1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2016 IBM Corporation
4 *
5 * Joel Stanley <joel@jms.id.au>
6 */
7
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/kstrtox.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_irq.h>
17 #include <linux/platform_device.h>
18 #include <linux/watchdog.h>
19
20 static bool nowayout = WATCHDOG_NOWAYOUT;
21 module_param(nowayout, bool, 0);
22 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
23 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
24
25 struct aspeed_wdt_config {
26 u32 ext_pulse_width_mask;
27 u32 irq_shift;
28 u32 irq_mask;
29 };
30
31 struct aspeed_wdt {
32 struct watchdog_device wdd;
33 void __iomem *base;
34 u32 ctrl;
35 const struct aspeed_wdt_config *cfg;
36 };
37
38 static const struct aspeed_wdt_config ast2400_config = {
39 .ext_pulse_width_mask = 0xff,
40 .irq_shift = 0,
41 .irq_mask = 0,
42 };
43
44 static const struct aspeed_wdt_config ast2500_config = {
45 .ext_pulse_width_mask = 0xfffff,
46 .irq_shift = 12,
47 .irq_mask = GENMASK(31, 12),
48 };
49
50 static const struct aspeed_wdt_config ast2600_config = {
51 .ext_pulse_width_mask = 0xfffff,
52 .irq_shift = 0,
53 .irq_mask = GENMASK(31, 10),
54 };
55
56 static const struct of_device_id aspeed_wdt_of_table[] = {
57 { .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
58 { .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
59 { .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
60 { },
61 };
62 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
63
64 #define WDT_STATUS 0x00
65 #define WDT_RELOAD_VALUE 0x04
66 #define WDT_RESTART 0x08
67 #define WDT_CTRL 0x0C
68 #define WDT_CTRL_BOOT_SECONDARY BIT(7)
69 #define WDT_CTRL_RESET_MODE_SOC (0x00 << 5)
70 #define WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
71 #define WDT_CTRL_RESET_MODE_ARM_CPU (0x10 << 5)
72 #define WDT_CTRL_1MHZ_CLK BIT(4)
73 #define WDT_CTRL_WDT_EXT BIT(3)
74 #define WDT_CTRL_WDT_INTR BIT(2)
75 #define WDT_CTRL_RESET_SYSTEM BIT(1)
76 #define WDT_CTRL_ENABLE BIT(0)
77 #define WDT_TIMEOUT_STATUS 0x10
78 #define WDT_TIMEOUT_STATUS_IRQ BIT(2)
79 #define WDT_TIMEOUT_STATUS_BOOT_SECONDARY BIT(1)
80 #define WDT_CLEAR_TIMEOUT_STATUS 0x14
81 #define WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION BIT(0)
82
83 /*
84 * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
85 * enabled), specifically:
86 *
87 * * Pulse duration
88 * * Drive mode: push-pull vs open-drain
89 * * Polarity: Active high or active low
90 *
91 * Pulse duration configuration is available on both the AST2400 and AST2500,
92 * though the field changes between SoCs:
93 *
94 * AST2400: Bits 7:0
95 * AST2500: Bits 19:0
96 *
97 * This difference is captured in struct aspeed_wdt_config.
98 *
99 * The AST2500 exposes the drive mode and polarity options, but not in a
100 * regular fashion. For read purposes, bit 31 represents active high or low,
101 * and bit 30 represents push-pull or open-drain. With respect to write, magic
102 * values need to be written to the top byte to change the state of the drive
103 * mode and polarity bits. Any other value written to the top byte has no
104 * effect on the state of the drive mode or polarity bits. However, the pulse
105 * width value must be preserved (as desired) if written.
106 */
107 #define WDT_RESET_WIDTH 0x18
108 #define WDT_RESET_WIDTH_ACTIVE_HIGH BIT(31)
109 #define WDT_ACTIVE_HIGH_MAGIC (0xA5 << 24)
110 #define WDT_ACTIVE_LOW_MAGIC (0x5A << 24)
111 #define WDT_RESET_WIDTH_PUSH_PULL BIT(30)
112 #define WDT_PUSH_PULL_MAGIC (0xA8 << 24)
113 #define WDT_OPEN_DRAIN_MAGIC (0x8A << 24)
114
115 #define WDT_RESTART_MAGIC 0x4755
116
117 /* 32 bits at 1MHz, in milliseconds */
118 #define WDT_MAX_TIMEOUT_MS 4294967
119 #define WDT_DEFAULT_TIMEOUT 30
120 #define WDT_RATE_1MHZ 1000000
121
to_aspeed_wdt(struct watchdog_device * wdd)122 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
123 {
124 return container_of(wdd, struct aspeed_wdt, wdd);
125 }
126
aspeed_wdt_enable(struct aspeed_wdt * wdt,int count)127 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
128 {
129 wdt->ctrl |= WDT_CTRL_ENABLE;
130
131 writel(0, wdt->base + WDT_CTRL);
132 writel(count, wdt->base + WDT_RELOAD_VALUE);
133 writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
134 writel(wdt->ctrl, wdt->base + WDT_CTRL);
135 }
136
aspeed_wdt_start(struct watchdog_device * wdd)137 static int aspeed_wdt_start(struct watchdog_device *wdd)
138 {
139 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
140
141 aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
142
143 return 0;
144 }
145
aspeed_wdt_stop(struct watchdog_device * wdd)146 static int aspeed_wdt_stop(struct watchdog_device *wdd)
147 {
148 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
149
150 wdt->ctrl &= ~WDT_CTRL_ENABLE;
151 writel(wdt->ctrl, wdt->base + WDT_CTRL);
152
153 return 0;
154 }
155
aspeed_wdt_ping(struct watchdog_device * wdd)156 static int aspeed_wdt_ping(struct watchdog_device *wdd)
157 {
158 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
159
160 writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
161
162 return 0;
163 }
164
aspeed_wdt_set_timeout(struct watchdog_device * wdd,unsigned int timeout)165 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
166 unsigned int timeout)
167 {
168 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
169 u32 actual;
170
171 wdd->timeout = timeout;
172
173 actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
174
175 writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
176 writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
177
178 return 0;
179 }
180
aspeed_wdt_set_pretimeout(struct watchdog_device * wdd,unsigned int pretimeout)181 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
182 unsigned int pretimeout)
183 {
184 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
185 u32 actual = pretimeout * WDT_RATE_1MHZ;
186 u32 s = wdt->cfg->irq_shift;
187 u32 m = wdt->cfg->irq_mask;
188
189 wdd->pretimeout = pretimeout;
190 wdt->ctrl &= ~m;
191 if (pretimeout)
192 wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
193 else
194 wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
195
196 writel(wdt->ctrl, wdt->base + WDT_CTRL);
197
198 return 0;
199 }
200
aspeed_wdt_restart(struct watchdog_device * wdd,unsigned long action,void * data)201 static int aspeed_wdt_restart(struct watchdog_device *wdd,
202 unsigned long action, void *data)
203 {
204 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
205
206 wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
207 aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
208
209 mdelay(1000);
210
211 return 0;
212 }
213
214 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
access_cs0_show(struct device * dev,struct device_attribute * attr,char * buf)215 static ssize_t access_cs0_show(struct device *dev,
216 struct device_attribute *attr, char *buf)
217 {
218 struct aspeed_wdt *wdt = dev_get_drvdata(dev);
219 u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
220
221 return sysfs_emit(buf, "%u\n",
222 !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
223 }
224
access_cs0_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)225 static ssize_t access_cs0_store(struct device *dev,
226 struct device_attribute *attr, const char *buf,
227 size_t size)
228 {
229 struct aspeed_wdt *wdt = dev_get_drvdata(dev);
230 unsigned long val;
231
232 if (kstrtoul(buf, 10, &val))
233 return -EINVAL;
234
235 if (val)
236 writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
237 wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
238
239 return size;
240 }
241
242 /*
243 * This attribute exists only if the system has booted from the alternate
244 * flash with 'alt-boot' option.
245 *
246 * At alternate flash the 'access_cs0' sysfs node provides:
247 * ast2400: a way to get access to the primary SPI flash chip at CS0
248 * after booting from the alternate chip at CS1.
249 * ast2500: a way to restore the normal address mapping from
250 * (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
251 *
252 * Clearing the boot code selection and timeout counter also resets to the
253 * initial state the chip select line mapping. When the SoC is in normal
254 * mapping state (i.e. booted from CS0), clearing those bits does nothing for
255 * both versions of the SoC. For alternate boot mode (booted from CS1 due to
256 * wdt2 expiration) the behavior differs as described above.
257 *
258 * This option can be used with wdt2 (watchdog1) only.
259 */
260 static DEVICE_ATTR_RW(access_cs0);
261
262 static struct attribute *bswitch_attrs[] = {
263 &dev_attr_access_cs0.attr,
264 NULL
265 };
266 ATTRIBUTE_GROUPS(bswitch);
267
268 static const struct watchdog_ops aspeed_wdt_ops = {
269 .start = aspeed_wdt_start,
270 .stop = aspeed_wdt_stop,
271 .ping = aspeed_wdt_ping,
272 .set_timeout = aspeed_wdt_set_timeout,
273 .set_pretimeout = aspeed_wdt_set_pretimeout,
274 .restart = aspeed_wdt_restart,
275 .owner = THIS_MODULE,
276 };
277
278 static const struct watchdog_info aspeed_wdt_info = {
279 .options = WDIOF_KEEPALIVEPING
280 | WDIOF_MAGICCLOSE
281 | WDIOF_SETTIMEOUT,
282 .identity = KBUILD_MODNAME,
283 };
284
285 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
286 .options = WDIOF_KEEPALIVEPING
287 | WDIOF_PRETIMEOUT
288 | WDIOF_MAGICCLOSE
289 | WDIOF_SETTIMEOUT,
290 .identity = KBUILD_MODNAME,
291 };
292
aspeed_wdt_irq(int irq,void * arg)293 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
294 {
295 struct watchdog_device *wdd = arg;
296 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
297 u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
298
299 if (status & WDT_TIMEOUT_STATUS_IRQ)
300 watchdog_notify_pretimeout(wdd);
301
302 return IRQ_HANDLED;
303 }
304
aspeed_wdt_probe(struct platform_device * pdev)305 static int aspeed_wdt_probe(struct platform_device *pdev)
306 {
307 struct device *dev = &pdev->dev;
308 const struct of_device_id *ofdid;
309 struct aspeed_wdt *wdt;
310 struct device_node *np;
311 const char *reset_type;
312 u32 duration;
313 u32 status;
314 int ret;
315
316 wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
317 if (!wdt)
318 return -ENOMEM;
319
320 np = dev->of_node;
321
322 ofdid = of_match_node(aspeed_wdt_of_table, np);
323 if (!ofdid)
324 return -EINVAL;
325 wdt->cfg = ofdid->data;
326
327 wdt->base = devm_platform_ioremap_resource(pdev, 0);
328 if (IS_ERR(wdt->base))
329 return PTR_ERR(wdt->base);
330
331 wdt->wdd.info = &aspeed_wdt_info;
332
333 if (wdt->cfg->irq_mask) {
334 int irq = platform_get_irq_optional(pdev, 0);
335
336 if (irq > 0) {
337 ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
338 IRQF_SHARED, dev_name(dev),
339 wdt);
340 if (ret)
341 return ret;
342
343 wdt->wdd.info = &aspeed_wdt_pretimeout_info;
344 }
345 }
346
347 wdt->wdd.ops = &aspeed_wdt_ops;
348 wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
349 wdt->wdd.parent = dev;
350
351 wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
352 watchdog_init_timeout(&wdt->wdd, 0, dev);
353
354 watchdog_set_nowayout(&wdt->wdd, nowayout);
355
356 /*
357 * On clock rates:
358 * - ast2400 wdt can run at PCLK, or 1MHz
359 * - ast2500 only runs at 1MHz, hard coding bit 4 to 1
360 * - ast2600 always runs at 1MHz
361 *
362 * Set the ast2400 to run at 1MHz as it simplifies the driver.
363 */
364 if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
365 wdt->ctrl = WDT_CTRL_1MHZ_CLK;
366
367 /*
368 * Control reset on a per-device basis to ensure the
369 * host is not affected by a BMC reboot
370 */
371 ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
372 if (ret) {
373 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
374 } else {
375 if (!strcmp(reset_type, "cpu"))
376 wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
377 WDT_CTRL_RESET_SYSTEM;
378 else if (!strcmp(reset_type, "soc"))
379 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
380 WDT_CTRL_RESET_SYSTEM;
381 else if (!strcmp(reset_type, "system"))
382 wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
383 WDT_CTRL_RESET_SYSTEM;
384 else if (strcmp(reset_type, "none"))
385 return -EINVAL;
386 }
387 if (of_property_read_bool(np, "aspeed,external-signal"))
388 wdt->ctrl |= WDT_CTRL_WDT_EXT;
389 if (of_property_read_bool(np, "aspeed,alt-boot"))
390 wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
391
392 if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE) {
393 /*
394 * The watchdog is running, but invoke aspeed_wdt_start() to
395 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
396 * configuration conforms to the driver's expectations.
397 * Primarily, ensure we're using the 1MHz clock source.
398 */
399 aspeed_wdt_start(&wdt->wdd);
400 set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
401 }
402
403 if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
404 (of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
405 u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
406
407 reg &= wdt->cfg->ext_pulse_width_mask;
408 if (of_property_read_bool(np, "aspeed,ext-active-high"))
409 reg |= WDT_ACTIVE_HIGH_MAGIC;
410 else
411 reg |= WDT_ACTIVE_LOW_MAGIC;
412
413 writel(reg, wdt->base + WDT_RESET_WIDTH);
414
415 reg &= wdt->cfg->ext_pulse_width_mask;
416 if (of_property_read_bool(np, "aspeed,ext-push-pull"))
417 reg |= WDT_PUSH_PULL_MAGIC;
418 else
419 reg |= WDT_OPEN_DRAIN_MAGIC;
420
421 writel(reg, wdt->base + WDT_RESET_WIDTH);
422 }
423
424 if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
425 u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
426
427 if (duration == 0 || duration > max_duration) {
428 dev_err(dev, "Invalid pulse duration: %uus\n",
429 duration);
430 duration = max(1U, min(max_duration, duration));
431 dev_info(dev, "Pulse duration set to %uus\n",
432 duration);
433 }
434
435 /*
436 * The watchdog is always configured with a 1MHz source, so
437 * there is no need to scale the microsecond value. However we
438 * need to offset it - from the datasheet:
439 *
440 * "This register decides the asserting duration of wdt_ext and
441 * wdt_rstarm signal. The default value is 0xFF. It means the
442 * default asserting duration of wdt_ext and wdt_rstarm is
443 * 256us."
444 *
445 * This implies a value of 0 gives a 1us pulse.
446 */
447 writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
448 }
449
450 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
451 if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
452 wdt->wdd.bootstatus = WDIOF_CARDRESET;
453
454 if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
455 of_device_is_compatible(np, "aspeed,ast2500-wdt"))
456 wdt->wdd.groups = bswitch_groups;
457 }
458
459 dev_set_drvdata(dev, wdt);
460
461 return devm_watchdog_register_device(dev, &wdt->wdd);
462 }
463
464 static struct platform_driver aspeed_watchdog_driver = {
465 .probe = aspeed_wdt_probe,
466 .driver = {
467 .name = KBUILD_MODNAME,
468 .of_match_table = aspeed_wdt_of_table,
469 },
470 };
471
aspeed_wdt_init(void)472 static int __init aspeed_wdt_init(void)
473 {
474 return platform_driver_register(&aspeed_watchdog_driver);
475 }
476 arch_initcall(aspeed_wdt_init);
477
aspeed_wdt_exit(void)478 static void __exit aspeed_wdt_exit(void)
479 {
480 platform_driver_unregister(&aspeed_watchdog_driver);
481 }
482 module_exit(aspeed_wdt_exit);
483
484 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
485 MODULE_LICENSE("GPL");
486