1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/soc/qcom/smem.h>
17 #include <linux/soc/qcom/socinfo.h>
18
19 /*
20 * The Qualcomm shared memory system is a allocate only heap structure that
21 * consists of one of more memory areas that can be accessed by the processors
22 * in the SoC.
23 *
24 * All systems contains a global heap, accessible by all processors in the SoC,
25 * with a table of contents data structure (@smem_header) at the beginning of
26 * the main shared memory block.
27 *
28 * The global header contains meta data for allocations as well as a fixed list
29 * of 512 entries (@smem_global_entry) that can be initialized to reference
30 * parts of the shared memory space.
31 *
32 *
33 * In addition to this global heap a set of "private" heaps can be set up at
34 * boot time with access restrictions so that only certain processor pairs can
35 * access the data.
36 *
37 * These partitions are referenced from an optional partition table
38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39 * partition table entries (@smem_ptable_entry) lists the involved processors
40 * (or hosts) and their location in the main shared memory region.
41 *
42 * Each partition starts with a header (@smem_partition_header) that identifies
43 * the partition and holds properties for the two internal memory regions. The
44 * two regions are cached and non-cached memory respectively. Each region
45 * contain a link list of allocation headers (@smem_private_entry) followed by
46 * their data.
47 *
48 * Items in the non-cached region are allocated from the start of the partition
49 * while items in the cached region are allocated from the end. The free area
50 * is hence the region between the cached and non-cached offsets. The header of
51 * cached items comes after the data.
52 *
53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54 * for the global heap. A new global partition is created from the global heap
55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56 * set by the bootloader.
57 *
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
61 *
62 */
63
64 /*
65 * The version member of the smem header contains an array of versions for the
66 * various software components in the SoC. We verify that the boot loader
67 * version is a valid version as a sanity check.
68 */
69 #define SMEM_MASTER_SBL_VERSION_INDEX 7
70 #define SMEM_GLOBAL_HEAP_VERSION 11
71 #define SMEM_GLOBAL_PART_VERSION 12
72
73 /*
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
76 */
77 #define SMEM_ITEM_LAST_FIXED 8
78
79 /* Highest accepted item number, for both global and private heaps */
80 #define SMEM_ITEM_COUNT 512
81
82 /* Processor/host identifier for the application processor */
83 #define SMEM_HOST_APPS 0
84
85 /* Processor/host identifier for the global partition */
86 #define SMEM_GLOBAL_HOST 0xfffe
87
88 /* Max number of processors/hosts in a system */
89 #define SMEM_HOST_COUNT 20
90
91 /**
92 * struct smem_proc_comm - proc_comm communication struct (legacy)
93 * @command: current command to be executed
94 * @status: status of the currently requested command
95 * @params: parameters to the command
96 */
97 struct smem_proc_comm {
98 __le32 command;
99 __le32 status;
100 __le32 params[2];
101 };
102
103 /**
104 * struct smem_global_entry - entry to reference smem items on the heap
105 * @allocated: boolean to indicate if this entry is used
106 * @offset: offset to the allocated space
107 * @size: size of the allocated space, 8 byte aligned
108 * @aux_base: base address for the memory region used by this unit, or 0 for
109 * the default region. bits 0,1 are reserved
110 */
111 struct smem_global_entry {
112 __le32 allocated;
113 __le32 offset;
114 __le32 size;
115 __le32 aux_base; /* bits 1:0 reserved */
116 };
117 #define AUX_BASE_MASK 0xfffffffc
118
119 /**
120 * struct smem_header - header found in beginning of primary smem region
121 * @proc_comm: proc_comm communication interface (legacy)
122 * @version: array of versions for the various subsystems
123 * @initialized: boolean to indicate that smem is initialized
124 * @free_offset: index of the first unallocated byte in smem
125 * @available: number of bytes available for allocation
126 * @reserved: reserved field, must be 0
127 * @toc: array of references to items
128 */
129 struct smem_header {
130 struct smem_proc_comm proc_comm[4];
131 __le32 version[32];
132 __le32 initialized;
133 __le32 free_offset;
134 __le32 available;
135 __le32 reserved;
136 struct smem_global_entry toc[SMEM_ITEM_COUNT];
137 };
138
139 /**
140 * struct smem_ptable_entry - one entry in the @smem_ptable list
141 * @offset: offset, within the main shared memory region, of the partition
142 * @size: size of the partition
143 * @flags: flags for the partition (currently unused)
144 * @host0: first processor/host with access to this partition
145 * @host1: second processor/host with access to this partition
146 * @cacheline: alignment for "cached" entries
147 * @reserved: reserved entries for later use
148 */
149 struct smem_ptable_entry {
150 __le32 offset;
151 __le32 size;
152 __le32 flags;
153 __le16 host0;
154 __le16 host1;
155 __le32 cacheline;
156 __le32 reserved[7];
157 };
158
159 /**
160 * struct smem_ptable - partition table for the private partitions
161 * @magic: magic number, must be SMEM_PTABLE_MAGIC
162 * @version: version of the partition table
163 * @num_entries: number of partitions in the table
164 * @reserved: for now reserved entries
165 * @entry: list of @smem_ptable_entry for the @num_entries partitions
166 */
167 struct smem_ptable {
168 u8 magic[4];
169 __le32 version;
170 __le32 num_entries;
171 __le32 reserved[5];
172 struct smem_ptable_entry entry[];
173 };
174
175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176
177 /**
178 * struct smem_partition_header - header of the partitions
179 * @magic: magic number, must be SMEM_PART_MAGIC
180 * @host0: first processor/host with access to this partition
181 * @host1: second processor/host with access to this partition
182 * @size: size of the partition
183 * @offset_free_uncached: offset to the first free byte of uncached memory in
184 * this partition
185 * @offset_free_cached: offset to the first free byte of cached memory in this
186 * partition
187 * @reserved: for now reserved entries
188 */
189 struct smem_partition_header {
190 u8 magic[4];
191 __le16 host0;
192 __le16 host1;
193 __le32 size;
194 __le32 offset_free_uncached;
195 __le32 offset_free_cached;
196 __le32 reserved[3];
197 };
198
199 /**
200 * struct smem_partition - describes smem partition
201 * @virt_base: starting virtual address of partition
202 * @phys_base: starting physical address of partition
203 * @cacheline: alignment for "cached" entries
204 * @size: size of partition
205 */
206 struct smem_partition {
207 void __iomem *virt_base;
208 phys_addr_t phys_base;
209 size_t cacheline;
210 size_t size;
211 };
212
213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
214
215 /**
216 * struct smem_private_entry - header of each item in the private partition
217 * @canary: magic number, must be SMEM_PRIVATE_CANARY
218 * @item: identifying number of the smem item
219 * @size: size of the data, including padding bytes
220 * @padding_data: number of bytes of padding of data
221 * @padding_hdr: number of bytes of padding between the header and the data
222 * @reserved: for now reserved entry
223 */
224 struct smem_private_entry {
225 u16 canary; /* bytes are the same so no swapping needed */
226 __le16 item;
227 __le32 size; /* includes padding bytes */
228 __le16 padding_data;
229 __le16 padding_hdr;
230 __le32 reserved;
231 };
232 #define SMEM_PRIVATE_CANARY 0xa5a5
233
234 /**
235 * struct smem_info - smem region info located after the table of contents
236 * @magic: magic number, must be SMEM_INFO_MAGIC
237 * @size: size of the smem region
238 * @base_addr: base address of the smem region
239 * @reserved: for now reserved entry
240 * @num_items: highest accepted item number
241 */
242 struct smem_info {
243 u8 magic[4];
244 __le32 size;
245 __le32 base_addr;
246 __le32 reserved;
247 __le16 num_items;
248 };
249
250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
251
252 /**
253 * struct smem_region - representation of a chunk of memory used for smem
254 * @aux_base: identifier of aux_mem base
255 * @virt_base: virtual base address of memory with this aux_mem identifier
256 * @size: size of the memory region
257 */
258 struct smem_region {
259 phys_addr_t aux_base;
260 void __iomem *virt_base;
261 size_t size;
262 };
263
264 /**
265 * struct qcom_smem - device data for the smem device
266 * @dev: device pointer
267 * @hwlock: reference to a hwspinlock
268 * @ptable: virtual base of partition table
269 * @global_partition: describes for global partition when in use
270 * @partitions: list of partitions of current processor/host
271 * @item_count: max accepted item number
272 * @socinfo: platform device pointer
273 * @num_regions: number of @regions
274 * @regions: list of the memory regions defining the shared memory
275 */
276 struct qcom_smem {
277 struct device *dev;
278
279 struct hwspinlock *hwlock;
280
281 u32 item_count;
282 struct platform_device *socinfo;
283 struct smem_ptable *ptable;
284 struct smem_partition global_partition;
285 struct smem_partition partitions[SMEM_HOST_COUNT];
286
287 unsigned num_regions;
288 struct smem_region regions[];
289 };
290
291 static void *
phdr_to_last_uncached_entry(struct smem_partition_header * phdr)292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
293 {
294 void *p = phdr;
295
296 return p + le32_to_cpu(phdr->offset_free_uncached);
297 }
298
299 static struct smem_private_entry *
phdr_to_first_cached_entry(struct smem_partition_header * phdr,size_t cacheline)300 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 size_t cacheline)
302 {
303 void *p = phdr;
304 struct smem_private_entry *e;
305
306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
307 }
308
309 static void *
phdr_to_last_cached_entry(struct smem_partition_header * phdr)310 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
311 {
312 void *p = phdr;
313
314 return p + le32_to_cpu(phdr->offset_free_cached);
315 }
316
317 static struct smem_private_entry *
phdr_to_first_uncached_entry(struct smem_partition_header * phdr)318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
319 {
320 void *p = phdr;
321
322 return p + sizeof(*phdr);
323 }
324
325 static struct smem_private_entry *
uncached_entry_next(struct smem_private_entry * e)326 uncached_entry_next(struct smem_private_entry *e)
327 {
328 void *p = e;
329
330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 le32_to_cpu(e->size);
332 }
333
334 static struct smem_private_entry *
cached_entry_next(struct smem_private_entry * e,size_t cacheline)335 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
336 {
337 void *p = e;
338
339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
340 }
341
uncached_entry_to_item(struct smem_private_entry * e)342 static void *uncached_entry_to_item(struct smem_private_entry *e)
343 {
344 void *p = e;
345
346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
347 }
348
cached_entry_to_item(struct smem_private_entry * e)349 static void *cached_entry_to_item(struct smem_private_entry *e)
350 {
351 void *p = e;
352
353 return p - le32_to_cpu(e->size);
354 }
355
356 /* Pointer to the one and only smem handle */
357 static struct qcom_smem *__smem;
358
359 /* Timeout (ms) for the trylock of remote spinlocks */
360 #define HWSPINLOCK_TIMEOUT 1000
361
362 /**
363 * qcom_smem_is_available() - Check if SMEM is available
364 *
365 * Return: true if SMEM is available, false otherwise.
366 */
qcom_smem_is_available(void)367 bool qcom_smem_is_available(void)
368 {
369 return !!__smem;
370 }
371 EXPORT_SYMBOL(qcom_smem_is_available);
372
qcom_smem_alloc_private(struct qcom_smem * smem,struct smem_partition * part,unsigned item,size_t size)373 static int qcom_smem_alloc_private(struct qcom_smem *smem,
374 struct smem_partition *part,
375 unsigned item,
376 size_t size)
377 {
378 struct smem_private_entry *hdr, *end;
379 struct smem_partition_header *phdr;
380 size_t alloc_size;
381 void *cached;
382 void *p_end;
383
384 phdr = (struct smem_partition_header __force *)part->virt_base;
385 p_end = (void *)phdr + part->size;
386
387 hdr = phdr_to_first_uncached_entry(phdr);
388 end = phdr_to_last_uncached_entry(phdr);
389 cached = phdr_to_last_cached_entry(phdr);
390
391 if (WARN_ON((void *)end > p_end || cached > p_end))
392 return -EINVAL;
393
394 while (hdr < end) {
395 if (hdr->canary != SMEM_PRIVATE_CANARY)
396 goto bad_canary;
397 if (le16_to_cpu(hdr->item) == item)
398 return -EEXIST;
399
400 hdr = uncached_entry_next(hdr);
401 }
402
403 if (WARN_ON((void *)hdr > p_end))
404 return -EINVAL;
405
406 /* Check that we don't grow into the cached region */
407 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
408 if ((void *)hdr + alloc_size > cached) {
409 dev_err(smem->dev, "Out of memory\n");
410 return -ENOSPC;
411 }
412
413 hdr->canary = SMEM_PRIVATE_CANARY;
414 hdr->item = cpu_to_le16(item);
415 hdr->size = cpu_to_le32(ALIGN(size, 8));
416 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
417 hdr->padding_hdr = 0;
418
419 /*
420 * Ensure the header is written before we advance the free offset, so
421 * that remote processors that does not take the remote spinlock still
422 * gets a consistent view of the linked list.
423 */
424 wmb();
425 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
426
427 return 0;
428 bad_canary:
429 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
430 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
431
432 return -EINVAL;
433 }
434
qcom_smem_alloc_global(struct qcom_smem * smem,unsigned item,size_t size)435 static int qcom_smem_alloc_global(struct qcom_smem *smem,
436 unsigned item,
437 size_t size)
438 {
439 struct smem_global_entry *entry;
440 struct smem_header *header;
441
442 header = smem->regions[0].virt_base;
443 entry = &header->toc[item];
444 if (entry->allocated)
445 return -EEXIST;
446
447 size = ALIGN(size, 8);
448 if (WARN_ON(size > le32_to_cpu(header->available)))
449 return -ENOMEM;
450
451 entry->offset = header->free_offset;
452 entry->size = cpu_to_le32(size);
453
454 /*
455 * Ensure the header is consistent before we mark the item allocated,
456 * so that remote processors will get a consistent view of the item
457 * even though they do not take the spinlock on read.
458 */
459 wmb();
460 entry->allocated = cpu_to_le32(1);
461
462 le32_add_cpu(&header->free_offset, size);
463 le32_add_cpu(&header->available, -size);
464
465 return 0;
466 }
467
468 /**
469 * qcom_smem_alloc() - allocate space for a smem item
470 * @host: remote processor id, or -1
471 * @item: smem item handle
472 * @size: number of bytes to be allocated
473 *
474 * Allocate space for a given smem item of size @size, given that the item is
475 * not yet allocated.
476 */
qcom_smem_alloc(unsigned host,unsigned item,size_t size)477 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
478 {
479 struct smem_partition *part;
480 unsigned long flags;
481 int ret;
482
483 if (!__smem)
484 return -EPROBE_DEFER;
485
486 if (item < SMEM_ITEM_LAST_FIXED) {
487 dev_err(__smem->dev,
488 "Rejecting allocation of static entry %d\n", item);
489 return -EINVAL;
490 }
491
492 if (WARN_ON(item >= __smem->item_count))
493 return -EINVAL;
494
495 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
496 HWSPINLOCK_TIMEOUT,
497 &flags);
498 if (ret)
499 return ret;
500
501 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
502 part = &__smem->partitions[host];
503 ret = qcom_smem_alloc_private(__smem, part, item, size);
504 } else if (__smem->global_partition.virt_base) {
505 part = &__smem->global_partition;
506 ret = qcom_smem_alloc_private(__smem, part, item, size);
507 } else {
508 ret = qcom_smem_alloc_global(__smem, item, size);
509 }
510
511 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
512
513 return ret;
514 }
515 EXPORT_SYMBOL_GPL(qcom_smem_alloc);
516
qcom_smem_get_global(struct qcom_smem * smem,unsigned item,size_t * size)517 static void *qcom_smem_get_global(struct qcom_smem *smem,
518 unsigned item,
519 size_t *size)
520 {
521 struct smem_header *header;
522 struct smem_region *region;
523 struct smem_global_entry *entry;
524 u64 entry_offset;
525 u32 e_size;
526 u32 aux_base;
527 unsigned i;
528
529 header = smem->regions[0].virt_base;
530 entry = &header->toc[item];
531 if (!entry->allocated)
532 return ERR_PTR(-ENXIO);
533
534 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
535
536 for (i = 0; i < smem->num_regions; i++) {
537 region = &smem->regions[i];
538
539 if ((u32)region->aux_base == aux_base || !aux_base) {
540 e_size = le32_to_cpu(entry->size);
541 entry_offset = le32_to_cpu(entry->offset);
542
543 if (WARN_ON(e_size + entry_offset > region->size))
544 return ERR_PTR(-EINVAL);
545
546 if (size != NULL)
547 *size = e_size;
548
549 return region->virt_base + entry_offset;
550 }
551 }
552
553 return ERR_PTR(-ENOENT);
554 }
555
qcom_smem_get_private(struct qcom_smem * smem,struct smem_partition * part,unsigned item,size_t * size)556 static void *qcom_smem_get_private(struct qcom_smem *smem,
557 struct smem_partition *part,
558 unsigned item,
559 size_t *size)
560 {
561 struct smem_private_entry *e, *end;
562 struct smem_partition_header *phdr;
563 void *item_ptr, *p_end;
564 u32 padding_data;
565 u32 e_size;
566
567 phdr = (struct smem_partition_header __force *)part->virt_base;
568 p_end = (void *)phdr + part->size;
569
570 e = phdr_to_first_uncached_entry(phdr);
571 end = phdr_to_last_uncached_entry(phdr);
572
573 while (e < end) {
574 if (e->canary != SMEM_PRIVATE_CANARY)
575 goto invalid_canary;
576
577 if (le16_to_cpu(e->item) == item) {
578 if (size != NULL) {
579 e_size = le32_to_cpu(e->size);
580 padding_data = le16_to_cpu(e->padding_data);
581
582 if (WARN_ON(e_size > part->size || padding_data > e_size))
583 return ERR_PTR(-EINVAL);
584
585 *size = e_size - padding_data;
586 }
587
588 item_ptr = uncached_entry_to_item(e);
589 if (WARN_ON(item_ptr > p_end))
590 return ERR_PTR(-EINVAL);
591
592 return item_ptr;
593 }
594
595 e = uncached_entry_next(e);
596 }
597
598 if (WARN_ON((void *)e > p_end))
599 return ERR_PTR(-EINVAL);
600
601 /* Item was not found in the uncached list, search the cached list */
602
603 e = phdr_to_first_cached_entry(phdr, part->cacheline);
604 end = phdr_to_last_cached_entry(phdr);
605
606 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
607 return ERR_PTR(-EINVAL);
608
609 while (e > end) {
610 if (e->canary != SMEM_PRIVATE_CANARY)
611 goto invalid_canary;
612
613 if (le16_to_cpu(e->item) == item) {
614 if (size != NULL) {
615 e_size = le32_to_cpu(e->size);
616 padding_data = le16_to_cpu(e->padding_data);
617
618 if (WARN_ON(e_size > part->size || padding_data > e_size))
619 return ERR_PTR(-EINVAL);
620
621 *size = e_size - padding_data;
622 }
623
624 item_ptr = cached_entry_to_item(e);
625 if (WARN_ON(item_ptr < (void *)phdr))
626 return ERR_PTR(-EINVAL);
627
628 return item_ptr;
629 }
630
631 e = cached_entry_next(e, part->cacheline);
632 }
633
634 if (WARN_ON((void *)e < (void *)phdr))
635 return ERR_PTR(-EINVAL);
636
637 return ERR_PTR(-ENOENT);
638
639 invalid_canary:
640 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
641 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
642
643 return ERR_PTR(-EINVAL);
644 }
645
646 /**
647 * qcom_smem_get() - resolve ptr of size of a smem item
648 * @host: the remote processor, or -1
649 * @item: smem item handle
650 * @size: pointer to be filled out with size of the item
651 *
652 * Looks up smem item and returns pointer to it. Size of smem
653 * item is returned in @size.
654 */
qcom_smem_get(unsigned host,unsigned item,size_t * size)655 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
656 {
657 struct smem_partition *part;
658 unsigned long flags;
659 int ret;
660 void *ptr = ERR_PTR(-EPROBE_DEFER);
661
662 if (!__smem)
663 return ptr;
664
665 if (WARN_ON(item >= __smem->item_count))
666 return ERR_PTR(-EINVAL);
667
668 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
669 HWSPINLOCK_TIMEOUT,
670 &flags);
671 if (ret)
672 return ERR_PTR(ret);
673
674 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
675 part = &__smem->partitions[host];
676 ptr = qcom_smem_get_private(__smem, part, item, size);
677 } else if (__smem->global_partition.virt_base) {
678 part = &__smem->global_partition;
679 ptr = qcom_smem_get_private(__smem, part, item, size);
680 } else {
681 ptr = qcom_smem_get_global(__smem, item, size);
682 }
683
684 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
685
686 return ptr;
687
688 }
689 EXPORT_SYMBOL_GPL(qcom_smem_get);
690
691 /**
692 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
693 * @host: the remote processor identifying a partition, or -1
694 *
695 * To be used by smem clients as a quick way to determine if any new
696 * allocations has been made.
697 */
qcom_smem_get_free_space(unsigned host)698 int qcom_smem_get_free_space(unsigned host)
699 {
700 struct smem_partition *part;
701 struct smem_partition_header *phdr;
702 struct smem_header *header;
703 unsigned ret;
704
705 if (!__smem)
706 return -EPROBE_DEFER;
707
708 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
709 part = &__smem->partitions[host];
710 phdr = part->virt_base;
711 ret = le32_to_cpu(phdr->offset_free_cached) -
712 le32_to_cpu(phdr->offset_free_uncached);
713
714 if (ret > le32_to_cpu(part->size))
715 return -EINVAL;
716 } else if (__smem->global_partition.virt_base) {
717 part = &__smem->global_partition;
718 phdr = part->virt_base;
719 ret = le32_to_cpu(phdr->offset_free_cached) -
720 le32_to_cpu(phdr->offset_free_uncached);
721
722 if (ret > le32_to_cpu(part->size))
723 return -EINVAL;
724 } else {
725 header = __smem->regions[0].virt_base;
726 ret = le32_to_cpu(header->available);
727
728 if (ret > __smem->regions[0].size)
729 return -EINVAL;
730 }
731
732 return ret;
733 }
734 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
735
addr_in_range(void __iomem * base,size_t size,void * addr)736 static bool addr_in_range(void __iomem *base, size_t size, void *addr)
737 {
738 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
739 }
740
741 /**
742 * qcom_smem_virt_to_phys() - return the physical address associated
743 * with an smem item pointer (previously returned by qcom_smem_get()
744 * @p: the virtual address to convert
745 *
746 * Returns 0 if the pointer provided is not within any smem region.
747 */
qcom_smem_virt_to_phys(void * p)748 phys_addr_t qcom_smem_virt_to_phys(void *p)
749 {
750 struct smem_partition *part;
751 struct smem_region *area;
752 u64 offset;
753 u32 i;
754
755 for (i = 0; i < SMEM_HOST_COUNT; i++) {
756 part = &__smem->partitions[i];
757
758 if (addr_in_range(part->virt_base, part->size, p)) {
759 offset = p - part->virt_base;
760
761 return (phys_addr_t)part->phys_base + offset;
762 }
763 }
764
765 part = &__smem->global_partition;
766
767 if (addr_in_range(part->virt_base, part->size, p)) {
768 offset = p - part->virt_base;
769
770 return (phys_addr_t)part->phys_base + offset;
771 }
772
773 for (i = 0; i < __smem->num_regions; i++) {
774 area = &__smem->regions[i];
775
776 if (addr_in_range(area->virt_base, area->size, p)) {
777 offset = p - area->virt_base;
778
779 return (phys_addr_t)area->aux_base + offset;
780 }
781 }
782
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
786
787 /**
788 * qcom_smem_get_soc_id() - return the SoC ID
789 * @id: On success, we return the SoC ID here.
790 *
791 * Look up SoC ID from HW/SW build ID and return it.
792 *
793 * Return: 0 on success, negative errno on failure.
794 */
qcom_smem_get_soc_id(u32 * id)795 int qcom_smem_get_soc_id(u32 *id)
796 {
797 struct socinfo *info;
798
799 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
800 if (IS_ERR(info))
801 return PTR_ERR(info);
802
803 *id = __le32_to_cpu(info->id);
804
805 return 0;
806 }
807 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
808
qcom_smem_get_sbl_version(struct qcom_smem * smem)809 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
810 {
811 struct smem_header *header;
812 __le32 *versions;
813
814 header = smem->regions[0].virt_base;
815 versions = header->version;
816
817 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
818 }
819
qcom_smem_get_ptable(struct qcom_smem * smem)820 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
821 {
822 struct smem_ptable *ptable;
823 u32 version;
824
825 ptable = smem->ptable;
826 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
827 return ERR_PTR(-ENOENT);
828
829 version = le32_to_cpu(ptable->version);
830 if (version != 1) {
831 dev_err(smem->dev,
832 "Unsupported partition header version %d\n", version);
833 return ERR_PTR(-EINVAL);
834 }
835 return ptable;
836 }
837
qcom_smem_get_item_count(struct qcom_smem * smem)838 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
839 {
840 struct smem_ptable *ptable;
841 struct smem_info *info;
842
843 ptable = qcom_smem_get_ptable(smem);
844 if (IS_ERR_OR_NULL(ptable))
845 return SMEM_ITEM_COUNT;
846
847 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
848 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
849 return SMEM_ITEM_COUNT;
850
851 return le16_to_cpu(info->num_items);
852 }
853
854 /*
855 * Validate the partition header for a partition whose partition
856 * table entry is supplied. Returns a pointer to its header if
857 * valid, or a null pointer otherwise.
858 */
859 static struct smem_partition_header *
qcom_smem_partition_header(struct qcom_smem * smem,struct smem_ptable_entry * entry,u16 host0,u16 host1)860 qcom_smem_partition_header(struct qcom_smem *smem,
861 struct smem_ptable_entry *entry, u16 host0, u16 host1)
862 {
863 struct smem_partition_header *header;
864 u32 phys_addr;
865 u32 size;
866
867 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
868 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
869
870 if (!header)
871 return NULL;
872
873 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
874 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
875 return NULL;
876 }
877
878 if (host0 != le16_to_cpu(header->host0)) {
879 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
880 host0, le16_to_cpu(header->host0));
881 return NULL;
882 }
883 if (host1 != le16_to_cpu(header->host1)) {
884 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
885 host1, le16_to_cpu(header->host1));
886 return NULL;
887 }
888
889 size = le32_to_cpu(header->size);
890 if (size != le32_to_cpu(entry->size)) {
891 dev_err(smem->dev, "bad partition size (%u != %u)\n",
892 size, le32_to_cpu(entry->size));
893 return NULL;
894 }
895
896 if (le32_to_cpu(header->offset_free_uncached) > size) {
897 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
898 le32_to_cpu(header->offset_free_uncached), size);
899 return NULL;
900 }
901
902 return header;
903 }
904
qcom_smem_set_global_partition(struct qcom_smem * smem)905 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
906 {
907 struct smem_partition_header *header;
908 struct smem_ptable_entry *entry;
909 struct smem_ptable *ptable;
910 bool found = false;
911 int i;
912
913 if (smem->global_partition.virt_base) {
914 dev_err(smem->dev, "Already found the global partition\n");
915 return -EINVAL;
916 }
917
918 ptable = qcom_smem_get_ptable(smem);
919 if (IS_ERR(ptable))
920 return PTR_ERR(ptable);
921
922 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
923 entry = &ptable->entry[i];
924 if (!le32_to_cpu(entry->offset))
925 continue;
926 if (!le32_to_cpu(entry->size))
927 continue;
928
929 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
930 continue;
931
932 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
933 found = true;
934 break;
935 }
936 }
937
938 if (!found) {
939 dev_err(smem->dev, "Missing entry for global partition\n");
940 return -EINVAL;
941 }
942
943 header = qcom_smem_partition_header(smem, entry,
944 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
945 if (!header)
946 return -EINVAL;
947
948 smem->global_partition.virt_base = (void __iomem *)header;
949 smem->global_partition.phys_base = smem->regions[0].aux_base +
950 le32_to_cpu(entry->offset);
951 smem->global_partition.size = le32_to_cpu(entry->size);
952 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
953
954 return 0;
955 }
956
957 static int
qcom_smem_enumerate_partitions(struct qcom_smem * smem,u16 local_host)958 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
959 {
960 struct smem_partition_header *header;
961 struct smem_ptable_entry *entry;
962 struct smem_ptable *ptable;
963 u16 remote_host;
964 u16 host0, host1;
965 int i;
966
967 ptable = qcom_smem_get_ptable(smem);
968 if (IS_ERR(ptable))
969 return PTR_ERR(ptable);
970
971 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
972 entry = &ptable->entry[i];
973 if (!le32_to_cpu(entry->offset))
974 continue;
975 if (!le32_to_cpu(entry->size))
976 continue;
977
978 host0 = le16_to_cpu(entry->host0);
979 host1 = le16_to_cpu(entry->host1);
980 if (host0 == local_host)
981 remote_host = host1;
982 else if (host1 == local_host)
983 remote_host = host0;
984 else
985 continue;
986
987 if (remote_host >= SMEM_HOST_COUNT) {
988 dev_err(smem->dev, "bad host %u\n", remote_host);
989 return -EINVAL;
990 }
991
992 if (smem->partitions[remote_host].virt_base) {
993 dev_err(smem->dev, "duplicate host %u\n", remote_host);
994 return -EINVAL;
995 }
996
997 header = qcom_smem_partition_header(smem, entry, host0, host1);
998 if (!header)
999 return -EINVAL;
1000
1001 smem->partitions[remote_host].virt_base = (void __iomem *)header;
1002 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
1003 le32_to_cpu(entry->offset);
1004 smem->partitions[remote_host].size = le32_to_cpu(entry->size);
1005 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
1006 }
1007
1008 return 0;
1009 }
1010
qcom_smem_map_toc(struct qcom_smem * smem,struct smem_region * region)1011 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1012 {
1013 u32 ptable_start;
1014
1015 /* map starting 4K for smem header */
1016 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
1017 ptable_start = region->aux_base + region->size - SZ_4K;
1018 /* map last 4k for toc */
1019 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
1020
1021 if (!region->virt_base || !smem->ptable)
1022 return -ENOMEM;
1023
1024 return 0;
1025 }
1026
qcom_smem_map_global(struct qcom_smem * smem,u32 size)1027 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1028 {
1029 u32 phys_addr;
1030
1031 phys_addr = smem->regions[0].aux_base;
1032
1033 smem->regions[0].size = size;
1034 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1035
1036 if (!smem->regions[0].virt_base)
1037 return -ENOMEM;
1038
1039 return 0;
1040 }
1041
qcom_smem_resolve_mem(struct qcom_smem * smem,const char * name,struct smem_region * region)1042 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1043 struct smem_region *region)
1044 {
1045 struct device *dev = smem->dev;
1046 struct device_node *np;
1047 struct resource r;
1048 int ret;
1049
1050 np = of_parse_phandle(dev->of_node, name, 0);
1051 if (!np) {
1052 dev_err(dev, "No %s specified\n", name);
1053 return -EINVAL;
1054 }
1055
1056 ret = of_address_to_resource(np, 0, &r);
1057 of_node_put(np);
1058 if (ret)
1059 return ret;
1060
1061 region->aux_base = r.start;
1062 region->size = resource_size(&r);
1063
1064 return 0;
1065 }
1066
qcom_smem_probe(struct platform_device * pdev)1067 static int qcom_smem_probe(struct platform_device *pdev)
1068 {
1069 struct smem_header *header;
1070 struct reserved_mem *rmem;
1071 struct qcom_smem *smem;
1072 unsigned long flags;
1073 int num_regions;
1074 int hwlock_id;
1075 u32 version;
1076 u32 size;
1077 int ret;
1078 int i;
1079
1080 num_regions = 1;
1081 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
1082 num_regions++;
1083
1084 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions),
1085 GFP_KERNEL);
1086 if (!smem)
1087 return -ENOMEM;
1088
1089 smem->dev = &pdev->dev;
1090 smem->num_regions = num_regions;
1091
1092 rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1093 if (rmem) {
1094 smem->regions[0].aux_base = rmem->base;
1095 smem->regions[0].size = rmem->size;
1096 } else {
1097 /*
1098 * Fall back to the memory-region reference, if we're not a
1099 * reserved-memory node.
1100 */
1101 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1102 if (ret)
1103 return ret;
1104 }
1105
1106 if (num_regions > 1) {
1107 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1108 if (ret)
1109 return ret;
1110 }
1111
1112
1113 ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1114 if (ret)
1115 return ret;
1116
1117 for (i = 1; i < num_regions; i++) {
1118 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1119 smem->regions[i].aux_base,
1120 smem->regions[i].size);
1121 if (!smem->regions[i].virt_base) {
1122 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1123 return -ENOMEM;
1124 }
1125 }
1126
1127 header = smem->regions[0].virt_base;
1128 if (le32_to_cpu(header->initialized) != 1 ||
1129 le32_to_cpu(header->reserved)) {
1130 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1131 return -EINVAL;
1132 }
1133
1134 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1135 if (hwlock_id < 0) {
1136 if (hwlock_id != -EPROBE_DEFER)
1137 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1138 return hwlock_id;
1139 }
1140
1141 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1142 if (!smem->hwlock)
1143 return -ENXIO;
1144
1145 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1146 if (ret)
1147 return ret;
1148 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1149 hwspin_unlock_irqrestore(smem->hwlock, &flags);
1150
1151 version = qcom_smem_get_sbl_version(smem);
1152 /*
1153 * smem header mapping is required only in heap version scheme, so unmap
1154 * it here. It will be remapped in qcom_smem_map_global() when whole
1155 * partition is mapped again.
1156 */
1157 devm_iounmap(smem->dev, smem->regions[0].virt_base);
1158 switch (version >> 16) {
1159 case SMEM_GLOBAL_PART_VERSION:
1160 ret = qcom_smem_set_global_partition(smem);
1161 if (ret < 0)
1162 return ret;
1163 smem->item_count = qcom_smem_get_item_count(smem);
1164 break;
1165 case SMEM_GLOBAL_HEAP_VERSION:
1166 qcom_smem_map_global(smem, size);
1167 smem->item_count = SMEM_ITEM_COUNT;
1168 break;
1169 default:
1170 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1171 return -EINVAL;
1172 }
1173
1174 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1175 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1176 if (ret < 0 && ret != -ENOENT)
1177 return ret;
1178
1179 __smem = smem;
1180
1181 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1182 PLATFORM_DEVID_NONE, NULL,
1183 0);
1184 if (IS_ERR(smem->socinfo))
1185 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1186
1187 return 0;
1188 }
1189
qcom_smem_remove(struct platform_device * pdev)1190 static int qcom_smem_remove(struct platform_device *pdev)
1191 {
1192 platform_device_unregister(__smem->socinfo);
1193
1194 hwspin_lock_free(__smem->hwlock);
1195 __smem = NULL;
1196
1197 return 0;
1198 }
1199
1200 static const struct of_device_id qcom_smem_of_match[] = {
1201 { .compatible = "qcom,smem" },
1202 {}
1203 };
1204 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1205
1206 static struct platform_driver qcom_smem_driver = {
1207 .probe = qcom_smem_probe,
1208 .remove = qcom_smem_remove,
1209 .driver = {
1210 .name = "qcom-smem",
1211 .of_match_table = qcom_smem_of_match,
1212 .suppress_bind_attrs = true,
1213 },
1214 };
1215
qcom_smem_init(void)1216 static int __init qcom_smem_init(void)
1217 {
1218 return platform_driver_register(&qcom_smem_driver);
1219 }
1220 arch_initcall(qcom_smem_init);
1221
qcom_smem_exit(void)1222 static void __exit qcom_smem_exit(void)
1223 {
1224 platform_driver_unregister(&qcom_smem_driver);
1225 }
1226 module_exit(qcom_smem_exit)
1227
1228 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1229 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1230 MODULE_LICENSE("GPL v2");
1231