1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3 * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4 * Copyright 2020 NXP
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <soc/fsl/bman.h>
35 #include <soc/fsl/qman.h>
36 #include "fman.h"
37 #include "fman_port.h"
38 #include "mac.h"
39 #include "dpaa_eth.h"
40
41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
42 * using trace events only need to #include <trace/events/sched.h>
43 */
44 #define CREATE_TRACE_POINTS
45 #include "dpaa_eth_trace.h"
46
47 static int debug = -1;
48 module_param(debug, int, 0444);
49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
50
51 static u16 tx_timeout = 1000;
52 module_param(tx_timeout, ushort, 0444);
53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
54
55 #define FM_FD_STAT_RX_ERRORS \
56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
60 FM_FD_ERR_PRS_HDR_ERR)
61
62 #define FM_FD_STAT_TX_ERRORS \
63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
65
66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
68 NETIF_MSG_IFDOWN | NETIF_MSG_HW)
69
70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
71 /* Ingress congestion threshold on FMan ports
72 * The size in bytes of the ingress tail-drop threshold on FMan ports.
73 * Traffic piling up above this value will be rejected by QMan and discarded
74 * by FMan.
75 */
76
77 /* Size in bytes of the FQ taildrop threshold */
78 #define DPAA_FQ_TD 0x200000
79
80 #define DPAA_CS_THRESHOLD_1G 0x06000000
81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
82 * The size in bytes of the egress Congestion State notification threshold on
83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
85 * and the larger the frame size, the more acute the problem.
86 * So we have to find a balance between these factors:
87 * - avoiding the device staying congested for a prolonged time (risking
88 * the netdev watchdog to fire - see also the tx_timeout module param);
89 * - affecting performance of protocols such as TCP, which otherwise
90 * behave well under the congestion notification mechanism;
91 * - preventing the Tx cores from tightly-looping (as if the congestion
92 * threshold was too low to be effective);
93 * - running out of memory if the CS threshold is set too high.
94 */
95
96 #define DPAA_CS_THRESHOLD_10G 0x10000000
97 /* The size in bytes of the egress Congestion State notification threshold on
98 * 10G ports, range 0x1000 .. 0x10000000
99 */
100
101 /* Largest value that the FQD's OAL field can hold */
102 #define FSL_QMAN_MAX_OAL 127
103
104 /* Default alignment for start of data in an Rx FD */
105 #ifdef CONFIG_DPAA_ERRATUM_A050385
106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
107 * is crossing a 4k page boundary
108 */
109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16)
110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
111 * crossings; also, all SG fragments except the last must have a size multiple
112 * of 256 to avoid DMA transaction splits
113 */
114 #define DPAA_A050385_ALIGN 256
115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
116 DPAA_A050385_ALIGN : 16)
117 #else
118 #define DPAA_FD_DATA_ALIGNMENT 16
119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
120 #endif
121
122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
123 #define DPAA_SGT_SIZE 256
124
125 /* Values for the L3R field of the FM Parse Results
126 */
127 /* L3 Type field: First IP Present IPv4 */
128 #define FM_L3_PARSE_RESULT_IPV4 0x8000
129 /* L3 Type field: First IP Present IPv6 */
130 #define FM_L3_PARSE_RESULT_IPV6 0x4000
131 /* Values for the L4R field of the FM Parse Results */
132 /* L4 Type field: UDP */
133 #define FM_L4_PARSE_RESULT_UDP 0x40
134 /* L4 Type field: TCP */
135 #define FM_L4_PARSE_RESULT_TCP 0x20
136
137 /* FD status field indicating whether the FM Parser has attempted to validate
138 * the L4 csum of the frame.
139 * Note that having this bit set doesn't necessarily imply that the checksum
140 * is valid. One would have to check the parse results to find that out.
141 */
142 #define FM_FD_STAT_L4CV 0x00000004
143
144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
146
147 #define FSL_DPAA_BPID_INV 0xff
148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
150
151 #define DPAA_TX_PRIV_DATA_SIZE 16
152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
153 #define DPAA_TIME_STAMP_SIZE 8
154 #define DPAA_HASH_RESULTS_SIZE 8
155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
156 + DPAA_HASH_RESULTS_SIZE)
157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
159 #ifdef CONFIG_DPAA_ERRATUM_A050385
160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
162 DPAA_RX_PRIV_DATA_A050385_SIZE : \
163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
164 #else
165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
166 #endif
167
168 #define DPAA_ETH_PCD_RXQ_NUM 128
169
170 #define DPAA_ENQUEUE_RETRIES 100000
171
172 enum port_type {RX, TX};
173
174 struct fm_port_fqs {
175 struct dpaa_fq *tx_defq;
176 struct dpaa_fq *tx_errq;
177 struct dpaa_fq *rx_defq;
178 struct dpaa_fq *rx_errq;
179 struct dpaa_fq *rx_pcdq;
180 };
181
182 /* All the dpa bps in use at any moment */
183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
184
185 #define DPAA_BP_RAW_SIZE 4096
186
187 #ifdef CONFIG_DPAA_ERRATUM_A050385
188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
189 ~(DPAA_A050385_ALIGN - 1))
190 #else
191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
192 #endif
193
194 static int dpaa_max_frm;
195
196 static int dpaa_rx_extra_headroom;
197
198 #define dpaa_get_max_mtu() \
199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
200
201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
202
dpaa_netdev_init(struct net_device * net_dev,const struct net_device_ops * dpaa_ops,u16 tx_timeout)203 static int dpaa_netdev_init(struct net_device *net_dev,
204 const struct net_device_ops *dpaa_ops,
205 u16 tx_timeout)
206 {
207 struct dpaa_priv *priv = netdev_priv(net_dev);
208 struct device *dev = net_dev->dev.parent;
209 struct mac_device *mac_dev = priv->mac_dev;
210 struct dpaa_percpu_priv *percpu_priv;
211 const u8 *mac_addr;
212 int i, err;
213
214 /* Although we access another CPU's private data here
215 * we do it at initialization so it is safe
216 */
217 for_each_possible_cpu(i) {
218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
219 percpu_priv->net_dev = net_dev;
220 }
221
222 net_dev->netdev_ops = dpaa_ops;
223 mac_addr = mac_dev->addr;
224
225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
227
228 net_dev->min_mtu = ETH_MIN_MTU;
229 net_dev->max_mtu = dpaa_get_max_mtu();
230
231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
232 NETIF_F_LLTX | NETIF_F_RXHASH);
233
234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
236 * For conformity, we'll still declare GSO explicitly.
237 */
238 net_dev->features |= NETIF_F_GSO;
239 net_dev->features |= NETIF_F_RXCSUM;
240
241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
242 /* we do not want shared skbs on TX */
243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
244
245 net_dev->features |= net_dev->hw_features;
246 net_dev->vlan_features = net_dev->features;
247
248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
249 NETDEV_XDP_ACT_REDIRECT |
250 NETDEV_XDP_ACT_NDO_XMIT;
251
252 if (is_valid_ether_addr(mac_addr)) {
253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
254 eth_hw_addr_set(net_dev, mac_addr);
255 } else {
256 eth_hw_addr_random(net_dev);
257 err = mac_dev->change_addr(mac_dev->fman_mac,
258 (const enet_addr_t *)net_dev->dev_addr);
259 if (err) {
260 dev_err(dev, "Failed to set random MAC address\n");
261 return -EINVAL;
262 }
263 dev_info(dev, "Using random MAC address: %pM\n",
264 net_dev->dev_addr);
265 }
266
267 net_dev->ethtool_ops = &dpaa_ethtool_ops;
268
269 net_dev->needed_headroom = priv->tx_headroom;
270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
271
272 /* The rest of the config is filled in by the mac device already */
273 mac_dev->phylink_config.dev = &net_dev->dev;
274 mac_dev->phylink_config.type = PHYLINK_NETDEV;
275 mac_dev->update_speed = dpaa_eth_cgr_set_speed;
276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
277 dev_fwnode(mac_dev->dev),
278 mac_dev->phy_if,
279 mac_dev->phylink_ops);
280 if (IS_ERR(mac_dev->phylink)) {
281 err = PTR_ERR(mac_dev->phylink);
282 dev_err_probe(dev, err, "Could not create phylink\n");
283 return err;
284 }
285
286 /* start without the RUNNING flag, phylib controls it later */
287 netif_carrier_off(net_dev);
288
289 err = register_netdev(net_dev);
290 if (err < 0) {
291 dev_err(dev, "register_netdev() = %d\n", err);
292 phylink_destroy(mac_dev->phylink);
293 return err;
294 }
295
296 return 0;
297 }
298
dpaa_stop(struct net_device * net_dev)299 static int dpaa_stop(struct net_device *net_dev)
300 {
301 struct mac_device *mac_dev;
302 struct dpaa_priv *priv;
303 int i, error;
304 int err = 0;
305
306 priv = netdev_priv(net_dev);
307 mac_dev = priv->mac_dev;
308
309 netif_tx_stop_all_queues(net_dev);
310 /* Allow the Fman (Tx) port to process in-flight frames before we
311 * try switching it off.
312 */
313 msleep(200);
314
315 phylink_stop(mac_dev->phylink);
316 mac_dev->disable(mac_dev->fman_mac);
317
318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
319 error = fman_port_disable(mac_dev->port[i]);
320 if (error)
321 err = error;
322 }
323
324 phylink_disconnect_phy(mac_dev->phylink);
325 net_dev->phydev = NULL;
326
327 msleep(200);
328
329 return err;
330 }
331
dpaa_tx_timeout(struct net_device * net_dev,unsigned int txqueue)332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
333 {
334 struct dpaa_percpu_priv *percpu_priv;
335 const struct dpaa_priv *priv;
336
337 priv = netdev_priv(net_dev);
338 percpu_priv = this_cpu_ptr(priv->percpu_priv);
339
340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
342
343 percpu_priv->stats.tx_errors++;
344 }
345
346 /* Calculates the statistics for the given device by adding the statistics
347 * collected by each CPU.
348 */
dpaa_get_stats64(struct net_device * net_dev,struct rtnl_link_stats64 * s)349 static void dpaa_get_stats64(struct net_device *net_dev,
350 struct rtnl_link_stats64 *s)
351 {
352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
353 struct dpaa_priv *priv = netdev_priv(net_dev);
354 struct dpaa_percpu_priv *percpu_priv;
355 u64 *netstats = (u64 *)s;
356 u64 *cpustats;
357 int i, j;
358
359 for_each_possible_cpu(i) {
360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
361
362 cpustats = (u64 *)&percpu_priv->stats;
363
364 /* add stats from all CPUs */
365 for (j = 0; j < numstats; j++)
366 netstats[j] += cpustats[j];
367 }
368 }
369
dpaa_setup_tc(struct net_device * net_dev,enum tc_setup_type type,void * type_data)370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
371 void *type_data)
372 {
373 struct dpaa_priv *priv = netdev_priv(net_dev);
374 struct tc_mqprio_qopt *mqprio = type_data;
375 u8 num_tc;
376 int i;
377
378 if (type != TC_SETUP_QDISC_MQPRIO)
379 return -EOPNOTSUPP;
380
381 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
382 num_tc = mqprio->num_tc;
383
384 if (num_tc == priv->num_tc)
385 return 0;
386
387 if (!num_tc) {
388 netdev_reset_tc(net_dev);
389 goto out;
390 }
391
392 if (num_tc > DPAA_TC_NUM) {
393 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
394 DPAA_TC_NUM);
395 return -EINVAL;
396 }
397
398 netdev_set_num_tc(net_dev, num_tc);
399
400 for (i = 0; i < num_tc; i++)
401 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
402 i * DPAA_TC_TXQ_NUM);
403
404 out:
405 priv->num_tc = num_tc ? : 1;
406 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
407 return 0;
408 }
409
dpaa_mac_dev_get(struct platform_device * pdev)410 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
411 {
412 struct dpaa_eth_data *eth_data;
413 struct device *dpaa_dev;
414 struct mac_device *mac_dev;
415
416 dpaa_dev = &pdev->dev;
417 eth_data = dpaa_dev->platform_data;
418 if (!eth_data) {
419 dev_err(dpaa_dev, "eth_data missing\n");
420 return ERR_PTR(-ENODEV);
421 }
422 mac_dev = eth_data->mac_dev;
423 if (!mac_dev) {
424 dev_err(dpaa_dev, "mac_dev missing\n");
425 return ERR_PTR(-EINVAL);
426 }
427
428 return mac_dev;
429 }
430
dpaa_set_mac_address(struct net_device * net_dev,void * addr)431 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
432 {
433 const struct dpaa_priv *priv;
434 struct mac_device *mac_dev;
435 struct sockaddr old_addr;
436 int err;
437
438 priv = netdev_priv(net_dev);
439
440 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
441
442 err = eth_mac_addr(net_dev, addr);
443 if (err < 0) {
444 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
445 return err;
446 }
447
448 mac_dev = priv->mac_dev;
449
450 err = mac_dev->change_addr(mac_dev->fman_mac,
451 (const enet_addr_t *)net_dev->dev_addr);
452 if (err < 0) {
453 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
454 err);
455 /* reverting to previous address */
456 eth_mac_addr(net_dev, &old_addr);
457
458 return err;
459 }
460
461 return 0;
462 }
463
dpaa_set_rx_mode(struct net_device * net_dev)464 static void dpaa_set_rx_mode(struct net_device *net_dev)
465 {
466 const struct dpaa_priv *priv;
467 int err;
468
469 priv = netdev_priv(net_dev);
470
471 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
472 priv->mac_dev->promisc = !priv->mac_dev->promisc;
473 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
474 priv->mac_dev->promisc);
475 if (err < 0)
476 netif_err(priv, drv, net_dev,
477 "mac_dev->set_promisc() = %d\n",
478 err);
479 }
480
481 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
482 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
483 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
484 priv->mac_dev->allmulti);
485 if (err < 0)
486 netif_err(priv, drv, net_dev,
487 "mac_dev->set_allmulti() = %d\n",
488 err);
489 }
490
491 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
492 if (err < 0)
493 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
494 err);
495 }
496
dpaa_bpid2pool(int bpid)497 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
498 {
499 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
500 return NULL;
501
502 return dpaa_bp_array[bpid];
503 }
504
505 /* checks if this bpool is already allocated */
dpaa_bpid2pool_use(int bpid)506 static bool dpaa_bpid2pool_use(int bpid)
507 {
508 if (dpaa_bpid2pool(bpid)) {
509 refcount_inc(&dpaa_bp_array[bpid]->refs);
510 return true;
511 }
512
513 return false;
514 }
515
516 /* called only once per bpid by dpaa_bp_alloc_pool() */
dpaa_bpid2pool_map(int bpid,struct dpaa_bp * dpaa_bp)517 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
518 {
519 dpaa_bp_array[bpid] = dpaa_bp;
520 refcount_set(&dpaa_bp->refs, 1);
521 }
522
dpaa_bp_alloc_pool(struct dpaa_bp * dpaa_bp)523 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
524 {
525 int err;
526
527 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
528 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
529 __func__);
530 return -EINVAL;
531 }
532
533 /* If the pool is already specified, we only create one per bpid */
534 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
535 dpaa_bpid2pool_use(dpaa_bp->bpid))
536 return 0;
537
538 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
539 dpaa_bp->pool = bman_new_pool();
540 if (!dpaa_bp->pool) {
541 pr_err("%s: bman_new_pool() failed\n",
542 __func__);
543 return -ENODEV;
544 }
545
546 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
547 }
548
549 if (dpaa_bp->seed_cb) {
550 err = dpaa_bp->seed_cb(dpaa_bp);
551 if (err)
552 goto pool_seed_failed;
553 }
554
555 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
556
557 return 0;
558
559 pool_seed_failed:
560 pr_err("%s: pool seeding failed\n", __func__);
561 bman_free_pool(dpaa_bp->pool);
562
563 return err;
564 }
565
566 /* remove and free all the buffers from the given buffer pool */
dpaa_bp_drain(struct dpaa_bp * bp)567 static void dpaa_bp_drain(struct dpaa_bp *bp)
568 {
569 u8 num = 8;
570 int ret;
571
572 do {
573 struct bm_buffer bmb[8];
574 int i;
575
576 ret = bman_acquire(bp->pool, bmb, num);
577 if (ret < 0) {
578 if (num == 8) {
579 /* we have less than 8 buffers left;
580 * drain them one by one
581 */
582 num = 1;
583 ret = 1;
584 continue;
585 } else {
586 /* Pool is fully drained */
587 break;
588 }
589 }
590
591 if (bp->free_buf_cb)
592 for (i = 0; i < num; i++)
593 bp->free_buf_cb(bp, &bmb[i]);
594 } while (ret > 0);
595 }
596
dpaa_bp_free(struct dpaa_bp * dpaa_bp)597 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
598 {
599 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
600
601 /* the mapping between bpid and dpaa_bp is done very late in the
602 * allocation procedure; if something failed before the mapping, the bp
603 * was not configured, therefore we don't need the below instructions
604 */
605 if (!bp)
606 return;
607
608 if (!refcount_dec_and_test(&bp->refs))
609 return;
610
611 if (bp->free_buf_cb)
612 dpaa_bp_drain(bp);
613
614 dpaa_bp_array[bp->bpid] = NULL;
615 bman_free_pool(bp->pool);
616 }
617
dpaa_bps_free(struct dpaa_priv * priv)618 static void dpaa_bps_free(struct dpaa_priv *priv)
619 {
620 dpaa_bp_free(priv->dpaa_bp);
621 }
622
623 /* Use multiple WQs for FQ assignment:
624 * - Tx Confirmation queues go to WQ1.
625 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
626 * to be scheduled, in case there are many more FQs in WQ6).
627 * - Rx Default goes to WQ6.
628 * - Tx queues go to different WQs depending on their priority. Equal
629 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
630 * WQ0 (highest priority).
631 * This ensures that Tx-confirmed buffers are timely released. In particular,
632 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
633 * are greatly outnumbered by other FQs in the system, while
634 * dequeue scheduling is round-robin.
635 */
dpaa_assign_wq(struct dpaa_fq * fq,int idx)636 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
637 {
638 switch (fq->fq_type) {
639 case FQ_TYPE_TX_CONFIRM:
640 case FQ_TYPE_TX_CONF_MQ:
641 fq->wq = 1;
642 break;
643 case FQ_TYPE_RX_ERROR:
644 case FQ_TYPE_TX_ERROR:
645 fq->wq = 5;
646 break;
647 case FQ_TYPE_RX_DEFAULT:
648 case FQ_TYPE_RX_PCD:
649 fq->wq = 6;
650 break;
651 case FQ_TYPE_TX:
652 switch (idx / DPAA_TC_TXQ_NUM) {
653 case 0:
654 /* Low priority (best effort) */
655 fq->wq = 6;
656 break;
657 case 1:
658 /* Medium priority */
659 fq->wq = 2;
660 break;
661 case 2:
662 /* High priority */
663 fq->wq = 1;
664 break;
665 case 3:
666 /* Very high priority */
667 fq->wq = 0;
668 break;
669 default:
670 WARN(1, "Too many TX FQs: more than %d!\n",
671 DPAA_ETH_TXQ_NUM);
672 }
673 break;
674 default:
675 WARN(1, "Invalid FQ type %d for FQID %d!\n",
676 fq->fq_type, fq->fqid);
677 }
678 }
679
dpaa_fq_alloc(struct device * dev,u32 start,u32 count,struct list_head * list,enum dpaa_fq_type fq_type)680 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
681 u32 start, u32 count,
682 struct list_head *list,
683 enum dpaa_fq_type fq_type)
684 {
685 struct dpaa_fq *dpaa_fq;
686 int i;
687
688 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
689 GFP_KERNEL);
690 if (!dpaa_fq)
691 return NULL;
692
693 for (i = 0; i < count; i++) {
694 dpaa_fq[i].fq_type = fq_type;
695 dpaa_fq[i].fqid = start ? start + i : 0;
696 list_add_tail(&dpaa_fq[i].list, list);
697 }
698
699 for (i = 0; i < count; i++)
700 dpaa_assign_wq(dpaa_fq + i, i);
701
702 return dpaa_fq;
703 }
704
dpaa_alloc_all_fqs(struct device * dev,struct list_head * list,struct fm_port_fqs * port_fqs)705 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
706 struct fm_port_fqs *port_fqs)
707 {
708 struct dpaa_fq *dpaa_fq;
709 u32 fq_base, fq_base_aligned, i;
710
711 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
712 if (!dpaa_fq)
713 goto fq_alloc_failed;
714
715 port_fqs->rx_errq = &dpaa_fq[0];
716
717 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
718 if (!dpaa_fq)
719 goto fq_alloc_failed;
720
721 port_fqs->rx_defq = &dpaa_fq[0];
722
723 /* the PCD FQIDs range needs to be aligned for correct operation */
724 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
725 goto fq_alloc_failed;
726
727 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
728
729 for (i = fq_base; i < fq_base_aligned; i++)
730 qman_release_fqid(i);
731
732 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
733 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
734 qman_release_fqid(i);
735
736 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
737 list, FQ_TYPE_RX_PCD);
738 if (!dpaa_fq)
739 goto fq_alloc_failed;
740
741 port_fqs->rx_pcdq = &dpaa_fq[0];
742
743 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
744 goto fq_alloc_failed;
745
746 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
747 if (!dpaa_fq)
748 goto fq_alloc_failed;
749
750 port_fqs->tx_errq = &dpaa_fq[0];
751
752 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
753 if (!dpaa_fq)
754 goto fq_alloc_failed;
755
756 port_fqs->tx_defq = &dpaa_fq[0];
757
758 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
759 goto fq_alloc_failed;
760
761 return 0;
762
763 fq_alloc_failed:
764 dev_err(dev, "dpaa_fq_alloc() failed\n");
765 return -ENOMEM;
766 }
767
768 static u32 rx_pool_channel;
769 static DEFINE_SPINLOCK(rx_pool_channel_init);
770
dpaa_get_channel(void)771 static int dpaa_get_channel(void)
772 {
773 spin_lock(&rx_pool_channel_init);
774 if (!rx_pool_channel) {
775 u32 pool;
776 int ret;
777
778 ret = qman_alloc_pool(&pool);
779
780 if (!ret)
781 rx_pool_channel = pool;
782 }
783 spin_unlock(&rx_pool_channel_init);
784 if (!rx_pool_channel)
785 return -ENOMEM;
786 return rx_pool_channel;
787 }
788
dpaa_release_channel(void)789 static void dpaa_release_channel(void)
790 {
791 qman_release_pool(rx_pool_channel);
792 }
793
dpaa_eth_add_channel(u16 channel,struct device * dev)794 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
795 {
796 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
797 const cpumask_t *cpus = qman_affine_cpus();
798 struct qman_portal *portal;
799 int cpu;
800
801 for_each_cpu_and(cpu, cpus, cpu_online_mask) {
802 portal = qman_get_affine_portal(cpu);
803 qman_p_static_dequeue_add(portal, pool);
804 qman_start_using_portal(portal, dev);
805 }
806 }
807
808 /* Congestion group state change notification callback.
809 * Stops the device's egress queues while they are congested and
810 * wakes them upon exiting congested state.
811 * Also updates some CGR-related stats.
812 */
dpaa_eth_cgscn(struct qman_portal * qm,struct qman_cgr * cgr,int congested)813 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
814 int congested)
815 {
816 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
817 struct dpaa_priv, cgr_data.cgr);
818
819 if (congested) {
820 priv->cgr_data.congestion_start_jiffies = jiffies;
821 netif_tx_stop_all_queues(priv->net_dev);
822 priv->cgr_data.cgr_congested_count++;
823 } else {
824 priv->cgr_data.congested_jiffies +=
825 (jiffies - priv->cgr_data.congestion_start_jiffies);
826 netif_tx_wake_all_queues(priv->net_dev);
827 }
828 }
829
dpaa_eth_cgr_init(struct dpaa_priv * priv)830 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
831 {
832 struct qm_mcc_initcgr initcgr;
833 u32 cs_th;
834 int err;
835
836 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
837 if (err < 0) {
838 if (netif_msg_drv(priv))
839 pr_err("%s: Error %d allocating CGR ID\n",
840 __func__, err);
841 goto out_error;
842 }
843 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
844
845 /* Enable Congestion State Change Notifications and CS taildrop */
846 memset(&initcgr, 0, sizeof(initcgr));
847 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
848 initcgr.cgr.cscn_en = QM_CGR_EN;
849
850 /* Set different thresholds based on the configured MAC speed.
851 * This may turn suboptimal if the MAC is reconfigured at another
852 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
853 * callback.
854 */
855 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
856 cs_th = DPAA_CS_THRESHOLD_10G;
857 else
858 cs_th = DPAA_CS_THRESHOLD_1G;
859 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
860
861 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
862 initcgr.cgr.cstd_en = QM_CGR_EN;
863
864 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
865 &initcgr);
866 if (err < 0) {
867 if (netif_msg_drv(priv))
868 pr_err("%s: Error %d creating CGR with ID %d\n",
869 __func__, err, priv->cgr_data.cgr.cgrid);
870 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
871 goto out_error;
872 }
873 if (netif_msg_drv(priv))
874 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
875 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
876 priv->cgr_data.cgr.chan);
877
878 out_error:
879 return err;
880 }
881
dpaa_eth_cgr_set_speed(struct mac_device * mac_dev,int speed)882 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
883 {
884 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
885 struct dpaa_priv *priv = netdev_priv(net_dev);
886 struct qm_mcc_initcgr opts = { };
887 u32 cs_th;
888 int err;
889
890 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
891 switch (speed) {
892 case SPEED_10000:
893 cs_th = DPAA_CS_THRESHOLD_10G;
894 break;
895 case SPEED_1000:
896 default:
897 cs_th = DPAA_CS_THRESHOLD_1G;
898 break;
899 }
900 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
901
902 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
903 if (err)
904 netdev_err(net_dev, "could not update speed: %d\n", err);
905 }
906
dpaa_setup_ingress(const struct dpaa_priv * priv,struct dpaa_fq * fq,const struct qman_fq * template)907 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
908 struct dpaa_fq *fq,
909 const struct qman_fq *template)
910 {
911 fq->fq_base = *template;
912 fq->net_dev = priv->net_dev;
913
914 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
915 fq->channel = priv->channel;
916 }
917
dpaa_setup_egress(const struct dpaa_priv * priv,struct dpaa_fq * fq,struct fman_port * port,const struct qman_fq * template)918 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
919 struct dpaa_fq *fq,
920 struct fman_port *port,
921 const struct qman_fq *template)
922 {
923 fq->fq_base = *template;
924 fq->net_dev = priv->net_dev;
925
926 if (port) {
927 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
928 fq->channel = (u16)fman_port_get_qman_channel_id(port);
929 } else {
930 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
931 }
932 }
933
dpaa_fq_setup(struct dpaa_priv * priv,const struct dpaa_fq_cbs * fq_cbs,struct fman_port * tx_port)934 static void dpaa_fq_setup(struct dpaa_priv *priv,
935 const struct dpaa_fq_cbs *fq_cbs,
936 struct fman_port *tx_port)
937 {
938 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
939 const cpumask_t *affine_cpus = qman_affine_cpus();
940 u16 channels[NR_CPUS];
941 struct dpaa_fq *fq;
942
943 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
944 channels[num_portals++] = qman_affine_channel(cpu);
945
946 if (num_portals == 0)
947 dev_err(priv->net_dev->dev.parent,
948 "No Qman software (affine) channels found\n");
949
950 /* Initialize each FQ in the list */
951 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
952 switch (fq->fq_type) {
953 case FQ_TYPE_RX_DEFAULT:
954 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
955 break;
956 case FQ_TYPE_RX_ERROR:
957 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
958 break;
959 case FQ_TYPE_RX_PCD:
960 if (!num_portals)
961 continue;
962 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
963 fq->channel = channels[portal_cnt++ % num_portals];
964 break;
965 case FQ_TYPE_TX:
966 dpaa_setup_egress(priv, fq, tx_port,
967 &fq_cbs->egress_ern);
968 /* If we have more Tx queues than the number of cores,
969 * just ignore the extra ones.
970 */
971 if (egress_cnt < DPAA_ETH_TXQ_NUM)
972 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
973 break;
974 case FQ_TYPE_TX_CONF_MQ:
975 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
976 fallthrough;
977 case FQ_TYPE_TX_CONFIRM:
978 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
979 break;
980 case FQ_TYPE_TX_ERROR:
981 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
982 break;
983 default:
984 dev_warn(priv->net_dev->dev.parent,
985 "Unknown FQ type detected!\n");
986 break;
987 }
988 }
989
990 /* Make sure all CPUs receive a corresponding Tx queue. */
991 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
992 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
993 if (fq->fq_type != FQ_TYPE_TX)
994 continue;
995 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
996 if (egress_cnt == DPAA_ETH_TXQ_NUM)
997 break;
998 }
999 }
1000 }
1001
dpaa_tx_fq_to_id(const struct dpaa_priv * priv,struct qman_fq * tx_fq)1002 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1003 struct qman_fq *tx_fq)
1004 {
1005 int i;
1006
1007 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
1008 if (priv->egress_fqs[i] == tx_fq)
1009 return i;
1010
1011 return -EINVAL;
1012 }
1013
dpaa_fq_init(struct dpaa_fq * dpaa_fq,bool td_enable)1014 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1015 {
1016 const struct dpaa_priv *priv;
1017 struct qman_fq *confq = NULL;
1018 struct qm_mcc_initfq initfq;
1019 struct device *dev;
1020 struct qman_fq *fq;
1021 int queue_id;
1022 int err;
1023
1024 priv = netdev_priv(dpaa_fq->net_dev);
1025 dev = dpaa_fq->net_dev->dev.parent;
1026
1027 if (dpaa_fq->fqid == 0)
1028 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1029
1030 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1031
1032 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1033 if (err) {
1034 dev_err(dev, "qman_create_fq() failed\n");
1035 return err;
1036 }
1037 fq = &dpaa_fq->fq_base;
1038
1039 if (dpaa_fq->init) {
1040 memset(&initfq, 0, sizeof(initfq));
1041
1042 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1043 /* Note: we may get to keep an empty FQ in cache */
1044 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1045
1046 /* Try to reduce the number of portal interrupts for
1047 * Tx Confirmation FQs.
1048 */
1049 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1050 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1051
1052 /* FQ placement */
1053 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1054
1055 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1056
1057 /* Put all egress queues in a congestion group of their own.
1058 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1059 * rather than Tx - but they nonetheless account for the
1060 * memory footprint on behalf of egress traffic. We therefore
1061 * place them in the netdev's CGR, along with the Tx FQs.
1062 */
1063 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1064 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1065 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1066 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1067 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1068 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1069 /* Set a fixed overhead accounting, in an attempt to
1070 * reduce the impact of fixed-size skb shells and the
1071 * driver's needed headroom on system memory. This is
1072 * especially the case when the egress traffic is
1073 * composed of small datagrams.
1074 * Unfortunately, QMan's OAL value is capped to an
1075 * insufficient value, but even that is better than
1076 * no overhead accounting at all.
1077 */
1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1079 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1080 qm_fqd_set_oal(&initfq.fqd,
1081 min(sizeof(struct sk_buff) +
1082 priv->tx_headroom,
1083 (size_t)FSL_QMAN_MAX_OAL));
1084 }
1085
1086 if (td_enable) {
1087 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1088 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1089 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1090 }
1091
1092 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1093 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1094 if (queue_id >= 0)
1095 confq = priv->conf_fqs[queue_id];
1096 if (confq) {
1097 initfq.we_mask |=
1098 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1099 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1100 * A2V=1 (contextA A2 field is valid)
1101 * A0V=1 (contextA A0 field is valid)
1102 * B0V=1 (contextB field is valid)
1103 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1104 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1105 */
1106 qm_fqd_context_a_set64(&initfq.fqd,
1107 0x1e00000080000000ULL);
1108 }
1109 }
1110
1111 /* Put all the ingress queues in our "ingress CGR". */
1112 if (priv->use_ingress_cgr &&
1113 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1114 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1115 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1116 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1117 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1118 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1119 /* Set a fixed overhead accounting, just like for the
1120 * egress CGR.
1121 */
1122 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1123 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1124 qm_fqd_set_oal(&initfq.fqd,
1125 min(sizeof(struct sk_buff) +
1126 priv->tx_headroom,
1127 (size_t)FSL_QMAN_MAX_OAL));
1128 }
1129
1130 /* Initialization common to all ingress queues */
1131 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1132 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1133 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1134 QM_FQCTRL_CTXASTASHING);
1135 initfq.fqd.context_a.stashing.exclusive =
1136 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1137 QM_STASHING_EXCL_ANNOTATION;
1138 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1139 DIV_ROUND_UP(sizeof(struct qman_fq),
1140 64));
1141 }
1142
1143 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1144 if (err < 0) {
1145 dev_err(dev, "qman_init_fq(%u) = %d\n",
1146 qman_fq_fqid(fq), err);
1147 qman_destroy_fq(fq);
1148 return err;
1149 }
1150 }
1151
1152 dpaa_fq->fqid = qman_fq_fqid(fq);
1153
1154 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1155 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1156 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1157 dpaa_fq->fqid, 0);
1158 if (err) {
1159 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1160 return err;
1161 }
1162
1163 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1164 MEM_TYPE_PAGE_ORDER0, NULL);
1165 if (err) {
1166 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1167 err);
1168 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1169 return err;
1170 }
1171 }
1172
1173 return 0;
1174 }
1175
dpaa_fq_free_entry(struct device * dev,struct qman_fq * fq)1176 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1177 {
1178 const struct dpaa_priv *priv;
1179 struct dpaa_fq *dpaa_fq;
1180 int err, error;
1181
1182 err = 0;
1183
1184 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1185 priv = netdev_priv(dpaa_fq->net_dev);
1186
1187 if (dpaa_fq->init) {
1188 err = qman_retire_fq(fq, NULL);
1189 if (err < 0 && netif_msg_drv(priv))
1190 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1191 qman_fq_fqid(fq), err);
1192
1193 error = qman_oos_fq(fq);
1194 if (error < 0 && netif_msg_drv(priv)) {
1195 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1196 qman_fq_fqid(fq), error);
1197 if (err >= 0)
1198 err = error;
1199 }
1200 }
1201
1202 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1203 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1204 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1205 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1206
1207 qman_destroy_fq(fq);
1208 list_del(&dpaa_fq->list);
1209
1210 return err;
1211 }
1212
dpaa_fq_free(struct device * dev,struct list_head * list)1213 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1214 {
1215 struct dpaa_fq *dpaa_fq, *tmp;
1216 int err, error;
1217
1218 err = 0;
1219 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1220 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1221 if (error < 0 && err >= 0)
1222 err = error;
1223 }
1224
1225 return err;
1226 }
1227
dpaa_eth_init_tx_port(struct fman_port * port,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_buffer_layout * buf_layout)1228 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1229 struct dpaa_fq *defq,
1230 struct dpaa_buffer_layout *buf_layout)
1231 {
1232 struct fman_buffer_prefix_content buf_prefix_content;
1233 struct fman_port_params params;
1234 int err;
1235
1236 memset(¶ms, 0, sizeof(params));
1237 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1238
1239 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1240 buf_prefix_content.pass_prs_result = true;
1241 buf_prefix_content.pass_hash_result = true;
1242 buf_prefix_content.pass_time_stamp = true;
1243 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1244
1245 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1246 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1247
1248 err = fman_port_config(port, ¶ms);
1249 if (err) {
1250 pr_err("%s: fman_port_config failed\n", __func__);
1251 return err;
1252 }
1253
1254 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1255 if (err) {
1256 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1257 __func__);
1258 return err;
1259 }
1260
1261 err = fman_port_init(port);
1262 if (err)
1263 pr_err("%s: fm_port_init failed\n", __func__);
1264
1265 return err;
1266 }
1267
dpaa_eth_init_rx_port(struct fman_port * port,struct dpaa_bp * bp,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_fq * pcdq,struct dpaa_buffer_layout * buf_layout)1268 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1269 struct dpaa_fq *errq,
1270 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1271 struct dpaa_buffer_layout *buf_layout)
1272 {
1273 struct fman_buffer_prefix_content buf_prefix_content;
1274 struct fman_port_rx_params *rx_p;
1275 struct fman_port_params params;
1276 int err;
1277
1278 memset(¶ms, 0, sizeof(params));
1279 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1280
1281 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1282 buf_prefix_content.pass_prs_result = true;
1283 buf_prefix_content.pass_hash_result = true;
1284 buf_prefix_content.pass_time_stamp = true;
1285 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1286
1287 rx_p = ¶ms.specific_params.rx_params;
1288 rx_p->err_fqid = errq->fqid;
1289 rx_p->dflt_fqid = defq->fqid;
1290 if (pcdq) {
1291 rx_p->pcd_base_fqid = pcdq->fqid;
1292 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1293 }
1294
1295 rx_p->ext_buf_pools.num_of_pools_used = 1;
1296 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid;
1297 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1298
1299 err = fman_port_config(port, ¶ms);
1300 if (err) {
1301 pr_err("%s: fman_port_config failed\n", __func__);
1302 return err;
1303 }
1304
1305 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1306 if (err) {
1307 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1308 __func__);
1309 return err;
1310 }
1311
1312 err = fman_port_init(port);
1313 if (err)
1314 pr_err("%s: fm_port_init failed\n", __func__);
1315
1316 return err;
1317 }
1318
dpaa_eth_init_ports(struct mac_device * mac_dev,struct dpaa_bp * bp,struct fm_port_fqs * port_fqs,struct dpaa_buffer_layout * buf_layout,struct device * dev)1319 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1320 struct dpaa_bp *bp,
1321 struct fm_port_fqs *port_fqs,
1322 struct dpaa_buffer_layout *buf_layout,
1323 struct device *dev)
1324 {
1325 struct fman_port *rxport = mac_dev->port[RX];
1326 struct fman_port *txport = mac_dev->port[TX];
1327 int err;
1328
1329 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1330 port_fqs->tx_defq, &buf_layout[TX]);
1331 if (err)
1332 return err;
1333
1334 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1335 port_fqs->rx_defq, port_fqs->rx_pcdq,
1336 &buf_layout[RX]);
1337
1338 return err;
1339 }
1340
dpaa_bman_release(const struct dpaa_bp * dpaa_bp,struct bm_buffer * bmb,int cnt)1341 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1342 struct bm_buffer *bmb, int cnt)
1343 {
1344 int err;
1345
1346 err = bman_release(dpaa_bp->pool, bmb, cnt);
1347 /* Should never occur, address anyway to avoid leaking the buffers */
1348 if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1349 while (cnt-- > 0)
1350 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1351
1352 return cnt;
1353 }
1354
dpaa_release_sgt_members(struct qm_sg_entry * sgt)1355 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1356 {
1357 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1358 struct dpaa_bp *dpaa_bp;
1359 int i = 0, j;
1360
1361 memset(bmb, 0, sizeof(bmb));
1362
1363 do {
1364 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1365 if (!dpaa_bp)
1366 return;
1367
1368 j = 0;
1369 do {
1370 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1371
1372 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1373
1374 j++; i++;
1375 } while (j < ARRAY_SIZE(bmb) &&
1376 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1377 sgt[i - 1].bpid == sgt[i].bpid);
1378
1379 dpaa_bman_release(dpaa_bp, bmb, j);
1380 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1381 }
1382
dpaa_fd_release(const struct net_device * net_dev,const struct qm_fd * fd)1383 static void dpaa_fd_release(const struct net_device *net_dev,
1384 const struct qm_fd *fd)
1385 {
1386 struct qm_sg_entry *sgt;
1387 struct dpaa_bp *dpaa_bp;
1388 struct bm_buffer bmb;
1389 dma_addr_t addr;
1390 void *vaddr;
1391
1392 bmb.data = 0;
1393 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1394
1395 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1396 if (!dpaa_bp)
1397 return;
1398
1399 if (qm_fd_get_format(fd) == qm_fd_sg) {
1400 vaddr = phys_to_virt(qm_fd_addr(fd));
1401 sgt = vaddr + qm_fd_get_offset(fd);
1402
1403 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1404 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1405
1406 dpaa_release_sgt_members(sgt);
1407
1408 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1409 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1410 DMA_FROM_DEVICE);
1411 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1412 netdev_err(net_dev, "DMA mapping failed\n");
1413 return;
1414 }
1415 bm_buffer_set64(&bmb, addr);
1416 }
1417
1418 dpaa_bman_release(dpaa_bp, &bmb, 1);
1419 }
1420
count_ern(struct dpaa_percpu_priv * percpu_priv,const union qm_mr_entry * msg)1421 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1422 const union qm_mr_entry *msg)
1423 {
1424 switch (msg->ern.rc & QM_MR_RC_MASK) {
1425 case QM_MR_RC_CGR_TAILDROP:
1426 percpu_priv->ern_cnt.cg_tdrop++;
1427 break;
1428 case QM_MR_RC_WRED:
1429 percpu_priv->ern_cnt.wred++;
1430 break;
1431 case QM_MR_RC_ERROR:
1432 percpu_priv->ern_cnt.err_cond++;
1433 break;
1434 case QM_MR_RC_ORPWINDOW_EARLY:
1435 percpu_priv->ern_cnt.early_window++;
1436 break;
1437 case QM_MR_RC_ORPWINDOW_LATE:
1438 percpu_priv->ern_cnt.late_window++;
1439 break;
1440 case QM_MR_RC_FQ_TAILDROP:
1441 percpu_priv->ern_cnt.fq_tdrop++;
1442 break;
1443 case QM_MR_RC_ORPWINDOW_RETIRED:
1444 percpu_priv->ern_cnt.fq_retired++;
1445 break;
1446 case QM_MR_RC_ORP_ZERO:
1447 percpu_priv->ern_cnt.orp_zero++;
1448 break;
1449 }
1450 }
1451
1452 /* Turn on HW checksum computation for this outgoing frame.
1453 * If the current protocol is not something we support in this regard
1454 * (or if the stack has already computed the SW checksum), we do nothing.
1455 *
1456 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1457 * otherwise.
1458 *
1459 * Note that this function may modify the fd->cmd field and the skb data buffer
1460 * (the Parse Results area).
1461 */
dpaa_enable_tx_csum(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,void * parse_results)1462 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1463 struct sk_buff *skb,
1464 struct qm_fd *fd,
1465 void *parse_results)
1466 {
1467 struct fman_prs_result *parse_result;
1468 u16 ethertype = ntohs(skb->protocol);
1469 struct ipv6hdr *ipv6h = NULL;
1470 struct iphdr *iph;
1471 int retval = 0;
1472 u8 l4_proto;
1473
1474 if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 return 0;
1476
1477 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1478 * L4 alone from the FM configuration anyway.
1479 */
1480
1481 /* Fill in some fields of the Parse Results array, so the FMan
1482 * can find them as if they came from the FMan Parser.
1483 */
1484 parse_result = (struct fman_prs_result *)parse_results;
1485
1486 /* If we're dealing with VLAN, get the real Ethernet type */
1487 if (ethertype == ETH_P_8021Q)
1488 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1489
1490 /* Fill in the relevant L3 parse result fields
1491 * and read the L4 protocol type
1492 */
1493 switch (ethertype) {
1494 case ETH_P_IP:
1495 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1496 iph = ip_hdr(skb);
1497 WARN_ON(!iph);
1498 l4_proto = iph->protocol;
1499 break;
1500 case ETH_P_IPV6:
1501 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1502 ipv6h = ipv6_hdr(skb);
1503 WARN_ON(!ipv6h);
1504 l4_proto = ipv6h->nexthdr;
1505 break;
1506 default:
1507 /* We shouldn't even be here */
1508 if (net_ratelimit())
1509 netif_alert(priv, tx_err, priv->net_dev,
1510 "Can't compute HW csum for L3 proto 0x%x\n",
1511 ntohs(skb->protocol));
1512 retval = -EIO;
1513 goto return_error;
1514 }
1515
1516 /* Fill in the relevant L4 parse result fields */
1517 switch (l4_proto) {
1518 case IPPROTO_UDP:
1519 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1520 break;
1521 case IPPROTO_TCP:
1522 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1523 break;
1524 default:
1525 if (net_ratelimit())
1526 netif_alert(priv, tx_err, priv->net_dev,
1527 "Can't compute HW csum for L4 proto 0x%x\n",
1528 l4_proto);
1529 retval = -EIO;
1530 goto return_error;
1531 }
1532
1533 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1534 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1535 parse_result->l4_off = (u8)skb_transport_offset(skb);
1536
1537 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1538 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1539
1540 /* On P1023 and similar platforms fd->cmd interpretation could
1541 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1542 * is not set so we do not need to check; in the future, if/when
1543 * using context_a we need to check this bit
1544 */
1545
1546 return_error:
1547 return retval;
1548 }
1549
dpaa_bp_add_8_bufs(const struct dpaa_bp * dpaa_bp)1550 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1551 {
1552 struct net_device *net_dev = dpaa_bp->priv->net_dev;
1553 struct bm_buffer bmb[8];
1554 dma_addr_t addr;
1555 struct page *p;
1556 u8 i;
1557
1558 for (i = 0; i < 8; i++) {
1559 p = dev_alloc_pages(0);
1560 if (unlikely(!p)) {
1561 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1562 goto release_previous_buffs;
1563 }
1564
1565 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1566 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1567 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1568 addr))) {
1569 netdev_err(net_dev, "DMA map failed\n");
1570 goto release_previous_buffs;
1571 }
1572
1573 bmb[i].data = 0;
1574 bm_buffer_set64(&bmb[i], addr);
1575 }
1576
1577 release_bufs:
1578 return dpaa_bman_release(dpaa_bp, bmb, i);
1579
1580 release_previous_buffs:
1581 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1582
1583 bm_buffer_set64(&bmb[i], 0);
1584 /* Avoid releasing a completely null buffer; bman_release() requires
1585 * at least one buffer.
1586 */
1587 if (likely(i))
1588 goto release_bufs;
1589
1590 return 0;
1591 }
1592
dpaa_bp_seed(struct dpaa_bp * dpaa_bp)1593 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1594 {
1595 int i;
1596
1597 /* Give each CPU an allotment of "config_count" buffers */
1598 for_each_possible_cpu(i) {
1599 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1600 int j;
1601
1602 /* Although we access another CPU's counters here
1603 * we do it at boot time so it is safe
1604 */
1605 for (j = 0; j < dpaa_bp->config_count; j += 8)
1606 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1607 }
1608 return 0;
1609 }
1610
1611 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1612 * REFILL_THRESHOLD.
1613 */
dpaa_eth_refill_bpool(struct dpaa_bp * dpaa_bp,int * countptr)1614 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1615 {
1616 int count = *countptr;
1617 int new_bufs;
1618
1619 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1620 do {
1621 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1622 if (unlikely(!new_bufs)) {
1623 /* Avoid looping forever if we've temporarily
1624 * run out of memory. We'll try again at the
1625 * next NAPI cycle.
1626 */
1627 break;
1628 }
1629 count += new_bufs;
1630 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1631
1632 *countptr = count;
1633 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1634 return -ENOMEM;
1635 }
1636
1637 return 0;
1638 }
1639
dpaa_eth_refill_bpools(struct dpaa_priv * priv)1640 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1641 {
1642 struct dpaa_bp *dpaa_bp;
1643 int *countptr;
1644
1645 dpaa_bp = priv->dpaa_bp;
1646 if (!dpaa_bp)
1647 return -EINVAL;
1648 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1649
1650 return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1651 }
1652
1653 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1654 * either contiguous frames or scatter/gather ones.
1655 * Skb freeing is not handled here.
1656 *
1657 * This function may be called on error paths in the Tx function, so guard
1658 * against cases when not all fd relevant fields were filled in. To avoid
1659 * reading the invalid transmission timestamp for the error paths set ts to
1660 * false.
1661 *
1662 * Return the skb backpointer, since for S/G frames the buffer containing it
1663 * gets freed here.
1664 *
1665 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1666 * and return NULL in this case.
1667 */
dpaa_cleanup_tx_fd(const struct dpaa_priv * priv,const struct qm_fd * fd,bool ts)1668 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1669 const struct qm_fd *fd, bool ts)
1670 {
1671 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1672 struct device *dev = priv->net_dev->dev.parent;
1673 struct skb_shared_hwtstamps shhwtstamps;
1674 dma_addr_t addr = qm_fd_addr(fd);
1675 void *vaddr = phys_to_virt(addr);
1676 const struct qm_sg_entry *sgt;
1677 struct dpaa_eth_swbp *swbp;
1678 struct sk_buff *skb;
1679 u64 ns;
1680 int i;
1681
1682 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1683 dma_unmap_page(priv->tx_dma_dev, addr,
1684 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1685 dma_dir);
1686
1687 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1688 * it's from lowmem.
1689 */
1690 sgt = vaddr + qm_fd_get_offset(fd);
1691
1692 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1693 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1694 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1695
1696 /* remaining pages were mapped with skb_frag_dma_map() */
1697 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1698 !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1699 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1700
1701 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1702 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1703 }
1704 } else {
1705 dma_unmap_single(priv->tx_dma_dev, addr,
1706 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1707 dma_dir);
1708 }
1709
1710 swbp = (struct dpaa_eth_swbp *)vaddr;
1711 skb = swbp->skb;
1712
1713 /* No skb backpointer is set when running XDP. An xdp_frame
1714 * backpointer is saved instead.
1715 */
1716 if (!skb) {
1717 xdp_return_frame(swbp->xdpf);
1718 return NULL;
1719 }
1720
1721 /* DMA unmapping is required before accessing the HW provided info */
1722 if (ts && priv->tx_tstamp &&
1723 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1724 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1725
1726 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1727 &ns)) {
1728 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1729 skb_tstamp_tx(skb, &shhwtstamps);
1730 } else {
1731 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1732 }
1733 }
1734
1735 if (qm_fd_get_format(fd) == qm_fd_sg)
1736 /* Free the page that we allocated on Tx for the SGT */
1737 free_pages((unsigned long)vaddr, 0);
1738
1739 return skb;
1740 }
1741
rx_csum_offload(const struct dpaa_priv * priv,const struct qm_fd * fd)1742 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1743 {
1744 /* The parser has run and performed L4 checksum validation.
1745 * We know there were no parser errors (and implicitly no
1746 * L4 csum error), otherwise we wouldn't be here.
1747 */
1748 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1749 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1750 return CHECKSUM_UNNECESSARY;
1751
1752 /* We're here because either the parser didn't run or the L4 checksum
1753 * was not verified. This may include the case of a UDP frame with
1754 * checksum zero or an L4 proto other than TCP/UDP
1755 */
1756 return CHECKSUM_NONE;
1757 }
1758
1759 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1760
1761 /* Build a linear skb around the received buffer.
1762 * We are guaranteed there is enough room at the end of the data buffer to
1763 * accommodate the shared info area of the skb.
1764 */
contig_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1765 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1766 const struct qm_fd *fd)
1767 {
1768 ssize_t fd_off = qm_fd_get_offset(fd);
1769 dma_addr_t addr = qm_fd_addr(fd);
1770 struct dpaa_bp *dpaa_bp;
1771 struct sk_buff *skb;
1772 void *vaddr;
1773
1774 vaddr = phys_to_virt(addr);
1775 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1776
1777 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1778 if (!dpaa_bp)
1779 goto free_buffer;
1780
1781 skb = build_skb(vaddr, dpaa_bp->size +
1782 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1783 if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1784 goto free_buffer;
1785 skb_reserve(skb, fd_off);
1786 skb_put(skb, qm_fd_get_length(fd));
1787
1788 skb->ip_summed = rx_csum_offload(priv, fd);
1789
1790 return skb;
1791
1792 free_buffer:
1793 free_pages((unsigned long)vaddr, 0);
1794 return NULL;
1795 }
1796
1797 /* Build an skb with the data of the first S/G entry in the linear portion and
1798 * the rest of the frame as skb fragments.
1799 *
1800 * The page fragment holding the S/G Table is recycled here.
1801 */
sg_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1802 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1803 const struct qm_fd *fd)
1804 {
1805 ssize_t fd_off = qm_fd_get_offset(fd);
1806 dma_addr_t addr = qm_fd_addr(fd);
1807 const struct qm_sg_entry *sgt;
1808 struct page *page, *head_page;
1809 struct dpaa_bp *dpaa_bp;
1810 void *vaddr, *sg_vaddr;
1811 int frag_off, frag_len;
1812 struct sk_buff *skb;
1813 dma_addr_t sg_addr;
1814 int page_offset;
1815 unsigned int sz;
1816 int *count_ptr;
1817 int i, j;
1818
1819 vaddr = phys_to_virt(addr);
1820 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1821
1822 /* Iterate through the SGT entries and add data buffers to the skb */
1823 sgt = vaddr + fd_off;
1824 skb = NULL;
1825 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1826 /* Extension bit is not supported */
1827 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1828
1829 sg_addr = qm_sg_addr(&sgt[i]);
1830 sg_vaddr = phys_to_virt(sg_addr);
1831 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1832
1833 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1834 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1835
1836 /* We may use multiple Rx pools */
1837 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1838 if (!dpaa_bp)
1839 goto free_buffers;
1840
1841 if (!skb) {
1842 sz = dpaa_bp->size +
1843 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1844 skb = build_skb(sg_vaddr, sz);
1845 if (WARN_ON(!skb))
1846 goto free_buffers;
1847
1848 skb->ip_summed = rx_csum_offload(priv, fd);
1849
1850 /* Make sure forwarded skbs will have enough space
1851 * on Tx, if extra headers are added.
1852 */
1853 WARN_ON(fd_off != priv->rx_headroom);
1854 skb_reserve(skb, fd_off);
1855 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1856 } else {
1857 /* Not the first S/G entry; all data from buffer will
1858 * be added in an skb fragment; fragment index is offset
1859 * by one since first S/G entry was incorporated in the
1860 * linear part of the skb.
1861 *
1862 * Caution: 'page' may be a tail page.
1863 */
1864 page = virt_to_page(sg_vaddr);
1865 head_page = virt_to_head_page(sg_vaddr);
1866
1867 /* Compute offset in (possibly tail) page */
1868 page_offset = ((unsigned long)sg_vaddr &
1869 (PAGE_SIZE - 1)) +
1870 (page_address(page) - page_address(head_page));
1871 /* page_offset only refers to the beginning of sgt[i];
1872 * but the buffer itself may have an internal offset.
1873 */
1874 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1875 frag_len = qm_sg_entry_get_len(&sgt[i]);
1876 /* skb_add_rx_frag() does no checking on the page; if
1877 * we pass it a tail page, we'll end up with
1878 * bad page accounting and eventually with segafults.
1879 */
1880 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1881 frag_len, dpaa_bp->size);
1882 }
1883
1884 /* Update the pool count for the current {cpu x bpool} */
1885 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1886 (*count_ptr)--;
1887
1888 if (qm_sg_entry_is_final(&sgt[i]))
1889 break;
1890 }
1891 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1892
1893 /* free the SG table buffer */
1894 free_pages((unsigned long)vaddr, 0);
1895
1896 return skb;
1897
1898 free_buffers:
1899 /* free all the SG entries */
1900 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1901 sg_addr = qm_sg_addr(&sgt[j]);
1902 sg_vaddr = phys_to_virt(sg_addr);
1903 /* all pages 0..i were unmaped */
1904 if (j > i)
1905 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1906 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1907 free_pages((unsigned long)sg_vaddr, 0);
1908 /* counters 0..i-1 were decremented */
1909 if (j >= i) {
1910 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1911 if (dpaa_bp) {
1912 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1913 (*count_ptr)--;
1914 }
1915 }
1916
1917 if (qm_sg_entry_is_final(&sgt[j]))
1918 break;
1919 }
1920 /* free the SGT fragment */
1921 free_pages((unsigned long)vaddr, 0);
1922
1923 return NULL;
1924 }
1925
skb_to_contig_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,int * offset)1926 static int skb_to_contig_fd(struct dpaa_priv *priv,
1927 struct sk_buff *skb, struct qm_fd *fd,
1928 int *offset)
1929 {
1930 struct net_device *net_dev = priv->net_dev;
1931 enum dma_data_direction dma_dir;
1932 struct dpaa_eth_swbp *swbp;
1933 unsigned char *buff_start;
1934 dma_addr_t addr;
1935 int err;
1936
1937 /* We are guaranteed to have at least tx_headroom bytes
1938 * available, so just use that for offset.
1939 */
1940 fd->bpid = FSL_DPAA_BPID_INV;
1941 buff_start = skb->data - priv->tx_headroom;
1942 dma_dir = DMA_TO_DEVICE;
1943
1944 swbp = (struct dpaa_eth_swbp *)buff_start;
1945 swbp->skb = skb;
1946
1947 /* Enable L3/L4 hardware checksum computation.
1948 *
1949 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1950 * need to write into the skb.
1951 */
1952 err = dpaa_enable_tx_csum(priv, skb, fd,
1953 buff_start + DPAA_TX_PRIV_DATA_SIZE);
1954 if (unlikely(err < 0)) {
1955 if (net_ratelimit())
1956 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1957 err);
1958 return err;
1959 }
1960
1961 /* Fill in the rest of the FD fields */
1962 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1963 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1964
1965 /* Map the entire buffer size that may be seen by FMan, but no more */
1966 addr = dma_map_single(priv->tx_dma_dev, buff_start,
1967 priv->tx_headroom + skb->len, dma_dir);
1968 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1969 if (net_ratelimit())
1970 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1971 return -EINVAL;
1972 }
1973 qm_fd_addr_set64(fd, addr);
1974
1975 return 0;
1976 }
1977
skb_to_sg_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd)1978 static int skb_to_sg_fd(struct dpaa_priv *priv,
1979 struct sk_buff *skb, struct qm_fd *fd)
1980 {
1981 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1982 const int nr_frags = skb_shinfo(skb)->nr_frags;
1983 struct net_device *net_dev = priv->net_dev;
1984 struct dpaa_eth_swbp *swbp;
1985 struct qm_sg_entry *sgt;
1986 void *buff_start;
1987 skb_frag_t *frag;
1988 dma_addr_t addr;
1989 size_t frag_len;
1990 struct page *p;
1991 int i, j, err;
1992
1993 /* get a page to store the SGTable */
1994 p = dev_alloc_pages(0);
1995 if (unlikely(!p)) {
1996 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1997 return -ENOMEM;
1998 }
1999 buff_start = page_address(p);
2000
2001 /* Enable L3/L4 hardware checksum computation.
2002 *
2003 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2004 * need to write into the skb.
2005 */
2006 err = dpaa_enable_tx_csum(priv, skb, fd,
2007 buff_start + DPAA_TX_PRIV_DATA_SIZE);
2008 if (unlikely(err < 0)) {
2009 if (net_ratelimit())
2010 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2011 err);
2012 goto csum_failed;
2013 }
2014
2015 /* SGT[0] is used by the linear part */
2016 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2017 frag_len = skb_headlen(skb);
2018 qm_sg_entry_set_len(&sgt[0], frag_len);
2019 sgt[0].bpid = FSL_DPAA_BPID_INV;
2020 sgt[0].offset = 0;
2021 addr = dma_map_single(priv->tx_dma_dev, skb->data,
2022 skb_headlen(skb), dma_dir);
2023 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2024 netdev_err(priv->net_dev, "DMA mapping failed\n");
2025 err = -EINVAL;
2026 goto sg0_map_failed;
2027 }
2028 qm_sg_entry_set64(&sgt[0], addr);
2029
2030 /* populate the rest of SGT entries */
2031 for (i = 0; i < nr_frags; i++) {
2032 frag = &skb_shinfo(skb)->frags[i];
2033 frag_len = skb_frag_size(frag);
2034 WARN_ON(!skb_frag_page(frag));
2035 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2036 frag_len, dma_dir);
2037 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2038 netdev_err(priv->net_dev, "DMA mapping failed\n");
2039 err = -EINVAL;
2040 goto sg_map_failed;
2041 }
2042
2043 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2044 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2045 sgt[i + 1].offset = 0;
2046
2047 /* keep the offset in the address */
2048 qm_sg_entry_set64(&sgt[i + 1], addr);
2049 }
2050
2051 /* Set the final bit in the last used entry of the SGT */
2052 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2053
2054 /* set fd offset to priv->tx_headroom */
2055 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2056
2057 /* DMA map the SGT page */
2058 swbp = (struct dpaa_eth_swbp *)buff_start;
2059 swbp->skb = skb;
2060
2061 addr = dma_map_page(priv->tx_dma_dev, p, 0,
2062 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2063 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2064 netdev_err(priv->net_dev, "DMA mapping failed\n");
2065 err = -EINVAL;
2066 goto sgt_map_failed;
2067 }
2068
2069 fd->bpid = FSL_DPAA_BPID_INV;
2070 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2071 qm_fd_addr_set64(fd, addr);
2072
2073 return 0;
2074
2075 sgt_map_failed:
2076 sg_map_failed:
2077 for (j = 0; j < i; j++)
2078 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2079 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2080 sg0_map_failed:
2081 csum_failed:
2082 free_pages((unsigned long)buff_start, 0);
2083
2084 return err;
2085 }
2086
dpaa_xmit(struct dpaa_priv * priv,struct rtnl_link_stats64 * percpu_stats,int queue,struct qm_fd * fd)2087 static inline int dpaa_xmit(struct dpaa_priv *priv,
2088 struct rtnl_link_stats64 *percpu_stats,
2089 int queue,
2090 struct qm_fd *fd)
2091 {
2092 struct qman_fq *egress_fq;
2093 int err, i;
2094
2095 egress_fq = priv->egress_fqs[queue];
2096 if (fd->bpid == FSL_DPAA_BPID_INV)
2097 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2098
2099 /* Trace this Tx fd */
2100 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2101
2102 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2103 err = qman_enqueue(egress_fq, fd);
2104 if (err != -EBUSY)
2105 break;
2106 }
2107
2108 if (unlikely(err < 0)) {
2109 percpu_stats->tx_fifo_errors++;
2110 return err;
2111 }
2112
2113 percpu_stats->tx_packets++;
2114 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2115
2116 return 0;
2117 }
2118
2119 #ifdef CONFIG_DPAA_ERRATUM_A050385
dpaa_a050385_wa_skb(struct net_device * net_dev,struct sk_buff ** s)2120 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2121 {
2122 struct dpaa_priv *priv = netdev_priv(net_dev);
2123 struct sk_buff *new_skb, *skb = *s;
2124 unsigned char *start, i;
2125
2126 /* check linear buffer alignment */
2127 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2128 goto workaround;
2129
2130 /* linear buffers just need to have an aligned start */
2131 if (!skb_is_nonlinear(skb))
2132 return 0;
2133
2134 /* linear data size for nonlinear skbs needs to be aligned */
2135 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2136 goto workaround;
2137
2138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2139 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2140
2141 /* all fragments need to have aligned start addresses */
2142 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2143 goto workaround;
2144
2145 /* all but last fragment need to have aligned sizes */
2146 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2147 (i < skb_shinfo(skb)->nr_frags - 1))
2148 goto workaround;
2149 }
2150
2151 return 0;
2152
2153 workaround:
2154 /* copy all the skb content into a new linear buffer */
2155 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2156 priv->tx_headroom);
2157 if (!new_skb)
2158 return -ENOMEM;
2159
2160 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2161 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2162
2163 /* Workaround for DPAA_A050385 requires data start to be aligned */
2164 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2165 if (start - new_skb->data)
2166 skb_reserve(new_skb, start - new_skb->data);
2167
2168 skb_put(new_skb, skb->len);
2169 skb_copy_bits(skb, 0, new_skb->data, skb->len);
2170 skb_copy_header(new_skb, skb);
2171 new_skb->dev = skb->dev;
2172
2173 /* Copy relevant timestamp info from the old skb to the new */
2174 if (priv->tx_tstamp) {
2175 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2176 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2177 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2178 if (skb->sk)
2179 skb_set_owner_w(new_skb, skb->sk);
2180 }
2181
2182 /* We move the headroom when we align it so we have to reset the
2183 * network and transport header offsets relative to the new data
2184 * pointer. The checksum offload relies on these offsets.
2185 */
2186 skb_set_network_header(new_skb, skb_network_offset(skb));
2187 skb_set_transport_header(new_skb, skb_transport_offset(skb));
2188
2189 dev_kfree_skb(skb);
2190 *s = new_skb;
2191
2192 return 0;
2193 }
2194
dpaa_a050385_wa_xdpf(struct dpaa_priv * priv,struct xdp_frame ** init_xdpf)2195 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2196 struct xdp_frame **init_xdpf)
2197 {
2198 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2199 void *new_buff, *aligned_data;
2200 struct page *p;
2201 u32 data_shift;
2202 int headroom;
2203
2204 /* Check the data alignment and make sure the headroom is large
2205 * enough to store the xdpf backpointer. Use an aligned headroom
2206 * value.
2207 *
2208 * Due to alignment constraints, we give XDP access to the full 256
2209 * byte frame headroom. If the XDP program uses all of it, copy the
2210 * data to a new buffer and make room for storing the backpointer.
2211 */
2212 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2213 xdpf->headroom >= priv->tx_headroom) {
2214 xdpf->headroom = priv->tx_headroom;
2215 return 0;
2216 }
2217
2218 /* Try to move the data inside the buffer just enough to align it and
2219 * store the xdpf backpointer. If the available headroom isn't large
2220 * enough, resort to allocating a new buffer and copying the data.
2221 */
2222 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2223 data_shift = xdpf->data - aligned_data;
2224
2225 /* The XDP frame's headroom needs to be large enough to accommodate
2226 * shifting the data as well as storing the xdpf backpointer.
2227 */
2228 if (xdpf->headroom >= data_shift + priv->tx_headroom) {
2229 memmove(aligned_data, xdpf->data, xdpf->len);
2230 xdpf->data = aligned_data;
2231 xdpf->headroom = priv->tx_headroom;
2232 return 0;
2233 }
2234
2235 /* The new xdp_frame is stored in the new buffer. Reserve enough space
2236 * in the headroom for storing it along with the driver's private
2237 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2238 * guarantee the data's alignment in the buffer.
2239 */
2240 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2241 DPAA_FD_DATA_ALIGNMENT);
2242
2243 /* Assure the extended headroom and data don't overflow the buffer,
2244 * while maintaining the mandatory tailroom.
2245 */
2246 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2247 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2248 return -ENOMEM;
2249
2250 p = dev_alloc_pages(0);
2251 if (unlikely(!p))
2252 return -ENOMEM;
2253
2254 /* Copy the data to the new buffer at a properly aligned offset */
2255 new_buff = page_address(p);
2256 memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2257
2258 /* Create an XDP frame around the new buffer in a similar fashion
2259 * to xdp_convert_buff_to_frame.
2260 */
2261 new_xdpf = new_buff;
2262 new_xdpf->data = new_buff + headroom;
2263 new_xdpf->len = xdpf->len;
2264 new_xdpf->headroom = priv->tx_headroom;
2265 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2266 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2267
2268 /* Release the initial buffer */
2269 xdp_return_frame_rx_napi(xdpf);
2270
2271 *init_xdpf = new_xdpf;
2272 return 0;
2273 }
2274 #endif
2275
2276 static netdev_tx_t
dpaa_start_xmit(struct sk_buff * skb,struct net_device * net_dev)2277 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2278 {
2279 const int queue_mapping = skb_get_queue_mapping(skb);
2280 bool nonlinear = skb_is_nonlinear(skb);
2281 struct rtnl_link_stats64 *percpu_stats;
2282 struct dpaa_percpu_priv *percpu_priv;
2283 struct netdev_queue *txq;
2284 struct dpaa_priv *priv;
2285 struct qm_fd fd;
2286 int offset = 0;
2287 int err = 0;
2288
2289 priv = netdev_priv(net_dev);
2290 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2291 percpu_stats = &percpu_priv->stats;
2292
2293 qm_fd_clear_fd(&fd);
2294
2295 if (!nonlinear) {
2296 /* We're going to store the skb backpointer at the beginning
2297 * of the data buffer, so we need a privately owned skb
2298 *
2299 * We've made sure skb is not shared in dev->priv_flags,
2300 * we need to verify the skb head is not cloned
2301 */
2302 if (skb_cow_head(skb, priv->tx_headroom))
2303 goto enomem;
2304
2305 WARN_ON(skb_is_nonlinear(skb));
2306 }
2307
2308 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2309 * make sure we don't feed FMan with more fragments than it supports.
2310 */
2311 if (unlikely(nonlinear &&
2312 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2313 /* If the egress skb contains more fragments than we support
2314 * we have no choice but to linearize it ourselves.
2315 */
2316 if (__skb_linearize(skb))
2317 goto enomem;
2318
2319 nonlinear = skb_is_nonlinear(skb);
2320 }
2321
2322 #ifdef CONFIG_DPAA_ERRATUM_A050385
2323 if (unlikely(fman_has_errata_a050385())) {
2324 if (dpaa_a050385_wa_skb(net_dev, &skb))
2325 goto enomem;
2326 nonlinear = skb_is_nonlinear(skb);
2327 }
2328 #endif
2329
2330 if (nonlinear) {
2331 /* Just create a S/G fd based on the skb */
2332 err = skb_to_sg_fd(priv, skb, &fd);
2333 percpu_priv->tx_frag_skbuffs++;
2334 } else {
2335 /* Create a contig FD from this skb */
2336 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2337 }
2338 if (unlikely(err < 0))
2339 goto skb_to_fd_failed;
2340
2341 txq = netdev_get_tx_queue(net_dev, queue_mapping);
2342
2343 /* LLTX requires to do our own update of trans_start */
2344 txq_trans_cond_update(txq);
2345
2346 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2347 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2348 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2349 }
2350
2351 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2352 return NETDEV_TX_OK;
2353
2354 dpaa_cleanup_tx_fd(priv, &fd, false);
2355 skb_to_fd_failed:
2356 enomem:
2357 percpu_stats->tx_errors++;
2358 dev_kfree_skb(skb);
2359 return NETDEV_TX_OK;
2360 }
2361
dpaa_rx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2362 static void dpaa_rx_error(struct net_device *net_dev,
2363 const struct dpaa_priv *priv,
2364 struct dpaa_percpu_priv *percpu_priv,
2365 const struct qm_fd *fd,
2366 u32 fqid)
2367 {
2368 if (net_ratelimit())
2369 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2370 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2371
2372 percpu_priv->stats.rx_errors++;
2373
2374 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2375 percpu_priv->rx_errors.dme++;
2376 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2377 percpu_priv->rx_errors.fpe++;
2378 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2379 percpu_priv->rx_errors.fse++;
2380 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2381 percpu_priv->rx_errors.phe++;
2382
2383 dpaa_fd_release(net_dev, fd);
2384 }
2385
dpaa_tx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2386 static void dpaa_tx_error(struct net_device *net_dev,
2387 const struct dpaa_priv *priv,
2388 struct dpaa_percpu_priv *percpu_priv,
2389 const struct qm_fd *fd,
2390 u32 fqid)
2391 {
2392 struct sk_buff *skb;
2393
2394 if (net_ratelimit())
2395 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2396 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2397
2398 percpu_priv->stats.tx_errors++;
2399
2400 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2401 dev_kfree_skb(skb);
2402 }
2403
dpaa_eth_poll(struct napi_struct * napi,int budget)2404 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2405 {
2406 struct dpaa_napi_portal *np =
2407 container_of(napi, struct dpaa_napi_portal, napi);
2408 int cleaned;
2409
2410 np->xdp_act = 0;
2411
2412 cleaned = qman_p_poll_dqrr(np->p, budget);
2413
2414 if (np->xdp_act & XDP_REDIRECT)
2415 xdp_do_flush();
2416
2417 if (cleaned < budget) {
2418 napi_complete_done(napi, cleaned);
2419 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2420 } else if (np->down) {
2421 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2422 }
2423
2424 return cleaned;
2425 }
2426
dpaa_tx_conf(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2427 static void dpaa_tx_conf(struct net_device *net_dev,
2428 const struct dpaa_priv *priv,
2429 struct dpaa_percpu_priv *percpu_priv,
2430 const struct qm_fd *fd,
2431 u32 fqid)
2432 {
2433 struct sk_buff *skb;
2434
2435 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2436 if (net_ratelimit())
2437 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2438 be32_to_cpu(fd->status) &
2439 FM_FD_STAT_TX_ERRORS);
2440
2441 percpu_priv->stats.tx_errors++;
2442 }
2443
2444 percpu_priv->tx_confirm++;
2445
2446 skb = dpaa_cleanup_tx_fd(priv, fd, true);
2447
2448 consume_skb(skb);
2449 }
2450
dpaa_eth_napi_schedule(struct dpaa_percpu_priv * percpu_priv,struct qman_portal * portal,bool sched_napi)2451 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2452 struct qman_portal *portal, bool sched_napi)
2453 {
2454 if (sched_napi) {
2455 /* Disable QMan IRQ and invoke NAPI */
2456 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2457
2458 percpu_priv->np.p = portal;
2459 napi_schedule(&percpu_priv->np.napi);
2460 percpu_priv->in_interrupt++;
2461 return 1;
2462 }
2463 return 0;
2464 }
2465
rx_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2466 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2467 struct qman_fq *fq,
2468 const struct qm_dqrr_entry *dq,
2469 bool sched_napi)
2470 {
2471 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2472 struct dpaa_percpu_priv *percpu_priv;
2473 struct net_device *net_dev;
2474 struct dpaa_bp *dpaa_bp;
2475 struct dpaa_priv *priv;
2476
2477 net_dev = dpaa_fq->net_dev;
2478 priv = netdev_priv(net_dev);
2479 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2480 if (!dpaa_bp)
2481 return qman_cb_dqrr_consume;
2482
2483 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2484
2485 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2486 return qman_cb_dqrr_stop;
2487
2488 dpaa_eth_refill_bpools(priv);
2489 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2490
2491 return qman_cb_dqrr_consume;
2492 }
2493
dpaa_xdp_xmit_frame(struct net_device * net_dev,struct xdp_frame * xdpf)2494 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2495 struct xdp_frame *xdpf)
2496 {
2497 struct dpaa_priv *priv = netdev_priv(net_dev);
2498 struct rtnl_link_stats64 *percpu_stats;
2499 struct dpaa_percpu_priv *percpu_priv;
2500 struct dpaa_eth_swbp *swbp;
2501 struct netdev_queue *txq;
2502 void *buff_start;
2503 struct qm_fd fd;
2504 dma_addr_t addr;
2505 int err;
2506
2507 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2508 percpu_stats = &percpu_priv->stats;
2509
2510 #ifdef CONFIG_DPAA_ERRATUM_A050385
2511 if (unlikely(fman_has_errata_a050385())) {
2512 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2513 err = -ENOMEM;
2514 goto out_error;
2515 }
2516 }
2517 #endif
2518
2519 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2520 err = -EINVAL;
2521 goto out_error;
2522 }
2523
2524 buff_start = xdpf->data - xdpf->headroom;
2525
2526 /* Leave empty the skb backpointer at the start of the buffer.
2527 * Save the XDP frame for easy cleanup on confirmation.
2528 */
2529 swbp = (struct dpaa_eth_swbp *)buff_start;
2530 swbp->skb = NULL;
2531 swbp->xdpf = xdpf;
2532
2533 qm_fd_clear_fd(&fd);
2534 fd.bpid = FSL_DPAA_BPID_INV;
2535 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2536 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2537
2538 addr = dma_map_single(priv->tx_dma_dev, buff_start,
2539 xdpf->headroom + xdpf->len,
2540 DMA_TO_DEVICE);
2541 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2542 err = -EINVAL;
2543 goto out_error;
2544 }
2545
2546 qm_fd_addr_set64(&fd, addr);
2547
2548 /* Bump the trans_start */
2549 txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2550 txq_trans_cond_update(txq);
2551
2552 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2553 if (err) {
2554 dma_unmap_single(priv->tx_dma_dev, addr,
2555 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2556 DMA_TO_DEVICE);
2557 goto out_error;
2558 }
2559
2560 return 0;
2561
2562 out_error:
2563 percpu_stats->tx_errors++;
2564 return err;
2565 }
2566
dpaa_run_xdp(struct dpaa_priv * priv,struct qm_fd * fd,void * vaddr,struct dpaa_fq * dpaa_fq,unsigned int * xdp_meta_len)2567 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2568 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2569 {
2570 ssize_t fd_off = qm_fd_get_offset(fd);
2571 struct bpf_prog *xdp_prog;
2572 struct xdp_frame *xdpf;
2573 struct xdp_buff xdp;
2574 u32 xdp_act;
2575 int err;
2576
2577 xdp_prog = READ_ONCE(priv->xdp_prog);
2578 if (!xdp_prog)
2579 return XDP_PASS;
2580
2581 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2582 &dpaa_fq->xdp_rxq);
2583 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2584 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2585
2586 /* We reserve a fixed headroom of 256 bytes under the erratum and we
2587 * offer it all to XDP programs to use. If no room is left for the
2588 * xdpf backpointer on TX, we will need to copy the data.
2589 * Disable metadata support since data realignments might be required
2590 * and the information can be lost.
2591 */
2592 #ifdef CONFIG_DPAA_ERRATUM_A050385
2593 if (unlikely(fman_has_errata_a050385())) {
2594 xdp_set_data_meta_invalid(&xdp);
2595 xdp.data_hard_start = vaddr;
2596 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2597 }
2598 #endif
2599
2600 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2601
2602 /* Update the length and the offset of the FD */
2603 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2604
2605 switch (xdp_act) {
2606 case XDP_PASS:
2607 #ifdef CONFIG_DPAA_ERRATUM_A050385
2608 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2609 xdp.data - xdp.data_meta;
2610 #else
2611 *xdp_meta_len = xdp.data - xdp.data_meta;
2612 #endif
2613 break;
2614 case XDP_TX:
2615 /* We can access the full headroom when sending the frame
2616 * back out
2617 */
2618 xdp.data_hard_start = vaddr;
2619 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2620 xdpf = xdp_convert_buff_to_frame(&xdp);
2621 if (unlikely(!xdpf)) {
2622 free_pages((unsigned long)vaddr, 0);
2623 break;
2624 }
2625
2626 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2627 xdp_return_frame_rx_napi(xdpf);
2628
2629 break;
2630 case XDP_REDIRECT:
2631 /* Allow redirect to use the full headroom */
2632 xdp.data_hard_start = vaddr;
2633 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2634
2635 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2636 if (err) {
2637 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2638 free_pages((unsigned long)vaddr, 0);
2639 }
2640 break;
2641 default:
2642 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2643 fallthrough;
2644 case XDP_ABORTED:
2645 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2646 fallthrough;
2647 case XDP_DROP:
2648 /* Free the buffer */
2649 free_pages((unsigned long)vaddr, 0);
2650 break;
2651 }
2652
2653 return xdp_act;
2654 }
2655
rx_default_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2656 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2657 struct qman_fq *fq,
2658 const struct qm_dqrr_entry *dq,
2659 bool sched_napi)
2660 {
2661 bool ts_valid = false, hash_valid = false;
2662 struct skb_shared_hwtstamps *shhwtstamps;
2663 unsigned int skb_len, xdp_meta_len = 0;
2664 struct rtnl_link_stats64 *percpu_stats;
2665 struct dpaa_percpu_priv *percpu_priv;
2666 const struct qm_fd *fd = &dq->fd;
2667 dma_addr_t addr = qm_fd_addr(fd);
2668 struct dpaa_napi_portal *np;
2669 enum qm_fd_format fd_format;
2670 struct net_device *net_dev;
2671 u32 fd_status, hash_offset;
2672 struct qm_sg_entry *sgt;
2673 struct dpaa_bp *dpaa_bp;
2674 struct dpaa_fq *dpaa_fq;
2675 struct dpaa_priv *priv;
2676 struct sk_buff *skb;
2677 int *count_ptr;
2678 u32 xdp_act;
2679 void *vaddr;
2680 u32 hash;
2681 u64 ns;
2682
2683 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2684 fd_status = be32_to_cpu(fd->status);
2685 fd_format = qm_fd_get_format(fd);
2686 net_dev = dpaa_fq->net_dev;
2687 priv = netdev_priv(net_dev);
2688 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2689 if (!dpaa_bp)
2690 return qman_cb_dqrr_consume;
2691
2692 /* Trace the Rx fd */
2693 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2694
2695 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2696 percpu_stats = &percpu_priv->stats;
2697 np = &percpu_priv->np;
2698
2699 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2700 return qman_cb_dqrr_stop;
2701
2702 /* Make sure we didn't run out of buffers */
2703 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2704 /* Unable to refill the buffer pool due to insufficient
2705 * system memory. Just release the frame back into the pool,
2706 * otherwise we'll soon end up with an empty buffer pool.
2707 */
2708 dpaa_fd_release(net_dev, &dq->fd);
2709 return qman_cb_dqrr_consume;
2710 }
2711
2712 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2713 if (net_ratelimit())
2714 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2715 fd_status & FM_FD_STAT_RX_ERRORS);
2716
2717 percpu_stats->rx_errors++;
2718 dpaa_fd_release(net_dev, fd);
2719 return qman_cb_dqrr_consume;
2720 }
2721
2722 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2723 DMA_FROM_DEVICE);
2724
2725 /* prefetch the first 64 bytes of the frame or the SGT start */
2726 vaddr = phys_to_virt(addr);
2727 prefetch(vaddr + qm_fd_get_offset(fd));
2728
2729 /* The only FD types that we may receive are contig and S/G */
2730 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2731
2732 /* Account for either the contig buffer or the SGT buffer (depending on
2733 * which case we were in) having been removed from the pool.
2734 */
2735 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2736 (*count_ptr)--;
2737
2738 /* Extract the timestamp stored in the headroom before running XDP */
2739 if (priv->rx_tstamp) {
2740 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2741 ts_valid = true;
2742 else
2743 WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2744 }
2745
2746 /* Extract the hash stored in the headroom before running XDP */
2747 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2748 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2749 &hash_offset)) {
2750 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2751 hash_valid = true;
2752 }
2753
2754 if (likely(fd_format == qm_fd_contig)) {
2755 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2756 dpaa_fq, &xdp_meta_len);
2757 np->xdp_act |= xdp_act;
2758 if (xdp_act != XDP_PASS) {
2759 percpu_stats->rx_packets++;
2760 percpu_stats->rx_bytes += qm_fd_get_length(fd);
2761 return qman_cb_dqrr_consume;
2762 }
2763 skb = contig_fd_to_skb(priv, fd);
2764 } else {
2765 /* XDP doesn't support S/G frames. Return the fragments to the
2766 * buffer pool and release the SGT.
2767 */
2768 if (READ_ONCE(priv->xdp_prog)) {
2769 WARN_ONCE(1, "S/G frames not supported under XDP\n");
2770 sgt = vaddr + qm_fd_get_offset(fd);
2771 dpaa_release_sgt_members(sgt);
2772 free_pages((unsigned long)vaddr, 0);
2773 return qman_cb_dqrr_consume;
2774 }
2775 skb = sg_fd_to_skb(priv, fd);
2776 }
2777 if (!skb)
2778 return qman_cb_dqrr_consume;
2779
2780 if (xdp_meta_len)
2781 skb_metadata_set(skb, xdp_meta_len);
2782
2783 /* Set the previously extracted timestamp */
2784 if (ts_valid) {
2785 shhwtstamps = skb_hwtstamps(skb);
2786 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2787 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2788 }
2789
2790 skb->protocol = eth_type_trans(skb, net_dev);
2791
2792 /* Set the previously extracted hash */
2793 if (hash_valid) {
2794 enum pkt_hash_types type;
2795
2796 /* if L4 exists, it was used in the hash generation */
2797 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2798 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2799 skb_set_hash(skb, hash, type);
2800 }
2801
2802 skb_len = skb->len;
2803
2804 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2805 percpu_stats->rx_dropped++;
2806 return qman_cb_dqrr_consume;
2807 }
2808
2809 percpu_stats->rx_packets++;
2810 percpu_stats->rx_bytes += skb_len;
2811
2812 return qman_cb_dqrr_consume;
2813 }
2814
conf_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2815 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2816 struct qman_fq *fq,
2817 const struct qm_dqrr_entry *dq,
2818 bool sched_napi)
2819 {
2820 struct dpaa_percpu_priv *percpu_priv;
2821 struct net_device *net_dev;
2822 struct dpaa_priv *priv;
2823
2824 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2825 priv = netdev_priv(net_dev);
2826
2827 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2828
2829 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2830 return qman_cb_dqrr_stop;
2831
2832 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2833
2834 return qman_cb_dqrr_consume;
2835 }
2836
conf_dflt_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2837 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2838 struct qman_fq *fq,
2839 const struct qm_dqrr_entry *dq,
2840 bool sched_napi)
2841 {
2842 struct dpaa_percpu_priv *percpu_priv;
2843 struct net_device *net_dev;
2844 struct dpaa_priv *priv;
2845
2846 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2847 priv = netdev_priv(net_dev);
2848
2849 /* Trace the fd */
2850 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2851
2852 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2853
2854 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2855 return qman_cb_dqrr_stop;
2856
2857 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2858
2859 return qman_cb_dqrr_consume;
2860 }
2861
egress_ern(struct qman_portal * portal,struct qman_fq * fq,const union qm_mr_entry * msg)2862 static void egress_ern(struct qman_portal *portal,
2863 struct qman_fq *fq,
2864 const union qm_mr_entry *msg)
2865 {
2866 const struct qm_fd *fd = &msg->ern.fd;
2867 struct dpaa_percpu_priv *percpu_priv;
2868 const struct dpaa_priv *priv;
2869 struct net_device *net_dev;
2870 struct sk_buff *skb;
2871
2872 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2873 priv = netdev_priv(net_dev);
2874 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2875
2876 percpu_priv->stats.tx_dropped++;
2877 percpu_priv->stats.tx_fifo_errors++;
2878 count_ern(percpu_priv, msg);
2879
2880 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2881 dev_kfree_skb_any(skb);
2882 }
2883
2884 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2885 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2886 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2887 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2888 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2889 .egress_ern = { .cb = { .ern = egress_ern } }
2890 };
2891
dpaa_eth_napi_enable(struct dpaa_priv * priv)2892 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2893 {
2894 struct dpaa_percpu_priv *percpu_priv;
2895 int i;
2896
2897 for_each_online_cpu(i) {
2898 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2899
2900 percpu_priv->np.down = false;
2901 napi_enable(&percpu_priv->np.napi);
2902 }
2903 }
2904
dpaa_eth_napi_disable(struct dpaa_priv * priv)2905 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2906 {
2907 struct dpaa_percpu_priv *percpu_priv;
2908 int i;
2909
2910 for_each_online_cpu(i) {
2911 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2912
2913 percpu_priv->np.down = true;
2914 napi_disable(&percpu_priv->np.napi);
2915 }
2916 }
2917
dpaa_open(struct net_device * net_dev)2918 static int dpaa_open(struct net_device *net_dev)
2919 {
2920 struct mac_device *mac_dev;
2921 struct dpaa_priv *priv;
2922 int err, i;
2923
2924 priv = netdev_priv(net_dev);
2925 mac_dev = priv->mac_dev;
2926 dpaa_eth_napi_enable(priv);
2927
2928 err = phylink_of_phy_connect(mac_dev->phylink,
2929 mac_dev->dev->of_node, 0);
2930 if (err)
2931 goto phy_init_failed;
2932
2933 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2934 err = fman_port_enable(mac_dev->port[i]);
2935 if (err)
2936 goto mac_start_failed;
2937 }
2938
2939 err = priv->mac_dev->enable(mac_dev->fman_mac);
2940 if (err < 0) {
2941 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2942 goto mac_start_failed;
2943 }
2944 phylink_start(mac_dev->phylink);
2945
2946 netif_tx_start_all_queues(net_dev);
2947
2948 return 0;
2949
2950 mac_start_failed:
2951 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2952 fman_port_disable(mac_dev->port[i]);
2953 phylink_disconnect_phy(mac_dev->phylink);
2954
2955 phy_init_failed:
2956 dpaa_eth_napi_disable(priv);
2957
2958 return err;
2959 }
2960
dpaa_eth_stop(struct net_device * net_dev)2961 static int dpaa_eth_stop(struct net_device *net_dev)
2962 {
2963 struct dpaa_priv *priv;
2964 int err;
2965
2966 err = dpaa_stop(net_dev);
2967
2968 priv = netdev_priv(net_dev);
2969 dpaa_eth_napi_disable(priv);
2970
2971 return err;
2972 }
2973
xdp_validate_mtu(struct dpaa_priv * priv,int mtu)2974 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2975 {
2976 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
2977
2978 /* We do not support S/G fragments when XDP is enabled.
2979 * Limit the MTU in relation to the buffer size.
2980 */
2981 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
2982 dev_warn(priv->net_dev->dev.parent,
2983 "The maximum MTU for XDP is %d\n",
2984 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
2985 return false;
2986 }
2987
2988 return true;
2989 }
2990
dpaa_change_mtu(struct net_device * net_dev,int new_mtu)2991 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
2992 {
2993 struct dpaa_priv *priv = netdev_priv(net_dev);
2994
2995 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
2996 return -EINVAL;
2997
2998 net_dev->mtu = new_mtu;
2999 return 0;
3000 }
3001
dpaa_setup_xdp(struct net_device * net_dev,struct netdev_bpf * bpf)3002 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3003 {
3004 struct dpaa_priv *priv = netdev_priv(net_dev);
3005 struct bpf_prog *old_prog;
3006 int err;
3007 bool up;
3008
3009 /* S/G fragments are not supported in XDP-mode */
3010 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3011 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3012 return -EINVAL;
3013 }
3014
3015 up = netif_running(net_dev);
3016
3017 if (up)
3018 dpaa_eth_stop(net_dev);
3019
3020 old_prog = xchg(&priv->xdp_prog, bpf->prog);
3021 if (old_prog)
3022 bpf_prog_put(old_prog);
3023
3024 if (up) {
3025 err = dpaa_open(net_dev);
3026 if (err) {
3027 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3028 return err;
3029 }
3030 }
3031
3032 return 0;
3033 }
3034
dpaa_xdp(struct net_device * net_dev,struct netdev_bpf * xdp)3035 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3036 {
3037 switch (xdp->command) {
3038 case XDP_SETUP_PROG:
3039 return dpaa_setup_xdp(net_dev, xdp);
3040 default:
3041 return -EINVAL;
3042 }
3043 }
3044
dpaa_xdp_xmit(struct net_device * net_dev,int n,struct xdp_frame ** frames,u32 flags)3045 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3046 struct xdp_frame **frames, u32 flags)
3047 {
3048 struct xdp_frame *xdpf;
3049 int i, nxmit = 0;
3050
3051 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3052 return -EINVAL;
3053
3054 if (!netif_running(net_dev))
3055 return -ENETDOWN;
3056
3057 for (i = 0; i < n; i++) {
3058 xdpf = frames[i];
3059 if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3060 break;
3061 nxmit++;
3062 }
3063
3064 return nxmit;
3065 }
3066
dpaa_ts_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3067 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3068 {
3069 struct dpaa_priv *priv = netdev_priv(dev);
3070 struct hwtstamp_config config;
3071
3072 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3073 return -EFAULT;
3074
3075 switch (config.tx_type) {
3076 case HWTSTAMP_TX_OFF:
3077 /* Couldn't disable rx/tx timestamping separately.
3078 * Do nothing here.
3079 */
3080 priv->tx_tstamp = false;
3081 break;
3082 case HWTSTAMP_TX_ON:
3083 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3084 priv->tx_tstamp = true;
3085 break;
3086 default:
3087 return -ERANGE;
3088 }
3089
3090 if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3091 /* Couldn't disable rx/tx timestamping separately.
3092 * Do nothing here.
3093 */
3094 priv->rx_tstamp = false;
3095 } else {
3096 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3097 priv->rx_tstamp = true;
3098 /* TS is set for all frame types, not only those requested */
3099 config.rx_filter = HWTSTAMP_FILTER_ALL;
3100 }
3101
3102 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3103 -EFAULT : 0;
3104 }
3105
dpaa_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)3106 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3107 {
3108 int ret = -EINVAL;
3109 struct dpaa_priv *priv = netdev_priv(net_dev);
3110
3111 if (cmd == SIOCGMIIREG) {
3112 if (net_dev->phydev)
3113 return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3114 cmd);
3115 }
3116
3117 if (cmd == SIOCSHWTSTAMP)
3118 return dpaa_ts_ioctl(net_dev, rq, cmd);
3119
3120 return ret;
3121 }
3122
3123 static const struct net_device_ops dpaa_ops = {
3124 .ndo_open = dpaa_open,
3125 .ndo_start_xmit = dpaa_start_xmit,
3126 .ndo_stop = dpaa_eth_stop,
3127 .ndo_tx_timeout = dpaa_tx_timeout,
3128 .ndo_get_stats64 = dpaa_get_stats64,
3129 .ndo_change_carrier = fixed_phy_change_carrier,
3130 .ndo_set_mac_address = dpaa_set_mac_address,
3131 .ndo_validate_addr = eth_validate_addr,
3132 .ndo_set_rx_mode = dpaa_set_rx_mode,
3133 .ndo_eth_ioctl = dpaa_ioctl,
3134 .ndo_setup_tc = dpaa_setup_tc,
3135 .ndo_change_mtu = dpaa_change_mtu,
3136 .ndo_bpf = dpaa_xdp,
3137 .ndo_xdp_xmit = dpaa_xdp_xmit,
3138 };
3139
dpaa_napi_add(struct net_device * net_dev)3140 static int dpaa_napi_add(struct net_device *net_dev)
3141 {
3142 struct dpaa_priv *priv = netdev_priv(net_dev);
3143 struct dpaa_percpu_priv *percpu_priv;
3144 int cpu;
3145
3146 for_each_possible_cpu(cpu) {
3147 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3148
3149 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3150 }
3151
3152 return 0;
3153 }
3154
dpaa_napi_del(struct net_device * net_dev)3155 static void dpaa_napi_del(struct net_device *net_dev)
3156 {
3157 struct dpaa_priv *priv = netdev_priv(net_dev);
3158 struct dpaa_percpu_priv *percpu_priv;
3159 int cpu;
3160
3161 for_each_possible_cpu(cpu) {
3162 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3163
3164 netif_napi_del(&percpu_priv->np.napi);
3165 }
3166 }
3167
dpaa_bp_free_pf(const struct dpaa_bp * bp,struct bm_buffer * bmb)3168 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3169 struct bm_buffer *bmb)
3170 {
3171 dma_addr_t addr = bm_buf_addr(bmb);
3172
3173 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3174 DMA_FROM_DEVICE);
3175
3176 skb_free_frag(phys_to_virt(addr));
3177 }
3178
3179 /* Alloc the dpaa_bp struct and configure default values */
dpaa_bp_alloc(struct device * dev)3180 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3181 {
3182 struct dpaa_bp *dpaa_bp;
3183
3184 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3185 if (!dpaa_bp)
3186 return ERR_PTR(-ENOMEM);
3187
3188 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3189 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3190 if (!dpaa_bp->percpu_count)
3191 return ERR_PTR(-ENOMEM);
3192
3193 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3194
3195 dpaa_bp->seed_cb = dpaa_bp_seed;
3196 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3197
3198 return dpaa_bp;
3199 }
3200
3201 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3202 * We won't be sending congestion notifications to FMan; for now, we just use
3203 * this CGR to generate enqueue rejections to FMan in order to drop the frames
3204 * before they reach our ingress queues and eat up memory.
3205 */
dpaa_ingress_cgr_init(struct dpaa_priv * priv)3206 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3207 {
3208 struct qm_mcc_initcgr initcgr;
3209 u32 cs_th;
3210 int err;
3211
3212 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3213 if (err < 0) {
3214 if (netif_msg_drv(priv))
3215 pr_err("Error %d allocating CGR ID\n", err);
3216 goto out_error;
3217 }
3218
3219 /* Enable CS TD, but disable Congestion State Change Notifications. */
3220 memset(&initcgr, 0, sizeof(initcgr));
3221 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3222 initcgr.cgr.cscn_en = QM_CGR_EN;
3223 cs_th = DPAA_INGRESS_CS_THRESHOLD;
3224 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3225
3226 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3227 initcgr.cgr.cstd_en = QM_CGR_EN;
3228
3229 /* This CGR will be associated with the SWP affined to the current CPU.
3230 * However, we'll place all our ingress FQs in it.
3231 */
3232 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3233 &initcgr);
3234 if (err < 0) {
3235 if (netif_msg_drv(priv))
3236 pr_err("Error %d creating ingress CGR with ID %d\n",
3237 err, priv->ingress_cgr.cgrid);
3238 qman_release_cgrid(priv->ingress_cgr.cgrid);
3239 goto out_error;
3240 }
3241 if (netif_msg_drv(priv))
3242 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3243 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3244
3245 priv->use_ingress_cgr = true;
3246
3247 out_error:
3248 return err;
3249 }
3250
dpaa_get_headroom(struct dpaa_buffer_layout * bl,enum port_type port)3251 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3252 enum port_type port)
3253 {
3254 u16 headroom;
3255
3256 /* The frame headroom must accommodate:
3257 * - the driver private data area
3258 * - parse results, hash results, timestamp if selected
3259 * If either hash results or time stamp are selected, both will
3260 * be copied to/from the frame headroom, as TS is located between PR and
3261 * HR in the IC and IC copy size has a granularity of 16bytes
3262 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3263 *
3264 * Also make sure the headroom is a multiple of data_align bytes
3265 */
3266 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3267
3268 if (port == RX) {
3269 #ifdef CONFIG_DPAA_ERRATUM_A050385
3270 if (unlikely(fman_has_errata_a050385()))
3271 headroom = XDP_PACKET_HEADROOM;
3272 #endif
3273
3274 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3275 } else {
3276 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3277 }
3278 }
3279
dpaa_eth_probe(struct platform_device * pdev)3280 static int dpaa_eth_probe(struct platform_device *pdev)
3281 {
3282 struct net_device *net_dev = NULL;
3283 struct dpaa_bp *dpaa_bp = NULL;
3284 struct dpaa_fq *dpaa_fq, *tmp;
3285 struct dpaa_priv *priv = NULL;
3286 struct fm_port_fqs port_fqs;
3287 struct mac_device *mac_dev;
3288 int err = 0, channel;
3289 struct device *dev;
3290
3291 dev = &pdev->dev;
3292
3293 err = bman_is_probed();
3294 if (!err)
3295 return -EPROBE_DEFER;
3296 if (err < 0) {
3297 dev_err(dev, "failing probe due to bman probe error\n");
3298 return -ENODEV;
3299 }
3300 err = qman_is_probed();
3301 if (!err)
3302 return -EPROBE_DEFER;
3303 if (err < 0) {
3304 dev_err(dev, "failing probe due to qman probe error\n");
3305 return -ENODEV;
3306 }
3307 err = bman_portals_probed();
3308 if (!err)
3309 return -EPROBE_DEFER;
3310 if (err < 0) {
3311 dev_err(dev,
3312 "failing probe due to bman portals probe error\n");
3313 return -ENODEV;
3314 }
3315 err = qman_portals_probed();
3316 if (!err)
3317 return -EPROBE_DEFER;
3318 if (err < 0) {
3319 dev_err(dev,
3320 "failing probe due to qman portals probe error\n");
3321 return -ENODEV;
3322 }
3323
3324 /* Allocate this early, so we can store relevant information in
3325 * the private area
3326 */
3327 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
3328 if (!net_dev) {
3329 dev_err(dev, "alloc_etherdev_mq() failed\n");
3330 return -ENOMEM;
3331 }
3332
3333 /* Do this here, so we can be verbose early */
3334 SET_NETDEV_DEV(net_dev, dev->parent);
3335 dev_set_drvdata(dev, net_dev);
3336
3337 priv = netdev_priv(net_dev);
3338 priv->net_dev = net_dev;
3339
3340 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3341
3342 mac_dev = dpaa_mac_dev_get(pdev);
3343 if (IS_ERR(mac_dev)) {
3344 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3345 err = PTR_ERR(mac_dev);
3346 goto free_netdev;
3347 }
3348
3349 /* Devices used for DMA mapping */
3350 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3351 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3352 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3353 if (!err)
3354 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3355 DMA_BIT_MASK(40));
3356 if (err) {
3357 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3358 goto free_netdev;
3359 }
3360
3361 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3362 * we choose conservatively and let the user explicitly set a higher
3363 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3364 * in the same LAN.
3365 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3366 * start with the maximum allowed.
3367 */
3368 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3369
3370 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3371 net_dev->mtu);
3372
3373 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3374 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3375
3376 /* bp init */
3377 dpaa_bp = dpaa_bp_alloc(dev);
3378 if (IS_ERR(dpaa_bp)) {
3379 err = PTR_ERR(dpaa_bp);
3380 goto free_dpaa_bps;
3381 }
3382 /* the raw size of the buffers used for reception */
3383 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3384 /* avoid runtime computations by keeping the usable size here */
3385 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3386 dpaa_bp->priv = priv;
3387
3388 err = dpaa_bp_alloc_pool(dpaa_bp);
3389 if (err < 0)
3390 goto free_dpaa_bps;
3391 priv->dpaa_bp = dpaa_bp;
3392
3393 INIT_LIST_HEAD(&priv->dpaa_fq_list);
3394
3395 memset(&port_fqs, 0, sizeof(port_fqs));
3396
3397 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3398 if (err < 0) {
3399 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3400 goto free_dpaa_bps;
3401 }
3402
3403 priv->mac_dev = mac_dev;
3404
3405 channel = dpaa_get_channel();
3406 if (channel < 0) {
3407 dev_err(dev, "dpaa_get_channel() failed\n");
3408 err = channel;
3409 goto free_dpaa_bps;
3410 }
3411
3412 priv->channel = (u16)channel;
3413
3414 /* Walk the CPUs with affine portals
3415 * and add this pool channel to each's dequeue mask.
3416 */
3417 dpaa_eth_add_channel(priv->channel, &pdev->dev);
3418
3419 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3420
3421 /* Create a congestion group for this netdev, with
3422 * dynamically-allocated CGR ID.
3423 * Must be executed after probing the MAC, but before
3424 * assigning the egress FQs to the CGRs.
3425 */
3426 err = dpaa_eth_cgr_init(priv);
3427 if (err < 0) {
3428 dev_err(dev, "Error initializing CGR\n");
3429 goto free_dpaa_bps;
3430 }
3431
3432 err = dpaa_ingress_cgr_init(priv);
3433 if (err < 0) {
3434 dev_err(dev, "Error initializing ingress CGR\n");
3435 goto delete_egress_cgr;
3436 }
3437
3438 /* Add the FQs to the interface, and make them active */
3439 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3440 err = dpaa_fq_init(dpaa_fq, false);
3441 if (err < 0)
3442 goto free_dpaa_fqs;
3443 }
3444
3445 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3446 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3447
3448 /* All real interfaces need their ports initialized */
3449 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3450 &priv->buf_layout[0], dev);
3451 if (err)
3452 goto free_dpaa_fqs;
3453
3454 /* Rx traffic distribution based on keygen hashing defaults to on */
3455 priv->keygen_in_use = true;
3456
3457 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3458 if (!priv->percpu_priv) {
3459 dev_err(dev, "devm_alloc_percpu() failed\n");
3460 err = -ENOMEM;
3461 goto free_dpaa_fqs;
3462 }
3463
3464 priv->num_tc = 1;
3465 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3466
3467 /* Initialize NAPI */
3468 err = dpaa_napi_add(net_dev);
3469 if (err < 0)
3470 goto delete_dpaa_napi;
3471
3472 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3473 if (err < 0)
3474 goto delete_dpaa_napi;
3475
3476 dpaa_eth_sysfs_init(&net_dev->dev);
3477
3478 netif_info(priv, probe, net_dev, "Probed interface %s\n",
3479 net_dev->name);
3480
3481 return 0;
3482
3483 delete_dpaa_napi:
3484 dpaa_napi_del(net_dev);
3485 free_dpaa_fqs:
3486 dpaa_fq_free(dev, &priv->dpaa_fq_list);
3487 qman_delete_cgr_safe(&priv->ingress_cgr);
3488 qman_release_cgrid(priv->ingress_cgr.cgrid);
3489 delete_egress_cgr:
3490 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3491 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3492 free_dpaa_bps:
3493 dpaa_bps_free(priv);
3494 free_netdev:
3495 dev_set_drvdata(dev, NULL);
3496 free_netdev(net_dev);
3497
3498 return err;
3499 }
3500
dpaa_remove(struct platform_device * pdev)3501 static void dpaa_remove(struct platform_device *pdev)
3502 {
3503 struct net_device *net_dev;
3504 struct dpaa_priv *priv;
3505 struct device *dev;
3506 int err;
3507
3508 dev = &pdev->dev;
3509 net_dev = dev_get_drvdata(dev);
3510
3511 priv = netdev_priv(net_dev);
3512
3513 dpaa_eth_sysfs_remove(dev);
3514
3515 dev_set_drvdata(dev, NULL);
3516 unregister_netdev(net_dev);
3517 phylink_destroy(priv->mac_dev->phylink);
3518
3519 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3520 if (err)
3521 dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3522 ERR_PTR(err));
3523
3524 qman_delete_cgr_safe(&priv->ingress_cgr);
3525 qman_release_cgrid(priv->ingress_cgr.cgrid);
3526 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3527 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3528
3529 dpaa_napi_del(net_dev);
3530
3531 dpaa_bps_free(priv);
3532
3533 free_netdev(net_dev);
3534 }
3535
3536 static const struct platform_device_id dpaa_devtype[] = {
3537 {
3538 .name = "dpaa-ethernet",
3539 .driver_data = 0,
3540 }, {
3541 }
3542 };
3543 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3544
3545 static struct platform_driver dpaa_driver = {
3546 .driver = {
3547 .name = KBUILD_MODNAME,
3548 },
3549 .id_table = dpaa_devtype,
3550 .probe = dpaa_eth_probe,
3551 .remove_new = dpaa_remove
3552 };
3553
dpaa_load(void)3554 static int __init dpaa_load(void)
3555 {
3556 int err;
3557
3558 pr_debug("FSL DPAA Ethernet driver\n");
3559
3560 /* initialize dpaa_eth mirror values */
3561 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3562 dpaa_max_frm = fman_get_max_frm();
3563
3564 err = platform_driver_register(&dpaa_driver);
3565 if (err < 0)
3566 pr_err("Error, platform_driver_register() = %d\n", err);
3567
3568 return err;
3569 }
3570 module_init(dpaa_load);
3571
dpaa_unload(void)3572 static void __exit dpaa_unload(void)
3573 {
3574 platform_driver_unregister(&dpaa_driver);
3575
3576 /* Only one channel is used and needs to be released after all
3577 * interfaces are removed
3578 */
3579 dpaa_release_channel();
3580 }
3581 module_exit(dpaa_unload);
3582
3583 MODULE_LICENSE("Dual BSD/GPL");
3584 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3585