1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Freescale QUICC Engine HDLC Device Driver
3 *
4 * Copyright 2016 Freescale Semiconductor Inc.
5 */
6
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/hdlc.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/sched.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/stddef.h>
26 #include <soc/fsl/qe/qe_tdm.h>
27 #include <uapi/linux/if_arp.h>
28
29 #include "fsl_ucc_hdlc.h"
30
31 #define DRV_DESC "Freescale QE UCC HDLC Driver"
32 #define DRV_NAME "ucc_hdlc"
33
34 #define TDM_PPPOHT_SLIC_MAXIN
35 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
36
37 static int uhdlc_close(struct net_device *dev);
38
39 static struct ucc_tdm_info utdm_primary_info = {
40 .uf_info = {
41 .tsa = 0,
42 .cdp = 0,
43 .cds = 1,
44 .ctsp = 1,
45 .ctss = 1,
46 .revd = 0,
47 .urfs = 256,
48 .utfs = 256,
49 .urfet = 128,
50 .urfset = 192,
51 .utfet = 128,
52 .utftt = 0x40,
53 .ufpt = 256,
54 .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
55 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
56 .tenc = UCC_FAST_TX_ENCODING_NRZ,
57 .renc = UCC_FAST_RX_ENCODING_NRZ,
58 .tcrc = UCC_FAST_16_BIT_CRC,
59 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
60 },
61
62 .si_info = {
63 #ifdef TDM_PPPOHT_SLIC_MAXIN
64 .simr_rfsd = 1,
65 .simr_tfsd = 2,
66 #else
67 .simr_rfsd = 0,
68 .simr_tfsd = 0,
69 #endif
70 .simr_crt = 0,
71 .simr_sl = 0,
72 .simr_ce = 1,
73 .simr_fe = 1,
74 .simr_gm = 0,
75 },
76 };
77
78 static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
79
uhdlc_init(struct ucc_hdlc_private * priv)80 static int uhdlc_init(struct ucc_hdlc_private *priv)
81 {
82 struct ucc_tdm_info *ut_info;
83 struct ucc_fast_info *uf_info;
84 u32 cecr_subblock;
85 u16 bd_status;
86 int ret, i;
87 void *bd_buffer;
88 dma_addr_t bd_dma_addr;
89 s32 riptr;
90 s32 tiptr;
91 u32 gumr;
92
93 ut_info = priv->ut_info;
94 uf_info = &ut_info->uf_info;
95
96 if (priv->tsa) {
97 uf_info->tsa = 1;
98 uf_info->ctsp = 1;
99 uf_info->cds = 1;
100 uf_info->ctss = 1;
101 } else {
102 uf_info->cds = 0;
103 uf_info->ctsp = 0;
104 uf_info->ctss = 0;
105 }
106
107 /* This sets HPM register in CMXUCR register which configures a
108 * open drain connected HDLC bus
109 */
110 if (priv->hdlc_bus)
111 uf_info->brkpt_support = 1;
112
113 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
114 UCC_HDLC_UCCE_TXB) << 16);
115
116 ret = ucc_fast_init(uf_info, &priv->uccf);
117 if (ret) {
118 dev_err(priv->dev, "Failed to init uccf.");
119 return ret;
120 }
121
122 priv->uf_regs = priv->uccf->uf_regs;
123 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
124
125 /* Loopback mode */
126 if (priv->loopback) {
127 dev_info(priv->dev, "Loopback Mode\n");
128 /* use the same clock when work in loopback */
129 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
130
131 gumr = ioread32be(&priv->uf_regs->gumr);
132 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
133 UCC_FAST_GUMR_TCI);
134 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
135 iowrite32be(gumr, &priv->uf_regs->gumr);
136 }
137
138 /* Initialize SI */
139 if (priv->tsa)
140 ucc_tdm_init(priv->utdm, priv->ut_info);
141
142 /* Write to QE CECR, UCCx channel to Stop Transmission */
143 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
144 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
145 QE_CR_PROTOCOL_UNSPECIFIED, 0);
146
147 /* Set UPSMR normal mode (need fixed)*/
148 iowrite32be(0, &priv->uf_regs->upsmr);
149
150 /* hdlc_bus mode */
151 if (priv->hdlc_bus) {
152 u32 upsmr;
153
154 dev_info(priv->dev, "HDLC bus Mode\n");
155 upsmr = ioread32be(&priv->uf_regs->upsmr);
156
157 /* bus mode and retransmit enable, with collision window
158 * set to 8 bytes
159 */
160 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
161 UCC_HDLC_UPSMR_CW8;
162 iowrite32be(upsmr, &priv->uf_regs->upsmr);
163
164 /* explicitly disable CDS & CTSP */
165 gumr = ioread32be(&priv->uf_regs->gumr);
166 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
167 /* set automatic sync to explicitly ignore CD signal */
168 gumr |= UCC_FAST_GUMR_SYNL_AUTO;
169 iowrite32be(gumr, &priv->uf_regs->gumr);
170 }
171
172 priv->rx_ring_size = RX_BD_RING_LEN;
173 priv->tx_ring_size = TX_BD_RING_LEN;
174 /* Alloc Rx BD */
175 priv->rx_bd_base = dma_alloc_coherent(priv->dev,
176 RX_BD_RING_LEN * sizeof(struct qe_bd),
177 &priv->dma_rx_bd, GFP_KERNEL);
178
179 if (!priv->rx_bd_base) {
180 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
181 ret = -ENOMEM;
182 goto free_uccf;
183 }
184
185 /* Alloc Tx BD */
186 priv->tx_bd_base = dma_alloc_coherent(priv->dev,
187 TX_BD_RING_LEN * sizeof(struct qe_bd),
188 &priv->dma_tx_bd, GFP_KERNEL);
189
190 if (!priv->tx_bd_base) {
191 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
192 ret = -ENOMEM;
193 goto free_rx_bd;
194 }
195
196 /* Alloc parameter ram for ucc hdlc */
197 priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
198 ALIGNMENT_OF_UCC_HDLC_PRAM);
199
200 if (priv->ucc_pram_offset < 0) {
201 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
202 ret = -ENOMEM;
203 goto free_tx_bd;
204 }
205
206 priv->rx_skbuff = kcalloc(priv->rx_ring_size,
207 sizeof(*priv->rx_skbuff),
208 GFP_KERNEL);
209 if (!priv->rx_skbuff) {
210 ret = -ENOMEM;
211 goto free_ucc_pram;
212 }
213
214 priv->tx_skbuff = kcalloc(priv->tx_ring_size,
215 sizeof(*priv->tx_skbuff),
216 GFP_KERNEL);
217 if (!priv->tx_skbuff) {
218 ret = -ENOMEM;
219 goto free_rx_skbuff;
220 }
221
222 priv->skb_curtx = 0;
223 priv->skb_dirtytx = 0;
224 priv->curtx_bd = priv->tx_bd_base;
225 priv->dirty_tx = priv->tx_bd_base;
226 priv->currx_bd = priv->rx_bd_base;
227 priv->currx_bdnum = 0;
228
229 /* init parameter base */
230 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
231 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
232 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
233
234 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
235 qe_muram_addr(priv->ucc_pram_offset);
236
237 /* Zero out parameter ram */
238 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
239
240 /* Alloc riptr, tiptr */
241 riptr = qe_muram_alloc(32, 32);
242 if (riptr < 0) {
243 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
244 ret = -ENOMEM;
245 goto free_tx_skbuff;
246 }
247
248 tiptr = qe_muram_alloc(32, 32);
249 if (tiptr < 0) {
250 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
251 ret = -ENOMEM;
252 goto free_riptr;
253 }
254 if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
255 dev_err(priv->dev, "MURAM allocation out of addressable range\n");
256 ret = -ENOMEM;
257 goto free_tiptr;
258 }
259
260 /* Set RIPTR, TIPTR */
261 iowrite16be(riptr, &priv->ucc_pram->riptr);
262 iowrite16be(tiptr, &priv->ucc_pram->tiptr);
263
264 /* Set MRBLR */
265 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
266
267 /* Set RBASE, TBASE */
268 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
269 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
270
271 /* Set RSTATE, TSTATE */
272 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
273 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
274
275 /* Set C_MASK, C_PRES for 16bit CRC */
276 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
277 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
278
279 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
280 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
281 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
282 iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
283 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
284 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
285 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
286 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
287
288 /* Get BD buffer */
289 bd_buffer = dma_alloc_coherent(priv->dev,
290 (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
291 &bd_dma_addr, GFP_KERNEL);
292
293 if (!bd_buffer) {
294 dev_err(priv->dev, "Could not allocate buffer descriptors\n");
295 ret = -ENOMEM;
296 goto free_tiptr;
297 }
298
299 priv->rx_buffer = bd_buffer;
300 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
301
302 priv->dma_rx_addr = bd_dma_addr;
303 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
304
305 for (i = 0; i < RX_BD_RING_LEN; i++) {
306 if (i < (RX_BD_RING_LEN - 1))
307 bd_status = R_E_S | R_I_S;
308 else
309 bd_status = R_E_S | R_I_S | R_W_S;
310
311 priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
312 priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
313 }
314
315 for (i = 0; i < TX_BD_RING_LEN; i++) {
316 if (i < (TX_BD_RING_LEN - 1))
317 bd_status = T_I_S | T_TC_S;
318 else
319 bd_status = T_I_S | T_TC_S | T_W_S;
320
321 priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
322 priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
323 }
324 dma_wmb();
325
326 return 0;
327
328 free_tiptr:
329 qe_muram_free(tiptr);
330 free_riptr:
331 qe_muram_free(riptr);
332 free_tx_skbuff:
333 kfree(priv->tx_skbuff);
334 free_rx_skbuff:
335 kfree(priv->rx_skbuff);
336 free_ucc_pram:
337 qe_muram_free(priv->ucc_pram_offset);
338 free_tx_bd:
339 dma_free_coherent(priv->dev,
340 TX_BD_RING_LEN * sizeof(struct qe_bd),
341 priv->tx_bd_base, priv->dma_tx_bd);
342 free_rx_bd:
343 dma_free_coherent(priv->dev,
344 RX_BD_RING_LEN * sizeof(struct qe_bd),
345 priv->rx_bd_base, priv->dma_rx_bd);
346 free_uccf:
347 ucc_fast_free(priv->uccf);
348
349 return ret;
350 }
351
ucc_hdlc_tx(struct sk_buff * skb,struct net_device * dev)352 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
353 {
354 hdlc_device *hdlc = dev_to_hdlc(dev);
355 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
356 struct qe_bd *bd;
357 u16 bd_status;
358 unsigned long flags;
359 __be16 *proto_head;
360
361 switch (dev->type) {
362 case ARPHRD_RAWHDLC:
363 if (skb_headroom(skb) < HDLC_HEAD_LEN) {
364 dev->stats.tx_dropped++;
365 dev_kfree_skb(skb);
366 netdev_err(dev, "No enough space for hdlc head\n");
367 return -ENOMEM;
368 }
369
370 skb_push(skb, HDLC_HEAD_LEN);
371
372 proto_head = (__be16 *)skb->data;
373 *proto_head = htons(DEFAULT_HDLC_HEAD);
374
375 dev->stats.tx_bytes += skb->len;
376 break;
377
378 case ARPHRD_PPP:
379 proto_head = (__be16 *)skb->data;
380 if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
381 dev->stats.tx_dropped++;
382 dev_kfree_skb(skb);
383 netdev_err(dev, "Wrong ppp header\n");
384 return -ENOMEM;
385 }
386
387 dev->stats.tx_bytes += skb->len;
388 break;
389
390 case ARPHRD_ETHER:
391 dev->stats.tx_bytes += skb->len;
392 break;
393
394 default:
395 dev->stats.tx_dropped++;
396 dev_kfree_skb(skb);
397 return -ENOMEM;
398 }
399 netdev_sent_queue(dev, skb->len);
400 spin_lock_irqsave(&priv->lock, flags);
401
402 dma_rmb();
403 /* Start from the next BD that should be filled */
404 bd = priv->curtx_bd;
405 bd_status = be16_to_cpu(bd->status);
406 /* Save the skb pointer so we can free it later */
407 priv->tx_skbuff[priv->skb_curtx] = skb;
408
409 /* Update the current skb pointer (wrapping if this was the last) */
410 priv->skb_curtx =
411 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
412
413 /* copy skb data to tx buffer for sdma processing */
414 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
415 skb->data, skb->len);
416
417 /* set bd status and length */
418 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
419
420 bd->length = cpu_to_be16(skb->len);
421 bd->status = cpu_to_be16(bd_status);
422
423 /* Move to next BD in the ring */
424 if (!(bd_status & T_W_S))
425 bd += 1;
426 else
427 bd = priv->tx_bd_base;
428
429 if (bd == priv->dirty_tx) {
430 if (!netif_queue_stopped(dev))
431 netif_stop_queue(dev);
432 }
433
434 priv->curtx_bd = bd;
435
436 spin_unlock_irqrestore(&priv->lock, flags);
437
438 return NETDEV_TX_OK;
439 }
440
hdlc_tx_restart(struct ucc_hdlc_private * priv)441 static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
442 {
443 u32 cecr_subblock;
444
445 cecr_subblock =
446 ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
447
448 qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
449 QE_CR_PROTOCOL_UNSPECIFIED, 0);
450 return 0;
451 }
452
hdlc_tx_done(struct ucc_hdlc_private * priv)453 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
454 {
455 /* Start from the next BD that should be filled */
456 struct net_device *dev = priv->ndev;
457 unsigned int bytes_sent = 0;
458 int howmany = 0;
459 struct qe_bd *bd; /* BD pointer */
460 u16 bd_status;
461 int tx_restart = 0;
462
463 dma_rmb();
464 bd = priv->dirty_tx;
465 bd_status = be16_to_cpu(bd->status);
466
467 /* Normal processing. */
468 while ((bd_status & T_R_S) == 0) {
469 struct sk_buff *skb;
470
471 if (bd_status & T_UN_S) { /* Underrun */
472 dev->stats.tx_fifo_errors++;
473 tx_restart = 1;
474 }
475 if (bd_status & T_CT_S) { /* Carrier lost */
476 dev->stats.tx_carrier_errors++;
477 tx_restart = 1;
478 }
479
480 /* BD contains already transmitted buffer. */
481 /* Handle the transmitted buffer and release */
482 /* the BD to be used with the current frame */
483
484 skb = priv->tx_skbuff[priv->skb_dirtytx];
485 if (!skb)
486 break;
487 howmany++;
488 bytes_sent += skb->len;
489 dev->stats.tx_packets++;
490 memset(priv->tx_buffer +
491 (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
492 0, skb->len);
493 dev_consume_skb_irq(skb);
494
495 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
496 priv->skb_dirtytx =
497 (priv->skb_dirtytx +
498 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
499
500 /* We freed a buffer, so now we can restart transmission */
501 if (netif_queue_stopped(dev))
502 netif_wake_queue(dev);
503
504 /* Advance the confirmation BD pointer */
505 if (!(bd_status & T_W_S))
506 bd += 1;
507 else
508 bd = priv->tx_bd_base;
509 bd_status = be16_to_cpu(bd->status);
510 }
511 priv->dirty_tx = bd;
512
513 if (tx_restart)
514 hdlc_tx_restart(priv);
515
516 netdev_completed_queue(dev, howmany, bytes_sent);
517 return 0;
518 }
519
hdlc_rx_done(struct ucc_hdlc_private * priv,int rx_work_limit)520 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
521 {
522 struct net_device *dev = priv->ndev;
523 struct sk_buff *skb = NULL;
524 hdlc_device *hdlc = dev_to_hdlc(dev);
525 struct qe_bd *bd;
526 u16 bd_status;
527 u16 length, howmany = 0;
528 u8 *bdbuffer;
529
530 dma_rmb();
531 bd = priv->currx_bd;
532 bd_status = be16_to_cpu(bd->status);
533
534 /* while there are received buffers and BD is full (~R_E) */
535 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
536 if (bd_status & (RX_BD_ERRORS)) {
537 dev->stats.rx_errors++;
538
539 if (bd_status & R_CD_S)
540 dev->stats.collisions++;
541 if (bd_status & R_OV_S)
542 dev->stats.rx_fifo_errors++;
543 if (bd_status & R_CR_S)
544 dev->stats.rx_crc_errors++;
545 if (bd_status & R_AB_S)
546 dev->stats.rx_over_errors++;
547 if (bd_status & R_NO_S)
548 dev->stats.rx_frame_errors++;
549 if (bd_status & R_LG_S)
550 dev->stats.rx_length_errors++;
551
552 goto recycle;
553 }
554 bdbuffer = priv->rx_buffer +
555 (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
556 length = be16_to_cpu(bd->length);
557
558 switch (dev->type) {
559 case ARPHRD_RAWHDLC:
560 bdbuffer += HDLC_HEAD_LEN;
561 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
562
563 skb = dev_alloc_skb(length);
564 if (!skb) {
565 dev->stats.rx_dropped++;
566 return -ENOMEM;
567 }
568
569 skb_put(skb, length);
570 skb->len = length;
571 skb->dev = dev;
572 memcpy(skb->data, bdbuffer, length);
573 break;
574
575 case ARPHRD_PPP:
576 case ARPHRD_ETHER:
577 length -= HDLC_CRC_SIZE;
578
579 skb = dev_alloc_skb(length);
580 if (!skb) {
581 dev->stats.rx_dropped++;
582 return -ENOMEM;
583 }
584
585 skb_put(skb, length);
586 skb->len = length;
587 skb->dev = dev;
588 memcpy(skb->data, bdbuffer, length);
589 break;
590 }
591
592 dev->stats.rx_packets++;
593 dev->stats.rx_bytes += skb->len;
594 howmany++;
595 if (hdlc->proto)
596 skb->protocol = hdlc_type_trans(skb, dev);
597 netif_receive_skb(skb);
598
599 recycle:
600 bd->status = cpu_to_be16((bd_status & R_W_S) | R_E_S | R_I_S);
601
602 /* update to point at the next bd */
603 if (bd_status & R_W_S) {
604 priv->currx_bdnum = 0;
605 bd = priv->rx_bd_base;
606 } else {
607 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
608 priv->currx_bdnum += 1;
609 else
610 priv->currx_bdnum = RX_BD_RING_LEN - 1;
611
612 bd += 1;
613 }
614
615 bd_status = be16_to_cpu(bd->status);
616 }
617 dma_rmb();
618
619 priv->currx_bd = bd;
620 return howmany;
621 }
622
ucc_hdlc_poll(struct napi_struct * napi,int budget)623 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
624 {
625 struct ucc_hdlc_private *priv = container_of(napi,
626 struct ucc_hdlc_private,
627 napi);
628 int howmany;
629
630 /* Tx event processing */
631 spin_lock(&priv->lock);
632 hdlc_tx_done(priv);
633 spin_unlock(&priv->lock);
634
635 howmany = 0;
636 howmany += hdlc_rx_done(priv, budget - howmany);
637
638 if (howmany < budget) {
639 napi_complete_done(napi, howmany);
640 qe_setbits_be32(priv->uccf->p_uccm,
641 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
642 }
643
644 return howmany;
645 }
646
ucc_hdlc_irq_handler(int irq,void * dev_id)647 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
648 {
649 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
650 struct net_device *dev = priv->ndev;
651 struct ucc_fast_private *uccf;
652 u32 ucce;
653 u32 uccm;
654
655 uccf = priv->uccf;
656
657 ucce = ioread32be(uccf->p_ucce);
658 uccm = ioread32be(uccf->p_uccm);
659 ucce &= uccm;
660 iowrite32be(ucce, uccf->p_ucce);
661 if (!ucce)
662 return IRQ_NONE;
663
664 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
665 if (napi_schedule_prep(&priv->napi)) {
666 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
667 << 16);
668 iowrite32be(uccm, uccf->p_uccm);
669 __napi_schedule(&priv->napi);
670 }
671 }
672
673 /* Errors and other events */
674 if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
675 dev->stats.rx_missed_errors++;
676 if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
677 dev->stats.tx_errors++;
678
679 return IRQ_HANDLED;
680 }
681
uhdlc_ioctl(struct net_device * dev,struct if_settings * ifs)682 static int uhdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
683 {
684 const size_t size = sizeof(te1_settings);
685 te1_settings line;
686 struct ucc_hdlc_private *priv = netdev_priv(dev);
687
688 switch (ifs->type) {
689 case IF_GET_IFACE:
690 ifs->type = IF_IFACE_E1;
691 if (ifs->size < size) {
692 ifs->size = size; /* data size wanted */
693 return -ENOBUFS;
694 }
695 memset(&line, 0, sizeof(line));
696 line.clock_type = priv->clocking;
697
698 if (copy_to_user(ifs->ifs_ifsu.sync, &line, size))
699 return -EFAULT;
700 return 0;
701
702 default:
703 return hdlc_ioctl(dev, ifs);
704 }
705 }
706
uhdlc_open(struct net_device * dev)707 static int uhdlc_open(struct net_device *dev)
708 {
709 u32 cecr_subblock;
710 hdlc_device *hdlc = dev_to_hdlc(dev);
711 struct ucc_hdlc_private *priv = hdlc->priv;
712 struct ucc_tdm *utdm = priv->utdm;
713 int rc = 0;
714
715 if (priv->hdlc_busy != 1) {
716 if (request_irq(priv->ut_info->uf_info.irq,
717 ucc_hdlc_irq_handler, 0, "hdlc", priv))
718 return -ENODEV;
719
720 cecr_subblock = ucc_fast_get_qe_cr_subblock(
721 priv->ut_info->uf_info.ucc_num);
722
723 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
724 QE_CR_PROTOCOL_UNSPECIFIED, 0);
725
726 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
727
728 /* Enable the TDM port */
729 if (priv->tsa)
730 qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
731
732 priv->hdlc_busy = 1;
733 netif_device_attach(priv->ndev);
734 napi_enable(&priv->napi);
735 netdev_reset_queue(dev);
736 netif_start_queue(dev);
737
738 rc = hdlc_open(dev);
739 if (rc)
740 uhdlc_close(dev);
741 }
742
743 return rc;
744 }
745
uhdlc_memclean(struct ucc_hdlc_private * priv)746 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
747 {
748 qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
749 qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
750
751 if (priv->rx_bd_base) {
752 dma_free_coherent(priv->dev,
753 RX_BD_RING_LEN * sizeof(struct qe_bd),
754 priv->rx_bd_base, priv->dma_rx_bd);
755
756 priv->rx_bd_base = NULL;
757 priv->dma_rx_bd = 0;
758 }
759
760 if (priv->tx_bd_base) {
761 dma_free_coherent(priv->dev,
762 TX_BD_RING_LEN * sizeof(struct qe_bd),
763 priv->tx_bd_base, priv->dma_tx_bd);
764
765 priv->tx_bd_base = NULL;
766 priv->dma_tx_bd = 0;
767 }
768
769 if (priv->ucc_pram) {
770 qe_muram_free(priv->ucc_pram_offset);
771 priv->ucc_pram = NULL;
772 priv->ucc_pram_offset = 0;
773 }
774
775 kfree(priv->rx_skbuff);
776 priv->rx_skbuff = NULL;
777
778 kfree(priv->tx_skbuff);
779 priv->tx_skbuff = NULL;
780
781 if (priv->uf_regs) {
782 iounmap(priv->uf_regs);
783 priv->uf_regs = NULL;
784 }
785
786 if (priv->uccf) {
787 ucc_fast_free(priv->uccf);
788 priv->uccf = NULL;
789 }
790
791 if (priv->rx_buffer) {
792 dma_free_coherent(priv->dev,
793 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
794 priv->rx_buffer, priv->dma_rx_addr);
795 priv->rx_buffer = NULL;
796 priv->dma_rx_addr = 0;
797 }
798
799 if (priv->tx_buffer) {
800 dma_free_coherent(priv->dev,
801 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
802 priv->tx_buffer, priv->dma_tx_addr);
803 priv->tx_buffer = NULL;
804 priv->dma_tx_addr = 0;
805 }
806 }
807
uhdlc_close(struct net_device * dev)808 static int uhdlc_close(struct net_device *dev)
809 {
810 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
811 struct ucc_tdm *utdm = priv->utdm;
812 u32 cecr_subblock;
813
814 napi_disable(&priv->napi);
815 cecr_subblock = ucc_fast_get_qe_cr_subblock(
816 priv->ut_info->uf_info.ucc_num);
817
818 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
819 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
820 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
821 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
822
823 if (priv->tsa)
824 qe_clrbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
825
826 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
827
828 free_irq(priv->ut_info->uf_info.irq, priv);
829 netif_stop_queue(dev);
830 netdev_reset_queue(dev);
831 priv->hdlc_busy = 0;
832
833 hdlc_close(dev);
834
835 return 0;
836 }
837
ucc_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)838 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
839 unsigned short parity)
840 {
841 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
842
843 if (encoding != ENCODING_NRZ &&
844 encoding != ENCODING_NRZI)
845 return -EINVAL;
846
847 if (parity != PARITY_NONE &&
848 parity != PARITY_CRC32_PR1_CCITT &&
849 parity != PARITY_CRC16_PR0_CCITT &&
850 parity != PARITY_CRC16_PR1_CCITT)
851 return -EINVAL;
852
853 priv->encoding = encoding;
854 priv->parity = parity;
855
856 return 0;
857 }
858
859 #ifdef CONFIG_PM
store_clk_config(struct ucc_hdlc_private * priv)860 static void store_clk_config(struct ucc_hdlc_private *priv)
861 {
862 struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
863
864 /* store si clk */
865 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
866 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
867
868 /* store si sync */
869 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
870
871 /* store ucc clk */
872 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
873 }
874
resume_clk_config(struct ucc_hdlc_private * priv)875 static void resume_clk_config(struct ucc_hdlc_private *priv)
876 {
877 struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
878
879 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
880
881 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
882 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
883
884 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
885 }
886
uhdlc_suspend(struct device * dev)887 static int uhdlc_suspend(struct device *dev)
888 {
889 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
890 struct ucc_fast __iomem *uf_regs;
891
892 if (!priv)
893 return -EINVAL;
894
895 if (!netif_running(priv->ndev))
896 return 0;
897
898 netif_device_detach(priv->ndev);
899 napi_disable(&priv->napi);
900
901 uf_regs = priv->uf_regs;
902
903 /* backup gumr guemr*/
904 priv->gumr = ioread32be(&uf_regs->gumr);
905 priv->guemr = ioread8(&uf_regs->guemr);
906
907 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
908 GFP_KERNEL);
909 if (!priv->ucc_pram_bak)
910 return -ENOMEM;
911
912 /* backup HDLC parameter */
913 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
914 sizeof(struct ucc_hdlc_param));
915
916 /* store the clk configuration */
917 store_clk_config(priv);
918
919 /* save power */
920 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
921
922 return 0;
923 }
924
uhdlc_resume(struct device * dev)925 static int uhdlc_resume(struct device *dev)
926 {
927 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
928 struct ucc_tdm *utdm;
929 struct ucc_tdm_info *ut_info;
930 struct ucc_fast __iomem *uf_regs;
931 struct ucc_fast_private *uccf;
932 struct ucc_fast_info *uf_info;
933 int i;
934 u32 cecr_subblock;
935 u16 bd_status;
936
937 if (!priv)
938 return -EINVAL;
939
940 if (!netif_running(priv->ndev))
941 return 0;
942
943 utdm = priv->utdm;
944 ut_info = priv->ut_info;
945 uf_info = &ut_info->uf_info;
946 uf_regs = priv->uf_regs;
947 uccf = priv->uccf;
948
949 /* restore gumr guemr */
950 iowrite8(priv->guemr, &uf_regs->guemr);
951 iowrite32be(priv->gumr, &uf_regs->gumr);
952
953 /* Set Virtual Fifo registers */
954 iowrite16be(uf_info->urfs, &uf_regs->urfs);
955 iowrite16be(uf_info->urfet, &uf_regs->urfet);
956 iowrite16be(uf_info->urfset, &uf_regs->urfset);
957 iowrite16be(uf_info->utfs, &uf_regs->utfs);
958 iowrite16be(uf_info->utfet, &uf_regs->utfet);
959 iowrite16be(uf_info->utftt, &uf_regs->utftt);
960 /* utfb, urfb are offsets from MURAM base */
961 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
962 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
963
964 /* Rx Tx and sync clock routing */
965 resume_clk_config(priv);
966
967 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
968 iowrite32be(0xffffffff, &uf_regs->ucce);
969
970 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
971
972 /* rebuild SIRAM */
973 if (priv->tsa)
974 ucc_tdm_init(priv->utdm, priv->ut_info);
975
976 /* Write to QE CECR, UCCx channel to Stop Transmission */
977 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
978 qe_issue_cmd(QE_STOP_TX, cecr_subblock,
979 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
980
981 /* Set UPSMR normal mode */
982 iowrite32be(0, &uf_regs->upsmr);
983
984 /* init parameter base */
985 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
986 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
987 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
988
989 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
990 qe_muram_addr(priv->ucc_pram_offset);
991
992 /* restore ucc parameter */
993 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
994 sizeof(struct ucc_hdlc_param));
995 kfree(priv->ucc_pram_bak);
996
997 /* rebuild BD entry */
998 for (i = 0; i < RX_BD_RING_LEN; i++) {
999 if (i < (RX_BD_RING_LEN - 1))
1000 bd_status = R_E_S | R_I_S;
1001 else
1002 bd_status = R_E_S | R_I_S | R_W_S;
1003
1004 priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
1005 priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
1006 }
1007
1008 for (i = 0; i < TX_BD_RING_LEN; i++) {
1009 if (i < (TX_BD_RING_LEN - 1))
1010 bd_status = T_I_S | T_TC_S;
1011 else
1012 bd_status = T_I_S | T_TC_S | T_W_S;
1013
1014 priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
1015 priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
1016 }
1017 dma_wmb();
1018
1019 /* if hdlc is busy enable TX and RX */
1020 if (priv->hdlc_busy == 1) {
1021 cecr_subblock = ucc_fast_get_qe_cr_subblock(
1022 priv->ut_info->uf_info.ucc_num);
1023
1024 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1025 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1026
1027 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1028
1029 /* Enable the TDM port */
1030 if (priv->tsa)
1031 qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
1032 }
1033
1034 napi_enable(&priv->napi);
1035 netif_device_attach(priv->ndev);
1036
1037 return 0;
1038 }
1039
1040 static const struct dev_pm_ops uhdlc_pm_ops = {
1041 .suspend = uhdlc_suspend,
1042 .resume = uhdlc_resume,
1043 .freeze = uhdlc_suspend,
1044 .thaw = uhdlc_resume,
1045 };
1046
1047 #define HDLC_PM_OPS (&uhdlc_pm_ops)
1048
1049 #else
1050
1051 #define HDLC_PM_OPS NULL
1052
1053 #endif
uhdlc_tx_timeout(struct net_device * ndev,unsigned int txqueue)1054 static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1055 {
1056 netdev_err(ndev, "%s\n", __func__);
1057 }
1058
1059 static const struct net_device_ops uhdlc_ops = {
1060 .ndo_open = uhdlc_open,
1061 .ndo_stop = uhdlc_close,
1062 .ndo_start_xmit = hdlc_start_xmit,
1063 .ndo_siocwandev = uhdlc_ioctl,
1064 .ndo_tx_timeout = uhdlc_tx_timeout,
1065 };
1066
hdlc_map_iomem(char * name,int init_flag,void __iomem ** ptr)1067 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1068 {
1069 struct device_node *np;
1070 struct platform_device *pdev;
1071 struct resource *res;
1072 static int siram_init_flag;
1073 int ret = 0;
1074
1075 np = of_find_compatible_node(NULL, NULL, name);
1076 if (!np)
1077 return -EINVAL;
1078
1079 pdev = of_find_device_by_node(np);
1080 if (!pdev) {
1081 pr_err("%pOFn: failed to lookup pdev\n", np);
1082 of_node_put(np);
1083 return -EINVAL;
1084 }
1085
1086 of_node_put(np);
1087 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088 if (!res) {
1089 ret = -EINVAL;
1090 goto error_put_device;
1091 }
1092 *ptr = ioremap(res->start, resource_size(res));
1093 if (!*ptr) {
1094 ret = -ENOMEM;
1095 goto error_put_device;
1096 }
1097
1098 /* We've remapped the addresses, and we don't need the device any
1099 * more, so we should release it.
1100 */
1101 put_device(&pdev->dev);
1102
1103 if (init_flag && siram_init_flag == 0) {
1104 memset_io(*ptr, 0, resource_size(res));
1105 siram_init_flag = 1;
1106 }
1107 return 0;
1108
1109 error_put_device:
1110 put_device(&pdev->dev);
1111
1112 return ret;
1113 }
1114
ucc_hdlc_probe(struct platform_device * pdev)1115 static int ucc_hdlc_probe(struct platform_device *pdev)
1116 {
1117 struct device_node *np = pdev->dev.of_node;
1118 struct ucc_hdlc_private *uhdlc_priv = NULL;
1119 struct ucc_tdm_info *ut_info;
1120 struct ucc_tdm *utdm = NULL;
1121 struct resource res;
1122 struct net_device *dev;
1123 hdlc_device *hdlc;
1124 int ucc_num;
1125 const char *sprop;
1126 int ret;
1127 u32 val;
1128
1129 ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1130 if (ret) {
1131 dev_err(&pdev->dev, "Invalid ucc property\n");
1132 return -ENODEV;
1133 }
1134
1135 ucc_num = val - 1;
1136 if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1137 dev_err(&pdev->dev, ": Invalid UCC num\n");
1138 return -EINVAL;
1139 }
1140
1141 memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1142 sizeof(utdm_primary_info));
1143
1144 ut_info = &utdm_info[ucc_num];
1145 ut_info->uf_info.ucc_num = ucc_num;
1146
1147 sprop = of_get_property(np, "rx-clock-name", NULL);
1148 if (sprop) {
1149 ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1150 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1151 (ut_info->uf_info.rx_clock > QE_CLK24)) {
1152 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1153 return -EINVAL;
1154 }
1155 } else {
1156 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1157 return -EINVAL;
1158 }
1159
1160 sprop = of_get_property(np, "tx-clock-name", NULL);
1161 if (sprop) {
1162 ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1163 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1164 (ut_info->uf_info.tx_clock > QE_CLK24)) {
1165 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1166 return -EINVAL;
1167 }
1168 } else {
1169 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1170 return -EINVAL;
1171 }
1172
1173 ret = of_address_to_resource(np, 0, &res);
1174 if (ret)
1175 return -EINVAL;
1176
1177 ut_info->uf_info.regs = res.start;
1178 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1179
1180 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1181 if (!uhdlc_priv)
1182 return -ENOMEM;
1183
1184 dev_set_drvdata(&pdev->dev, uhdlc_priv);
1185 uhdlc_priv->dev = &pdev->dev;
1186 uhdlc_priv->ut_info = ut_info;
1187
1188 uhdlc_priv->tsa = of_property_read_bool(np, "fsl,tdm-interface");
1189 uhdlc_priv->loopback = of_property_read_bool(np, "fsl,ucc-internal-loopback");
1190 uhdlc_priv->hdlc_bus = of_property_read_bool(np, "fsl,hdlc-bus");
1191
1192 if (uhdlc_priv->tsa == 1) {
1193 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1194 if (!utdm) {
1195 ret = -ENOMEM;
1196 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1197 goto free_uhdlc_priv;
1198 }
1199 uhdlc_priv->utdm = utdm;
1200 ret = ucc_of_parse_tdm(np, utdm, ut_info);
1201 if (ret)
1202 goto free_utdm;
1203
1204 ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1205 (void __iomem **)&utdm->si_regs);
1206 if (ret)
1207 goto free_utdm;
1208 ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1209 (void __iomem **)&utdm->siram);
1210 if (ret)
1211 goto unmap_si_regs;
1212 }
1213
1214 if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1215 uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1216
1217 ret = uhdlc_init(uhdlc_priv);
1218 if (ret) {
1219 dev_err(&pdev->dev, "Failed to init uhdlc\n");
1220 goto undo_uhdlc_init;
1221 }
1222
1223 dev = alloc_hdlcdev(uhdlc_priv);
1224 if (!dev) {
1225 ret = -ENOMEM;
1226 pr_err("ucc_hdlc: unable to allocate memory\n");
1227 goto undo_uhdlc_init;
1228 }
1229
1230 uhdlc_priv->ndev = dev;
1231 hdlc = dev_to_hdlc(dev);
1232 dev->tx_queue_len = 16;
1233 dev->netdev_ops = &uhdlc_ops;
1234 dev->watchdog_timeo = 2 * HZ;
1235 hdlc->attach = ucc_hdlc_attach;
1236 hdlc->xmit = ucc_hdlc_tx;
1237 netif_napi_add_weight(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1238 if (register_hdlc_device(dev)) {
1239 ret = -ENOBUFS;
1240 pr_err("ucc_hdlc: unable to register hdlc device\n");
1241 goto free_dev;
1242 }
1243
1244 return 0;
1245
1246 free_dev:
1247 free_netdev(dev);
1248 undo_uhdlc_init:
1249 if (utdm)
1250 iounmap(utdm->siram);
1251 unmap_si_regs:
1252 if (utdm)
1253 iounmap(utdm->si_regs);
1254 free_utdm:
1255 if (uhdlc_priv->tsa)
1256 kfree(utdm);
1257 free_uhdlc_priv:
1258 kfree(uhdlc_priv);
1259 return ret;
1260 }
1261
ucc_hdlc_remove(struct platform_device * pdev)1262 static int ucc_hdlc_remove(struct platform_device *pdev)
1263 {
1264 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1265
1266 uhdlc_memclean(priv);
1267
1268 if (priv->utdm->si_regs) {
1269 iounmap(priv->utdm->si_regs);
1270 priv->utdm->si_regs = NULL;
1271 }
1272
1273 if (priv->utdm->siram) {
1274 iounmap(priv->utdm->siram);
1275 priv->utdm->siram = NULL;
1276 }
1277 kfree(priv);
1278
1279 dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1280
1281 return 0;
1282 }
1283
1284 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1285 {
1286 .compatible = "fsl,ucc-hdlc",
1287 },
1288 {},
1289 };
1290
1291 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1292
1293 static struct platform_driver ucc_hdlc_driver = {
1294 .probe = ucc_hdlc_probe,
1295 .remove = ucc_hdlc_remove,
1296 .driver = {
1297 .name = DRV_NAME,
1298 .pm = HDLC_PM_OPS,
1299 .of_match_table = fsl_ucc_hdlc_of_match,
1300 },
1301 };
1302
1303 module_platform_driver(ucc_hdlc_driver);
1304 MODULE_LICENSE("GPL");
1305 MODULE_DESCRIPTION(DRV_DESC);
1306