1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ARMv8 PMUv3 Performance Events handling code.
4 *
5 * Copyright (C) 2012 ARM Limited
6 * Author: Will Deacon <will.deacon@arm.com>
7 *
8 * This code is based heavily on the ARMv7 perf event code.
9 */
10
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14
15 #include <clocksource/arm_arch_timer.h>
16
17 #include <linux/acpi.h>
18 #include <linux/clocksource.h>
19 #include <linux/of.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/perf/arm_pmuv3.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched_clock.h>
24 #include <linux/smp.h>
25 #include <linux/nmi.h>
26
27 #include <asm/arm_pmuv3.h>
28
29 /* ARMv8 Cortex-A53 specific event types. */
30 #define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2
31
32 /* ARMv8 Cavium ThunderX specific event types. */
33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA
35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB
36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC
37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED
38
39 /*
40 * ARMv8 Architectural defined events, not all of these may
41 * be supported on any given implementation. Unsupported events will
42 * be disabled at run-time based on the PMCEID registers.
43 */
44 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
45 PERF_MAP_ALL_UNSUPPORTED,
46 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
47 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED,
48 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
49 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
50 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
51 [PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
52 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
53 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
54 };
55
56 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
59 PERF_CACHE_MAP_ALL_UNSUPPORTED,
60
61 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
62 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
63
64 [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE,
65 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
66
67 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
68 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB,
69
70 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
71 [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB,
72
73 [C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
74 [C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
75
76 [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED,
77 [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
78 };
79
80 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
81 [PERF_COUNT_HW_CACHE_OP_MAX]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
83 PERF_CACHE_MAP_ALL_UNSUPPORTED,
84
85 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
86
87 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
88 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
89 };
90
91 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
92 [PERF_COUNT_HW_CACHE_OP_MAX]
93 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
94 PERF_CACHE_MAP_ALL_UNSUPPORTED,
95
96 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
97 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
98 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
99 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
100
101 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
102 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
103
104 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
105 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
106 };
107
108 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
109 [PERF_COUNT_HW_CACHE_OP_MAX]
110 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
111 PERF_CACHE_MAP_ALL_UNSUPPORTED,
112
113 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
114 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
115 };
116
117 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
118 [PERF_COUNT_HW_CACHE_OP_MAX]
119 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
120 PERF_CACHE_MAP_ALL_UNSUPPORTED,
121
122 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
123 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
124 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
125 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
126 [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
127 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
128
129 [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
130 [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
131
132 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
133 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
134 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
135 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
136 };
137
138 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
139 [PERF_COUNT_HW_CACHE_OP_MAX]
140 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
141 PERF_CACHE_MAP_ALL_UNSUPPORTED,
142
143 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
144 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
145 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
146 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
147
148 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
149 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
150 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
151 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
152
153 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
154 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
155 };
156
157 static ssize_t
armv8pmu_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)158 armv8pmu_events_sysfs_show(struct device *dev,
159 struct device_attribute *attr, char *page)
160 {
161 struct perf_pmu_events_attr *pmu_attr;
162
163 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
164
165 return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
166 }
167
168 #define ARMV8_EVENT_ATTR(name, config) \
169 PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
170
171 static struct attribute *armv8_pmuv3_event_attrs[] = {
172 ARMV8_EVENT_ATTR(sw_incr, ARMV8_PMUV3_PERFCTR_SW_INCR),
173 ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
174 ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
175 ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
176 ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
177 ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
178 ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
179 ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
180 ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
181 ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
182 ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
183 ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
184 ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
185 ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
186 ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
187 ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
188 ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
189 ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
190 ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
191 ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
192 ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
193 ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
194 ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
195 ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
196 ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
197 ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
198 ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
199 ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
200 ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
201 ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
202 /* Don't expose the chain event in /sys, since it's useless in isolation */
203 ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
204 ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
205 ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
206 ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
207 ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
208 ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
209 ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
210 ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
211 ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
212 ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
213 ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
214 ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
215 ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
216 ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
217 ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
218 ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
219 ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
220 ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
221 ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
222 ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
223 ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
224 ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
225 ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
226 ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
227 ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
228 ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
229 ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
230 ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
231 ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
232 ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
233 ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
234 ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
235 ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
236 ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
237 ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
238 ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
239 ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
240 ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
241 ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
242 ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
243 ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
244 ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
245 ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
246 ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
247 ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
248 ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
249 ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
250 ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
251 ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
252 ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
253 ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
254 ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
255 ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
256 ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
257 ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
258 ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
259 ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
260 ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
261 ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
262 NULL,
263 };
264
265 static umode_t
armv8pmu_event_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)266 armv8pmu_event_attr_is_visible(struct kobject *kobj,
267 struct attribute *attr, int unused)
268 {
269 struct device *dev = kobj_to_dev(kobj);
270 struct pmu *pmu = dev_get_drvdata(dev);
271 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
272 struct perf_pmu_events_attr *pmu_attr;
273
274 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
275
276 if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
277 test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
278 return attr->mode;
279
280 if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
281 u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
282
283 if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
284 test_bit(id, cpu_pmu->pmceid_ext_bitmap))
285 return attr->mode;
286 }
287
288 return 0;
289 }
290
291 static const struct attribute_group armv8_pmuv3_events_attr_group = {
292 .name = "events",
293 .attrs = armv8_pmuv3_event_attrs,
294 .is_visible = armv8pmu_event_attr_is_visible,
295 };
296
297 PMU_FORMAT_ATTR(event, "config:0-15");
298 PMU_FORMAT_ATTR(long, "config1:0");
299 PMU_FORMAT_ATTR(rdpmc, "config1:1");
300
301 static int sysctl_perf_user_access __read_mostly;
302
armv8pmu_event_is_64bit(struct perf_event * event)303 static inline bool armv8pmu_event_is_64bit(struct perf_event *event)
304 {
305 return event->attr.config1 & 0x1;
306 }
307
armv8pmu_event_want_user_access(struct perf_event * event)308 static inline bool armv8pmu_event_want_user_access(struct perf_event *event)
309 {
310 return event->attr.config1 & 0x2;
311 }
312
313 static struct attribute *armv8_pmuv3_format_attrs[] = {
314 &format_attr_event.attr,
315 &format_attr_long.attr,
316 &format_attr_rdpmc.attr,
317 NULL,
318 };
319
320 static const struct attribute_group armv8_pmuv3_format_attr_group = {
321 .name = "format",
322 .attrs = armv8_pmuv3_format_attrs,
323 };
324
slots_show(struct device * dev,struct device_attribute * attr,char * page)325 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
326 char *page)
327 {
328 struct pmu *pmu = dev_get_drvdata(dev);
329 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
330 u32 slots = cpu_pmu->reg_pmmir & ARMV8_PMU_SLOTS_MASK;
331
332 return sysfs_emit(page, "0x%08x\n", slots);
333 }
334
335 static DEVICE_ATTR_RO(slots);
336
bus_slots_show(struct device * dev,struct device_attribute * attr,char * page)337 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
338 char *page)
339 {
340 struct pmu *pmu = dev_get_drvdata(dev);
341 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
342 u32 bus_slots = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_SLOTS_SHIFT)
343 & ARMV8_PMU_BUS_SLOTS_MASK;
344
345 return sysfs_emit(page, "0x%08x\n", bus_slots);
346 }
347
348 static DEVICE_ATTR_RO(bus_slots);
349
bus_width_show(struct device * dev,struct device_attribute * attr,char * page)350 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
351 char *page)
352 {
353 struct pmu *pmu = dev_get_drvdata(dev);
354 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
355 u32 bus_width = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_WIDTH_SHIFT)
356 & ARMV8_PMU_BUS_WIDTH_MASK;
357 u32 val = 0;
358
359 /* Encoded as Log2(number of bytes), plus one */
360 if (bus_width > 2 && bus_width < 13)
361 val = 1 << (bus_width - 1);
362
363 return sysfs_emit(page, "0x%08x\n", val);
364 }
365
366 static DEVICE_ATTR_RO(bus_width);
367
368 static struct attribute *armv8_pmuv3_caps_attrs[] = {
369 &dev_attr_slots.attr,
370 &dev_attr_bus_slots.attr,
371 &dev_attr_bus_width.attr,
372 NULL,
373 };
374
375 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
376 .name = "caps",
377 .attrs = armv8_pmuv3_caps_attrs,
378 };
379
380 /*
381 * Perf Events' indices
382 */
383 #define ARMV8_IDX_CYCLE_COUNTER 0
384 #define ARMV8_IDX_COUNTER0 1
385 #define ARMV8_IDX_CYCLE_COUNTER_USER 32
386
387 /*
388 * We unconditionally enable ARMv8.5-PMU long event counter support
389 * (64-bit events) where supported. Indicate if this arm_pmu has long
390 * event counter support.
391 *
392 * On AArch32, long counters make no sense (you can't access the top
393 * bits), so we only enable this on AArch64.
394 */
armv8pmu_has_long_event(struct arm_pmu * cpu_pmu)395 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
396 {
397 return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
398 }
399
armv8pmu_event_has_user_read(struct perf_event * event)400 static inline bool armv8pmu_event_has_user_read(struct perf_event *event)
401 {
402 return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
403 }
404
405 /*
406 * We must chain two programmable counters for 64 bit events,
407 * except when we have allocated the 64bit cycle counter (for CPU
408 * cycles event) or when user space counter access is enabled.
409 */
armv8pmu_event_is_chained(struct perf_event * event)410 static inline bool armv8pmu_event_is_chained(struct perf_event *event)
411 {
412 int idx = event->hw.idx;
413 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
414
415 return !armv8pmu_event_has_user_read(event) &&
416 armv8pmu_event_is_64bit(event) &&
417 !armv8pmu_has_long_event(cpu_pmu) &&
418 (idx != ARMV8_IDX_CYCLE_COUNTER);
419 }
420
421 /*
422 * ARMv8 low level PMU access
423 */
424
425 /*
426 * Perf Event to low level counters mapping
427 */
428 #define ARMV8_IDX_TO_COUNTER(x) \
429 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
430
armv8pmu_pmcr_read(void)431 static inline u32 armv8pmu_pmcr_read(void)
432 {
433 return read_pmcr();
434 }
435
armv8pmu_pmcr_write(u32 val)436 static inline void armv8pmu_pmcr_write(u32 val)
437 {
438 val &= ARMV8_PMU_PMCR_MASK;
439 isb();
440 write_pmcr(val);
441 }
442
armv8pmu_has_overflowed(u32 pmovsr)443 static inline int armv8pmu_has_overflowed(u32 pmovsr)
444 {
445 return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
446 }
447
armv8pmu_counter_has_overflowed(u32 pmnc,int idx)448 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
449 {
450 return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
451 }
452
armv8pmu_read_evcntr(int idx)453 static inline u64 armv8pmu_read_evcntr(int idx)
454 {
455 u32 counter = ARMV8_IDX_TO_COUNTER(idx);
456
457 return read_pmevcntrn(counter);
458 }
459
armv8pmu_read_hw_counter(struct perf_event * event)460 static inline u64 armv8pmu_read_hw_counter(struct perf_event *event)
461 {
462 int idx = event->hw.idx;
463 u64 val = armv8pmu_read_evcntr(idx);
464
465 if (armv8pmu_event_is_chained(event))
466 val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
467 return val;
468 }
469
470 /*
471 * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
472 * is set the event counters also become 64-bit counters. Unless the
473 * user has requested a long counter (attr.config1) then we want to
474 * interrupt upon 32-bit overflow - we achieve this by applying a bias.
475 */
armv8pmu_event_needs_bias(struct perf_event * event)476 static bool armv8pmu_event_needs_bias(struct perf_event *event)
477 {
478 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
479 struct hw_perf_event *hwc = &event->hw;
480 int idx = hwc->idx;
481
482 if (armv8pmu_event_is_64bit(event))
483 return false;
484
485 if (armv8pmu_has_long_event(cpu_pmu) ||
486 idx == ARMV8_IDX_CYCLE_COUNTER)
487 return true;
488
489 return false;
490 }
491
armv8pmu_bias_long_counter(struct perf_event * event,u64 value)492 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
493 {
494 if (armv8pmu_event_needs_bias(event))
495 value |= GENMASK_ULL(63, 32);
496
497 return value;
498 }
499
armv8pmu_unbias_long_counter(struct perf_event * event,u64 value)500 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
501 {
502 if (armv8pmu_event_needs_bias(event))
503 value &= ~GENMASK_ULL(63, 32);
504
505 return value;
506 }
507
armv8pmu_read_counter(struct perf_event * event)508 static u64 armv8pmu_read_counter(struct perf_event *event)
509 {
510 struct hw_perf_event *hwc = &event->hw;
511 int idx = hwc->idx;
512 u64 value;
513
514 if (idx == ARMV8_IDX_CYCLE_COUNTER)
515 value = read_pmccntr();
516 else
517 value = armv8pmu_read_hw_counter(event);
518
519 return armv8pmu_unbias_long_counter(event, value);
520 }
521
armv8pmu_write_evcntr(int idx,u64 value)522 static inline void armv8pmu_write_evcntr(int idx, u64 value)
523 {
524 u32 counter = ARMV8_IDX_TO_COUNTER(idx);
525
526 write_pmevcntrn(counter, value);
527 }
528
armv8pmu_write_hw_counter(struct perf_event * event,u64 value)529 static inline void armv8pmu_write_hw_counter(struct perf_event *event,
530 u64 value)
531 {
532 int idx = event->hw.idx;
533
534 if (armv8pmu_event_is_chained(event)) {
535 armv8pmu_write_evcntr(idx, upper_32_bits(value));
536 armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
537 } else {
538 armv8pmu_write_evcntr(idx, value);
539 }
540 }
541
armv8pmu_write_counter(struct perf_event * event,u64 value)542 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
543 {
544 struct hw_perf_event *hwc = &event->hw;
545 int idx = hwc->idx;
546
547 value = armv8pmu_bias_long_counter(event, value);
548
549 if (idx == ARMV8_IDX_CYCLE_COUNTER)
550 write_pmccntr(value);
551 else
552 armv8pmu_write_hw_counter(event, value);
553 }
554
armv8pmu_write_evtype(int idx,u32 val)555 static inline void armv8pmu_write_evtype(int idx, u32 val)
556 {
557 u32 counter = ARMV8_IDX_TO_COUNTER(idx);
558
559 val &= ARMV8_PMU_EVTYPE_MASK;
560 write_pmevtypern(counter, val);
561 }
562
armv8pmu_write_event_type(struct perf_event * event)563 static inline void armv8pmu_write_event_type(struct perf_event *event)
564 {
565 struct hw_perf_event *hwc = &event->hw;
566 int idx = hwc->idx;
567
568 /*
569 * For chained events, the low counter is programmed to count
570 * the event of interest and the high counter is programmed
571 * with CHAIN event code with filters set to count at all ELs.
572 */
573 if (armv8pmu_event_is_chained(event)) {
574 u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
575 ARMV8_PMU_INCLUDE_EL2;
576
577 armv8pmu_write_evtype(idx - 1, hwc->config_base);
578 armv8pmu_write_evtype(idx, chain_evt);
579 } else {
580 if (idx == ARMV8_IDX_CYCLE_COUNTER)
581 write_pmccfiltr(hwc->config_base);
582 else
583 armv8pmu_write_evtype(idx, hwc->config_base);
584 }
585 }
586
armv8pmu_event_cnten_mask(struct perf_event * event)587 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
588 {
589 int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
590 u32 mask = BIT(counter);
591
592 if (armv8pmu_event_is_chained(event))
593 mask |= BIT(counter - 1);
594 return mask;
595 }
596
armv8pmu_enable_counter(u32 mask)597 static inline void armv8pmu_enable_counter(u32 mask)
598 {
599 /*
600 * Make sure event configuration register writes are visible before we
601 * enable the counter.
602 * */
603 isb();
604 write_pmcntenset(mask);
605 }
606
armv8pmu_enable_event_counter(struct perf_event * event)607 static inline void armv8pmu_enable_event_counter(struct perf_event *event)
608 {
609 struct perf_event_attr *attr = &event->attr;
610 u32 mask = armv8pmu_event_cnten_mask(event);
611
612 kvm_set_pmu_events(mask, attr);
613
614 /* We rely on the hypervisor switch code to enable guest counters */
615 if (!kvm_pmu_counter_deferred(attr))
616 armv8pmu_enable_counter(mask);
617 }
618
armv8pmu_disable_counter(u32 mask)619 static inline void armv8pmu_disable_counter(u32 mask)
620 {
621 write_pmcntenclr(mask);
622 /*
623 * Make sure the effects of disabling the counter are visible before we
624 * start configuring the event.
625 */
626 isb();
627 }
628
armv8pmu_disable_event_counter(struct perf_event * event)629 static inline void armv8pmu_disable_event_counter(struct perf_event *event)
630 {
631 struct perf_event_attr *attr = &event->attr;
632 u32 mask = armv8pmu_event_cnten_mask(event);
633
634 kvm_clr_pmu_events(mask);
635
636 /* We rely on the hypervisor switch code to disable guest counters */
637 if (!kvm_pmu_counter_deferred(attr))
638 armv8pmu_disable_counter(mask);
639 }
640
armv8pmu_enable_intens(u32 mask)641 static inline void armv8pmu_enable_intens(u32 mask)
642 {
643 write_pmintenset(mask);
644 }
645
armv8pmu_enable_event_irq(struct perf_event * event)646 static inline void armv8pmu_enable_event_irq(struct perf_event *event)
647 {
648 u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
649 armv8pmu_enable_intens(BIT(counter));
650 }
651
armv8pmu_disable_intens(u32 mask)652 static inline void armv8pmu_disable_intens(u32 mask)
653 {
654 write_pmintenclr(mask);
655 isb();
656 /* Clear the overflow flag in case an interrupt is pending. */
657 write_pmovsclr(mask);
658 isb();
659 }
660
armv8pmu_disable_event_irq(struct perf_event * event)661 static inline void armv8pmu_disable_event_irq(struct perf_event *event)
662 {
663 u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
664 armv8pmu_disable_intens(BIT(counter));
665 }
666
armv8pmu_getreset_flags(void)667 static inline u32 armv8pmu_getreset_flags(void)
668 {
669 u32 value;
670
671 /* Read */
672 value = read_pmovsclr();
673
674 /* Write to clear flags */
675 value &= ARMV8_PMU_OVSR_MASK;
676 write_pmovsclr(value);
677
678 return value;
679 }
680
update_pmuserenr(u64 val)681 static void update_pmuserenr(u64 val)
682 {
683 lockdep_assert_irqs_disabled();
684
685 /*
686 * The current PMUSERENR_EL0 value might be the value for the guest.
687 * If that's the case, have KVM keep tracking of the register value
688 * for the host EL0 so that KVM can restore it before returning to
689 * the host EL0. Otherwise, update the register now.
690 */
691 if (kvm_set_pmuserenr(val))
692 return;
693
694 write_pmuserenr(val);
695 }
696
armv8pmu_disable_user_access(void)697 static void armv8pmu_disable_user_access(void)
698 {
699 update_pmuserenr(0);
700 }
701
armv8pmu_enable_user_access(struct arm_pmu * cpu_pmu)702 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
703 {
704 int i;
705 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
706
707 /* Clear any unused counters to avoid leaking their contents */
708 for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
709 if (i == ARMV8_IDX_CYCLE_COUNTER)
710 write_pmccntr(0);
711 else
712 armv8pmu_write_evcntr(i, 0);
713 }
714
715 update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
716 }
717
armv8pmu_enable_event(struct perf_event * event)718 static void armv8pmu_enable_event(struct perf_event *event)
719 {
720 /*
721 * Enable counter and interrupt, and set the counter to count
722 * the event that we're interested in.
723 */
724 armv8pmu_disable_event_counter(event);
725 armv8pmu_write_event_type(event);
726 armv8pmu_enable_event_irq(event);
727 armv8pmu_enable_event_counter(event);
728 }
729
armv8pmu_disable_event(struct perf_event * event)730 static void armv8pmu_disable_event(struct perf_event *event)
731 {
732 armv8pmu_disable_event_counter(event);
733 armv8pmu_disable_event_irq(event);
734 }
735
armv8pmu_start(struct arm_pmu * cpu_pmu)736 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
737 {
738 struct perf_event_context *ctx;
739 int nr_user = 0;
740
741 ctx = perf_cpu_task_ctx();
742 if (ctx)
743 nr_user = ctx->nr_user;
744
745 if (sysctl_perf_user_access && nr_user)
746 armv8pmu_enable_user_access(cpu_pmu);
747 else
748 armv8pmu_disable_user_access();
749
750 /* Enable all counters */
751 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
752
753 kvm_vcpu_pmu_resync_el0();
754 }
755
armv8pmu_stop(struct arm_pmu * cpu_pmu)756 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
757 {
758 /* Disable all counters */
759 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
760 }
761
armv8pmu_handle_irq(struct arm_pmu * cpu_pmu)762 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
763 {
764 u32 pmovsr;
765 struct perf_sample_data data;
766 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
767 struct pt_regs *regs;
768 int idx;
769
770 /*
771 * Get and reset the IRQ flags
772 */
773 pmovsr = armv8pmu_getreset_flags();
774
775 /*
776 * Did an overflow occur?
777 */
778 if (!armv8pmu_has_overflowed(pmovsr))
779 return IRQ_NONE;
780
781 /*
782 * Handle the counter(s) overflow(s)
783 */
784 regs = get_irq_regs();
785
786 /*
787 * Stop the PMU while processing the counter overflows
788 * to prevent skews in group events.
789 */
790 armv8pmu_stop(cpu_pmu);
791 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
792 struct perf_event *event = cpuc->events[idx];
793 struct hw_perf_event *hwc;
794
795 /* Ignore if we don't have an event. */
796 if (!event)
797 continue;
798
799 /*
800 * We have a single interrupt for all counters. Check that
801 * each counter has overflowed before we process it.
802 */
803 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
804 continue;
805
806 hwc = &event->hw;
807 armpmu_event_update(event);
808 perf_sample_data_init(&data, 0, hwc->last_period);
809 if (!armpmu_event_set_period(event))
810 continue;
811
812 /*
813 * Perf event overflow will queue the processing of the event as
814 * an irq_work which will be taken care of in the handling of
815 * IPI_IRQ_WORK.
816 */
817 if (perf_event_overflow(event, &data, regs))
818 cpu_pmu->disable(event);
819 }
820 armv8pmu_start(cpu_pmu);
821
822 return IRQ_HANDLED;
823 }
824
armv8pmu_get_single_idx(struct pmu_hw_events * cpuc,struct arm_pmu * cpu_pmu)825 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
826 struct arm_pmu *cpu_pmu)
827 {
828 int idx;
829
830 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
831 if (!test_and_set_bit(idx, cpuc->used_mask))
832 return idx;
833 }
834 return -EAGAIN;
835 }
836
armv8pmu_get_chain_idx(struct pmu_hw_events * cpuc,struct arm_pmu * cpu_pmu)837 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
838 struct arm_pmu *cpu_pmu)
839 {
840 int idx;
841
842 /*
843 * Chaining requires two consecutive event counters, where
844 * the lower idx must be even.
845 */
846 for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
847 if (!test_and_set_bit(idx, cpuc->used_mask)) {
848 /* Check if the preceding even counter is available */
849 if (!test_and_set_bit(idx - 1, cpuc->used_mask))
850 return idx;
851 /* Release the Odd counter */
852 clear_bit(idx, cpuc->used_mask);
853 }
854 }
855 return -EAGAIN;
856 }
857
armv8pmu_get_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)858 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
859 struct perf_event *event)
860 {
861 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
862 struct hw_perf_event *hwc = &event->hw;
863 unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
864
865 /* Always prefer to place a cycle counter into the cycle counter. */
866 if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
867 if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
868 return ARMV8_IDX_CYCLE_COUNTER;
869 else if (armv8pmu_event_is_64bit(event) &&
870 armv8pmu_event_want_user_access(event) &&
871 !armv8pmu_has_long_event(cpu_pmu))
872 return -EAGAIN;
873 }
874
875 /*
876 * Otherwise use events counters
877 */
878 if (armv8pmu_event_is_chained(event))
879 return armv8pmu_get_chain_idx(cpuc, cpu_pmu);
880 else
881 return armv8pmu_get_single_idx(cpuc, cpu_pmu);
882 }
883
armv8pmu_clear_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)884 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
885 struct perf_event *event)
886 {
887 int idx = event->hw.idx;
888
889 clear_bit(idx, cpuc->used_mask);
890 if (armv8pmu_event_is_chained(event))
891 clear_bit(idx - 1, cpuc->used_mask);
892 }
893
armv8pmu_user_event_idx(struct perf_event * event)894 static int armv8pmu_user_event_idx(struct perf_event *event)
895 {
896 if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
897 return 0;
898
899 /*
900 * We remap the cycle counter index to 32 to
901 * match the offset applied to the rest of
902 * the counter indices.
903 */
904 if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
905 return ARMV8_IDX_CYCLE_COUNTER_USER;
906
907 return event->hw.idx;
908 }
909
910 /*
911 * Add an event filter to a given event.
912 */
armv8pmu_set_event_filter(struct hw_perf_event * event,struct perf_event_attr * attr)913 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
914 struct perf_event_attr *attr)
915 {
916 unsigned long config_base = 0;
917
918 if (attr->exclude_idle)
919 return -EPERM;
920
921 /*
922 * If we're running in hyp mode, then we *are* the hypervisor.
923 * Therefore we ignore exclude_hv in this configuration, since
924 * there's no hypervisor to sample anyway. This is consistent
925 * with other architectures (x86 and Power).
926 */
927 if (is_kernel_in_hyp_mode()) {
928 if (!attr->exclude_kernel && !attr->exclude_host)
929 config_base |= ARMV8_PMU_INCLUDE_EL2;
930 if (attr->exclude_guest)
931 config_base |= ARMV8_PMU_EXCLUDE_EL1;
932 if (attr->exclude_host)
933 config_base |= ARMV8_PMU_EXCLUDE_EL0;
934 } else {
935 if (!attr->exclude_hv && !attr->exclude_host)
936 config_base |= ARMV8_PMU_INCLUDE_EL2;
937 }
938
939 /*
940 * Filter out !VHE kernels and guest kernels
941 */
942 if (attr->exclude_kernel)
943 config_base |= ARMV8_PMU_EXCLUDE_EL1;
944
945 if (attr->exclude_user)
946 config_base |= ARMV8_PMU_EXCLUDE_EL0;
947
948 /*
949 * Install the filter into config_base as this is used to
950 * construct the event type.
951 */
952 event->config_base = config_base;
953
954 return 0;
955 }
956
armv8pmu_reset(void * info)957 static void armv8pmu_reset(void *info)
958 {
959 struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
960 u32 pmcr;
961
962 /* The counter and interrupt enable registers are unknown at reset. */
963 armv8pmu_disable_counter(U32_MAX);
964 armv8pmu_disable_intens(U32_MAX);
965
966 /* Clear the counters we flip at guest entry/exit */
967 kvm_clr_pmu_events(U32_MAX);
968
969 /*
970 * Initialize & Reset PMNC. Request overflow interrupt for
971 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
972 */
973 pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
974
975 /* Enable long event counter support where available */
976 if (armv8pmu_has_long_event(cpu_pmu))
977 pmcr |= ARMV8_PMU_PMCR_LP;
978
979 armv8pmu_pmcr_write(pmcr);
980 }
981
__armv8_pmuv3_map_event_id(struct arm_pmu * armpmu,struct perf_event * event)982 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
983 struct perf_event *event)
984 {
985 if (event->attr.type == PERF_TYPE_HARDWARE &&
986 event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
987
988 if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
989 armpmu->pmceid_bitmap))
990 return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
991
992 if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
993 armpmu->pmceid_bitmap))
994 return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
995
996 return HW_OP_UNSUPPORTED;
997 }
998
999 return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1000 &armv8_pmuv3_perf_cache_map,
1001 ARMV8_PMU_EVTYPE_EVENT);
1002 }
1003
__armv8_pmuv3_map_event(struct perf_event * event,const unsigned (* extra_event_map)[PERF_COUNT_HW_MAX],const unsigned (* extra_cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX])1004 static int __armv8_pmuv3_map_event(struct perf_event *event,
1005 const unsigned (*extra_event_map)
1006 [PERF_COUNT_HW_MAX],
1007 const unsigned (*extra_cache_map)
1008 [PERF_COUNT_HW_CACHE_MAX]
1009 [PERF_COUNT_HW_CACHE_OP_MAX]
1010 [PERF_COUNT_HW_CACHE_RESULT_MAX])
1011 {
1012 int hw_event_id;
1013 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1014
1015 hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1016
1017 /*
1018 * CHAIN events only work when paired with an adjacent counter, and it
1019 * never makes sense for a user to open one in isolation, as they'll be
1020 * rotated arbitrarily.
1021 */
1022 if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1023 return -EINVAL;
1024
1025 if (armv8pmu_event_is_64bit(event))
1026 event->hw.flags |= ARMPMU_EVT_64BIT;
1027
1028 /*
1029 * User events must be allocated into a single counter, and so
1030 * must not be chained.
1031 *
1032 * Most 64-bit events require long counter support, but 64-bit
1033 * CPU_CYCLES events can be placed into the dedicated cycle
1034 * counter when this is free.
1035 */
1036 if (armv8pmu_event_want_user_access(event)) {
1037 if (!(event->attach_state & PERF_ATTACH_TASK))
1038 return -EINVAL;
1039 if (armv8pmu_event_is_64bit(event) &&
1040 (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1041 !armv8pmu_has_long_event(armpmu))
1042 return -EOPNOTSUPP;
1043
1044 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1045 }
1046
1047 /* Only expose micro/arch events supported by this PMU */
1048 if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1049 && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1050 return hw_event_id;
1051 }
1052
1053 return armpmu_map_event(event, extra_event_map, extra_cache_map,
1054 ARMV8_PMU_EVTYPE_EVENT);
1055 }
1056
armv8_pmuv3_map_event(struct perf_event * event)1057 static int armv8_pmuv3_map_event(struct perf_event *event)
1058 {
1059 return __armv8_pmuv3_map_event(event, NULL, NULL);
1060 }
1061
armv8_a53_map_event(struct perf_event * event)1062 static int armv8_a53_map_event(struct perf_event *event)
1063 {
1064 return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1065 }
1066
armv8_a57_map_event(struct perf_event * event)1067 static int armv8_a57_map_event(struct perf_event *event)
1068 {
1069 return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1070 }
1071
armv8_a73_map_event(struct perf_event * event)1072 static int armv8_a73_map_event(struct perf_event *event)
1073 {
1074 return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1075 }
1076
armv8_thunder_map_event(struct perf_event * event)1077 static int armv8_thunder_map_event(struct perf_event *event)
1078 {
1079 return __armv8_pmuv3_map_event(event, NULL,
1080 &armv8_thunder_perf_cache_map);
1081 }
1082
armv8_vulcan_map_event(struct perf_event * event)1083 static int armv8_vulcan_map_event(struct perf_event *event)
1084 {
1085 return __armv8_pmuv3_map_event(event, NULL,
1086 &armv8_vulcan_perf_cache_map);
1087 }
1088
1089 struct armv8pmu_probe_info {
1090 struct arm_pmu *pmu;
1091 bool present;
1092 };
1093
__armv8pmu_probe_pmu(void * info)1094 static void __armv8pmu_probe_pmu(void *info)
1095 {
1096 struct armv8pmu_probe_info *probe = info;
1097 struct arm_pmu *cpu_pmu = probe->pmu;
1098 u64 pmceid_raw[2];
1099 u32 pmceid[2];
1100 int pmuver;
1101
1102 pmuver = read_pmuver();
1103 if (!pmuv3_implemented(pmuver))
1104 return;
1105
1106 cpu_pmu->pmuver = pmuver;
1107 probe->present = true;
1108
1109 /* Read the nb of CNTx counters supported from PMNC */
1110 cpu_pmu->num_events = (armv8pmu_pmcr_read() >> ARMV8_PMU_PMCR_N_SHIFT)
1111 & ARMV8_PMU_PMCR_N_MASK;
1112
1113 /* Add the CPU cycles counter */
1114 cpu_pmu->num_events += 1;
1115
1116 pmceid[0] = pmceid_raw[0] = read_pmceid0();
1117 pmceid[1] = pmceid_raw[1] = read_pmceid1();
1118
1119 bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1120 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1121
1122 pmceid[0] = pmceid_raw[0] >> 32;
1123 pmceid[1] = pmceid_raw[1] >> 32;
1124
1125 bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1126 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1127
1128 /* store PMMIR register for sysfs */
1129 if (is_pmuv3p4(pmuver) && (pmceid_raw[1] & BIT(31)))
1130 cpu_pmu->reg_pmmir = read_pmmir();
1131 else
1132 cpu_pmu->reg_pmmir = 0;
1133 }
1134
armv8pmu_probe_pmu(struct arm_pmu * cpu_pmu)1135 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1136 {
1137 struct armv8pmu_probe_info probe = {
1138 .pmu = cpu_pmu,
1139 .present = false,
1140 };
1141 int ret;
1142
1143 ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1144 __armv8pmu_probe_pmu,
1145 &probe, 1);
1146 if (ret)
1147 return ret;
1148
1149 return probe.present ? 0 : -ENODEV;
1150 }
1151
armv8pmu_disable_user_access_ipi(void * unused)1152 static void armv8pmu_disable_user_access_ipi(void *unused)
1153 {
1154 armv8pmu_disable_user_access();
1155 }
1156
armv8pmu_proc_user_access_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1157 static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1158 void *buffer, size_t *lenp, loff_t *ppos)
1159 {
1160 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1161 if (ret || !write || sysctl_perf_user_access)
1162 return ret;
1163
1164 on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1165 return 0;
1166 }
1167
1168 static struct ctl_table armv8_pmu_sysctl_table[] = {
1169 {
1170 .procname = "perf_user_access",
1171 .data = &sysctl_perf_user_access,
1172 .maxlen = sizeof(unsigned int),
1173 .mode = 0644,
1174 .proc_handler = armv8pmu_proc_user_access_handler,
1175 .extra1 = SYSCTL_ZERO,
1176 .extra2 = SYSCTL_ONE,
1177 },
1178 { }
1179 };
1180
armv8_pmu_register_sysctl_table(void)1181 static void armv8_pmu_register_sysctl_table(void)
1182 {
1183 static u32 tbl_registered = 0;
1184
1185 if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1186 register_sysctl("kernel", armv8_pmu_sysctl_table);
1187 }
1188
armv8_pmu_init(struct arm_pmu * cpu_pmu,char * name,int (* map_event)(struct perf_event * event),const struct attribute_group * events,const struct attribute_group * format,const struct attribute_group * caps)1189 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1190 int (*map_event)(struct perf_event *event),
1191 const struct attribute_group *events,
1192 const struct attribute_group *format,
1193 const struct attribute_group *caps)
1194 {
1195 int ret = armv8pmu_probe_pmu(cpu_pmu);
1196 if (ret)
1197 return ret;
1198
1199 cpu_pmu->handle_irq = armv8pmu_handle_irq;
1200 cpu_pmu->enable = armv8pmu_enable_event;
1201 cpu_pmu->disable = armv8pmu_disable_event;
1202 cpu_pmu->read_counter = armv8pmu_read_counter;
1203 cpu_pmu->write_counter = armv8pmu_write_counter;
1204 cpu_pmu->get_event_idx = armv8pmu_get_event_idx;
1205 cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx;
1206 cpu_pmu->start = armv8pmu_start;
1207 cpu_pmu->stop = armv8pmu_stop;
1208 cpu_pmu->reset = armv8pmu_reset;
1209 cpu_pmu->set_event_filter = armv8pmu_set_event_filter;
1210
1211 cpu_pmu->pmu.event_idx = armv8pmu_user_event_idx;
1212
1213 cpu_pmu->name = name;
1214 cpu_pmu->map_event = map_event;
1215 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = events ?
1216 events : &armv8_pmuv3_events_attr_group;
1217 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = format ?
1218 format : &armv8_pmuv3_format_attr_group;
1219 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = caps ?
1220 caps : &armv8_pmuv3_caps_attr_group;
1221
1222 armv8_pmu_register_sysctl_table();
1223 return 0;
1224 }
1225
armv8_pmu_init_nogroups(struct arm_pmu * cpu_pmu,char * name,int (* map_event)(struct perf_event * event))1226 static int armv8_pmu_init_nogroups(struct arm_pmu *cpu_pmu, char *name,
1227 int (*map_event)(struct perf_event *event))
1228 {
1229 return armv8_pmu_init(cpu_pmu, name, map_event, NULL, NULL, NULL);
1230 }
1231
1232 #define PMUV3_INIT_SIMPLE(name) \
1233 static int name##_pmu_init(struct arm_pmu *cpu_pmu) \
1234 { \
1235 return armv8_pmu_init_nogroups(cpu_pmu, #name, armv8_pmuv3_map_event);\
1236 }
1237
1238 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1239
PMUV3_INIT_SIMPLE(armv8_cortex_a34)1240 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1241 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1242 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1243 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1244 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1245 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1246 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1247 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1248 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1249 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1250 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1251 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1252 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1253 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1254 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1255 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1256 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1257 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1258 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1259 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1260
1261 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1262 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1263
1264 static int armv8_a35_pmu_init(struct arm_pmu *cpu_pmu)
1265 {
1266 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a35",
1267 armv8_a53_map_event);
1268 }
1269
armv8_a53_pmu_init(struct arm_pmu * cpu_pmu)1270 static int armv8_a53_pmu_init(struct arm_pmu *cpu_pmu)
1271 {
1272 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a53",
1273 armv8_a53_map_event);
1274 }
1275
armv8_a57_pmu_init(struct arm_pmu * cpu_pmu)1276 static int armv8_a57_pmu_init(struct arm_pmu *cpu_pmu)
1277 {
1278 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a57",
1279 armv8_a57_map_event);
1280 }
1281
armv8_a72_pmu_init(struct arm_pmu * cpu_pmu)1282 static int armv8_a72_pmu_init(struct arm_pmu *cpu_pmu)
1283 {
1284 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a72",
1285 armv8_a57_map_event);
1286 }
1287
armv8_a73_pmu_init(struct arm_pmu * cpu_pmu)1288 static int armv8_a73_pmu_init(struct arm_pmu *cpu_pmu)
1289 {
1290 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a73",
1291 armv8_a73_map_event);
1292 }
1293
armv8_thunder_pmu_init(struct arm_pmu * cpu_pmu)1294 static int armv8_thunder_pmu_init(struct arm_pmu *cpu_pmu)
1295 {
1296 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cavium_thunder",
1297 armv8_thunder_map_event);
1298 }
1299
armv8_vulcan_pmu_init(struct arm_pmu * cpu_pmu)1300 static int armv8_vulcan_pmu_init(struct arm_pmu *cpu_pmu)
1301 {
1302 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_brcm_vulcan",
1303 armv8_vulcan_map_event);
1304 }
1305
1306 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1307 {.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_pmu_init},
1308 {.compatible = "arm,cortex-a34-pmu", .data = armv8_cortex_a34_pmu_init},
1309 {.compatible = "arm,cortex-a35-pmu", .data = armv8_a35_pmu_init},
1310 {.compatible = "arm,cortex-a53-pmu", .data = armv8_a53_pmu_init},
1311 {.compatible = "arm,cortex-a55-pmu", .data = armv8_cortex_a55_pmu_init},
1312 {.compatible = "arm,cortex-a57-pmu", .data = armv8_a57_pmu_init},
1313 {.compatible = "arm,cortex-a65-pmu", .data = armv8_cortex_a65_pmu_init},
1314 {.compatible = "arm,cortex-a72-pmu", .data = armv8_a72_pmu_init},
1315 {.compatible = "arm,cortex-a73-pmu", .data = armv8_a73_pmu_init},
1316 {.compatible = "arm,cortex-a75-pmu", .data = armv8_cortex_a75_pmu_init},
1317 {.compatible = "arm,cortex-a76-pmu", .data = armv8_cortex_a76_pmu_init},
1318 {.compatible = "arm,cortex-a77-pmu", .data = armv8_cortex_a77_pmu_init},
1319 {.compatible = "arm,cortex-a78-pmu", .data = armv8_cortex_a78_pmu_init},
1320 {.compatible = "arm,cortex-a510-pmu", .data = armv9_cortex_a510_pmu_init},
1321 {.compatible = "arm,cortex-a520-pmu", .data = armv9_cortex_a520_pmu_init},
1322 {.compatible = "arm,cortex-a710-pmu", .data = armv9_cortex_a710_pmu_init},
1323 {.compatible = "arm,cortex-a715-pmu", .data = armv9_cortex_a715_pmu_init},
1324 {.compatible = "arm,cortex-a720-pmu", .data = armv9_cortex_a720_pmu_init},
1325 {.compatible = "arm,cortex-x1-pmu", .data = armv8_cortex_x1_pmu_init},
1326 {.compatible = "arm,cortex-x2-pmu", .data = armv9_cortex_x2_pmu_init},
1327 {.compatible = "arm,cortex-x3-pmu", .data = armv9_cortex_x3_pmu_init},
1328 {.compatible = "arm,cortex-x4-pmu", .data = armv9_cortex_x4_pmu_init},
1329 {.compatible = "arm,neoverse-e1-pmu", .data = armv8_neoverse_e1_pmu_init},
1330 {.compatible = "arm,neoverse-n1-pmu", .data = armv8_neoverse_n1_pmu_init},
1331 {.compatible = "arm,neoverse-n2-pmu", .data = armv9_neoverse_n2_pmu_init},
1332 {.compatible = "arm,neoverse-v1-pmu", .data = armv8_neoverse_v1_pmu_init},
1333 {.compatible = "cavium,thunder-pmu", .data = armv8_thunder_pmu_init},
1334 {.compatible = "brcm,vulcan-pmu", .data = armv8_vulcan_pmu_init},
1335 {.compatible = "nvidia,carmel-pmu", .data = armv8_nvidia_carmel_pmu_init},
1336 {.compatible = "nvidia,denver-pmu", .data = armv8_nvidia_denver_pmu_init},
1337 {},
1338 };
1339
armv8_pmu_device_probe(struct platform_device * pdev)1340 static int armv8_pmu_device_probe(struct platform_device *pdev)
1341 {
1342 return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1343 }
1344
1345 static struct platform_driver armv8_pmu_driver = {
1346 .driver = {
1347 .name = ARMV8_PMU_PDEV_NAME,
1348 .of_match_table = armv8_pmu_of_device_ids,
1349 .suppress_bind_attrs = true,
1350 },
1351 .probe = armv8_pmu_device_probe,
1352 };
1353
armv8_pmu_driver_init(void)1354 static int __init armv8_pmu_driver_init(void)
1355 {
1356 int ret;
1357
1358 if (acpi_disabled)
1359 ret = platform_driver_register(&armv8_pmu_driver);
1360 else
1361 ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1362
1363 if (!ret)
1364 lockup_detector_retry_init();
1365
1366 return ret;
1367 }
device_initcall(armv8_pmu_driver_init)1368 device_initcall(armv8_pmu_driver_init)
1369
1370 void arch_perf_update_userpage(struct perf_event *event,
1371 struct perf_event_mmap_page *userpg, u64 now)
1372 {
1373 struct clock_read_data *rd;
1374 unsigned int seq;
1375 u64 ns;
1376
1377 userpg->cap_user_time = 0;
1378 userpg->cap_user_time_zero = 0;
1379 userpg->cap_user_time_short = 0;
1380 userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1381
1382 if (userpg->cap_user_rdpmc) {
1383 if (event->hw.flags & ARMPMU_EVT_64BIT)
1384 userpg->pmc_width = 64;
1385 else
1386 userpg->pmc_width = 32;
1387 }
1388
1389 do {
1390 rd = sched_clock_read_begin(&seq);
1391
1392 if (rd->read_sched_clock != arch_timer_read_counter)
1393 return;
1394
1395 userpg->time_mult = rd->mult;
1396 userpg->time_shift = rd->shift;
1397 userpg->time_zero = rd->epoch_ns;
1398 userpg->time_cycles = rd->epoch_cyc;
1399 userpg->time_mask = rd->sched_clock_mask;
1400
1401 /*
1402 * Subtract the cycle base, such that software that
1403 * doesn't know about cap_user_time_short still 'works'
1404 * assuming no wraps.
1405 */
1406 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1407 userpg->time_zero -= ns;
1408
1409 } while (sched_clock_read_retry(seq));
1410
1411 userpg->time_offset = userpg->time_zero - now;
1412
1413 /*
1414 * time_shift is not expected to be greater than 31 due to
1415 * the original published conversion algorithm shifting a
1416 * 32-bit value (now specifies a 64-bit value) - refer
1417 * perf_event_mmap_page documentation in perf_event.h.
1418 */
1419 if (userpg->time_shift == 32) {
1420 userpg->time_shift = 31;
1421 userpg->time_mult >>= 1;
1422 }
1423
1424 /*
1425 * Internal timekeeping for enabled/running/stopped times
1426 * is always computed with the sched_clock.
1427 */
1428 userpg->cap_user_time = 1;
1429 userpg->cap_user_time_zero = 1;
1430 userpg->cap_user_time_short = 1;
1431 }
1432