1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * WM8505/WM8650 SD/MMC Host Controller
4 *
5 * Copyright (C) 2010 Tony Prisk
6 * Copyright (C) 2008 WonderMedia Technologies, Inc.
7 */
8
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/ioport.h>
13 #include <linux/errno.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/mmc.h>
27 #include <linux/mmc/sd.h>
28
29 #include <asm/byteorder.h>
30
31
32 #define DRIVER_NAME "wmt-sdhc"
33
34
35 /* MMC/SD controller registers */
36 #define SDMMC_CTLR 0x00
37 #define SDMMC_CMD 0x01
38 #define SDMMC_RSPTYPE 0x02
39 #define SDMMC_ARG 0x04
40 #define SDMMC_BUSMODE 0x08
41 #define SDMMC_BLKLEN 0x0C
42 #define SDMMC_BLKCNT 0x0E
43 #define SDMMC_RSP 0x10
44 #define SDMMC_CBCR 0x20
45 #define SDMMC_INTMASK0 0x24
46 #define SDMMC_INTMASK1 0x25
47 #define SDMMC_STS0 0x28
48 #define SDMMC_STS1 0x29
49 #define SDMMC_STS2 0x2A
50 #define SDMMC_STS3 0x2B
51 #define SDMMC_RSPTIMEOUT 0x2C
52 #define SDMMC_CLK 0x30 /* VT8500 only */
53 #define SDMMC_EXTCTRL 0x34
54 #define SDMMC_SBLKLEN 0x38
55 #define SDMMC_DMATIMEOUT 0x3C
56
57
58 /* SDMMC_CTLR bit fields */
59 #define CTLR_CMD_START 0x01
60 #define CTLR_CMD_WRITE 0x04
61 #define CTLR_FIFO_RESET 0x08
62
63 /* SDMMC_BUSMODE bit fields */
64 #define BM_SPI_MODE 0x01
65 #define BM_FOURBIT_MODE 0x02
66 #define BM_EIGHTBIT_MODE 0x04
67 #define BM_SD_OFF 0x10
68 #define BM_SPI_CS 0x20
69 #define BM_SD_POWER 0x40
70 #define BM_SOFT_RESET 0x80
71
72 /* SDMMC_BLKLEN bit fields */
73 #define BLKL_CRCERR_ABORT 0x0800
74 #define BLKL_CD_POL_HIGH 0x1000
75 #define BLKL_GPI_CD 0x2000
76 #define BLKL_DATA3_CD 0x4000
77 #define BLKL_INT_ENABLE 0x8000
78
79 /* SDMMC_INTMASK0 bit fields */
80 #define INT0_MBLK_TRAN_DONE_INT_EN 0x10
81 #define INT0_BLK_TRAN_DONE_INT_EN 0x20
82 #define INT0_CD_INT_EN 0x40
83 #define INT0_DI_INT_EN 0x80
84
85 /* SDMMC_INTMASK1 bit fields */
86 #define INT1_CMD_RES_TRAN_DONE_INT_EN 0x02
87 #define INT1_CMD_RES_TOUT_INT_EN 0x04
88 #define INT1_MBLK_AUTO_STOP_INT_EN 0x08
89 #define INT1_DATA_TOUT_INT_EN 0x10
90 #define INT1_RESCRC_ERR_INT_EN 0x20
91 #define INT1_RCRC_ERR_INT_EN 0x40
92 #define INT1_WCRC_ERR_INT_EN 0x80
93
94 /* SDMMC_STS0 bit fields */
95 #define STS0_WRITE_PROTECT 0x02
96 #define STS0_CD_DATA3 0x04
97 #define STS0_CD_GPI 0x08
98 #define STS0_MBLK_DONE 0x10
99 #define STS0_BLK_DONE 0x20
100 #define STS0_CARD_DETECT 0x40
101 #define STS0_DEVICE_INS 0x80
102
103 /* SDMMC_STS1 bit fields */
104 #define STS1_SDIO_INT 0x01
105 #define STS1_CMDRSP_DONE 0x02
106 #define STS1_RSP_TIMEOUT 0x04
107 #define STS1_AUTOSTOP_DONE 0x08
108 #define STS1_DATA_TIMEOUT 0x10
109 #define STS1_RSP_CRC_ERR 0x20
110 #define STS1_RCRC_ERR 0x40
111 #define STS1_WCRC_ERR 0x80
112
113 /* SDMMC_STS2 bit fields */
114 #define STS2_CMD_RES_BUSY 0x10
115 #define STS2_DATARSP_BUSY 0x20
116 #define STS2_DIS_FORCECLK 0x80
117
118 /* SDMMC_EXTCTRL bit fields */
119 #define EXT_EIGHTBIT 0x04
120
121 /* MMC/SD DMA Controller Registers */
122 #define SDDMA_GCR 0x100
123 #define SDDMA_IER 0x104
124 #define SDDMA_ISR 0x108
125 #define SDDMA_DESPR 0x10C
126 #define SDDMA_RBR 0x110
127 #define SDDMA_DAR 0x114
128 #define SDDMA_BAR 0x118
129 #define SDDMA_CPR 0x11C
130 #define SDDMA_CCR 0x120
131
132
133 /* SDDMA_GCR bit fields */
134 #define DMA_GCR_DMA_EN 0x00000001
135 #define DMA_GCR_SOFT_RESET 0x00000100
136
137 /* SDDMA_IER bit fields */
138 #define DMA_IER_INT_EN 0x00000001
139
140 /* SDDMA_ISR bit fields */
141 #define DMA_ISR_INT_STS 0x00000001
142
143 /* SDDMA_RBR bit fields */
144 #define DMA_RBR_FORMAT 0x40000000
145 #define DMA_RBR_END 0x80000000
146
147 /* SDDMA_CCR bit fields */
148 #define DMA_CCR_RUN 0x00000080
149 #define DMA_CCR_IF_TO_PERIPHERAL 0x00000000
150 #define DMA_CCR_PERIPHERAL_TO_IF 0x00400000
151
152 /* SDDMA_CCR event status */
153 #define DMA_CCR_EVT_NO_STATUS 0x00000000
154 #define DMA_CCR_EVT_UNDERRUN 0x00000001
155 #define DMA_CCR_EVT_OVERRUN 0x00000002
156 #define DMA_CCR_EVT_DESP_READ 0x00000003
157 #define DMA_CCR_EVT_DATA_RW 0x00000004
158 #define DMA_CCR_EVT_EARLY_END 0x00000005
159 #define DMA_CCR_EVT_SUCCESS 0x0000000F
160
161 #define PDMA_READ 0x00
162 #define PDMA_WRITE 0x01
163
164 #define WMT_SD_POWER_OFF 0
165 #define WMT_SD_POWER_ON 1
166
167 struct wmt_dma_descriptor {
168 u32 flags;
169 u32 data_buffer_addr;
170 u32 branch_addr;
171 u32 reserved1;
172 };
173
174 struct wmt_mci_caps {
175 unsigned int f_min;
176 unsigned int f_max;
177 u32 ocr_avail;
178 u32 caps;
179 u32 max_seg_size;
180 u32 max_segs;
181 u32 max_blk_size;
182 };
183
184 struct wmt_mci_priv {
185 struct mmc_host *mmc;
186 void __iomem *sdmmc_base;
187
188 int irq_regular;
189 int irq_dma;
190
191 void *dma_desc_buffer;
192 dma_addr_t dma_desc_device_addr;
193
194 struct completion cmdcomp;
195 struct completion datacomp;
196
197 struct completion *comp_cmd;
198 struct completion *comp_dma;
199
200 struct mmc_request *req;
201 struct mmc_command *cmd;
202
203 struct clk *clk_sdmmc;
204 struct device *dev;
205
206 u8 power_inverted;
207 u8 cd_inverted;
208 };
209
wmt_set_sd_power(struct wmt_mci_priv * priv,int enable)210 static void wmt_set_sd_power(struct wmt_mci_priv *priv, int enable)
211 {
212 u32 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
213
214 if (enable ^ priv->power_inverted)
215 reg_tmp &= ~BM_SD_OFF;
216 else
217 reg_tmp |= BM_SD_OFF;
218
219 writeb(reg_tmp, priv->sdmmc_base + SDMMC_BUSMODE);
220 }
221
wmt_mci_read_response(struct mmc_host * mmc)222 static void wmt_mci_read_response(struct mmc_host *mmc)
223 {
224 struct wmt_mci_priv *priv;
225 int idx1, idx2;
226 u8 tmp_resp;
227 u32 response;
228
229 priv = mmc_priv(mmc);
230
231 for (idx1 = 0; idx1 < 4; idx1++) {
232 response = 0;
233 for (idx2 = 0; idx2 < 4; idx2++) {
234 if ((idx1 == 3) && (idx2 == 3))
235 tmp_resp = readb(priv->sdmmc_base + SDMMC_RSP);
236 else
237 tmp_resp = readb(priv->sdmmc_base + SDMMC_RSP +
238 (idx1*4) + idx2 + 1);
239 response |= (tmp_resp << (idx2 * 8));
240 }
241 priv->cmd->resp[idx1] = cpu_to_be32(response);
242 }
243 }
244
wmt_mci_start_command(struct wmt_mci_priv * priv)245 static void wmt_mci_start_command(struct wmt_mci_priv *priv)
246 {
247 u32 reg_tmp;
248
249 reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
250 writeb(reg_tmp | CTLR_CMD_START, priv->sdmmc_base + SDMMC_CTLR);
251 }
252
wmt_mci_send_command(struct mmc_host * mmc,u8 command,u8 cmdtype,u32 arg,u8 rsptype)253 static int wmt_mci_send_command(struct mmc_host *mmc, u8 command, u8 cmdtype,
254 u32 arg, u8 rsptype)
255 {
256 struct wmt_mci_priv *priv;
257 u32 reg_tmp;
258
259 priv = mmc_priv(mmc);
260
261 /* write command, arg, resptype registers */
262 writeb(command, priv->sdmmc_base + SDMMC_CMD);
263 writel(arg, priv->sdmmc_base + SDMMC_ARG);
264 writeb(rsptype, priv->sdmmc_base + SDMMC_RSPTYPE);
265
266 /* reset response FIFO */
267 reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
268 writeb(reg_tmp | CTLR_FIFO_RESET, priv->sdmmc_base + SDMMC_CTLR);
269
270 /* ensure clock enabled - VT3465 */
271 wmt_set_sd_power(priv, WMT_SD_POWER_ON);
272
273 /* clear status bits */
274 writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
275 writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
276 writeb(0xFF, priv->sdmmc_base + SDMMC_STS2);
277 writeb(0xFF, priv->sdmmc_base + SDMMC_STS3);
278
279 /* set command type */
280 reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
281 writeb((reg_tmp & 0x0F) | (cmdtype << 4),
282 priv->sdmmc_base + SDMMC_CTLR);
283
284 return 0;
285 }
286
wmt_mci_disable_dma(struct wmt_mci_priv * priv)287 static void wmt_mci_disable_dma(struct wmt_mci_priv *priv)
288 {
289 writel(DMA_ISR_INT_STS, priv->sdmmc_base + SDDMA_ISR);
290 writel(0, priv->sdmmc_base + SDDMA_IER);
291 }
292
wmt_complete_data_request(struct wmt_mci_priv * priv)293 static void wmt_complete_data_request(struct wmt_mci_priv *priv)
294 {
295 struct mmc_request *req;
296 req = priv->req;
297
298 req->data->bytes_xfered = req->data->blksz * req->data->blocks;
299
300 /* unmap the DMA pages used for write data */
301 if (req->data->flags & MMC_DATA_WRITE)
302 dma_unmap_sg(mmc_dev(priv->mmc), req->data->sg,
303 req->data->sg_len, DMA_TO_DEVICE);
304 else
305 dma_unmap_sg(mmc_dev(priv->mmc), req->data->sg,
306 req->data->sg_len, DMA_FROM_DEVICE);
307
308 /* Check if the DMA ISR returned a data error */
309 if ((req->cmd->error) || (req->data->error))
310 mmc_request_done(priv->mmc, req);
311 else {
312 wmt_mci_read_response(priv->mmc);
313 if (!req->data->stop) {
314 /* single-block read/write requests end here */
315 mmc_request_done(priv->mmc, req);
316 } else {
317 /*
318 * we change the priv->cmd variable so the response is
319 * stored in the stop struct rather than the original
320 * calling command struct
321 */
322 priv->comp_cmd = &priv->cmdcomp;
323 init_completion(priv->comp_cmd);
324 priv->cmd = req->data->stop;
325 wmt_mci_send_command(priv->mmc, req->data->stop->opcode,
326 7, req->data->stop->arg, 9);
327 wmt_mci_start_command(priv);
328 }
329 }
330 }
331
wmt_mci_dma_isr(int irq_num,void * data)332 static irqreturn_t wmt_mci_dma_isr(int irq_num, void *data)
333 {
334 struct wmt_mci_priv *priv;
335
336 int status;
337
338 priv = (struct wmt_mci_priv *)data;
339
340 status = readl(priv->sdmmc_base + SDDMA_CCR) & 0x0F;
341
342 if (status != DMA_CCR_EVT_SUCCESS) {
343 dev_err(priv->dev, "DMA Error: Status = %d\n", status);
344 priv->req->data->error = -ETIMEDOUT;
345 complete(priv->comp_dma);
346 return IRQ_HANDLED;
347 }
348
349 priv->req->data->error = 0;
350
351 wmt_mci_disable_dma(priv);
352
353 complete(priv->comp_dma);
354
355 if (priv->comp_cmd) {
356 if (completion_done(priv->comp_cmd)) {
357 /*
358 * if the command (regular) interrupt has already
359 * completed, finish off the request otherwise we wait
360 * for the command interrupt and finish from there.
361 */
362 wmt_complete_data_request(priv);
363 }
364 }
365
366 return IRQ_HANDLED;
367 }
368
wmt_mci_regular_isr(int irq_num,void * data)369 static irqreturn_t wmt_mci_regular_isr(int irq_num, void *data)
370 {
371 struct wmt_mci_priv *priv;
372 u32 status0;
373 u32 status1;
374 u32 status2;
375 u32 reg_tmp;
376 int cmd_done;
377
378 priv = (struct wmt_mci_priv *)data;
379 cmd_done = 0;
380 status0 = readb(priv->sdmmc_base + SDMMC_STS0);
381 status1 = readb(priv->sdmmc_base + SDMMC_STS1);
382 status2 = readb(priv->sdmmc_base + SDMMC_STS2);
383
384 /* Check for card insertion */
385 reg_tmp = readb(priv->sdmmc_base + SDMMC_INTMASK0);
386 if ((reg_tmp & INT0_DI_INT_EN) && (status0 & STS0_DEVICE_INS)) {
387 mmc_detect_change(priv->mmc, 0);
388 if (priv->cmd)
389 priv->cmd->error = -ETIMEDOUT;
390 if (priv->comp_cmd)
391 complete(priv->comp_cmd);
392 if (priv->comp_dma) {
393 wmt_mci_disable_dma(priv);
394 complete(priv->comp_dma);
395 }
396 writeb(STS0_DEVICE_INS, priv->sdmmc_base + SDMMC_STS0);
397 return IRQ_HANDLED;
398 }
399
400 if ((!priv->req->data) ||
401 ((priv->req->data->stop) && (priv->cmd == priv->req->data->stop))) {
402 /* handle non-data & stop_transmission requests */
403 if (status1 & STS1_CMDRSP_DONE) {
404 priv->cmd->error = 0;
405 cmd_done = 1;
406 } else if ((status1 & STS1_RSP_TIMEOUT) ||
407 (status1 & STS1_DATA_TIMEOUT)) {
408 priv->cmd->error = -ETIMEDOUT;
409 cmd_done = 1;
410 }
411
412 if (cmd_done) {
413 priv->comp_cmd = NULL;
414
415 if (!priv->cmd->error)
416 wmt_mci_read_response(priv->mmc);
417
418 priv->cmd = NULL;
419
420 mmc_request_done(priv->mmc, priv->req);
421 }
422 } else {
423 /* handle data requests */
424 if (status1 & STS1_CMDRSP_DONE) {
425 if (priv->cmd)
426 priv->cmd->error = 0;
427 if (priv->comp_cmd)
428 complete(priv->comp_cmd);
429 }
430
431 if ((status1 & STS1_RSP_TIMEOUT) ||
432 (status1 & STS1_DATA_TIMEOUT)) {
433 if (priv->cmd)
434 priv->cmd->error = -ETIMEDOUT;
435 if (priv->comp_cmd)
436 complete(priv->comp_cmd);
437 if (priv->comp_dma) {
438 wmt_mci_disable_dma(priv);
439 complete(priv->comp_dma);
440 }
441 }
442
443 if (priv->comp_dma) {
444 /*
445 * If the dma interrupt has already completed, finish
446 * off the request; otherwise we wait for the DMA
447 * interrupt and finish from there.
448 */
449 if (completion_done(priv->comp_dma))
450 wmt_complete_data_request(priv);
451 }
452 }
453
454 writeb(status0, priv->sdmmc_base + SDMMC_STS0);
455 writeb(status1, priv->sdmmc_base + SDMMC_STS1);
456 writeb(status2, priv->sdmmc_base + SDMMC_STS2);
457
458 return IRQ_HANDLED;
459 }
460
wmt_reset_hardware(struct mmc_host * mmc)461 static void wmt_reset_hardware(struct mmc_host *mmc)
462 {
463 struct wmt_mci_priv *priv;
464 u32 reg_tmp;
465
466 priv = mmc_priv(mmc);
467
468 /* reset controller */
469 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
470 writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE);
471
472 /* reset response FIFO */
473 reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
474 writeb(reg_tmp | CTLR_FIFO_RESET, priv->sdmmc_base + SDMMC_CTLR);
475
476 /* enable GPI pin to detect card */
477 writew(BLKL_INT_ENABLE | BLKL_GPI_CD, priv->sdmmc_base + SDMMC_BLKLEN);
478
479 /* clear interrupt status */
480 writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
481 writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
482
483 /* setup interrupts */
484 writeb(INT0_CD_INT_EN | INT0_DI_INT_EN, priv->sdmmc_base +
485 SDMMC_INTMASK0);
486 writeb(INT1_DATA_TOUT_INT_EN | INT1_CMD_RES_TRAN_DONE_INT_EN |
487 INT1_CMD_RES_TOUT_INT_EN, priv->sdmmc_base + SDMMC_INTMASK1);
488
489 /* set the DMA timeout */
490 writew(8191, priv->sdmmc_base + SDMMC_DMATIMEOUT);
491
492 /* auto clock freezing enable */
493 reg_tmp = readb(priv->sdmmc_base + SDMMC_STS2);
494 writeb(reg_tmp | STS2_DIS_FORCECLK, priv->sdmmc_base + SDMMC_STS2);
495
496 /* set a default clock speed of 400Khz */
497 clk_set_rate(priv->clk_sdmmc, 400000);
498 }
499
wmt_dma_init(struct mmc_host * mmc)500 static int wmt_dma_init(struct mmc_host *mmc)
501 {
502 struct wmt_mci_priv *priv;
503
504 priv = mmc_priv(mmc);
505
506 writel(DMA_GCR_SOFT_RESET, priv->sdmmc_base + SDDMA_GCR);
507 writel(DMA_GCR_DMA_EN, priv->sdmmc_base + SDDMA_GCR);
508 if ((readl(priv->sdmmc_base + SDDMA_GCR) & DMA_GCR_DMA_EN) != 0)
509 return 0;
510 else
511 return 1;
512 }
513
wmt_dma_init_descriptor(struct wmt_dma_descriptor * desc,u16 req_count,u32 buffer_addr,u32 branch_addr,int end)514 static void wmt_dma_init_descriptor(struct wmt_dma_descriptor *desc,
515 u16 req_count, u32 buffer_addr, u32 branch_addr, int end)
516 {
517 desc->flags = 0x40000000 | req_count;
518 if (end)
519 desc->flags |= 0x80000000;
520 desc->data_buffer_addr = buffer_addr;
521 desc->branch_addr = branch_addr;
522 }
523
wmt_dma_config(struct mmc_host * mmc,u32 descaddr,u8 dir)524 static void wmt_dma_config(struct mmc_host *mmc, u32 descaddr, u8 dir)
525 {
526 struct wmt_mci_priv *priv;
527 u32 reg_tmp;
528
529 priv = mmc_priv(mmc);
530
531 /* Enable DMA Interrupts */
532 writel(DMA_IER_INT_EN, priv->sdmmc_base + SDDMA_IER);
533
534 /* Write DMA Descriptor Pointer Register */
535 writel(descaddr, priv->sdmmc_base + SDDMA_DESPR);
536
537 writel(0x00, priv->sdmmc_base + SDDMA_CCR);
538
539 if (dir == PDMA_WRITE) {
540 reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR);
541 writel(reg_tmp & DMA_CCR_IF_TO_PERIPHERAL, priv->sdmmc_base +
542 SDDMA_CCR);
543 } else {
544 reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR);
545 writel(reg_tmp | DMA_CCR_PERIPHERAL_TO_IF, priv->sdmmc_base +
546 SDDMA_CCR);
547 }
548 }
549
wmt_dma_start(struct wmt_mci_priv * priv)550 static void wmt_dma_start(struct wmt_mci_priv *priv)
551 {
552 u32 reg_tmp;
553
554 reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR);
555 writel(reg_tmp | DMA_CCR_RUN, priv->sdmmc_base + SDDMA_CCR);
556 }
557
wmt_mci_request(struct mmc_host * mmc,struct mmc_request * req)558 static void wmt_mci_request(struct mmc_host *mmc, struct mmc_request *req)
559 {
560 struct wmt_mci_priv *priv;
561 struct wmt_dma_descriptor *desc;
562 u8 command;
563 u8 cmdtype;
564 u32 arg;
565 u8 rsptype;
566 u32 reg_tmp;
567
568 struct scatterlist *sg;
569 int i;
570 int sg_cnt;
571 int offset;
572 u32 dma_address;
573 int desc_cnt;
574
575 priv = mmc_priv(mmc);
576 priv->req = req;
577
578 /*
579 * Use the cmd variable to pass a pointer to the resp[] structure
580 * This is required on multi-block requests to pass the pointer to the
581 * stop command
582 */
583 priv->cmd = req->cmd;
584
585 command = req->cmd->opcode;
586 arg = req->cmd->arg;
587 rsptype = mmc_resp_type(req->cmd);
588 cmdtype = 0;
589
590 /* rsptype=7 only valid for SPI commands - should be =2 for SD */
591 if (rsptype == 7)
592 rsptype = 2;
593 /* rsptype=21 is R1B, convert for controller */
594 if (rsptype == 21)
595 rsptype = 9;
596
597 if (!req->data) {
598 wmt_mci_send_command(mmc, command, cmdtype, arg, rsptype);
599 wmt_mci_start_command(priv);
600 /* completion is now handled in the regular_isr() */
601 }
602 if (req->data) {
603 priv->comp_cmd = &priv->cmdcomp;
604 init_completion(priv->comp_cmd);
605
606 wmt_dma_init(mmc);
607
608 /* set controller data length */
609 reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
610 writew((reg_tmp & 0xF800) | (req->data->blksz - 1),
611 priv->sdmmc_base + SDMMC_BLKLEN);
612
613 /* set controller block count */
614 writew(req->data->blocks, priv->sdmmc_base + SDMMC_BLKCNT);
615
616 desc = (struct wmt_dma_descriptor *)priv->dma_desc_buffer;
617
618 if (req->data->flags & MMC_DATA_WRITE) {
619 sg_cnt = dma_map_sg(mmc_dev(mmc), req->data->sg,
620 req->data->sg_len, DMA_TO_DEVICE);
621 cmdtype = 1;
622 if (req->data->blocks > 1)
623 cmdtype = 3;
624 } else {
625 sg_cnt = dma_map_sg(mmc_dev(mmc), req->data->sg,
626 req->data->sg_len, DMA_FROM_DEVICE);
627 cmdtype = 2;
628 if (req->data->blocks > 1)
629 cmdtype = 4;
630 }
631
632 dma_address = priv->dma_desc_device_addr + 16;
633 desc_cnt = 0;
634
635 for_each_sg(req->data->sg, sg, sg_cnt, i) {
636 offset = 0;
637 while (offset < sg_dma_len(sg)) {
638 wmt_dma_init_descriptor(desc, req->data->blksz,
639 sg_dma_address(sg)+offset,
640 dma_address, 0);
641 desc++;
642 desc_cnt++;
643 offset += req->data->blksz;
644 dma_address += 16;
645 if (desc_cnt == req->data->blocks)
646 break;
647 }
648 }
649 desc--;
650 desc->flags |= 0x80000000;
651
652 if (req->data->flags & MMC_DATA_WRITE)
653 wmt_dma_config(mmc, priv->dma_desc_device_addr,
654 PDMA_WRITE);
655 else
656 wmt_dma_config(mmc, priv->dma_desc_device_addr,
657 PDMA_READ);
658
659 wmt_mci_send_command(mmc, command, cmdtype, arg, rsptype);
660
661 priv->comp_dma = &priv->datacomp;
662 init_completion(priv->comp_dma);
663
664 wmt_dma_start(priv);
665 wmt_mci_start_command(priv);
666 }
667 }
668
wmt_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)669 static void wmt_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
670 {
671 struct wmt_mci_priv *priv;
672 u32 busmode, extctrl;
673
674 priv = mmc_priv(mmc);
675
676 if (ios->power_mode == MMC_POWER_UP) {
677 wmt_reset_hardware(mmc);
678
679 wmt_set_sd_power(priv, WMT_SD_POWER_ON);
680 }
681 if (ios->power_mode == MMC_POWER_OFF)
682 wmt_set_sd_power(priv, WMT_SD_POWER_OFF);
683
684 if (ios->clock != 0)
685 clk_set_rate(priv->clk_sdmmc, ios->clock);
686
687 busmode = readb(priv->sdmmc_base + SDMMC_BUSMODE);
688 extctrl = readb(priv->sdmmc_base + SDMMC_EXTCTRL);
689
690 busmode &= ~(BM_EIGHTBIT_MODE | BM_FOURBIT_MODE);
691 extctrl &= ~EXT_EIGHTBIT;
692
693 switch (ios->bus_width) {
694 case MMC_BUS_WIDTH_8:
695 busmode |= BM_EIGHTBIT_MODE;
696 extctrl |= EXT_EIGHTBIT;
697 break;
698 case MMC_BUS_WIDTH_4:
699 busmode |= BM_FOURBIT_MODE;
700 break;
701 case MMC_BUS_WIDTH_1:
702 break;
703 }
704
705 writeb(busmode, priv->sdmmc_base + SDMMC_BUSMODE);
706 writeb(extctrl, priv->sdmmc_base + SDMMC_EXTCTRL);
707 }
708
wmt_mci_get_ro(struct mmc_host * mmc)709 static int wmt_mci_get_ro(struct mmc_host *mmc)
710 {
711 struct wmt_mci_priv *priv = mmc_priv(mmc);
712
713 return !(readb(priv->sdmmc_base + SDMMC_STS0) & STS0_WRITE_PROTECT);
714 }
715
wmt_mci_get_cd(struct mmc_host * mmc)716 static int wmt_mci_get_cd(struct mmc_host *mmc)
717 {
718 struct wmt_mci_priv *priv = mmc_priv(mmc);
719 u32 cd = (readb(priv->sdmmc_base + SDMMC_STS0) & STS0_CD_GPI) >> 3;
720
721 return !(cd ^ priv->cd_inverted);
722 }
723
724 static const struct mmc_host_ops wmt_mci_ops = {
725 .request = wmt_mci_request,
726 .set_ios = wmt_mci_set_ios,
727 .get_ro = wmt_mci_get_ro,
728 .get_cd = wmt_mci_get_cd,
729 };
730
731 /* Controller capabilities */
732 static struct wmt_mci_caps wm8505_caps = {
733 .f_min = 390425,
734 .f_max = 50000000,
735 .ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34,
736 .caps = MMC_CAP_4_BIT_DATA | MMC_CAP_MMC_HIGHSPEED |
737 MMC_CAP_SD_HIGHSPEED,
738 .max_seg_size = 65024,
739 .max_segs = 128,
740 .max_blk_size = 2048,
741 };
742
743 static const struct of_device_id wmt_mci_dt_ids[] = {
744 { .compatible = "wm,wm8505-sdhc", .data = &wm8505_caps },
745 { /* Sentinel */ },
746 };
747
wmt_mci_probe(struct platform_device * pdev)748 static int wmt_mci_probe(struct platform_device *pdev)
749 {
750 struct mmc_host *mmc;
751 struct wmt_mci_priv *priv;
752 struct device_node *np = pdev->dev.of_node;
753 const struct wmt_mci_caps *wmt_caps;
754 int ret;
755 int regular_irq, dma_irq;
756
757 wmt_caps = of_device_get_match_data(&pdev->dev);
758 if (!wmt_caps) {
759 dev_err(&pdev->dev, "Controller capabilities data missing\n");
760 return -EFAULT;
761 }
762
763 if (!np) {
764 dev_err(&pdev->dev, "Missing SDMMC description in devicetree\n");
765 return -EFAULT;
766 }
767
768 regular_irq = irq_of_parse_and_map(np, 0);
769 dma_irq = irq_of_parse_and_map(np, 1);
770
771 if (!regular_irq || !dma_irq) {
772 dev_err(&pdev->dev, "Getting IRQs failed!\n");
773 ret = -ENXIO;
774 goto fail1;
775 }
776
777 mmc = mmc_alloc_host(sizeof(struct wmt_mci_priv), &pdev->dev);
778 if (!mmc) {
779 dev_err(&pdev->dev, "Failed to allocate mmc_host\n");
780 ret = -ENOMEM;
781 goto fail1;
782 }
783
784 mmc->ops = &wmt_mci_ops;
785 mmc->f_min = wmt_caps->f_min;
786 mmc->f_max = wmt_caps->f_max;
787 mmc->ocr_avail = wmt_caps->ocr_avail;
788 mmc->caps = wmt_caps->caps;
789
790 mmc->max_seg_size = wmt_caps->max_seg_size;
791 mmc->max_segs = wmt_caps->max_segs;
792 mmc->max_blk_size = wmt_caps->max_blk_size;
793
794 mmc->max_req_size = (16*512*mmc->max_segs);
795 mmc->max_blk_count = mmc->max_req_size / 512;
796
797 priv = mmc_priv(mmc);
798 priv->mmc = mmc;
799 priv->dev = &pdev->dev;
800
801 priv->power_inverted = 0;
802 priv->cd_inverted = 0;
803
804 priv->power_inverted = of_property_read_bool(np, "sdon-inverted");
805 priv->cd_inverted = of_property_read_bool(np, "cd-inverted");
806
807 priv->sdmmc_base = of_iomap(np, 0);
808 if (!priv->sdmmc_base) {
809 dev_err(&pdev->dev, "Failed to map IO space\n");
810 ret = -ENOMEM;
811 goto fail2;
812 }
813
814 priv->irq_regular = regular_irq;
815 priv->irq_dma = dma_irq;
816
817 ret = request_irq(regular_irq, wmt_mci_regular_isr, 0, "sdmmc", priv);
818 if (ret) {
819 dev_err(&pdev->dev, "Register regular IRQ fail\n");
820 goto fail3;
821 }
822
823 ret = request_irq(dma_irq, wmt_mci_dma_isr, 0, "sdmmc", priv);
824 if (ret) {
825 dev_err(&pdev->dev, "Register DMA IRQ fail\n");
826 goto fail4;
827 }
828
829 /* alloc some DMA buffers for descriptors/transfers */
830 priv->dma_desc_buffer = dma_alloc_coherent(&pdev->dev,
831 mmc->max_blk_count * 16,
832 &priv->dma_desc_device_addr,
833 GFP_KERNEL);
834 if (!priv->dma_desc_buffer) {
835 dev_err(&pdev->dev, "DMA alloc fail\n");
836 ret = -EPERM;
837 goto fail5;
838 }
839
840 platform_set_drvdata(pdev, mmc);
841
842 priv->clk_sdmmc = of_clk_get(np, 0);
843 if (IS_ERR(priv->clk_sdmmc)) {
844 dev_err(&pdev->dev, "Error getting clock\n");
845 ret = PTR_ERR(priv->clk_sdmmc);
846 goto fail5_and_a_half;
847 }
848
849 ret = clk_prepare_enable(priv->clk_sdmmc);
850 if (ret)
851 goto fail6;
852
853 /* configure the controller to a known 'ready' state */
854 wmt_reset_hardware(mmc);
855
856 ret = mmc_add_host(mmc);
857 if (ret)
858 goto fail7;
859
860 dev_info(&pdev->dev, "WMT SDHC Controller initialized\n");
861
862 return 0;
863 fail7:
864 clk_disable_unprepare(priv->clk_sdmmc);
865 fail6:
866 clk_put(priv->clk_sdmmc);
867 fail5_and_a_half:
868 dma_free_coherent(&pdev->dev, mmc->max_blk_count * 16,
869 priv->dma_desc_buffer, priv->dma_desc_device_addr);
870 fail5:
871 free_irq(dma_irq, priv);
872 fail4:
873 free_irq(regular_irq, priv);
874 fail3:
875 iounmap(priv->sdmmc_base);
876 fail2:
877 mmc_free_host(mmc);
878 fail1:
879 return ret;
880 }
881
wmt_mci_remove(struct platform_device * pdev)882 static void wmt_mci_remove(struct platform_device *pdev)
883 {
884 struct mmc_host *mmc;
885 struct wmt_mci_priv *priv;
886 struct resource *res;
887 u32 reg_tmp;
888
889 mmc = platform_get_drvdata(pdev);
890 priv = mmc_priv(mmc);
891
892 /* reset SD controller */
893 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
894 writel(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE);
895 reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
896 writew(reg_tmp & ~(0xA000), priv->sdmmc_base + SDMMC_BLKLEN);
897 writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
898 writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
899
900 /* release the dma buffers */
901 dma_free_coherent(&pdev->dev, priv->mmc->max_blk_count * 16,
902 priv->dma_desc_buffer, priv->dma_desc_device_addr);
903
904 mmc_remove_host(mmc);
905
906 free_irq(priv->irq_regular, priv);
907 free_irq(priv->irq_dma, priv);
908
909 iounmap(priv->sdmmc_base);
910
911 clk_disable_unprepare(priv->clk_sdmmc);
912 clk_put(priv->clk_sdmmc);
913
914 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
915 release_mem_region(res->start, resource_size(res));
916
917 mmc_free_host(mmc);
918
919 dev_info(&pdev->dev, "WMT MCI device removed\n");
920 }
921
922 #ifdef CONFIG_PM
wmt_mci_suspend(struct device * dev)923 static int wmt_mci_suspend(struct device *dev)
924 {
925 u32 reg_tmp;
926 struct mmc_host *mmc = dev_get_drvdata(dev);
927 struct wmt_mci_priv *priv;
928
929 if (!mmc)
930 return 0;
931
932 priv = mmc_priv(mmc);
933 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
934 writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base +
935 SDMMC_BUSMODE);
936
937 reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
938 writew(reg_tmp & 0x5FFF, priv->sdmmc_base + SDMMC_BLKLEN);
939
940 writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
941 writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
942
943 clk_disable(priv->clk_sdmmc);
944 return 0;
945 }
946
wmt_mci_resume(struct device * dev)947 static int wmt_mci_resume(struct device *dev)
948 {
949 u32 reg_tmp;
950 struct mmc_host *mmc = dev_get_drvdata(dev);
951 struct wmt_mci_priv *priv;
952
953 if (mmc) {
954 priv = mmc_priv(mmc);
955 clk_enable(priv->clk_sdmmc);
956
957 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
958 writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base +
959 SDMMC_BUSMODE);
960
961 reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
962 writew(reg_tmp | (BLKL_GPI_CD | BLKL_INT_ENABLE),
963 priv->sdmmc_base + SDMMC_BLKLEN);
964
965 reg_tmp = readb(priv->sdmmc_base + SDMMC_INTMASK0);
966 writeb(reg_tmp | INT0_DI_INT_EN, priv->sdmmc_base +
967 SDMMC_INTMASK0);
968
969 }
970
971 return 0;
972 }
973
974 static const struct dev_pm_ops wmt_mci_pm = {
975 .suspend = wmt_mci_suspend,
976 .resume = wmt_mci_resume,
977 };
978
979 #define wmt_mci_pm_ops (&wmt_mci_pm)
980
981 #else /* !CONFIG_PM */
982
983 #define wmt_mci_pm_ops NULL
984
985 #endif
986
987 static struct platform_driver wmt_mci_driver = {
988 .probe = wmt_mci_probe,
989 .remove_new = wmt_mci_remove,
990 .driver = {
991 .name = DRIVER_NAME,
992 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
993 .pm = wmt_mci_pm_ops,
994 .of_match_table = wmt_mci_dt_ids,
995 },
996 };
997
998 module_platform_driver(wmt_mci_driver);
999
1000 MODULE_DESCRIPTION("Wondermedia MMC/SD Driver");
1001 MODULE_AUTHOR("Tony Prisk");
1002 MODULE_LICENSE("GPL v2");
1003 MODULE_DEVICE_TABLE(of, wmt_mci_dt_ids);
1004