs_sb_offset(i);
3766 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3767 if (ret == -ENOENT) {
3768 continue;
3769 } else if (ret < 0) {
3770 btrfs_err(device->fs_info,
3771 "couldn't get super block location for mirror %d",
3772 i);
3773 errors++;
3774 continue;
3775 }
3776 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3777 device->commit_total_bytes)
3778 break;
3779
3780 btrfs_set_super_bytenr(sb, bytenr_orig);
3781
3782 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3783 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3784 sb->csum);
3785
3786 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3787 GFP_NOFS);
3788 if (!page) {
3789 btrfs_err(device->fs_info,
3790 "couldn't get super block page for bytenr %llu",
3791 bytenr);
3792 errors++;
3793 continue;
3794 }
3795
3796 /* Bump the refcount for wait_dev_supers() */
3797 get_page(page);
3798
3799 disk_super = page_address(page);
3800 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3801
3802 /*
3803 * Directly use bios here instead of relying on the page cache
3804 * to do I/O, so we don't lose the ability to do integrity
3805 * checking.
3806 */
3807 bio = bio_alloc(device->bdev, 1,
3808 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3809 GFP_NOFS);
3810 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811 bio->bi_private = device;
3812 bio->bi_end_io = btrfs_end_super_write;
3813 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3814 offset_in_page(bytenr));
3815
3816 /*
3817 * We FUA only the first super block. The others we allow to
3818 * go down lazy and there's a short window where the on-disk
3819 * copies might still contain the older version.
3820 */
3821 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3822 bio->bi_opf |= REQ_FUA;
3823
3824 btrfsic_check_bio(bio);
3825 submit_bio(bio);
3826
3827 if (btrfs_advance_sb_log(device, i))
3828 errors++;
3829 }
3830 return errors < i ? 0 : -1;
3831 }
3832
3833 /*
3834 * Wait for write completion of superblocks done by write_dev_supers,
3835 * @max_mirrors same for write and wait phases.
3836 *
3837 * Return number of errors when page is not found or not marked up to
3838 * date.
3839 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3840 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3841 {
3842 int i;
3843 int errors = 0;
3844 bool primary_failed = false;
3845 int ret;
3846 u64 bytenr;
3847
3848 if (max_mirrors == 0)
3849 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3850
3851 for (i = 0; i < max_mirrors; i++) {
3852 struct page *page;
3853
3854 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3855 if (ret == -ENOENT) {
3856 break;
3857 } else if (ret < 0) {
3858 errors++;
3859 if (i == 0)
3860 primary_failed = true;
3861 continue;
3862 }
3863 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3864 device->commit_total_bytes)
3865 break;
3866
3867 page = find_get_page(device->bdev->bd_inode->i_mapping,
3868 bytenr >> PAGE_SHIFT);
3869 if (!page) {
3870 errors++;
3871 if (i == 0)
3872 primary_failed = true;
3873 continue;
3874 }
3875 /* Page is submitted locked and unlocked once the IO completes */
3876 wait_on_page_locked(page);
3877 if (PageError(page)) {
3878 errors++;
3879 if (i == 0)
3880 primary_failed = true;
3881 }
3882
3883 /* Drop our reference */
3884 put_page(page);
3885
3886 /* Drop the reference from the writing run */
3887 put_page(page);
3888 }
3889
3890 /* log error, force error return */
3891 if (primary_failed) {
3892 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3893 device->devid);
3894 return -1;
3895 }
3896
3897 return errors < i ? 0 : -1;
3898 }
3899
3900 /*
3901 * endio for the write_dev_flush, this will wake anyone waiting
3902 * for the barrier when it is done
3903 */
btrfs_end_empty_barrier(struct bio * bio)3904 static void btrfs_end_empty_barrier(struct bio *bio)
3905 {
3906 bio_uninit(bio);
3907 complete(bio->bi_private);
3908 }
3909
3910 /*
3911 * Submit a flush request to the device if it supports it. Error handling is
3912 * done in the waiting counterpart.
3913 */
write_dev_flush(struct btrfs_device * device)3914 static void write_dev_flush(struct btrfs_device *device)
3915 {
3916 struct bio *bio = &device->flush_bio;
3917
3918 device->last_flush_error = BLK_STS_OK;
3919
3920 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3921 /*
3922 * When a disk has write caching disabled, we skip submission of a bio
3923 * with flush and sync requests before writing the superblock, since
3924 * it's not needed. However when the integrity checker is enabled, this
3925 * results in reports that there are metadata blocks referred by a
3926 * superblock that were not properly flushed. So don't skip the bio
3927 * submission only when the integrity checker is enabled for the sake
3928 * of simplicity, since this is a debug tool and not meant for use in
3929 * non-debug builds.
3930 */
3931 if (!bdev_write_cache(device->bdev))
3932 return;
3933 #endif
3934
3935 bio_init(bio, device->bdev, NULL, 0,
3936 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3937 bio->bi_end_io = btrfs_end_empty_barrier;
3938 init_completion(&device->flush_wait);
3939 bio->bi_private = &device->flush_wait;
3940
3941 btrfsic_check_bio(bio);
3942 submit_bio(bio);
3943 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3944 }
3945
3946 /*
3947 * If the flush bio has been submitted by write_dev_flush, wait for it.
3948 * Return true for any error, and false otherwise.
3949 */
wait_dev_flush(struct btrfs_device * device)3950 static bool wait_dev_flush(struct btrfs_device *device)
3951 {
3952 struct bio *bio = &device->flush_bio;
3953
3954 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3955 return false;
3956
3957 wait_for_completion_io(&device->flush_wait);
3958
3959 if (bio->bi_status) {
3960 device->last_flush_error = bio->bi_status;
3961 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3962 return true;
3963 }
3964
3965 return false;
3966 }
3967
3968 /*
3969 * send an empty flush down to each device in parallel,
3970 * then wait for them
3971 */
barrier_all_devices(struct btrfs_fs_info * info)3972 static int barrier_all_devices(struct btrfs_fs_info *info)
3973 {
3974 struct list_head *head;
3975 struct btrfs_device *dev;
3976 int errors_wait = 0;
3977
3978 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3979 /* send down all the barriers */
3980 head = &info->fs_devices->devices;
3981 list_for_each_entry(dev, head, dev_list) {
3982 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3983 continue;
3984 if (!dev->bdev)
3985 continue;
3986 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3987 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3988 continue;
3989
3990 write_dev_flush(dev);
3991 }
3992
3993 /* wait for all the barriers */
3994 list_for_each_entry(dev, head, dev_list) {
3995 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3996 continue;
3997 if (!dev->bdev) {
3998 errors_wait++;
3999 continue;
4000 }
4001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4002 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4003 continue;
4004
4005 if (wait_dev_flush(dev))
4006 errors_wait++;
4007 }
4008
4009 /*
4010 * Checks last_flush_error of disks in order to determine the device
4011 * state.
4012 */
4013 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4014 return -EIO;
4015
4016 return 0;
4017 }
4018
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4019 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4020 {
4021 int raid_type;
4022 int min_tolerated = INT_MAX;
4023
4024 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4025 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4026 min_tolerated = min_t(int, min_tolerated,
4027 btrfs_raid_array[BTRFS_RAID_SINGLE].
4028 tolerated_failures);
4029
4030 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4031 if (raid_type == BTRFS_RAID_SINGLE)
4032 continue;
4033 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4034 continue;
4035 min_tolerated = min_t(int, min_tolerated,
4036 btrfs_raid_array[raid_type].
4037 tolerated_failures);
4038 }
4039
4040 if (min_tolerated == INT_MAX) {
4041 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4042 min_tolerated = 0;
4043 }
4044
4045 return min_tolerated;
4046 }
4047
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4048 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4049 {
4050 struct list_head *head;
4051 struct btrfs_device *dev;
4052 struct btrfs_super_block *sb;
4053 struct btrfs_dev_item *dev_item;
4054 int ret;
4055 int do_barriers;
4056 int max_errors;
4057 int total_errors = 0;
4058 u64 flags;
4059
4060 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4061
4062 /*
4063 * max_mirrors == 0 indicates we're from commit_transaction,
4064 * not from fsync where the tree roots in fs_info have not
4065 * been consistent on disk.
4066 */
4067 if (max_mirrors == 0)
4068 backup_super_roots(fs_info);
4069
4070 sb = fs_info->super_for_commit;
4071 dev_item = &sb->dev_item;
4072
4073 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4074 head = &fs_info->fs_devices->devices;
4075 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4076
4077 if (do_barriers) {
4078 ret = barrier_all_devices(fs_info);
4079 if (ret) {
4080 mutex_unlock(
4081 &fs_info->fs_devices->device_list_mutex);
4082 btrfs_handle_fs_error(fs_info, ret,
4083 "errors while submitting device barriers.");
4084 return ret;
4085 }
4086 }
4087
4088 list_for_each_entry(dev, head, dev_list) {
4089 if (!dev->bdev) {
4090 total_errors++;
4091 continue;
4092 }
4093 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4094 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4095 continue;
4096
4097 btrfs_set_stack_device_generation(dev_item, 0);
4098 btrfs_set_stack_device_type(dev_item, dev->type);
4099 btrfs_set_stack_device_id(dev_item, dev->devid);
4100 btrfs_set_stack_device_total_bytes(dev_item,
4101 dev->commit_total_bytes);
4102 btrfs_set_stack_device_bytes_used(dev_item,
4103 dev->commit_bytes_used);
4104 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4105 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4106 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4107 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4108 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4109 BTRFS_FSID_SIZE);
4110
4111 flags = btrfs_super_flags(sb);
4112 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4113
4114 ret = btrfs_validate_write_super(fs_info, sb);
4115 if (ret < 0) {
4116 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4117 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4118 "unexpected superblock corruption detected");
4119 return -EUCLEAN;
4120 }
4121
4122 ret = write_dev_supers(dev, sb, max_mirrors);
4123 if (ret)
4124 total_errors++;
4125 }
4126 if (total_errors > max_errors) {
4127 btrfs_err(fs_info, "%d errors while writing supers",
4128 total_errors);
4129 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4130
4131 /* FUA is masked off if unsupported and can't be the reason */
4132 btrfs_handle_fs_error(fs_info, -EIO,
4133 "%d errors while writing supers",
4134 total_errors);
4135 return -EIO;
4136 }
4137
4138 total_errors = 0;
4139 list_for_each_entry(dev, head, dev_list) {
4140 if (!dev->bdev)
4141 continue;
4142 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4143 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4144 continue;
4145
4146 ret = wait_dev_supers(dev, max_mirrors);
4147 if (ret)
4148 total_errors++;
4149 }
4150 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4151 if (total_errors > max_errors) {
4152 btrfs_handle_fs_error(fs_info, -EIO,
4153 "%d errors while writing supers",
4154 total_errors);
4155 return -EIO;
4156 }
4157 return 0;
4158 }
4159
4160 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4161 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4162 struct btrfs_root *root)
4163 {
4164 bool drop_ref = false;
4165
4166 spin_lock(&fs_info->fs_roots_radix_lock);
4167 radix_tree_delete(&fs_info->fs_roots_radix,
4168 (unsigned long)root->root_key.objectid);
4169 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4170 drop_ref = true;
4171 spin_unlock(&fs_info->fs_roots_radix_lock);
4172
4173 if (BTRFS_FS_ERROR(fs_info)) {
4174 ASSERT(root->log_root == NULL);
4175 if (root->reloc_root) {
4176 btrfs_put_root(root->reloc_root);
4177 root->reloc_root = NULL;
4178 }
4179 }
4180
4181 if (drop_ref)
4182 btrfs_put_root(root);
4183 }
4184
btrfs_commit_super(struct btrfs_fs_info * fs_info)4185 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4186 {
4187 struct btrfs_root *root = fs_info->tree_root;
4188 struct btrfs_trans_handle *trans;
4189
4190 mutex_lock(&fs_info->cleaner_mutex);
4191 btrfs_run_delayed_iputs(fs_info);
4192 mutex_unlock(&fs_info->cleaner_mutex);
4193 wake_up_process(fs_info->cleaner_kthread);
4194
4195 /* wait until ongoing cleanup work done */
4196 down_write(&fs_info->cleanup_work_sem);
4197 up_write(&fs_info->cleanup_work_sem);
4198
4199 trans = btrfs_join_transaction(root);
4200 if (IS_ERR(trans))
4201 return PTR_ERR(trans);
4202 return btrfs_commit_transaction(trans);
4203 }
4204
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4205 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4206 {
4207 struct btrfs_transaction *trans;
4208 struct btrfs_transaction *tmp;
4209 bool found = false;
4210
4211 if (list_empty(&fs_info->trans_list))
4212 return;
4213
4214 /*
4215 * This function is only called at the very end of close_ctree(),
4216 * thus no other running transaction, no need to take trans_lock.
4217 */
4218 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4219 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4220 struct extent_state *cached = NULL;
4221 u64 dirty_bytes = 0;
4222 u64 cur = 0;
4223 u64 found_start;
4224 u64 found_end;
4225
4226 found = true;
4227 while (find_first_extent_bit(&trans->dirty_pages, cur,
4228 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4229 dirty_bytes += found_end + 1 - found_start;
4230 cur = found_end + 1;
4231 }
4232 btrfs_warn(fs_info,
4233 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4234 trans->transid, dirty_bytes);
4235 btrfs_cleanup_one_transaction(trans, fs_info);
4236
4237 if (trans == fs_info->running_transaction)
4238 fs_info->running_transaction = NULL;
4239 list_del_init(&trans->list);
4240
4241 btrfs_put_transaction(trans);
4242 trace_btrfs_transaction_commit(fs_info);
4243 }
4244 ASSERT(!found);
4245 }
4246
close_ctree(struct btrfs_fs_info * fs_info)4247 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4248 {
4249 int ret;
4250
4251 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4252
4253 /*
4254 * If we had UNFINISHED_DROPS we could still be processing them, so
4255 * clear that bit and wake up relocation so it can stop.
4256 * We must do this before stopping the block group reclaim task, because
4257 * at btrfs_relocate_block_group() we wait for this bit, and after the
4258 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4259 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4260 * return 1.
4261 */
4262 btrfs_wake_unfinished_drop(fs_info);
4263
4264 /*
4265 * We may have the reclaim task running and relocating a data block group,
4266 * in which case it may create delayed iputs. So stop it before we park
4267 * the cleaner kthread otherwise we can get new delayed iputs after
4268 * parking the cleaner, and that can make the async reclaim task to hang
4269 * if it's waiting for delayed iputs to complete, since the cleaner is
4270 * parked and can not run delayed iputs - this will make us hang when
4271 * trying to stop the async reclaim task.
4272 */
4273 cancel_work_sync(&fs_info->reclaim_bgs_work);
4274 /*
4275 * We don't want the cleaner to start new transactions, add more delayed
4276 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4277 * because that frees the task_struct, and the transaction kthread might
4278 * still try to wake up the cleaner.
4279 */
4280 kthread_park(fs_info->cleaner_kthread);
4281
4282 /* wait for the qgroup rescan worker to stop */
4283 btrfs_qgroup_wait_for_completion(fs_info, false);
4284
4285 /* wait for the uuid_scan task to finish */
4286 down(&fs_info->uuid_tree_rescan_sem);
4287 /* avoid complains from lockdep et al., set sem back to initial state */
4288 up(&fs_info->uuid_tree_rescan_sem);
4289
4290 /* pause restriper - we want to resume on mount */
4291 btrfs_pause_balance(fs_info);
4292
4293 btrfs_dev_replace_suspend_for_unmount(fs_info);
4294
4295 btrfs_scrub_cancel(fs_info);
4296
4297 /* wait for any defraggers to finish */
4298 wait_event(fs_info->transaction_wait,
4299 (atomic_read(&fs_info->defrag_running) == 0));
4300
4301 /* clear out the rbtree of defraggable inodes */
4302 btrfs_cleanup_defrag_inodes(fs_info);
4303
4304 /*
4305 * After we parked the cleaner kthread, ordered extents may have
4306 * completed and created new delayed iputs. If one of the async reclaim
4307 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4308 * can hang forever trying to stop it, because if a delayed iput is
4309 * added after it ran btrfs_run_delayed_iputs() and before it called
4310 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4311 * no one else to run iputs.
4312 *
4313 * So wait for all ongoing ordered extents to complete and then run
4314 * delayed iputs. This works because once we reach this point no one
4315 * can either create new ordered extents nor create delayed iputs
4316 * through some other means.
4317 *
4318 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4319 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4320 * but the delayed iput for the respective inode is made only when doing
4321 * the final btrfs_put_ordered_extent() (which must happen at
4322 * btrfs_finish_ordered_io() when we are unmounting).
4323 */
4324 btrfs_flush_workqueue(fs_info->endio_write_workers);
4325 /* Ordered extents for free space inodes. */
4326 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4327 btrfs_run_delayed_iputs(fs_info);
4328
4329 cancel_work_sync(&fs_info->async_reclaim_work);
4330 cancel_work_sync(&fs_info->async_data_reclaim_work);
4331 cancel_work_sync(&fs_info->preempt_reclaim_work);
4332
4333 /* Cancel or finish ongoing discard work */
4334 btrfs_discard_cleanup(fs_info);
4335
4336 if (!sb_rdonly(fs_info->sb)) {
4337 /*
4338 * The cleaner kthread is stopped, so do one final pass over
4339 * unused block groups.
4340 */
4341 btrfs_delete_unused_bgs(fs_info);
4342
4343 /*
4344 * There might be existing delayed inode workers still running
4345 * and holding an empty delayed inode item. We must wait for
4346 * them to complete first because they can create a transaction.
4347 * This happens when someone calls btrfs_balance_delayed_items()
4348 * and then a transaction commit runs the same delayed nodes
4349 * before any delayed worker has done something with the nodes.
4350 * We must wait for any worker here and not at transaction
4351 * commit time since that could cause a deadlock.
4352 * This is a very rare case.
4353 */
4354 btrfs_flush_workqueue(fs_info->delayed_workers);
4355
4356 ret = btrfs_commit_super(fs_info);
4357 if (ret)
4358 btrfs_err(fs_info, "commit super ret %d", ret);
4359 }
4360
4361 if (BTRFS_FS_ERROR(fs_info))
4362 btrfs_error_commit_super(fs_info);
4363
4364 kthread_stop(fs_info->transaction_kthread);
4365 kthread_stop(fs_info->cleaner_kthread);
4366
4367 ASSERT(list_empty(&fs_info->delayed_iputs));
4368 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4369
4370 if (btrfs_check_quota_leak(fs_info)) {
4371 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4372 btrfs_err(fs_info, "qgroup reserved space leaked");
4373 }
4374
4375 btrfs_free_qgroup_config(fs_info);
4376 ASSERT(list_empty(&fs_info->delalloc_roots));
4377
4378 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4379 btrfs_info(fs_info, "at unmount delalloc count %lld",
4380 percpu_counter_sum(&fs_info->delalloc_bytes));
4381 }
4382
4383 if (percpu_counter_sum(&fs_info->ordered_bytes))
4384 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4385 percpu_counter_sum(&fs_info->ordered_bytes));
4386
4387 btrfs_sysfs_remove_mounted(fs_info);
4388 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4389
4390 btrfs_put_block_group_cache(fs_info);
4391
4392 /*
4393 * we must make sure there is not any read request to
4394 * submit after we stopping all workers.
4395 */
4396 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4397 btrfs_stop_all_workers(fs_info);
4398
4399 /* We shouldn't have any transaction open at this point */
4400 warn_about_uncommitted_trans(fs_info);
4401
4402 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4403 free_root_pointers(fs_info, true);
4404 btrfs_free_fs_roots(fs_info);
4405
4406 /*
4407 * We must free the block groups after dropping the fs_roots as we could
4408 * have had an IO error and have left over tree log blocks that aren't
4409 * cleaned up until the fs roots are freed. This makes the block group
4410 * accounting appear to be wrong because there's pending reserved bytes,
4411 * so make sure we do the block group cleanup afterwards.
4412 */
4413 btrfs_free_block_groups(fs_info);
4414
4415 iput(fs_info->btree_inode);
4416
4417 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4418 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4419 btrfsic_unmount(fs_info->fs_devices);
4420 #endif
4421
4422 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4423 btrfs_close_devices(fs_info->fs_devices);
4424 }
4425
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4426 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4427 {
4428 struct btrfs_fs_info *fs_info = buf->fs_info;
4429 u64 transid = btrfs_header_generation(buf);
4430
4431 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4432 /*
4433 * This is a fast path so only do this check if we have sanity tests
4434 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4435 * outside of the sanity tests.
4436 */
4437 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4438 return;
4439 #endif
4440 btrfs_assert_tree_write_locked(buf);
4441 if (transid != fs_info->generation)
4442 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4443 buf->start, transid, fs_info->generation);
4444 set_extent_buffer_dirty(buf);
4445 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4446 /*
4447 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4448 * set, so this will only validate the basic structure of the items.
4449 */
4450 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4451 btrfs_print_leaf(buf);
4452 ASSERT(0);
4453 }
4454 #endif
4455 }
4456
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4457 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4458 int flush_delayed)
4459 {
4460 /*
4461 * looks as though older kernels can get into trouble with
4462 * this code, they end up stuck in balance_dirty_pages forever
4463 */
4464 int ret;
4465
4466 if (current->flags & PF_MEMALLOC)
4467 return;
4468
4469 if (flush_delayed)
4470 btrfs_balance_delayed_items(fs_info);
4471
4472 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4473 BTRFS_DIRTY_METADATA_THRESH,
4474 fs_info->dirty_metadata_batch);
4475 if (ret > 0) {
4476 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4477 }
4478 }
4479
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4480 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4481 {
4482 __btrfs_btree_balance_dirty(fs_info, 1);
4483 }
4484
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4485 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4486 {
4487 __btrfs_btree_balance_dirty(fs_info, 0);
4488 }
4489
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4490 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4491 {
4492 /* cleanup FS via transaction */
4493 btrfs_cleanup_transaction(fs_info);
4494
4495 mutex_lock(&fs_info->cleaner_mutex);
4496 btrfs_run_delayed_iputs(fs_info);
4497 mutex_unlock(&fs_info->cleaner_mutex);
4498
4499 down_write(&fs_info->cleanup_work_sem);
4500 up_write(&fs_info->cleanup_work_sem);
4501 }
4502
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4503 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4504 {
4505 struct btrfs_root *gang[8];
4506 u64 root_objectid = 0;
4507 int ret;
4508
4509 spin_lock(&fs_info->fs_roots_radix_lock);
4510 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4511 (void **)gang, root_objectid,
4512 ARRAY_SIZE(gang))) != 0) {
4513 int i;
4514
4515 for (i = 0; i < ret; i++)
4516 gang[i] = btrfs_grab_root(gang[i]);
4517 spin_unlock(&fs_info->fs_roots_radix_lock);
4518
4519 for (i = 0; i < ret; i++) {
4520 if (!gang[i])
4521 continue;
4522 root_objectid = gang[i]->root_key.objectid;
4523 btrfs_free_log(NULL, gang[i]);
4524 btrfs_put_root(gang[i]);
4525 }
4526 root_objectid++;
4527 spin_lock(&fs_info->fs_roots_radix_lock);
4528 }
4529 spin_unlock(&fs_info->fs_roots_radix_lock);
4530 btrfs_free_log_root_tree(NULL, fs_info);
4531 }
4532
btrfs_destroy_ordered_extents(struct btrfs_root * root)4533 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4534 {
4535 struct btrfs_ordered_extent *ordered;
4536
4537 spin_lock(&root->ordered_extent_lock);
4538 /*
4539 * This will just short circuit the ordered completion stuff which will
4540 * make sure the ordered extent gets properly cleaned up.
4541 */
4542 list_for_each_entry(ordered, &root->ordered_extents,
4543 root_extent_list)
4544 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4545 spin_unlock(&root->ordered_extent_lock);
4546 }
4547
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4548 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4549 {
4550 struct btrfs_root *root;
4551 LIST_HEAD(splice);
4552
4553 spin_lock(&fs_info->ordered_root_lock);
4554 list_splice_init(&fs_info->ordered_roots, &splice);
4555 while (!list_empty(&splice)) {
4556 root = list_first_entry(&splice, struct btrfs_root,
4557 ordered_root);
4558 list_move_tail(&root->ordered_root,
4559 &fs_info->ordered_roots);
4560
4561 spin_unlock(&fs_info->ordered_root_lock);
4562 btrfs_destroy_ordered_extents(root);
4563
4564 cond_resched();
4565 spin_lock(&fs_info->ordered_root_lock);
4566 }
4567 spin_unlock(&fs_info->ordered_root_lock);
4568
4569 /*
4570 * We need this here because if we've been flipped read-only we won't
4571 * get sync() from the umount, so we need to make sure any ordered
4572 * extents that haven't had their dirty pages IO start writeout yet
4573 * actually get run and error out properly.
4574 */
4575 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4576 }
4577
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4578 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4579 struct btrfs_fs_info *fs_info)
4580 {
4581 struct rb_node *node;
4582 struct btrfs_delayed_ref_root *delayed_refs;
4583 struct btrfs_delayed_ref_node *ref;
4584
4585 delayed_refs = &trans->delayed_refs;
4586
4587 spin_lock(&delayed_refs->lock);
4588 if (atomic_read(&delayed_refs->num_entries) == 0) {
4589 spin_unlock(&delayed_refs->lock);
4590 btrfs_debug(fs_info, "delayed_refs has NO entry");
4591 return;
4592 }
4593
4594 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4595 struct btrfs_delayed_ref_head *head;
4596 struct rb_node *n;
4597 bool pin_bytes = false;
4598
4599 head = rb_entry(node, struct btrfs_delayed_ref_head,
4600 href_node);
4601 if (btrfs_delayed_ref_lock(delayed_refs, head))
4602 continue;
4603
4604 spin_lock(&head->lock);
4605 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4606 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4607 ref_node);
4608 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4609 RB_CLEAR_NODE(&ref->ref_node);
4610 if (!list_empty(&ref->add_list))
4611 list_del(&ref->add_list);
4612 atomic_dec(&delayed_refs->num_entries);
4613 btrfs_put_delayed_ref(ref);
4614 }
4615 if (head->must_insert_reserved)
4616 pin_bytes = true;
4617 btrfs_free_delayed_extent_op(head->extent_op);
4618 btrfs_delete_ref_head(delayed_refs, head);
4619 spin_unlock(&head->lock);
4620 spin_unlock(&delayed_refs->lock);
4621 mutex_unlock(&head->mutex);
4622
4623 if (pin_bytes) {
4624 struct btrfs_block_group *cache;
4625
4626 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4627 BUG_ON(!cache);
4628
4629 spin_lock(&cache->space_info->lock);
4630 spin_lock(&cache->lock);
4631 cache->pinned += head->num_bytes;
4632 btrfs_space_info_update_bytes_pinned(fs_info,
4633 cache->space_info, head->num_bytes);
4634 cache->reserved -= head->num_bytes;
4635 cache->space_info->bytes_reserved -= head->num_bytes;
4636 spin_unlock(&cache->lock);
4637 spin_unlock(&cache->space_info->lock);
4638
4639 btrfs_put_block_group(cache);
4640
4641 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4642 head->bytenr + head->num_bytes - 1);
4643 }
4644 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4645 btrfs_put_delayed_ref_head(head);
4646 cond_resched();
4647 spin_lock(&delayed_refs->lock);
4648 }
4649 btrfs_qgroup_destroy_extent_records(trans);
4650
4651 spin_unlock(&delayed_refs->lock);
4652 }
4653
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4654 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4655 {
4656 struct btrfs_inode *btrfs_inode;
4657 LIST_HEAD(splice);
4658
4659 spin_lock(&root->delalloc_lock);
4660 list_splice_init(&root->delalloc_inodes, &splice);
4661
4662 while (!list_empty(&splice)) {
4663 struct inode *inode = NULL;
4664 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4665 delalloc_inodes);
4666 __btrfs_del_delalloc_inode(root, btrfs_inode);
4667 spin_unlock(&root->delalloc_lock);
4668
4669 /*
4670 * Make sure we get a live inode and that it'll not disappear
4671 * meanwhile.
4672 */
4673 inode = igrab(&btrfs_inode->vfs_inode);
4674 if (inode) {
4675 unsigned int nofs_flag;
4676
4677 nofs_flag = memalloc_nofs_save();
4678 invalidate_inode_pages2(inode->i_mapping);
4679 memalloc_nofs_restore(nofs_flag);
4680 iput(inode);
4681 }
4682 spin_lock(&root->delalloc_lock);
4683 }
4684 spin_unlock(&root->delalloc_lock);
4685 }
4686
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4687 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4688 {
4689 struct btrfs_root *root;
4690 LIST_HEAD(splice);
4691
4692 spin_lock(&fs_info->delalloc_root_lock);
4693 list_splice_init(&fs_info->delalloc_roots, &splice);
4694 while (!list_empty(&splice)) {
4695 root = list_first_entry(&splice, struct btrfs_root,
4696 delalloc_root);
4697 root = btrfs_grab_root(root);
4698 BUG_ON(!root);
4699 spin_unlock(&fs_info->delalloc_root_lock);
4700
4701 btrfs_destroy_delalloc_inodes(root);
4702 btrfs_put_root(root);
4703
4704 spin_lock(&fs_info->delalloc_root_lock);
4705 }
4706 spin_unlock(&fs_info->delalloc_root_lock);
4707 }
4708
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4709 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4710 struct extent_io_tree *dirty_pages,
4711 int mark)
4712 {
4713 struct extent_buffer *eb;
4714 u64 start = 0;
4715 u64 end;
4716
4717 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4718 mark, NULL)) {
4719 clear_extent_bits(dirty_pages, start, end, mark);
4720 while (start <= end) {
4721 eb = find_extent_buffer(fs_info, start);
4722 start += fs_info->nodesize;
4723 if (!eb)
4724 continue;
4725
4726 btrfs_tree_lock(eb);
4727 wait_on_extent_buffer_writeback(eb);
4728 btrfs_clear_buffer_dirty(NULL, eb);
4729 btrfs_tree_unlock(eb);
4730
4731 free_extent_buffer_stale(eb);
4732 }
4733 }
4734 }
4735
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4736 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4737 struct extent_io_tree *unpin)
4738 {
4739 u64 start;
4740 u64 end;
4741
4742 while (1) {
4743 struct extent_state *cached_state = NULL;
4744
4745 /*
4746 * The btrfs_finish_extent_commit() may get the same range as
4747 * ours between find_first_extent_bit and clear_extent_dirty.
4748 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4749 * the same extent range.
4750 */
4751 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4752 if (!find_first_extent_bit(unpin, 0, &start, &end,
4753 EXTENT_DIRTY, &cached_state)) {
4754 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4755 break;
4756 }
4757
4758 clear_extent_dirty(unpin, start, end, &cached_state);
4759 free_extent_state(cached_state);
4760 btrfs_error_unpin_extent_range(fs_info, start, end);
4761 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4762 cond_resched();
4763 }
4764 }
4765
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4766 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4767 {
4768 struct inode *inode;
4769
4770 inode = cache->io_ctl.inode;
4771 if (inode) {
4772 unsigned int nofs_flag;
4773
4774 nofs_flag = memalloc_nofs_save();
4775 invalidate_inode_pages2(inode->i_mapping);
4776 memalloc_nofs_restore(nofs_flag);
4777
4778 BTRFS_I(inode)->generation = 0;
4779 cache->io_ctl.inode = NULL;
4780 iput(inode);
4781 }
4782 ASSERT(cache->io_ctl.pages == NULL);
4783 btrfs_put_block_group(cache);
4784 }
4785
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4786 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4787 struct btrfs_fs_info *fs_info)
4788 {
4789 struct btrfs_block_group *cache;
4790
4791 spin_lock(&cur_trans->dirty_bgs_lock);
4792 while (!list_empty(&cur_trans->dirty_bgs)) {
4793 cache = list_first_entry(&cur_trans->dirty_bgs,
4794 struct btrfs_block_group,
4795 dirty_list);
4796
4797 if (!list_empty(&cache->io_list)) {
4798 spin_unlock(&cur_trans->dirty_bgs_lock);
4799 list_del_init(&cache->io_list);
4800 btrfs_cleanup_bg_io(cache);
4801 spin_lock(&cur_trans->dirty_bgs_lock);
4802 }
4803
4804 list_del_init(&cache->dirty_list);
4805 spin_lock(&cache->lock);
4806 cache->disk_cache_state = BTRFS_DC_ERROR;
4807 spin_unlock(&cache->lock);
4808
4809 spin_unlock(&cur_trans->dirty_bgs_lock);
4810 btrfs_put_block_group(cache);
4811 btrfs_delayed_refs_rsv_release(fs_info, 1);
4812 spin_lock(&cur_trans->dirty_bgs_lock);
4813 }
4814 spin_unlock(&cur_trans->dirty_bgs_lock);
4815
4816 /*
4817 * Refer to the definition of io_bgs member for details why it's safe
4818 * to use it without any locking
4819 */
4820 while (!list_empty(&cur_trans->io_bgs)) {
4821 cache = list_first_entry(&cur_trans->io_bgs,
4822 struct btrfs_block_group,
4823 io_list);
4824
4825 list_del_init(&cache->io_list);
4826 spin_lock(&cache->lock);
4827 cache->disk_cache_state = BTRFS_DC_ERROR;
4828 spin_unlock(&cache->lock);
4829 btrfs_cleanup_bg_io(cache);
4830 }
4831 }
4832
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4833 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4834 struct btrfs_fs_info *fs_info)
4835 {
4836 struct btrfs_device *dev, *tmp;
4837
4838 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4839 ASSERT(list_empty(&cur_trans->dirty_bgs));
4840 ASSERT(list_empty(&cur_trans->io_bgs));
4841
4842 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4843 post_commit_list) {
4844 list_del_init(&dev->post_commit_list);
4845 }
4846
4847 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4848
4849 cur_trans->state = TRANS_STATE_COMMIT_START;
4850 wake_up(&fs_info->transaction_blocked_wait);
4851
4852 cur_trans->state = TRANS_STATE_UNBLOCKED;
4853 wake_up(&fs_info->transaction_wait);
4854
4855 btrfs_destroy_delayed_inodes(fs_info);
4856
4857 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4858 EXTENT_DIRTY);
4859 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4860
4861 cur_trans->state =TRANS_STATE_COMPLETED;
4862 wake_up(&cur_trans->commit_wait);
4863 }
4864
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4865 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4866 {
4867 struct btrfs_transaction *t;
4868
4869 mutex_lock(&fs_info->transaction_kthread_mutex);
4870
4871 spin_lock(&fs_info->trans_lock);
4872 while (!list_empty(&fs_info->trans_list)) {
4873 t = list_first_entry(&fs_info->trans_list,
4874 struct btrfs_transaction, list);
4875 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4876 refcount_inc(&t->use_count);
4877 spin_unlock(&fs_info->trans_lock);
4878 btrfs_wait_for_commit(fs_info, t->transid);
4879 btrfs_put_transaction(t);
4880 spin_lock(&fs_info->trans_lock);
4881 continue;
4882 }
4883 if (t == fs_info->running_transaction) {
4884 t->state = TRANS_STATE_COMMIT_DOING;
4885 spin_unlock(&fs_info->trans_lock);
4886 /*
4887 * We wait for 0 num_writers since we don't hold a trans
4888 * handle open currently for this transaction.
4889 */
4890 wait_event(t->writer_wait,
4891 atomic_read(&t->num_writers) == 0);
4892 } else {
4893 spin_unlock(&fs_info->trans_lock);
4894 }
4895 btrfs_cleanup_one_transaction(t, fs_info);
4896
4897 spin_lock(&fs_info->trans_lock);
4898 if (t == fs_info->running_transaction)
4899 fs_info->running_transaction = NULL;
4900 list_del_init(&t->list);
4901 spin_unlock(&fs_info->trans_lock);
4902
4903 btrfs_put_transaction(t);
4904 trace_btrfs_transaction_commit(fs_info);
4905 spin_lock(&fs_info->trans_lock);
4906 }
4907 spin_unlock(&fs_info->trans_lock);
4908 btrfs_destroy_all_ordered_extents(fs_info);
4909 btrfs_destroy_delayed_inodes(fs_info);
4910 btrfs_assert_delayed_root_empty(fs_info);
4911 btrfs_destroy_all_delalloc_inodes(fs_info);
4912 btrfs_drop_all_logs(fs_info);
4913 mutex_unlock(&fs_info->transaction_kthread_mutex);
4914
4915 return 0;
4916 }
4917
btrfs_init_root_free_objectid(struct btrfs_root * root)4918 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4919 {
4920 struct btrfs_path *path;
4921 int ret;
4922 struct extent_buffer *l;
4923 struct btrfs_key search_key;
4924 struct btrfs_key found_key;
4925 int slot;
4926
4927 path = btrfs_alloc_path();
4928 if (!path)
4929 return -ENOMEM;
4930
4931 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4932 search_key.type = -1;
4933 search_key.offset = (u64)-1;
4934 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4935 if (ret < 0)
4936 goto error;
4937 BUG_ON(ret == 0); /* Corruption */
4938 if (path->slots[0] > 0) {
4939 slot = path->slots[0] - 1;
4940 l = path->nodes[0];
4941 btrfs_item_key_to_cpu(l, &found_key, slot);
4942 root->free_objectid = max_t(u64, found_key.objectid + 1,
4943 BTRFS_FIRST_FREE_OBJECTID);
4944 } else {
4945 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4946 }
4947 ret = 0;
4948 error:
4949 btrfs_free_path(path);
4950 return ret;
4951 }
4952
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4953 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4954 {
4955 int ret;
4956 mutex_lock(&root->objectid_mutex);
4957
4958 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4959 btrfs_warn(root->fs_info,
4960 "the objectid of root %llu reaches its highest value",
4961 root->root_key.objectid);
4962 ret = -ENOSPC;
4963 goto out;
4964 }
4965
4966 *objectid = root->free_objectid++;
4967 ret = 0;
4968 out:
4969 mutex_unlock(&root->objectid_mutex);
4970 return ret;
4971 }
4972