1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
46 #define SALT_SIZE 16
47
48 /*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56 * On disk structures
57 */
58
59 #define SB_MAGIC "integrt"
60 #define SB_VERSION_1 1
61 #define SB_VERSION_2 2
62 #define SB_VERSION_3 3
63 #define SB_VERSION_4 4
64 #define SB_VERSION_5 5
65 #define SB_SECTORS 8
66 #define MAX_SECTORS_PER_BLOCK 8
67
68 struct superblock {
69 __u8 magic[8];
70 __u8 version;
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
75 __le32 flags;
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
78 __u8 pad[2];
79 __le64 recalc_sector;
80 __u8 pad2[8];
81 __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85 #define SB_FLAG_RECALCULATING 0x2
86 #define SB_FLAG_DIRTY_BITMAP 0x4
87 #define SB_FLAG_FIXED_PADDING 0x8
88 #define SB_FLAG_FIXED_HMAC 0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP 8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR 8
94
95 struct journal_entry {
96 union {
97 struct {
98 __le32 sector_lo;
99 __le32 sector_hi;
100 } s;
101 __le64 sector;
102 } u;
103 commit_id_t last_bytes[];
104 /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS 8
121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128 );
129 commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS 8
135
136 #define N_COMMIT_IDS 4
137
prev_commit_seq(unsigned char seq)138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
next_commit_seq(unsigned char seq)143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149 * In-memory structures
150 */
151
152 struct journal_node {
153 struct rb_node node;
154 sector_t sector;
155 };
156
157 struct alg_spec {
158 char *alg_string;
159 char *key_string;
160 __u8 *key;
161 unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165 struct dm_dev *dev;
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
168 __s8 log2_tag_size;
169 sector_t start;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
177
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
188
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
193
194 struct crypto_shash *journal_mac;
195
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
198
199 sector_t provided_data_sectors;
200
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
215
216 unsigned char mode;
217
218 int failed;
219
220 struct crypto_shash *internal_hash;
221
222 struct dm_target *ti;
223
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
230
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
233
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
236
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
239
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
243
244 unsigned int free_sectors_threshold;
245
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
248
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
251
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
254
255 struct bio_list flush_bio_list;
256
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
260
261 wait_queue_head_t copy_to_journal_wait;
262
263 struct completion crypto_backoff;
264
265 bool wrote_to_journal;
266 bool journal_uptodate;
267 bool just_formatted;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
270 bool discard;
271 bool fix_padding;
272 bool fix_hmac;
273 bool legacy_recalculate;
274
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
278
279 atomic64_t number_of_mismatches;
280
281 struct notifier_block reboot_notifier;
282 };
283
284 struct dm_integrity_range {
285 sector_t logical_sector;
286 sector_t n_sectors;
287 bool waiting;
288 union {
289 struct rb_node node;
290 struct {
291 struct task_struct *task;
292 struct list_head wait_entry;
293 };
294 };
295 };
296
297 struct dm_integrity_io {
298 struct work_struct work;
299
300 struct dm_integrity_c *ic;
301 enum req_op op;
302 bool fua;
303
304 struct dm_integrity_range range;
305
306 sector_t metadata_block;
307 unsigned int metadata_offset;
308
309 atomic_t in_flight;
310 blk_status_t bi_status;
311
312 struct completion *completion;
313
314 struct dm_bio_details bio_details;
315 };
316
317 struct journal_completion {
318 struct dm_integrity_c *ic;
319 atomic_t in_flight;
320 struct completion comp;
321 };
322
323 struct journal_io {
324 struct dm_integrity_range range;
325 struct journal_completion *comp;
326 };
327
328 struct bitmap_block_status {
329 struct work_struct work;
330 struct dm_integrity_c *ic;
331 unsigned int idx;
332 unsigned long *bitmap;
333 struct bio_list bio_queue;
334 spinlock_t bio_queue_lock;
335
336 };
337
338 static struct kmem_cache *journal_io_cache;
339
340 #define JOURNAL_IO_MEMPOOL 32
341
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345 len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...) do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
349 #endif
350
dm_integrity_prepare(struct request * rq)351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354
dm_integrity_complete(struct request * rq,unsigned int nr_bytes)355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358
359 /*
360 * DM Integrity profile, protection is performed layer above (dm-crypt)
361 */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363 .name = "DM-DIF-EXT-TAG",
364 .generate_fn = NULL,
365 .verify_fn = NULL,
366 .prepare_fn = dm_integrity_prepare,
367 .complete_fn = dm_integrity_complete,
368 };
369
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376 if (err == -EILSEQ)
377 atomic64_inc(&ic->number_of_mismatches);
378 if (!cmpxchg(&ic->failed, 0, err))
379 DMERR("Error on %s: %d", msg, err);
380 }
381
dm_integrity_failed(struct dm_integrity_c * ic)382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384 return READ_ONCE(ic->failed);
385 }
386
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389 if (ic->legacy_recalculate)
390 return false;
391 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394 return true;
395 return false;
396 }
397
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399 unsigned int j, unsigned char seq)
400 {
401 /*
402 * Xor the number with section and sector, so that if a piece of
403 * journal is written at wrong place, it is detected.
404 */
405 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 sector_t *area, sector_t *offset)
410 {
411 if (!ic->meta_dev) {
412 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 *area = data_sector >> log2_interleave_sectors;
414 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415 } else {
416 *area = 0;
417 *offset = data_sector;
418 }
419 }
420
421 #define sector_to_block(ic, n) \
422 do { \
423 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
424 (n) >>= (ic)->sb->log2_sectors_per_block; \
425 } while (0)
426
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 sector_t offset, unsigned int *metadata_offset)
429 {
430 __u64 ms;
431 unsigned int mo;
432
433 ms = area << ic->sb->log2_interleave_sectors;
434 if (likely(ic->log2_metadata_run >= 0))
435 ms += area << ic->log2_metadata_run;
436 else
437 ms += area * ic->metadata_run;
438 ms >>= ic->log2_buffer_sectors;
439
440 sector_to_block(ic, offset);
441
442 if (likely(ic->log2_tag_size >= 0)) {
443 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445 } else {
446 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 }
449 *metadata_offset = mo;
450 return ms;
451 }
452
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455 sector_t result;
456
457 if (ic->meta_dev)
458 return offset;
459
460 result = area << ic->sb->log2_interleave_sectors;
461 if (likely(ic->log2_metadata_run >= 0))
462 result += (area + 1) << ic->log2_metadata_run;
463 else
464 result += (area + 1) * ic->metadata_run;
465
466 result += (sector_t)ic->initial_sectors + offset;
467 result += ic->start;
468
469 return result;
470 }
471
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474 if (unlikely(*sec_ptr >= ic->journal_sections))
475 *sec_ptr -= ic->journal_sections;
476 }
477
sb_set_version(struct dm_integrity_c * ic)478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481 ic->sb->version = SB_VERSION_5;
482 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483 ic->sb->version = SB_VERSION_4;
484 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485 ic->sb->version = SB_VERSION_3;
486 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487 ic->sb->version = SB_VERSION_2;
488 else
489 ic->sb->version = SB_VERSION_1;
490 }
491
sb_mac(struct dm_integrity_c * ic,bool wr)492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495 int r;
496 unsigned int size = crypto_shash_digestsize(ic->journal_mac);
497
498 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
499 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
500 return -EINVAL;
501 }
502
503 desc->tfm = ic->journal_mac;
504
505 r = crypto_shash_init(desc);
506 if (unlikely(r < 0)) {
507 dm_integrity_io_error(ic, "crypto_shash_init", r);
508 return r;
509 }
510
511 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
512 if (unlikely(r < 0)) {
513 dm_integrity_io_error(ic, "crypto_shash_update", r);
514 return r;
515 }
516
517 if (likely(wr)) {
518 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
519 if (unlikely(r < 0)) {
520 dm_integrity_io_error(ic, "crypto_shash_final", r);
521 return r;
522 }
523 } else {
524 __u8 result[HASH_MAX_DIGESTSIZE];
525
526 r = crypto_shash_final(desc, result);
527 if (unlikely(r < 0)) {
528 dm_integrity_io_error(ic, "crypto_shash_final", r);
529 return r;
530 }
531 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
532 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
533 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
534 return -EILSEQ;
535 }
536 }
537
538 return 0;
539 }
540
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)541 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
542 {
543 struct dm_io_request io_req;
544 struct dm_io_region io_loc;
545 const enum req_op op = opf & REQ_OP_MASK;
546 int r;
547
548 io_req.bi_opf = opf;
549 io_req.mem.type = DM_IO_KMEM;
550 io_req.mem.ptr.addr = ic->sb;
551 io_req.notify.fn = NULL;
552 io_req.client = ic->io;
553 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
554 io_loc.sector = ic->start;
555 io_loc.count = SB_SECTORS;
556
557 if (op == REQ_OP_WRITE) {
558 sb_set_version(ic);
559 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
560 r = sb_mac(ic, true);
561 if (unlikely(r))
562 return r;
563 }
564 }
565
566 r = dm_io(&io_req, 1, &io_loc, NULL);
567 if (unlikely(r))
568 return r;
569
570 if (op == REQ_OP_READ) {
571 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
572 r = sb_mac(ic, false);
573 if (unlikely(r))
574 return r;
575 }
576 }
577
578 return 0;
579 }
580
581 #define BITMAP_OP_TEST_ALL_SET 0
582 #define BITMAP_OP_TEST_ALL_CLEAR 1
583 #define BITMAP_OP_SET 2
584 #define BITMAP_OP_CLEAR 3
585
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)586 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
587 sector_t sector, sector_t n_sectors, int mode)
588 {
589 unsigned long bit, end_bit, this_end_bit, page, end_page;
590 unsigned long *data;
591
592 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
593 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
594 sector,
595 n_sectors,
596 ic->sb->log2_sectors_per_block,
597 ic->log2_blocks_per_bitmap_bit,
598 mode);
599 BUG();
600 }
601
602 if (unlikely(!n_sectors))
603 return true;
604
605 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
606 end_bit = (sector + n_sectors - 1) >>
607 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608
609 page = bit / (PAGE_SIZE * 8);
610 bit %= PAGE_SIZE * 8;
611
612 end_page = end_bit / (PAGE_SIZE * 8);
613 end_bit %= PAGE_SIZE * 8;
614
615 repeat:
616 if (page < end_page)
617 this_end_bit = PAGE_SIZE * 8 - 1;
618 else
619 this_end_bit = end_bit;
620
621 data = lowmem_page_address(bitmap[page].page);
622
623 if (mode == BITMAP_OP_TEST_ALL_SET) {
624 while (bit <= this_end_bit) {
625 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
626 do {
627 if (data[bit / BITS_PER_LONG] != -1)
628 return false;
629 bit += BITS_PER_LONG;
630 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
631 continue;
632 }
633 if (!test_bit(bit, data))
634 return false;
635 bit++;
636 }
637 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
638 while (bit <= this_end_bit) {
639 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640 do {
641 if (data[bit / BITS_PER_LONG] != 0)
642 return false;
643 bit += BITS_PER_LONG;
644 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
645 continue;
646 }
647 if (test_bit(bit, data))
648 return false;
649 bit++;
650 }
651 } else if (mode == BITMAP_OP_SET) {
652 while (bit <= this_end_bit) {
653 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654 do {
655 data[bit / BITS_PER_LONG] = -1;
656 bit += BITS_PER_LONG;
657 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
658 continue;
659 }
660 __set_bit(bit, data);
661 bit++;
662 }
663 } else if (mode == BITMAP_OP_CLEAR) {
664 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
665 clear_page(data);
666 else {
667 while (bit <= this_end_bit) {
668 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
669 do {
670 data[bit / BITS_PER_LONG] = 0;
671 bit += BITS_PER_LONG;
672 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
673 continue;
674 }
675 __clear_bit(bit, data);
676 bit++;
677 }
678 }
679 } else {
680 BUG();
681 }
682
683 if (unlikely(page < end_page)) {
684 bit = 0;
685 page++;
686 goto repeat;
687 }
688
689 return true;
690 }
691
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)692 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
693 {
694 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
695 unsigned int i;
696
697 for (i = 0; i < n_bitmap_pages; i++) {
698 unsigned long *dst_data = lowmem_page_address(dst[i].page);
699 unsigned long *src_data = lowmem_page_address(src[i].page);
700
701 copy_page(dst_data, src_data);
702 }
703 }
704
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)705 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
706 {
707 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
708 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
709
710 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
711 return &ic->bbs[bitmap_block];
712 }
713
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)714 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
715 bool e, const char *function)
716 {
717 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
718 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
719
720 if (unlikely(section >= ic->journal_sections) ||
721 unlikely(offset >= limit)) {
722 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
723 function, section, offset, ic->journal_sections, limit);
724 BUG();
725 }
726 #endif
727 }
728
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)729 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
730 unsigned int *pl_index, unsigned int *pl_offset)
731 {
732 unsigned int sector;
733
734 access_journal_check(ic, section, offset, false, "page_list_location");
735
736 sector = section * ic->journal_section_sectors + offset;
737
738 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
740 }
741
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)742 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
743 unsigned int section, unsigned int offset, unsigned int *n_sectors)
744 {
745 unsigned int pl_index, pl_offset;
746 char *va;
747
748 page_list_location(ic, section, offset, &pl_index, &pl_offset);
749
750 if (n_sectors)
751 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
752
753 va = lowmem_page_address(pl[pl_index].page);
754
755 return (struct journal_sector *)(va + pl_offset);
756 }
757
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)758 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
759 {
760 return access_page_list(ic, ic->journal, section, offset, NULL);
761 }
762
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)763 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
764 {
765 unsigned int rel_sector, offset;
766 struct journal_sector *js;
767
768 access_journal_check(ic, section, n, true, "access_journal_entry");
769
770 rel_sector = n % JOURNAL_BLOCK_SECTORS;
771 offset = n / JOURNAL_BLOCK_SECTORS;
772
773 js = access_journal(ic, section, rel_sector);
774 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
775 }
776
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)777 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
778 {
779 n <<= ic->sb->log2_sectors_per_block;
780
781 n += JOURNAL_BLOCK_SECTORS;
782
783 access_journal_check(ic, section, n, false, "access_journal_data");
784
785 return access_journal(ic, section, n);
786 }
787
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])788 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
789 {
790 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
791 int r;
792 unsigned int j, size;
793
794 desc->tfm = ic->journal_mac;
795
796 r = crypto_shash_init(desc);
797 if (unlikely(r < 0)) {
798 dm_integrity_io_error(ic, "crypto_shash_init", r);
799 goto err;
800 }
801
802 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
803 __le64 section_le;
804
805 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
806 if (unlikely(r < 0)) {
807 dm_integrity_io_error(ic, "crypto_shash_update", r);
808 goto err;
809 }
810
811 section_le = cpu_to_le64(section);
812 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
813 if (unlikely(r < 0)) {
814 dm_integrity_io_error(ic, "crypto_shash_update", r);
815 goto err;
816 }
817 }
818
819 for (j = 0; j < ic->journal_section_entries; j++) {
820 struct journal_entry *je = access_journal_entry(ic, section, j);
821
822 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
823 if (unlikely(r < 0)) {
824 dm_integrity_io_error(ic, "crypto_shash_update", r);
825 goto err;
826 }
827 }
828
829 size = crypto_shash_digestsize(ic->journal_mac);
830
831 if (likely(size <= JOURNAL_MAC_SIZE)) {
832 r = crypto_shash_final(desc, result);
833 if (unlikely(r < 0)) {
834 dm_integrity_io_error(ic, "crypto_shash_final", r);
835 goto err;
836 }
837 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
838 } else {
839 __u8 digest[HASH_MAX_DIGESTSIZE];
840
841 if (WARN_ON(size > sizeof(digest))) {
842 dm_integrity_io_error(ic, "digest_size", -EINVAL);
843 goto err;
844 }
845 r = crypto_shash_final(desc, digest);
846 if (unlikely(r < 0)) {
847 dm_integrity_io_error(ic, "crypto_shash_final", r);
848 goto err;
849 }
850 memcpy(result, digest, JOURNAL_MAC_SIZE);
851 }
852
853 return;
854 err:
855 memset(result, 0, JOURNAL_MAC_SIZE);
856 }
857
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)858 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
859 {
860 __u8 result[JOURNAL_MAC_SIZE];
861 unsigned int j;
862
863 if (!ic->journal_mac)
864 return;
865
866 section_mac(ic, section, result);
867
868 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
869 struct journal_sector *js = access_journal(ic, section, j);
870
871 if (likely(wr))
872 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
873 else {
874 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
875 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
876 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
877 }
878 }
879 }
880 }
881
complete_journal_op(void * context)882 static void complete_journal_op(void *context)
883 {
884 struct journal_completion *comp = context;
885
886 BUG_ON(!atomic_read(&comp->in_flight));
887 if (likely(atomic_dec_and_test(&comp->in_flight)))
888 complete(&comp->comp);
889 }
890
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)891 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
892 unsigned int n_sections, struct journal_completion *comp)
893 {
894 struct async_submit_ctl submit;
895 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
896 unsigned int pl_index, pl_offset, section_index;
897 struct page_list *source_pl, *target_pl;
898
899 if (likely(encrypt)) {
900 source_pl = ic->journal;
901 target_pl = ic->journal_io;
902 } else {
903 source_pl = ic->journal_io;
904 target_pl = ic->journal;
905 }
906
907 page_list_location(ic, section, 0, &pl_index, &pl_offset);
908
909 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
910
911 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
912
913 section_index = pl_index;
914
915 do {
916 size_t this_step;
917 struct page *src_pages[2];
918 struct page *dst_page;
919
920 while (unlikely(pl_index == section_index)) {
921 unsigned int dummy;
922
923 if (likely(encrypt))
924 rw_section_mac(ic, section, true);
925 section++;
926 n_sections--;
927 if (!n_sections)
928 break;
929 page_list_location(ic, section, 0, §ion_index, &dummy);
930 }
931
932 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
933 dst_page = target_pl[pl_index].page;
934 src_pages[0] = source_pl[pl_index].page;
935 src_pages[1] = ic->journal_xor[pl_index].page;
936
937 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
938
939 pl_index++;
940 pl_offset = 0;
941 n_bytes -= this_step;
942 } while (n_bytes);
943
944 BUG_ON(n_sections);
945
946 async_tx_issue_pending_all();
947 }
948
complete_journal_encrypt(void * data,int err)949 static void complete_journal_encrypt(void *data, int err)
950 {
951 struct journal_completion *comp = data;
952
953 if (unlikely(err)) {
954 if (likely(err == -EINPROGRESS)) {
955 complete(&comp->ic->crypto_backoff);
956 return;
957 }
958 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959 }
960 complete_journal_op(comp);
961 }
962
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965 int r;
966
967 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
968 complete_journal_encrypt, comp);
969 if (likely(encrypt))
970 r = crypto_skcipher_encrypt(req);
971 else
972 r = crypto_skcipher_decrypt(req);
973 if (likely(!r))
974 return false;
975 if (likely(r == -EINPROGRESS))
976 return true;
977 if (likely(r == -EBUSY)) {
978 wait_for_completion(&comp->ic->crypto_backoff);
979 reinit_completion(&comp->ic->crypto_backoff);
980 return true;
981 }
982 dm_integrity_io_error(comp->ic, "encrypt", r);
983 return false;
984 }
985
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)986 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
987 unsigned int n_sections, struct journal_completion *comp)
988 {
989 struct scatterlist **source_sg;
990 struct scatterlist **target_sg;
991
992 atomic_add(2, &comp->in_flight);
993
994 if (likely(encrypt)) {
995 source_sg = ic->journal_scatterlist;
996 target_sg = ic->journal_io_scatterlist;
997 } else {
998 source_sg = ic->journal_io_scatterlist;
999 target_sg = ic->journal_scatterlist;
1000 }
1001
1002 do {
1003 struct skcipher_request *req;
1004 unsigned int ivsize;
1005 char *iv;
1006
1007 if (likely(encrypt))
1008 rw_section_mac(ic, section, true);
1009
1010 req = ic->sk_requests[section];
1011 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1012 iv = req->iv;
1013
1014 memcpy(iv, iv + ivsize, ivsize);
1015
1016 req->src = source_sg[section];
1017 req->dst = target_sg[section];
1018
1019 if (unlikely(do_crypt(encrypt, req, comp)))
1020 atomic_inc(&comp->in_flight);
1021
1022 section++;
1023 n_sections--;
1024 } while (n_sections);
1025
1026 atomic_dec(&comp->in_flight);
1027 complete_journal_op(comp);
1028 }
1029
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1030 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1031 unsigned int n_sections, struct journal_completion *comp)
1032 {
1033 if (ic->journal_xor)
1034 return xor_journal(ic, encrypt, section, n_sections, comp);
1035 else
1036 return crypt_journal(ic, encrypt, section, n_sections, comp);
1037 }
1038
complete_journal_io(unsigned long error,void * context)1039 static void complete_journal_io(unsigned long error, void *context)
1040 {
1041 struct journal_completion *comp = context;
1042
1043 if (unlikely(error != 0))
1044 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1045 complete_journal_op(comp);
1046 }
1047
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1048 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1049 unsigned int sector, unsigned int n_sectors,
1050 struct journal_completion *comp)
1051 {
1052 struct dm_io_request io_req;
1053 struct dm_io_region io_loc;
1054 unsigned int pl_index, pl_offset;
1055 int r;
1056
1057 if (unlikely(dm_integrity_failed(ic))) {
1058 if (comp)
1059 complete_journal_io(-1UL, comp);
1060 return;
1061 }
1062
1063 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1064 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1065
1066 io_req.bi_opf = opf;
1067 io_req.mem.type = DM_IO_PAGE_LIST;
1068 if (ic->journal_io)
1069 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1070 else
1071 io_req.mem.ptr.pl = &ic->journal[pl_index];
1072 io_req.mem.offset = pl_offset;
1073 if (likely(comp != NULL)) {
1074 io_req.notify.fn = complete_journal_io;
1075 io_req.notify.context = comp;
1076 } else {
1077 io_req.notify.fn = NULL;
1078 }
1079 io_req.client = ic->io;
1080 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1081 io_loc.sector = ic->start + SB_SECTORS + sector;
1082 io_loc.count = n_sectors;
1083
1084 r = dm_io(&io_req, 1, &io_loc, NULL);
1085 if (unlikely(r)) {
1086 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1087 "reading journal" : "writing journal", r);
1088 if (comp) {
1089 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1090 complete_journal_io(-1UL, comp);
1091 }
1092 }
1093 }
1094
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1095 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1096 unsigned int section, unsigned int n_sections,
1097 struct journal_completion *comp)
1098 {
1099 unsigned int sector, n_sectors;
1100
1101 sector = section * ic->journal_section_sectors;
1102 n_sectors = n_sections * ic->journal_section_sectors;
1103
1104 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1105 }
1106
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1107 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1108 {
1109 struct journal_completion io_comp;
1110 struct journal_completion crypt_comp_1;
1111 struct journal_completion crypt_comp_2;
1112 unsigned int i;
1113
1114 io_comp.ic = ic;
1115 init_completion(&io_comp.comp);
1116
1117 if (commit_start + commit_sections <= ic->journal_sections) {
1118 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1119 if (ic->journal_io) {
1120 crypt_comp_1.ic = ic;
1121 init_completion(&crypt_comp_1.comp);
1122 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1123 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1124 wait_for_completion_io(&crypt_comp_1.comp);
1125 } else {
1126 for (i = 0; i < commit_sections; i++)
1127 rw_section_mac(ic, commit_start + i, true);
1128 }
1129 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1130 commit_sections, &io_comp);
1131 } else {
1132 unsigned int to_end;
1133
1134 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1135 to_end = ic->journal_sections - commit_start;
1136 if (ic->journal_io) {
1137 crypt_comp_1.ic = ic;
1138 init_completion(&crypt_comp_1.comp);
1139 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1141 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1142 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1143 commit_start, to_end, &io_comp);
1144 reinit_completion(&crypt_comp_1.comp);
1145 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1146 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1147 wait_for_completion_io(&crypt_comp_1.comp);
1148 } else {
1149 crypt_comp_2.ic = ic;
1150 init_completion(&crypt_comp_2.comp);
1151 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1152 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1153 wait_for_completion_io(&crypt_comp_1.comp);
1154 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1155 wait_for_completion_io(&crypt_comp_2.comp);
1156 }
1157 } else {
1158 for (i = 0; i < to_end; i++)
1159 rw_section_mac(ic, commit_start + i, true);
1160 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1161 for (i = 0; i < commit_sections - to_end; i++)
1162 rw_section_mac(ic, i, true);
1163 }
1164 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1165 }
1166
1167 wait_for_completion_io(&io_comp.comp);
1168 }
1169
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1170 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1171 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1172 {
1173 struct dm_io_request io_req;
1174 struct dm_io_region io_loc;
1175 int r;
1176 unsigned int sector, pl_index, pl_offset;
1177
1178 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1179
1180 if (unlikely(dm_integrity_failed(ic))) {
1181 fn(-1UL, data);
1182 return;
1183 }
1184
1185 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1186
1187 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1188 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1189
1190 io_req.bi_opf = REQ_OP_WRITE;
1191 io_req.mem.type = DM_IO_PAGE_LIST;
1192 io_req.mem.ptr.pl = &ic->journal[pl_index];
1193 io_req.mem.offset = pl_offset;
1194 io_req.notify.fn = fn;
1195 io_req.notify.context = data;
1196 io_req.client = ic->io;
1197 io_loc.bdev = ic->dev->bdev;
1198 io_loc.sector = target;
1199 io_loc.count = n_sectors;
1200
1201 r = dm_io(&io_req, 1, &io_loc, NULL);
1202 if (unlikely(r)) {
1203 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1204 fn(-1UL, data);
1205 }
1206 }
1207
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1208 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1209 {
1210 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1211 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1212 }
1213
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1214 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1215 {
1216 struct rb_node **n = &ic->in_progress.rb_node;
1217 struct rb_node *parent;
1218
1219 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1220
1221 if (likely(check_waiting)) {
1222 struct dm_integrity_range *range;
1223
1224 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1225 if (unlikely(ranges_overlap(range, new_range)))
1226 return false;
1227 }
1228 }
1229
1230 parent = NULL;
1231
1232 while (*n) {
1233 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1234
1235 parent = *n;
1236 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1237 n = &range->node.rb_left;
1238 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1239 n = &range->node.rb_right;
1240 else
1241 return false;
1242 }
1243
1244 rb_link_node(&new_range->node, parent, n);
1245 rb_insert_color(&new_range->node, &ic->in_progress);
1246
1247 return true;
1248 }
1249
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1250 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1251 {
1252 rb_erase(&range->node, &ic->in_progress);
1253 while (unlikely(!list_empty(&ic->wait_list))) {
1254 struct dm_integrity_range *last_range =
1255 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1256 struct task_struct *last_range_task;
1257
1258 last_range_task = last_range->task;
1259 list_del(&last_range->wait_entry);
1260 if (!add_new_range(ic, last_range, false)) {
1261 last_range->task = last_range_task;
1262 list_add(&last_range->wait_entry, &ic->wait_list);
1263 break;
1264 }
1265 last_range->waiting = false;
1266 wake_up_process(last_range_task);
1267 }
1268 }
1269
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1270 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1271 {
1272 unsigned long flags;
1273
1274 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1275 remove_range_unlocked(ic, range);
1276 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1277 }
1278
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1279 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1280 {
1281 new_range->waiting = true;
1282 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1283 new_range->task = current;
1284 do {
1285 __set_current_state(TASK_UNINTERRUPTIBLE);
1286 spin_unlock_irq(&ic->endio_wait.lock);
1287 io_schedule();
1288 spin_lock_irq(&ic->endio_wait.lock);
1289 } while (unlikely(new_range->waiting));
1290 }
1291
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1292 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1293 {
1294 if (unlikely(!add_new_range(ic, new_range, true)))
1295 wait_and_add_new_range(ic, new_range);
1296 }
1297
init_journal_node(struct journal_node * node)1298 static void init_journal_node(struct journal_node *node)
1299 {
1300 RB_CLEAR_NODE(&node->node);
1301 node->sector = (sector_t)-1;
1302 }
1303
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1304 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1305 {
1306 struct rb_node **link;
1307 struct rb_node *parent;
1308
1309 node->sector = sector;
1310 BUG_ON(!RB_EMPTY_NODE(&node->node));
1311
1312 link = &ic->journal_tree_root.rb_node;
1313 parent = NULL;
1314
1315 while (*link) {
1316 struct journal_node *j;
1317
1318 parent = *link;
1319 j = container_of(parent, struct journal_node, node);
1320 if (sector < j->sector)
1321 link = &j->node.rb_left;
1322 else
1323 link = &j->node.rb_right;
1324 }
1325
1326 rb_link_node(&node->node, parent, link);
1327 rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332 BUG_ON(RB_EMPTY_NODE(&node->node));
1333 rb_erase(&node->node, &ic->journal_tree_root);
1334 init_journal_node(node);
1335 }
1336
1337 #define NOT_FOUND (-1U)
1338
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1339 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341 struct rb_node *n = ic->journal_tree_root.rb_node;
1342 unsigned int found = NOT_FOUND;
1343
1344 *next_sector = (sector_t)-1;
1345 while (n) {
1346 struct journal_node *j = container_of(n, struct journal_node, node);
1347
1348 if (sector == j->sector)
1349 found = j - ic->journal_tree;
1350
1351 if (sector < j->sector) {
1352 *next_sector = j->sector;
1353 n = j->node.rb_left;
1354 } else
1355 n = j->node.rb_right;
1356 }
1357
1358 return found;
1359 }
1360
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1361 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1362 {
1363 struct journal_node *node, *next_node;
1364 struct rb_node *next;
1365
1366 if (unlikely(pos >= ic->journal_entries))
1367 return false;
1368 node = &ic->journal_tree[pos];
1369 if (unlikely(RB_EMPTY_NODE(&node->node)))
1370 return false;
1371 if (unlikely(node->sector != sector))
1372 return false;
1373
1374 next = rb_next(&node->node);
1375 if (unlikely(!next))
1376 return true;
1377
1378 next_node = container_of(next, struct journal_node, node);
1379 return next_node->sector != sector;
1380 }
1381
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1382 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1383 {
1384 struct rb_node *next;
1385 struct journal_node *next_node;
1386 unsigned int next_section;
1387
1388 BUG_ON(RB_EMPTY_NODE(&node->node));
1389
1390 next = rb_next(&node->node);
1391 if (unlikely(!next))
1392 return false;
1393
1394 next_node = container_of(next, struct journal_node, node);
1395
1396 if (next_node->sector != node->sector)
1397 return false;
1398
1399 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1400 if (next_section >= ic->committed_section &&
1401 next_section < ic->committed_section + ic->n_committed_sections)
1402 return true;
1403 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1404 return true;
1405
1406 return false;
1407 }
1408
1409 #define TAG_READ 0
1410 #define TAG_WRITE 1
1411 #define TAG_CMP 2
1412
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1413 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1414 unsigned int *metadata_offset, unsigned int total_size, int op)
1415 {
1416 #define MAY_BE_FILLER 1
1417 #define MAY_BE_HASH 2
1418 unsigned int hash_offset = 0;
1419 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1420
1421 do {
1422 unsigned char *data, *dp;
1423 struct dm_buffer *b;
1424 unsigned int to_copy;
1425 int r;
1426
1427 r = dm_integrity_failed(ic);
1428 if (unlikely(r))
1429 return r;
1430
1431 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1432 if (IS_ERR(data))
1433 return PTR_ERR(data);
1434
1435 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1436 dp = data + *metadata_offset;
1437 if (op == TAG_READ) {
1438 memcpy(tag, dp, to_copy);
1439 } else if (op == TAG_WRITE) {
1440 if (memcmp(dp, tag, to_copy)) {
1441 memcpy(dp, tag, to_copy);
1442 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1443 }
1444 } else {
1445 /* e.g.: op == TAG_CMP */
1446
1447 if (likely(is_power_of_2(ic->tag_size))) {
1448 if (unlikely(memcmp(dp, tag, to_copy)))
1449 if (unlikely(!ic->discard) ||
1450 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1451 goto thorough_test;
1452 }
1453 } else {
1454 unsigned int i, ts;
1455 thorough_test:
1456 ts = total_size;
1457
1458 for (i = 0; i < to_copy; i++, ts--) {
1459 if (unlikely(dp[i] != tag[i]))
1460 may_be &= ~MAY_BE_HASH;
1461 if (likely(dp[i] != DISCARD_FILLER))
1462 may_be &= ~MAY_BE_FILLER;
1463 hash_offset++;
1464 if (unlikely(hash_offset == ic->tag_size)) {
1465 if (unlikely(!may_be)) {
1466 dm_bufio_release(b);
1467 return ts;
1468 }
1469 hash_offset = 0;
1470 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1471 }
1472 }
1473 }
1474 }
1475 dm_bufio_release(b);
1476
1477 tag += to_copy;
1478 *metadata_offset += to_copy;
1479 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1480 (*metadata_block)++;
1481 *metadata_offset = 0;
1482 }
1483
1484 if (unlikely(!is_power_of_2(ic->tag_size)))
1485 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1486
1487 total_size -= to_copy;
1488 } while (unlikely(total_size));
1489
1490 return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494
1495 struct flush_request {
1496 struct dm_io_request io_req;
1497 struct dm_io_region io_reg;
1498 struct dm_integrity_c *ic;
1499 struct completion comp;
1500 };
1501
flush_notify(unsigned long error,void * fr_)1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504 struct flush_request *fr = fr_;
1505
1506 if (unlikely(error != 0))
1507 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1508 complete(&fr->comp);
1509 }
1510
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1511 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1512 {
1513 int r;
1514 struct flush_request fr;
1515
1516 if (!ic->meta_dev)
1517 flush_data = false;
1518 if (flush_data) {
1519 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1520 fr.io_req.mem.type = DM_IO_KMEM,
1521 fr.io_req.mem.ptr.addr = NULL,
1522 fr.io_req.notify.fn = flush_notify,
1523 fr.io_req.notify.context = &fr;
1524 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1525 fr.io_reg.bdev = ic->dev->bdev,
1526 fr.io_reg.sector = 0,
1527 fr.io_reg.count = 0,
1528 fr.ic = ic;
1529 init_completion(&fr.comp);
1530 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1531 BUG_ON(r);
1532 }
1533
1534 r = dm_bufio_write_dirty_buffers(ic->bufio);
1535 if (unlikely(r))
1536 dm_integrity_io_error(ic, "writing tags", r);
1537
1538 if (flush_data)
1539 wait_for_completion(&fr.comp);
1540 }
1541
sleep_on_endio_wait(struct dm_integrity_c * ic)1542 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1543 {
1544 DECLARE_WAITQUEUE(wait, current);
1545
1546 __add_wait_queue(&ic->endio_wait, &wait);
1547 __set_current_state(TASK_UNINTERRUPTIBLE);
1548 spin_unlock_irq(&ic->endio_wait.lock);
1549 io_schedule();
1550 spin_lock_irq(&ic->endio_wait.lock);
1551 __remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553
autocommit_fn(struct timer_list * t)1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557
1558 if (likely(!dm_integrity_failed(ic)))
1559 queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561
schedule_autocommit(struct dm_integrity_c * ic)1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564 if (!timer_pending(&ic->autocommit_timer))
1565 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570 struct bio *bio;
1571 unsigned long flags;
1572
1573 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575 bio_list_add(&ic->flush_bio_list, bio);
1576 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577
1578 queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580
do_endio(struct dm_integrity_c * ic,struct bio * bio)1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583 int r;
1584
1585 r = dm_integrity_failed(ic);
1586 if (unlikely(r) && !bio->bi_status)
1587 bio->bi_status = errno_to_blk_status(r);
1588 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589 unsigned long flags;
1590
1591 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1592 bio_list_add(&ic->synchronous_bios, bio);
1593 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1594 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1595 return;
1596 }
1597 bio_endio(bio);
1598 }
1599
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1600 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1601 {
1602 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1603
1604 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1605 submit_flush_bio(ic, dio);
1606 else
1607 do_endio(ic, bio);
1608 }
1609
dec_in_flight(struct dm_integrity_io * dio)1610 static void dec_in_flight(struct dm_integrity_io *dio)
1611 {
1612 if (atomic_dec_and_test(&dio->in_flight)) {
1613 struct dm_integrity_c *ic = dio->ic;
1614 struct bio *bio;
1615
1616 remove_range(ic, &dio->range);
1617
1618 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1619 schedule_autocommit(ic);
1620
1621 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1622 if (unlikely(dio->bi_status) && !bio->bi_status)
1623 bio->bi_status = dio->bi_status;
1624 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625 dio->range.logical_sector += dio->range.n_sectors;
1626 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627 INIT_WORK(&dio->work, integrity_bio_wait);
1628 queue_work(ic->offload_wq, &dio->work);
1629 return;
1630 }
1631 do_endio_flush(ic, dio);
1632 }
1633 }
1634
integrity_end_io(struct bio * bio)1635 static void integrity_end_io(struct bio *bio)
1636 {
1637 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638
1639 dm_bio_restore(&dio->bio_details, bio);
1640 if (bio->bi_integrity)
1641 bio->bi_opf |= REQ_INTEGRITY;
1642
1643 if (dio->completion)
1644 complete(dio->completion);
1645
1646 dec_in_flight(dio);
1647 }
1648
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1649 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650 const char *data, char *result)
1651 {
1652 __le64 sector_le = cpu_to_le64(sector);
1653 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654 int r;
1655 unsigned int digest_size;
1656
1657 req->tfm = ic->internal_hash;
1658
1659 r = crypto_shash_init(req);
1660 if (unlikely(r < 0)) {
1661 dm_integrity_io_error(ic, "crypto_shash_init", r);
1662 goto failed;
1663 }
1664
1665 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667 if (unlikely(r < 0)) {
1668 dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 goto failed;
1670 }
1671 }
1672
1673 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1674 if (unlikely(r < 0)) {
1675 dm_integrity_io_error(ic, "crypto_shash_update", r);
1676 goto failed;
1677 }
1678
1679 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680 if (unlikely(r < 0)) {
1681 dm_integrity_io_error(ic, "crypto_shash_update", r);
1682 goto failed;
1683 }
1684
1685 r = crypto_shash_final(req, result);
1686 if (unlikely(r < 0)) {
1687 dm_integrity_io_error(ic, "crypto_shash_final", r);
1688 goto failed;
1689 }
1690
1691 digest_size = crypto_shash_digestsize(ic->internal_hash);
1692 if (unlikely(digest_size < ic->tag_size))
1693 memset(result + digest_size, 0, ic->tag_size - digest_size);
1694
1695 return;
1696
1697 failed:
1698 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1699 get_random_bytes(result, ic->tag_size);
1700 }
1701
integrity_metadata(struct work_struct * w)1702 static void integrity_metadata(struct work_struct *w)
1703 {
1704 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705 struct dm_integrity_c *ic = dio->ic;
1706
1707 int r;
1708
1709 if (ic->internal_hash) {
1710 struct bvec_iter iter;
1711 struct bio_vec bv;
1712 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1713 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714 char *checksums;
1715 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717 sector_t sector;
1718 unsigned int sectors_to_process;
1719
1720 if (unlikely(ic->mode == 'R'))
1721 goto skip_io;
1722
1723 if (likely(dio->op != REQ_OP_DISCARD))
1724 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726 else
1727 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728 if (!checksums) {
1729 checksums = checksums_onstack;
1730 if (WARN_ON(extra_space &&
1731 digest_size > sizeof(checksums_onstack))) {
1732 r = -EINVAL;
1733 goto error;
1734 }
1735 }
1736
1737 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1739 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1740 unsigned int max_blocks = max_size / ic->tag_size;
1741
1742 memset(checksums, DISCARD_FILLER, max_size);
1743
1744 while (bi_size) {
1745 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1746
1747 this_step_blocks = min(this_step_blocks, max_blocks);
1748 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1749 this_step_blocks * ic->tag_size, TAG_WRITE);
1750 if (unlikely(r)) {
1751 if (likely(checksums != checksums_onstack))
1752 kfree(checksums);
1753 goto error;
1754 }
1755
1756 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1757 }
1758
1759 if (likely(checksums != checksums_onstack))
1760 kfree(checksums);
1761 goto skip_io;
1762 }
1763
1764 sector = dio->range.logical_sector;
1765 sectors_to_process = dio->range.n_sectors;
1766
1767 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1768 unsigned int pos;
1769 char *mem, *checksums_ptr;
1770
1771 again:
1772 mem = bvec_kmap_local(&bv);
1773 pos = 0;
1774 checksums_ptr = checksums;
1775 do {
1776 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1777 checksums_ptr += ic->tag_size;
1778 sectors_to_process -= ic->sectors_per_block;
1779 pos += ic->sectors_per_block << SECTOR_SHIFT;
1780 sector += ic->sectors_per_block;
1781 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1782 kunmap_local(mem);
1783
1784 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1785 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1786 if (unlikely(r)) {
1787 if (r > 0) {
1788 sector_t s;
1789
1790 s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1791 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1792 bio->bi_bdev, s);
1793 r = -EILSEQ;
1794 atomic64_inc(&ic->number_of_mismatches);
1795 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1796 bio, s, 0);
1797 }
1798 if (likely(checksums != checksums_onstack))
1799 kfree(checksums);
1800 goto error;
1801 }
1802
1803 if (!sectors_to_process)
1804 break;
1805
1806 if (unlikely(pos < bv.bv_len)) {
1807 bv.bv_offset += pos;
1808 bv.bv_len -= pos;
1809 goto again;
1810 }
1811 }
1812
1813 if (likely(checksums != checksums_onstack))
1814 kfree(checksums);
1815 } else {
1816 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1817
1818 if (bip) {
1819 struct bio_vec biv;
1820 struct bvec_iter iter;
1821 unsigned int data_to_process = dio->range.n_sectors;
1822
1823 sector_to_block(ic, data_to_process);
1824 data_to_process *= ic->tag_size;
1825
1826 bip_for_each_vec(biv, bip, iter) {
1827 unsigned char *tag;
1828 unsigned int this_len;
1829
1830 BUG_ON(PageHighMem(biv.bv_page));
1831 tag = bvec_virt(&biv);
1832 this_len = min(biv.bv_len, data_to_process);
1833 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1834 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1835 if (unlikely(r))
1836 goto error;
1837 data_to_process -= this_len;
1838 if (!data_to_process)
1839 break;
1840 }
1841 }
1842 }
1843 skip_io:
1844 dec_in_flight(dio);
1845 return;
1846 error:
1847 dio->bi_status = errno_to_blk_status(r);
1848 dec_in_flight(dio);
1849 }
1850
dm_integrity_map(struct dm_target * ti,struct bio * bio)1851 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1852 {
1853 struct dm_integrity_c *ic = ti->private;
1854 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1855 struct bio_integrity_payload *bip;
1856
1857 sector_t area, offset;
1858
1859 dio->ic = ic;
1860 dio->bi_status = 0;
1861 dio->op = bio_op(bio);
1862
1863 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1864 if (ti->max_io_len) {
1865 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1866 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1867 sector_t start_boundary = sec >> log2_max_io_len;
1868 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1869
1870 if (start_boundary < end_boundary) {
1871 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1872
1873 dm_accept_partial_bio(bio, len);
1874 }
1875 }
1876 }
1877
1878 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1879 submit_flush_bio(ic, dio);
1880 return DM_MAPIO_SUBMITTED;
1881 }
1882
1883 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1884 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1885 if (unlikely(dio->fua)) {
1886 /*
1887 * Don't pass down the FUA flag because we have to flush
1888 * disk cache anyway.
1889 */
1890 bio->bi_opf &= ~REQ_FUA;
1891 }
1892 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1893 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1894 dio->range.logical_sector, bio_sectors(bio),
1895 ic->provided_data_sectors);
1896 return DM_MAPIO_KILL;
1897 }
1898 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1899 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1900 ic->sectors_per_block,
1901 dio->range.logical_sector, bio_sectors(bio));
1902 return DM_MAPIO_KILL;
1903 }
1904
1905 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1906 struct bvec_iter iter;
1907 struct bio_vec bv;
1908
1909 bio_for_each_segment(bv, bio, iter) {
1910 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1911 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1912 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1913 return DM_MAPIO_KILL;
1914 }
1915 }
1916 }
1917
1918 bip = bio_integrity(bio);
1919 if (!ic->internal_hash) {
1920 if (bip) {
1921 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1922
1923 if (ic->log2_tag_size >= 0)
1924 wanted_tag_size <<= ic->log2_tag_size;
1925 else
1926 wanted_tag_size *= ic->tag_size;
1927 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1928 DMERR("Invalid integrity data size %u, expected %u",
1929 bip->bip_iter.bi_size, wanted_tag_size);
1930 return DM_MAPIO_KILL;
1931 }
1932 }
1933 } else {
1934 if (unlikely(bip != NULL)) {
1935 DMERR("Unexpected integrity data when using internal hash");
1936 return DM_MAPIO_KILL;
1937 }
1938 }
1939
1940 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1941 return DM_MAPIO_KILL;
1942
1943 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1944 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1945 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1946
1947 dm_integrity_map_continue(dio, true);
1948 return DM_MAPIO_SUBMITTED;
1949 }
1950
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)1951 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1952 unsigned int journal_section, unsigned int journal_entry)
1953 {
1954 struct dm_integrity_c *ic = dio->ic;
1955 sector_t logical_sector;
1956 unsigned int n_sectors;
1957
1958 logical_sector = dio->range.logical_sector;
1959 n_sectors = dio->range.n_sectors;
1960 do {
1961 struct bio_vec bv = bio_iovec(bio);
1962 char *mem;
1963
1964 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1965 bv.bv_len = n_sectors << SECTOR_SHIFT;
1966 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1967 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1968 retry_kmap:
1969 mem = kmap_local_page(bv.bv_page);
1970 if (likely(dio->op == REQ_OP_WRITE))
1971 flush_dcache_page(bv.bv_page);
1972
1973 do {
1974 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1975
1976 if (unlikely(dio->op == REQ_OP_READ)) {
1977 struct journal_sector *js;
1978 char *mem_ptr;
1979 unsigned int s;
1980
1981 if (unlikely(journal_entry_is_inprogress(je))) {
1982 flush_dcache_page(bv.bv_page);
1983 kunmap_local(mem);
1984
1985 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1986 goto retry_kmap;
1987 }
1988 smp_rmb();
1989 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1990 js = access_journal_data(ic, journal_section, journal_entry);
1991 mem_ptr = mem + bv.bv_offset;
1992 s = 0;
1993 do {
1994 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1995 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1996 js++;
1997 mem_ptr += 1 << SECTOR_SHIFT;
1998 } while (++s < ic->sectors_per_block);
1999 #ifdef INTERNAL_VERIFY
2000 if (ic->internal_hash) {
2001 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2002
2003 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2004 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2005 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2006 logical_sector);
2007 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2008 bio, logical_sector, 0);
2009 }
2010 }
2011 #endif
2012 }
2013
2014 if (!ic->internal_hash) {
2015 struct bio_integrity_payload *bip = bio_integrity(bio);
2016 unsigned int tag_todo = ic->tag_size;
2017 char *tag_ptr = journal_entry_tag(ic, je);
2018
2019 if (bip) {
2020 do {
2021 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2022 unsigned int tag_now = min(biv.bv_len, tag_todo);
2023 char *tag_addr;
2024
2025 BUG_ON(PageHighMem(biv.bv_page));
2026 tag_addr = bvec_virt(&biv);
2027 if (likely(dio->op == REQ_OP_WRITE))
2028 memcpy(tag_ptr, tag_addr, tag_now);
2029 else
2030 memcpy(tag_addr, tag_ptr, tag_now);
2031 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2032 tag_ptr += tag_now;
2033 tag_todo -= tag_now;
2034 } while (unlikely(tag_todo));
2035 } else if (likely(dio->op == REQ_OP_WRITE))
2036 memset(tag_ptr, 0, tag_todo);
2037 }
2038
2039 if (likely(dio->op == REQ_OP_WRITE)) {
2040 struct journal_sector *js;
2041 unsigned int s;
2042
2043 js = access_journal_data(ic, journal_section, journal_entry);
2044 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2045
2046 s = 0;
2047 do {
2048 je->last_bytes[s] = js[s].commit_id;
2049 } while (++s < ic->sectors_per_block);
2050
2051 if (ic->internal_hash) {
2052 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2053
2054 if (unlikely(digest_size > ic->tag_size)) {
2055 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2056
2057 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2058 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2059 } else
2060 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2061 }
2062
2063 journal_entry_set_sector(je, logical_sector);
2064 }
2065 logical_sector += ic->sectors_per_block;
2066
2067 journal_entry++;
2068 if (unlikely(journal_entry == ic->journal_section_entries)) {
2069 journal_entry = 0;
2070 journal_section++;
2071 wraparound_section(ic, &journal_section);
2072 }
2073
2074 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2075 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2076
2077 if (unlikely(dio->op == REQ_OP_READ))
2078 flush_dcache_page(bv.bv_page);
2079 kunmap_local(mem);
2080 } while (n_sectors);
2081
2082 if (likely(dio->op == REQ_OP_WRITE)) {
2083 smp_mb();
2084 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2085 wake_up(&ic->copy_to_journal_wait);
2086 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2087 queue_work(ic->commit_wq, &ic->commit_work);
2088 else
2089 schedule_autocommit(ic);
2090 } else
2091 remove_range(ic, &dio->range);
2092
2093 if (unlikely(bio->bi_iter.bi_size)) {
2094 sector_t area, offset;
2095
2096 dio->range.logical_sector = logical_sector;
2097 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2098 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2099 return true;
2100 }
2101
2102 return false;
2103 }
2104
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2105 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2106 {
2107 struct dm_integrity_c *ic = dio->ic;
2108 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2109 unsigned int journal_section, journal_entry;
2110 unsigned int journal_read_pos;
2111 struct completion read_comp;
2112 bool discard_retried = false;
2113 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2114
2115 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2116 need_sync_io = true;
2117
2118 if (need_sync_io && from_map) {
2119 INIT_WORK(&dio->work, integrity_bio_wait);
2120 queue_work(ic->offload_wq, &dio->work);
2121 return;
2122 }
2123
2124 lock_retry:
2125 spin_lock_irq(&ic->endio_wait.lock);
2126 retry:
2127 if (unlikely(dm_integrity_failed(ic))) {
2128 spin_unlock_irq(&ic->endio_wait.lock);
2129 do_endio(ic, bio);
2130 return;
2131 }
2132 dio->range.n_sectors = bio_sectors(bio);
2133 journal_read_pos = NOT_FOUND;
2134 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2135 if (dio->op == REQ_OP_WRITE) {
2136 unsigned int next_entry, i, pos;
2137 unsigned int ws, we, range_sectors;
2138
2139 dio->range.n_sectors = min(dio->range.n_sectors,
2140 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2141 if (unlikely(!dio->range.n_sectors)) {
2142 if (from_map)
2143 goto offload_to_thread;
2144 sleep_on_endio_wait(ic);
2145 goto retry;
2146 }
2147 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2148 ic->free_sectors -= range_sectors;
2149 journal_section = ic->free_section;
2150 journal_entry = ic->free_section_entry;
2151
2152 next_entry = ic->free_section_entry + range_sectors;
2153 ic->free_section_entry = next_entry % ic->journal_section_entries;
2154 ic->free_section += next_entry / ic->journal_section_entries;
2155 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2156 wraparound_section(ic, &ic->free_section);
2157
2158 pos = journal_section * ic->journal_section_entries + journal_entry;
2159 ws = journal_section;
2160 we = journal_entry;
2161 i = 0;
2162 do {
2163 struct journal_entry *je;
2164
2165 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2166 pos++;
2167 if (unlikely(pos >= ic->journal_entries))
2168 pos = 0;
2169
2170 je = access_journal_entry(ic, ws, we);
2171 BUG_ON(!journal_entry_is_unused(je));
2172 journal_entry_set_inprogress(je);
2173 we++;
2174 if (unlikely(we == ic->journal_section_entries)) {
2175 we = 0;
2176 ws++;
2177 wraparound_section(ic, &ws);
2178 }
2179 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2180
2181 spin_unlock_irq(&ic->endio_wait.lock);
2182 goto journal_read_write;
2183 } else {
2184 sector_t next_sector;
2185
2186 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2187 if (likely(journal_read_pos == NOT_FOUND)) {
2188 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2189 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2190 } else {
2191 unsigned int i;
2192 unsigned int jp = journal_read_pos + 1;
2193
2194 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2195 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2196 break;
2197 }
2198 dio->range.n_sectors = i;
2199 }
2200 }
2201 }
2202 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2203 /*
2204 * We must not sleep in the request routine because it could
2205 * stall bios on current->bio_list.
2206 * So, we offload the bio to a workqueue if we have to sleep.
2207 */
2208 if (from_map) {
2209 offload_to_thread:
2210 spin_unlock_irq(&ic->endio_wait.lock);
2211 INIT_WORK(&dio->work, integrity_bio_wait);
2212 queue_work(ic->wait_wq, &dio->work);
2213 return;
2214 }
2215 if (journal_read_pos != NOT_FOUND)
2216 dio->range.n_sectors = ic->sectors_per_block;
2217 wait_and_add_new_range(ic, &dio->range);
2218 /*
2219 * wait_and_add_new_range drops the spinlock, so the journal
2220 * may have been changed arbitrarily. We need to recheck.
2221 * To simplify the code, we restrict I/O size to just one block.
2222 */
2223 if (journal_read_pos != NOT_FOUND) {
2224 sector_t next_sector;
2225 unsigned int new_pos;
2226
2227 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2228 if (unlikely(new_pos != journal_read_pos)) {
2229 remove_range_unlocked(ic, &dio->range);
2230 goto retry;
2231 }
2232 }
2233 }
2234 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2235 sector_t next_sector;
2236 unsigned int new_pos;
2237
2238 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2239 if (unlikely(new_pos != NOT_FOUND) ||
2240 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2241 remove_range_unlocked(ic, &dio->range);
2242 spin_unlock_irq(&ic->endio_wait.lock);
2243 queue_work(ic->commit_wq, &ic->commit_work);
2244 flush_workqueue(ic->commit_wq);
2245 queue_work(ic->writer_wq, &ic->writer_work);
2246 flush_workqueue(ic->writer_wq);
2247 discard_retried = true;
2248 goto lock_retry;
2249 }
2250 }
2251 spin_unlock_irq(&ic->endio_wait.lock);
2252
2253 if (unlikely(journal_read_pos != NOT_FOUND)) {
2254 journal_section = journal_read_pos / ic->journal_section_entries;
2255 journal_entry = journal_read_pos % ic->journal_section_entries;
2256 goto journal_read_write;
2257 }
2258
2259 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2260 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2261 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2262 struct bitmap_block_status *bbs;
2263
2264 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2265 spin_lock(&bbs->bio_queue_lock);
2266 bio_list_add(&bbs->bio_queue, bio);
2267 spin_unlock(&bbs->bio_queue_lock);
2268 queue_work(ic->writer_wq, &bbs->work);
2269 return;
2270 }
2271 }
2272
2273 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2274
2275 if (need_sync_io) {
2276 init_completion(&read_comp);
2277 dio->completion = &read_comp;
2278 } else
2279 dio->completion = NULL;
2280
2281 dm_bio_record(&dio->bio_details, bio);
2282 bio_set_dev(bio, ic->dev->bdev);
2283 bio->bi_integrity = NULL;
2284 bio->bi_opf &= ~REQ_INTEGRITY;
2285 bio->bi_end_io = integrity_end_io;
2286 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2287
2288 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2289 integrity_metadata(&dio->work);
2290 dm_integrity_flush_buffers(ic, false);
2291
2292 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2293 dio->completion = NULL;
2294
2295 submit_bio_noacct(bio);
2296
2297 return;
2298 }
2299
2300 submit_bio_noacct(bio);
2301
2302 if (need_sync_io) {
2303 wait_for_completion_io(&read_comp);
2304 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2305 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2306 goto skip_check;
2307 if (ic->mode == 'B') {
2308 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2309 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2310 goto skip_check;
2311 }
2312
2313 if (likely(!bio->bi_status))
2314 integrity_metadata(&dio->work);
2315 else
2316 skip_check:
2317 dec_in_flight(dio);
2318 } else {
2319 INIT_WORK(&dio->work, integrity_metadata);
2320 queue_work(ic->metadata_wq, &dio->work);
2321 }
2322
2323 return;
2324
2325 journal_read_write:
2326 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2327 goto lock_retry;
2328
2329 do_endio_flush(ic, dio);
2330 }
2331
2332
integrity_bio_wait(struct work_struct * w)2333 static void integrity_bio_wait(struct work_struct *w)
2334 {
2335 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2336
2337 dm_integrity_map_continue(dio, false);
2338 }
2339
pad_uncommitted(struct dm_integrity_c * ic)2340 static void pad_uncommitted(struct dm_integrity_c *ic)
2341 {
2342 if (ic->free_section_entry) {
2343 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2344 ic->free_section_entry = 0;
2345 ic->free_section++;
2346 wraparound_section(ic, &ic->free_section);
2347 ic->n_uncommitted_sections++;
2348 }
2349 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2350 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2351 ic->journal_section_entries + ic->free_sectors)) {
2352 DMCRIT("journal_sections %u, journal_section_entries %u, "
2353 "n_uncommitted_sections %u, n_committed_sections %u, "
2354 "journal_section_entries %u, free_sectors %u",
2355 ic->journal_sections, ic->journal_section_entries,
2356 ic->n_uncommitted_sections, ic->n_committed_sections,
2357 ic->journal_section_entries, ic->free_sectors);
2358 }
2359 }
2360
integrity_commit(struct work_struct * w)2361 static void integrity_commit(struct work_struct *w)
2362 {
2363 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2364 unsigned int commit_start, commit_sections;
2365 unsigned int i, j, n;
2366 struct bio *flushes;
2367
2368 del_timer(&ic->autocommit_timer);
2369
2370 spin_lock_irq(&ic->endio_wait.lock);
2371 flushes = bio_list_get(&ic->flush_bio_list);
2372 if (unlikely(ic->mode != 'J')) {
2373 spin_unlock_irq(&ic->endio_wait.lock);
2374 dm_integrity_flush_buffers(ic, true);
2375 goto release_flush_bios;
2376 }
2377
2378 pad_uncommitted(ic);
2379 commit_start = ic->uncommitted_section;
2380 commit_sections = ic->n_uncommitted_sections;
2381 spin_unlock_irq(&ic->endio_wait.lock);
2382
2383 if (!commit_sections)
2384 goto release_flush_bios;
2385
2386 ic->wrote_to_journal = true;
2387
2388 i = commit_start;
2389 for (n = 0; n < commit_sections; n++) {
2390 for (j = 0; j < ic->journal_section_entries; j++) {
2391 struct journal_entry *je;
2392
2393 je = access_journal_entry(ic, i, j);
2394 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2395 }
2396 for (j = 0; j < ic->journal_section_sectors; j++) {
2397 struct journal_sector *js;
2398
2399 js = access_journal(ic, i, j);
2400 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2401 }
2402 i++;
2403 if (unlikely(i >= ic->journal_sections))
2404 ic->commit_seq = next_commit_seq(ic->commit_seq);
2405 wraparound_section(ic, &i);
2406 }
2407 smp_rmb();
2408
2409 write_journal(ic, commit_start, commit_sections);
2410
2411 spin_lock_irq(&ic->endio_wait.lock);
2412 ic->uncommitted_section += commit_sections;
2413 wraparound_section(ic, &ic->uncommitted_section);
2414 ic->n_uncommitted_sections -= commit_sections;
2415 ic->n_committed_sections += commit_sections;
2416 spin_unlock_irq(&ic->endio_wait.lock);
2417
2418 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2419 queue_work(ic->writer_wq, &ic->writer_work);
2420
2421 release_flush_bios:
2422 while (flushes) {
2423 struct bio *next = flushes->bi_next;
2424
2425 flushes->bi_next = NULL;
2426 do_endio(ic, flushes);
2427 flushes = next;
2428 }
2429 }
2430
complete_copy_from_journal(unsigned long error,void * context)2431 static void complete_copy_from_journal(unsigned long error, void *context)
2432 {
2433 struct journal_io *io = context;
2434 struct journal_completion *comp = io->comp;
2435 struct dm_integrity_c *ic = comp->ic;
2436
2437 remove_range(ic, &io->range);
2438 mempool_free(io, &ic->journal_io_mempool);
2439 if (unlikely(error != 0))
2440 dm_integrity_io_error(ic, "copying from journal", -EIO);
2441 complete_journal_op(comp);
2442 }
2443
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2444 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2445 struct journal_entry *je)
2446 {
2447 unsigned int s = 0;
2448
2449 do {
2450 js->commit_id = je->last_bytes[s];
2451 js++;
2452 } while (++s < ic->sectors_per_block);
2453 }
2454
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2455 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2456 unsigned int write_sections, bool from_replay)
2457 {
2458 unsigned int i, j, n;
2459 struct journal_completion comp;
2460 struct blk_plug plug;
2461
2462 blk_start_plug(&plug);
2463
2464 comp.ic = ic;
2465 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2466 init_completion(&comp.comp);
2467
2468 i = write_start;
2469 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2470 #ifndef INTERNAL_VERIFY
2471 if (unlikely(from_replay))
2472 #endif
2473 rw_section_mac(ic, i, false);
2474 for (j = 0; j < ic->journal_section_entries; j++) {
2475 struct journal_entry *je = access_journal_entry(ic, i, j);
2476 sector_t sec, area, offset;
2477 unsigned int k, l, next_loop;
2478 sector_t metadata_block;
2479 unsigned int metadata_offset;
2480 struct journal_io *io;
2481
2482 if (journal_entry_is_unused(je))
2483 continue;
2484 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2485 sec = journal_entry_get_sector(je);
2486 if (unlikely(from_replay)) {
2487 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2488 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2489 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2490 }
2491 if (unlikely(sec >= ic->provided_data_sectors)) {
2492 journal_entry_set_unused(je);
2493 continue;
2494 }
2495 }
2496 get_area_and_offset(ic, sec, &area, &offset);
2497 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2498 for (k = j + 1; k < ic->journal_section_entries; k++) {
2499 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2500 sector_t sec2, area2, offset2;
2501
2502 if (journal_entry_is_unused(je2))
2503 break;
2504 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2505 sec2 = journal_entry_get_sector(je2);
2506 if (unlikely(sec2 >= ic->provided_data_sectors))
2507 break;
2508 get_area_and_offset(ic, sec2, &area2, &offset2);
2509 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2510 break;
2511 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2512 }
2513 next_loop = k - 1;
2514
2515 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2516 io->comp = ∁
2517 io->range.logical_sector = sec;
2518 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2519
2520 spin_lock_irq(&ic->endio_wait.lock);
2521 add_new_range_and_wait(ic, &io->range);
2522
2523 if (likely(!from_replay)) {
2524 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2525
2526 /* don't write if there is newer committed sector */
2527 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2528 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2529
2530 journal_entry_set_unused(je2);
2531 remove_journal_node(ic, §ion_node[j]);
2532 j++;
2533 sec += ic->sectors_per_block;
2534 offset += ic->sectors_per_block;
2535 }
2536 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2537 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2538
2539 journal_entry_set_unused(je2);
2540 remove_journal_node(ic, §ion_node[k - 1]);
2541 k--;
2542 }
2543 if (j == k) {
2544 remove_range_unlocked(ic, &io->range);
2545 spin_unlock_irq(&ic->endio_wait.lock);
2546 mempool_free(io, &ic->journal_io_mempool);
2547 goto skip_io;
2548 }
2549 for (l = j; l < k; l++)
2550 remove_journal_node(ic, §ion_node[l]);
2551 }
2552 spin_unlock_irq(&ic->endio_wait.lock);
2553
2554 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2555 for (l = j; l < k; l++) {
2556 int r;
2557 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2558
2559 if (
2560 #ifndef INTERNAL_VERIFY
2561 unlikely(from_replay) &&
2562 #endif
2563 ic->internal_hash) {
2564 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2565
2566 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2567 (char *)access_journal_data(ic, i, l), test_tag);
2568 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2569 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2570 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2571 }
2572 }
2573
2574 journal_entry_set_unused(je2);
2575 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2576 ic->tag_size, TAG_WRITE);
2577 if (unlikely(r))
2578 dm_integrity_io_error(ic, "reading tags", r);
2579 }
2580
2581 atomic_inc(&comp.in_flight);
2582 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2583 (k - j) << ic->sb->log2_sectors_per_block,
2584 get_data_sector(ic, area, offset),
2585 complete_copy_from_journal, io);
2586 skip_io:
2587 j = next_loop;
2588 }
2589 }
2590
2591 dm_bufio_write_dirty_buffers_async(ic->bufio);
2592
2593 blk_finish_plug(&plug);
2594
2595 complete_journal_op(&comp);
2596 wait_for_completion_io(&comp.comp);
2597
2598 dm_integrity_flush_buffers(ic, true);
2599 }
2600
integrity_writer(struct work_struct * w)2601 static void integrity_writer(struct work_struct *w)
2602 {
2603 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2604 unsigned int write_start, write_sections;
2605 unsigned int prev_free_sectors;
2606
2607 spin_lock_irq(&ic->endio_wait.lock);
2608 write_start = ic->committed_section;
2609 write_sections = ic->n_committed_sections;
2610 spin_unlock_irq(&ic->endio_wait.lock);
2611
2612 if (!write_sections)
2613 return;
2614
2615 do_journal_write(ic, write_start, write_sections, false);
2616
2617 spin_lock_irq(&ic->endio_wait.lock);
2618
2619 ic->committed_section += write_sections;
2620 wraparound_section(ic, &ic->committed_section);
2621 ic->n_committed_sections -= write_sections;
2622
2623 prev_free_sectors = ic->free_sectors;
2624 ic->free_sectors += write_sections * ic->journal_section_entries;
2625 if (unlikely(!prev_free_sectors))
2626 wake_up_locked(&ic->endio_wait);
2627
2628 spin_unlock_irq(&ic->endio_wait.lock);
2629 }
2630
recalc_write_super(struct dm_integrity_c * ic)2631 static void recalc_write_super(struct dm_integrity_c *ic)
2632 {
2633 int r;
2634
2635 dm_integrity_flush_buffers(ic, false);
2636 if (dm_integrity_failed(ic))
2637 return;
2638
2639 r = sync_rw_sb(ic, REQ_OP_WRITE);
2640 if (unlikely(r))
2641 dm_integrity_io_error(ic, "writing superblock", r);
2642 }
2643
integrity_recalc(struct work_struct * w)2644 static void integrity_recalc(struct work_struct *w)
2645 {
2646 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2647 size_t recalc_tags_size;
2648 u8 *recalc_buffer = NULL;
2649 u8 *recalc_tags = NULL;
2650 struct dm_integrity_range range;
2651 struct dm_io_request io_req;
2652 struct dm_io_region io_loc;
2653 sector_t area, offset;
2654 sector_t metadata_block;
2655 unsigned int metadata_offset;
2656 sector_t logical_sector, n_sectors;
2657 __u8 *t;
2658 unsigned int i;
2659 int r;
2660 unsigned int super_counter = 0;
2661 unsigned recalc_sectors = RECALC_SECTORS;
2662
2663 retry:
2664 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2665 if (!recalc_buffer) {
2666 oom:
2667 recalc_sectors >>= 1;
2668 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2669 goto retry;
2670 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2671 goto free_ret;
2672 }
2673 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2674 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2675 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2676 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2677 if (!recalc_tags) {
2678 vfree(recalc_buffer);
2679 recalc_buffer = NULL;
2680 goto oom;
2681 }
2682
2683 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2684
2685 spin_lock_irq(&ic->endio_wait.lock);
2686
2687 next_chunk:
2688
2689 if (unlikely(dm_post_suspending(ic->ti)))
2690 goto unlock_ret;
2691
2692 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2693 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2694 if (ic->mode == 'B') {
2695 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2696 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2697 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2698 }
2699 goto unlock_ret;
2700 }
2701
2702 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2703 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2704 if (!ic->meta_dev)
2705 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2706
2707 add_new_range_and_wait(ic, &range);
2708 spin_unlock_irq(&ic->endio_wait.lock);
2709 logical_sector = range.logical_sector;
2710 n_sectors = range.n_sectors;
2711
2712 if (ic->mode == 'B') {
2713 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2714 goto advance_and_next;
2715
2716 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2717 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2718 logical_sector += ic->sectors_per_block;
2719 n_sectors -= ic->sectors_per_block;
2720 cond_resched();
2721 }
2722 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2723 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2724 n_sectors -= ic->sectors_per_block;
2725 cond_resched();
2726 }
2727 get_area_and_offset(ic, logical_sector, &area, &offset);
2728 }
2729
2730 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2731
2732 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2733 recalc_write_super(ic);
2734 if (ic->mode == 'B')
2735 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2736
2737 super_counter = 0;
2738 }
2739
2740 if (unlikely(dm_integrity_failed(ic)))
2741 goto err;
2742
2743 io_req.bi_opf = REQ_OP_READ;
2744 io_req.mem.type = DM_IO_VMA;
2745 io_req.mem.ptr.addr = recalc_buffer;
2746 io_req.notify.fn = NULL;
2747 io_req.client = ic->io;
2748 io_loc.bdev = ic->dev->bdev;
2749 io_loc.sector = get_data_sector(ic, area, offset);
2750 io_loc.count = n_sectors;
2751
2752 r = dm_io(&io_req, 1, &io_loc, NULL);
2753 if (unlikely(r)) {
2754 dm_integrity_io_error(ic, "reading data", r);
2755 goto err;
2756 }
2757
2758 t = recalc_tags;
2759 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2760 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2761 t += ic->tag_size;
2762 }
2763
2764 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2765
2766 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2767 if (unlikely(r)) {
2768 dm_integrity_io_error(ic, "writing tags", r);
2769 goto err;
2770 }
2771
2772 if (ic->mode == 'B') {
2773 sector_t start, end;
2774
2775 start = (range.logical_sector >>
2776 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2777 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2778 end = ((range.logical_sector + range.n_sectors) >>
2779 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2780 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2781 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2782 }
2783
2784 advance_and_next:
2785 cond_resched();
2786
2787 spin_lock_irq(&ic->endio_wait.lock);
2788 remove_range_unlocked(ic, &range);
2789 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2790 goto next_chunk;
2791
2792 err:
2793 remove_range(ic, &range);
2794 goto free_ret;
2795
2796 unlock_ret:
2797 spin_unlock_irq(&ic->endio_wait.lock);
2798
2799 recalc_write_super(ic);
2800
2801 free_ret:
2802 vfree(recalc_buffer);
2803 kvfree(recalc_tags);
2804 }
2805
bitmap_block_work(struct work_struct * w)2806 static void bitmap_block_work(struct work_struct *w)
2807 {
2808 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2809 struct dm_integrity_c *ic = bbs->ic;
2810 struct bio *bio;
2811 struct bio_list bio_queue;
2812 struct bio_list waiting;
2813
2814 bio_list_init(&waiting);
2815
2816 spin_lock(&bbs->bio_queue_lock);
2817 bio_queue = bbs->bio_queue;
2818 bio_list_init(&bbs->bio_queue);
2819 spin_unlock(&bbs->bio_queue_lock);
2820
2821 while ((bio = bio_list_pop(&bio_queue))) {
2822 struct dm_integrity_io *dio;
2823
2824 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2825
2826 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2827 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2828 remove_range(ic, &dio->range);
2829 INIT_WORK(&dio->work, integrity_bio_wait);
2830 queue_work(ic->offload_wq, &dio->work);
2831 } else {
2832 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2833 dio->range.n_sectors, BITMAP_OP_SET);
2834 bio_list_add(&waiting, bio);
2835 }
2836 }
2837
2838 if (bio_list_empty(&waiting))
2839 return;
2840
2841 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2842 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2843 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2844
2845 while ((bio = bio_list_pop(&waiting))) {
2846 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2847
2848 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2849 dio->range.n_sectors, BITMAP_OP_SET);
2850
2851 remove_range(ic, &dio->range);
2852 INIT_WORK(&dio->work, integrity_bio_wait);
2853 queue_work(ic->offload_wq, &dio->work);
2854 }
2855
2856 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2857 }
2858
bitmap_flush_work(struct work_struct * work)2859 static void bitmap_flush_work(struct work_struct *work)
2860 {
2861 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2862 struct dm_integrity_range range;
2863 unsigned long limit;
2864 struct bio *bio;
2865
2866 dm_integrity_flush_buffers(ic, false);
2867
2868 range.logical_sector = 0;
2869 range.n_sectors = ic->provided_data_sectors;
2870
2871 spin_lock_irq(&ic->endio_wait.lock);
2872 add_new_range_and_wait(ic, &range);
2873 spin_unlock_irq(&ic->endio_wait.lock);
2874
2875 dm_integrity_flush_buffers(ic, true);
2876
2877 limit = ic->provided_data_sectors;
2878 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2879 limit = le64_to_cpu(ic->sb->recalc_sector)
2880 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2881 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2882 }
2883 /*DEBUG_print("zeroing journal\n");*/
2884 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2885 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2886
2887 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2888 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2889
2890 spin_lock_irq(&ic->endio_wait.lock);
2891 remove_range_unlocked(ic, &range);
2892 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2893 bio_endio(bio);
2894 spin_unlock_irq(&ic->endio_wait.lock);
2895 spin_lock_irq(&ic->endio_wait.lock);
2896 }
2897 spin_unlock_irq(&ic->endio_wait.lock);
2898 }
2899
2900
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)2901 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2902 unsigned int n_sections, unsigned char commit_seq)
2903 {
2904 unsigned int i, j, n;
2905
2906 if (!n_sections)
2907 return;
2908
2909 for (n = 0; n < n_sections; n++) {
2910 i = start_section + n;
2911 wraparound_section(ic, &i);
2912 for (j = 0; j < ic->journal_section_sectors; j++) {
2913 struct journal_sector *js = access_journal(ic, i, j);
2914
2915 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2916 memset(&js->sectors, 0, sizeof(js->sectors));
2917 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2918 }
2919 for (j = 0; j < ic->journal_section_entries; j++) {
2920 struct journal_entry *je = access_journal_entry(ic, i, j);
2921
2922 journal_entry_set_unused(je);
2923 }
2924 }
2925
2926 write_journal(ic, start_section, n_sections);
2927 }
2928
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)2929 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2930 {
2931 unsigned char k;
2932
2933 for (k = 0; k < N_COMMIT_IDS; k++) {
2934 if (dm_integrity_commit_id(ic, i, j, k) == id)
2935 return k;
2936 }
2937 dm_integrity_io_error(ic, "journal commit id", -EIO);
2938 return -EIO;
2939 }
2940
replay_journal(struct dm_integrity_c * ic)2941 static void replay_journal(struct dm_integrity_c *ic)
2942 {
2943 unsigned int i, j;
2944 bool used_commit_ids[N_COMMIT_IDS];
2945 unsigned int max_commit_id_sections[N_COMMIT_IDS];
2946 unsigned int write_start, write_sections;
2947 unsigned int continue_section;
2948 bool journal_empty;
2949 unsigned char unused, last_used, want_commit_seq;
2950
2951 if (ic->mode == 'R')
2952 return;
2953
2954 if (ic->journal_uptodate)
2955 return;
2956
2957 last_used = 0;
2958 write_start = 0;
2959
2960 if (!ic->just_formatted) {
2961 DEBUG_print("reading journal\n");
2962 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2963 if (ic->journal_io)
2964 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2965 if (ic->journal_io) {
2966 struct journal_completion crypt_comp;
2967
2968 crypt_comp.ic = ic;
2969 init_completion(&crypt_comp.comp);
2970 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2971 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2972 wait_for_completion(&crypt_comp.comp);
2973 }
2974 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2975 }
2976
2977 if (dm_integrity_failed(ic))
2978 goto clear_journal;
2979
2980 journal_empty = true;
2981 memset(used_commit_ids, 0, sizeof(used_commit_ids));
2982 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2983 for (i = 0; i < ic->journal_sections; i++) {
2984 for (j = 0; j < ic->journal_section_sectors; j++) {
2985 int k;
2986 struct journal_sector *js = access_journal(ic, i, j);
2987
2988 k = find_commit_seq(ic, i, j, js->commit_id);
2989 if (k < 0)
2990 goto clear_journal;
2991 used_commit_ids[k] = true;
2992 max_commit_id_sections[k] = i;
2993 }
2994 if (journal_empty) {
2995 for (j = 0; j < ic->journal_section_entries; j++) {
2996 struct journal_entry *je = access_journal_entry(ic, i, j);
2997
2998 if (!journal_entry_is_unused(je)) {
2999 journal_empty = false;
3000 break;
3001 }
3002 }
3003 }
3004 }
3005
3006 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3007 unused = N_COMMIT_IDS - 1;
3008 while (unused && !used_commit_ids[unused - 1])
3009 unused--;
3010 } else {
3011 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3012 if (!used_commit_ids[unused])
3013 break;
3014 if (unused == N_COMMIT_IDS) {
3015 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3016 goto clear_journal;
3017 }
3018 }
3019 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3020 unused, used_commit_ids[0], used_commit_ids[1],
3021 used_commit_ids[2], used_commit_ids[3]);
3022
3023 last_used = prev_commit_seq(unused);
3024 want_commit_seq = prev_commit_seq(last_used);
3025
3026 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3027 journal_empty = true;
3028
3029 write_start = max_commit_id_sections[last_used] + 1;
3030 if (unlikely(write_start >= ic->journal_sections))
3031 want_commit_seq = next_commit_seq(want_commit_seq);
3032 wraparound_section(ic, &write_start);
3033
3034 i = write_start;
3035 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3036 for (j = 0; j < ic->journal_section_sectors; j++) {
3037 struct journal_sector *js = access_journal(ic, i, j);
3038
3039 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3040 /*
3041 * This could be caused by crash during writing.
3042 * We won't replay the inconsistent part of the
3043 * journal.
3044 */
3045 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3046 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3047 goto brk;
3048 }
3049 }
3050 i++;
3051 if (unlikely(i >= ic->journal_sections))
3052 want_commit_seq = next_commit_seq(want_commit_seq);
3053 wraparound_section(ic, &i);
3054 }
3055 brk:
3056
3057 if (!journal_empty) {
3058 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3059 write_sections, write_start, want_commit_seq);
3060 do_journal_write(ic, write_start, write_sections, true);
3061 }
3062
3063 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3064 continue_section = write_start;
3065 ic->commit_seq = want_commit_seq;
3066 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3067 } else {
3068 unsigned int s;
3069 unsigned char erase_seq;
3070
3071 clear_journal:
3072 DEBUG_print("clearing journal\n");
3073
3074 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3075 s = write_start;
3076 init_journal(ic, s, 1, erase_seq);
3077 s++;
3078 wraparound_section(ic, &s);
3079 if (ic->journal_sections >= 2) {
3080 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3081 s += ic->journal_sections - 2;
3082 wraparound_section(ic, &s);
3083 init_journal(ic, s, 1, erase_seq);
3084 }
3085
3086 continue_section = 0;
3087 ic->commit_seq = next_commit_seq(erase_seq);
3088 }
3089
3090 ic->committed_section = continue_section;
3091 ic->n_committed_sections = 0;
3092
3093 ic->uncommitted_section = continue_section;
3094 ic->n_uncommitted_sections = 0;
3095
3096 ic->free_section = continue_section;
3097 ic->free_section_entry = 0;
3098 ic->free_sectors = ic->journal_entries;
3099
3100 ic->journal_tree_root = RB_ROOT;
3101 for (i = 0; i < ic->journal_entries; i++)
3102 init_journal_node(&ic->journal_tree[i]);
3103 }
3104
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3105 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3106 {
3107 DEBUG_print("%s\n", __func__);
3108
3109 if (ic->mode == 'B') {
3110 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3111 ic->synchronous_mode = 1;
3112
3113 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3114 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3115 flush_workqueue(ic->commit_wq);
3116 }
3117 }
3118
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3119 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3120 {
3121 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3122
3123 DEBUG_print("%s\n", __func__);
3124
3125 dm_integrity_enter_synchronous_mode(ic);
3126
3127 return NOTIFY_DONE;
3128 }
3129
dm_integrity_postsuspend(struct dm_target * ti)3130 static void dm_integrity_postsuspend(struct dm_target *ti)
3131 {
3132 struct dm_integrity_c *ic = ti->private;
3133 int r;
3134
3135 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3136
3137 del_timer_sync(&ic->autocommit_timer);
3138
3139 if (ic->recalc_wq)
3140 drain_workqueue(ic->recalc_wq);
3141
3142 if (ic->mode == 'B')
3143 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3144
3145 queue_work(ic->commit_wq, &ic->commit_work);
3146 drain_workqueue(ic->commit_wq);
3147
3148 if (ic->mode == 'J') {
3149 queue_work(ic->writer_wq, &ic->writer_work);
3150 drain_workqueue(ic->writer_wq);
3151 dm_integrity_flush_buffers(ic, true);
3152 if (ic->wrote_to_journal) {
3153 init_journal(ic, ic->free_section,
3154 ic->journal_sections - ic->free_section, ic->commit_seq);
3155 if (ic->free_section) {
3156 init_journal(ic, 0, ic->free_section,
3157 next_commit_seq(ic->commit_seq));
3158 }
3159 }
3160 }
3161
3162 if (ic->mode == 'B') {
3163 dm_integrity_flush_buffers(ic, true);
3164 #if 1
3165 /* set to 0 to test bitmap replay code */
3166 init_journal(ic, 0, ic->journal_sections, 0);
3167 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3168 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3169 if (unlikely(r))
3170 dm_integrity_io_error(ic, "writing superblock", r);
3171 #endif
3172 }
3173
3174 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3175
3176 ic->journal_uptodate = true;
3177 }
3178
dm_integrity_resume(struct dm_target * ti)3179 static void dm_integrity_resume(struct dm_target *ti)
3180 {
3181 struct dm_integrity_c *ic = ti->private;
3182 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3183 int r;
3184
3185 DEBUG_print("resume\n");
3186
3187 ic->wrote_to_journal = false;
3188
3189 if (ic->provided_data_sectors != old_provided_data_sectors) {
3190 if (ic->provided_data_sectors > old_provided_data_sectors &&
3191 ic->mode == 'B' &&
3192 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3193 rw_journal_sectors(ic, REQ_OP_READ, 0,
3194 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3195 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3196 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3197 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3198 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3199 }
3200
3201 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3202 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3203 if (unlikely(r))
3204 dm_integrity_io_error(ic, "writing superblock", r);
3205 }
3206
3207 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3208 DEBUG_print("resume dirty_bitmap\n");
3209 rw_journal_sectors(ic, REQ_OP_READ, 0,
3210 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3211 if (ic->mode == 'B') {
3212 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3213 !ic->reset_recalculate_flag) {
3214 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3215 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3216 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3217 BITMAP_OP_TEST_ALL_CLEAR)) {
3218 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3219 ic->sb->recalc_sector = cpu_to_le64(0);
3220 }
3221 } else {
3222 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3223 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3224 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3225 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3226 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3227 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3228 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3229 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3230 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3231 ic->sb->recalc_sector = cpu_to_le64(0);
3232 }
3233 } else {
3234 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3235 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3236 ic->reset_recalculate_flag) {
3237 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3238 ic->sb->recalc_sector = cpu_to_le64(0);
3239 }
3240 init_journal(ic, 0, ic->journal_sections, 0);
3241 replay_journal(ic);
3242 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3243 }
3244 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3245 if (unlikely(r))
3246 dm_integrity_io_error(ic, "writing superblock", r);
3247 } else {
3248 replay_journal(ic);
3249 if (ic->reset_recalculate_flag) {
3250 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3251 ic->sb->recalc_sector = cpu_to_le64(0);
3252 }
3253 if (ic->mode == 'B') {
3254 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3255 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3256 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3257 if (unlikely(r))
3258 dm_integrity_io_error(ic, "writing superblock", r);
3259
3260 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3261 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3262 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3263 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3264 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3265 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3266 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3267 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3268 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3269 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3270 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3271 }
3272 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3273 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3274 }
3275 }
3276
3277 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3278 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3279 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3280
3281 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3282 if (recalc_pos < ic->provided_data_sectors) {
3283 queue_work(ic->recalc_wq, &ic->recalc_work);
3284 } else if (recalc_pos > ic->provided_data_sectors) {
3285 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3286 recalc_write_super(ic);
3287 }
3288 }
3289
3290 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3291 ic->reboot_notifier.next = NULL;
3292 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3293 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3294
3295 #if 0
3296 /* set to 1 to stress test synchronous mode */
3297 dm_integrity_enter_synchronous_mode(ic);
3298 #endif
3299 }
3300
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3301 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3302 unsigned int status_flags, char *result, unsigned int maxlen)
3303 {
3304 struct dm_integrity_c *ic = ti->private;
3305 unsigned int arg_count;
3306 size_t sz = 0;
3307
3308 switch (type) {
3309 case STATUSTYPE_INFO:
3310 DMEMIT("%llu %llu",
3311 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3312 ic->provided_data_sectors);
3313 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3314 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3315 else
3316 DMEMIT(" -");
3317 break;
3318
3319 case STATUSTYPE_TABLE: {
3320 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3321
3322 watermark_percentage += ic->journal_entries / 2;
3323 do_div(watermark_percentage, ic->journal_entries);
3324 arg_count = 3;
3325 arg_count += !!ic->meta_dev;
3326 arg_count += ic->sectors_per_block != 1;
3327 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3328 arg_count += ic->reset_recalculate_flag;
3329 arg_count += ic->discard;
3330 arg_count += ic->mode == 'J';
3331 arg_count += ic->mode == 'J';
3332 arg_count += ic->mode == 'B';
3333 arg_count += ic->mode == 'B';
3334 arg_count += !!ic->internal_hash_alg.alg_string;
3335 arg_count += !!ic->journal_crypt_alg.alg_string;
3336 arg_count += !!ic->journal_mac_alg.alg_string;
3337 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3338 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3339 arg_count += ic->legacy_recalculate;
3340 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3341 ic->tag_size, ic->mode, arg_count);
3342 if (ic->meta_dev)
3343 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3344 if (ic->sectors_per_block != 1)
3345 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3346 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3347 DMEMIT(" recalculate");
3348 if (ic->reset_recalculate_flag)
3349 DMEMIT(" reset_recalculate");
3350 if (ic->discard)
3351 DMEMIT(" allow_discards");
3352 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3353 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3354 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3355 if (ic->mode == 'J') {
3356 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3357 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3358 }
3359 if (ic->mode == 'B') {
3360 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3361 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3362 }
3363 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3364 DMEMIT(" fix_padding");
3365 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3366 DMEMIT(" fix_hmac");
3367 if (ic->legacy_recalculate)
3368 DMEMIT(" legacy_recalculate");
3369
3370 #define EMIT_ALG(a, n) \
3371 do { \
3372 if (ic->a.alg_string) { \
3373 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3374 if (ic->a.key_string) \
3375 DMEMIT(":%s", ic->a.key_string);\
3376 } \
3377 } while (0)
3378 EMIT_ALG(internal_hash_alg, "internal_hash");
3379 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3380 EMIT_ALG(journal_mac_alg, "journal_mac");
3381 break;
3382 }
3383 case STATUSTYPE_IMA:
3384 DMEMIT_TARGET_NAME_VERSION(ti->type);
3385 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3386 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3387
3388 if (ic->meta_dev)
3389 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3390 if (ic->sectors_per_block != 1)
3391 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3392
3393 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3394 'y' : 'n');
3395 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3396 DMEMIT(",fix_padding=%c",
3397 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3398 DMEMIT(",fix_hmac=%c",
3399 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3400 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3401
3402 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3403 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3404 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3405 DMEMIT(";");
3406 break;
3407 }
3408 }
3409
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3410 static int dm_integrity_iterate_devices(struct dm_target *ti,
3411 iterate_devices_callout_fn fn, void *data)
3412 {
3413 struct dm_integrity_c *ic = ti->private;
3414
3415 if (!ic->meta_dev)
3416 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3417 else
3418 return fn(ti, ic->dev, 0, ti->len, data);
3419 }
3420
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3421 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3422 {
3423 struct dm_integrity_c *ic = ti->private;
3424
3425 if (ic->sectors_per_block > 1) {
3426 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3427 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3428 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3429 limits->dma_alignment = limits->logical_block_size - 1;
3430 }
3431 }
3432
calculate_journal_section_size(struct dm_integrity_c * ic)3433 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3434 {
3435 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3436
3437 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3438 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3439 JOURNAL_ENTRY_ROUNDUP);
3440
3441 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3442 sector_space -= JOURNAL_MAC_PER_SECTOR;
3443 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3444 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3445 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3446 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3447 }
3448
calculate_device_limits(struct dm_integrity_c * ic)3449 static int calculate_device_limits(struct dm_integrity_c *ic)
3450 {
3451 __u64 initial_sectors;
3452
3453 calculate_journal_section_size(ic);
3454 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3455 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3456 return -EINVAL;
3457 ic->initial_sectors = initial_sectors;
3458
3459 if (!ic->meta_dev) {
3460 sector_t last_sector, last_area, last_offset;
3461
3462 /* we have to maintain excessive padding for compatibility with existing volumes */
3463 __u64 metadata_run_padding =
3464 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3465 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3466 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3467
3468 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3469 metadata_run_padding) >> SECTOR_SHIFT;
3470 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3471 ic->log2_metadata_run = __ffs(ic->metadata_run);
3472 else
3473 ic->log2_metadata_run = -1;
3474
3475 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3476 last_sector = get_data_sector(ic, last_area, last_offset);
3477 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3478 return -EINVAL;
3479 } else {
3480 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3481
3482 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3483 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3484 meta_size <<= ic->log2_buffer_sectors;
3485 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3486 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3487 return -EINVAL;
3488 ic->metadata_run = 1;
3489 ic->log2_metadata_run = 0;
3490 }
3491
3492 return 0;
3493 }
3494
get_provided_data_sectors(struct dm_integrity_c * ic)3495 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3496 {
3497 if (!ic->meta_dev) {
3498 int test_bit;
3499
3500 ic->provided_data_sectors = 0;
3501 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3502 __u64 prev_data_sectors = ic->provided_data_sectors;
3503
3504 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3505 if (calculate_device_limits(ic))
3506 ic->provided_data_sectors = prev_data_sectors;
3507 }
3508 } else {
3509 ic->provided_data_sectors = ic->data_device_sectors;
3510 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3511 }
3512 }
3513
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)3514 static int initialize_superblock(struct dm_integrity_c *ic,
3515 unsigned int journal_sectors, unsigned int interleave_sectors)
3516 {
3517 unsigned int journal_sections;
3518 int test_bit;
3519
3520 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3521 memcpy(ic->sb->magic, SB_MAGIC, 8);
3522 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3523 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3524 if (ic->journal_mac_alg.alg_string)
3525 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3526
3527 calculate_journal_section_size(ic);
3528 journal_sections = journal_sectors / ic->journal_section_sectors;
3529 if (!journal_sections)
3530 journal_sections = 1;
3531
3532 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3533 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3534 get_random_bytes(ic->sb->salt, SALT_SIZE);
3535 }
3536
3537 if (!ic->meta_dev) {
3538 if (ic->fix_padding)
3539 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3540 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3541 if (!interleave_sectors)
3542 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3543 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3544 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3545 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3546
3547 get_provided_data_sectors(ic);
3548 if (!ic->provided_data_sectors)
3549 return -EINVAL;
3550 } else {
3551 ic->sb->log2_interleave_sectors = 0;
3552
3553 get_provided_data_sectors(ic);
3554 if (!ic->provided_data_sectors)
3555 return -EINVAL;
3556
3557 try_smaller_buffer:
3558 ic->sb->journal_sections = cpu_to_le32(0);
3559 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3560 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3561 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3562
3563 if (test_journal_sections > journal_sections)
3564 continue;
3565 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3566 if (calculate_device_limits(ic))
3567 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3568
3569 }
3570 if (!le32_to_cpu(ic->sb->journal_sections)) {
3571 if (ic->log2_buffer_sectors > 3) {
3572 ic->log2_buffer_sectors--;
3573 goto try_smaller_buffer;
3574 }
3575 return -EINVAL;
3576 }
3577 }
3578
3579 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3580
3581 sb_set_version(ic);
3582
3583 return 0;
3584 }
3585
dm_integrity_set(struct dm_target * ti,struct dm_integrity_c * ic)3586 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3587 {
3588 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3589 struct blk_integrity bi;
3590
3591 memset(&bi, 0, sizeof(bi));
3592 bi.profile = &dm_integrity_profile;
3593 bi.tuple_size = ic->tag_size;
3594 bi.tag_size = bi.tuple_size;
3595 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3596
3597 blk_integrity_register(disk, &bi);
3598 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3599 }
3600
dm_integrity_free_page_list(struct page_list * pl)3601 static void dm_integrity_free_page_list(struct page_list *pl)
3602 {
3603 unsigned int i;
3604
3605 if (!pl)
3606 return;
3607 for (i = 0; pl[i].page; i++)
3608 __free_page(pl[i].page);
3609 kvfree(pl);
3610 }
3611
dm_integrity_alloc_page_list(unsigned int n_pages)3612 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3613 {
3614 struct page_list *pl;
3615 unsigned int i;
3616
3617 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3618 if (!pl)
3619 return NULL;
3620
3621 for (i = 0; i < n_pages; i++) {
3622 pl[i].page = alloc_page(GFP_KERNEL);
3623 if (!pl[i].page) {
3624 dm_integrity_free_page_list(pl);
3625 return NULL;
3626 }
3627 if (i)
3628 pl[i - 1].next = &pl[i];
3629 }
3630 pl[i].page = NULL;
3631 pl[i].next = NULL;
3632
3633 return pl;
3634 }
3635
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)3636 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3637 {
3638 unsigned int i;
3639
3640 for (i = 0; i < ic->journal_sections; i++)
3641 kvfree(sl[i]);
3642 kvfree(sl);
3643 }
3644
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)3645 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3646 struct page_list *pl)
3647 {
3648 struct scatterlist **sl;
3649 unsigned int i;
3650
3651 sl = kvmalloc_array(ic->journal_sections,
3652 sizeof(struct scatterlist *),
3653 GFP_KERNEL | __GFP_ZERO);
3654 if (!sl)
3655 return NULL;
3656
3657 for (i = 0; i < ic->journal_sections; i++) {
3658 struct scatterlist *s;
3659 unsigned int start_index, start_offset;
3660 unsigned int end_index, end_offset;
3661 unsigned int n_pages;
3662 unsigned int idx;
3663
3664 page_list_location(ic, i, 0, &start_index, &start_offset);
3665 page_list_location(ic, i, ic->journal_section_sectors - 1,
3666 &end_index, &end_offset);
3667
3668 n_pages = (end_index - start_index + 1);
3669
3670 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3671 GFP_KERNEL);
3672 if (!s) {
3673 dm_integrity_free_journal_scatterlist(ic, sl);
3674 return NULL;
3675 }
3676
3677 sg_init_table(s, n_pages);
3678 for (idx = start_index; idx <= end_index; idx++) {
3679 char *va = lowmem_page_address(pl[idx].page);
3680 unsigned int start = 0, end = PAGE_SIZE;
3681
3682 if (idx == start_index)
3683 start = start_offset;
3684 if (idx == end_index)
3685 end = end_offset + (1 << SECTOR_SHIFT);
3686 sg_set_buf(&s[idx - start_index], va + start, end - start);
3687 }
3688
3689 sl[i] = s;
3690 }
3691
3692 return sl;
3693 }
3694
free_alg(struct alg_spec * a)3695 static void free_alg(struct alg_spec *a)
3696 {
3697 kfree_sensitive(a->alg_string);
3698 kfree_sensitive(a->key);
3699 memset(a, 0, sizeof(*a));
3700 }
3701
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)3702 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3703 {
3704 char *k;
3705
3706 free_alg(a);
3707
3708 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3709 if (!a->alg_string)
3710 goto nomem;
3711
3712 k = strchr(a->alg_string, ':');
3713 if (k) {
3714 *k = 0;
3715 a->key_string = k + 1;
3716 if (strlen(a->key_string) & 1)
3717 goto inval;
3718
3719 a->key_size = strlen(a->key_string) / 2;
3720 a->key = kmalloc(a->key_size, GFP_KERNEL);
3721 if (!a->key)
3722 goto nomem;
3723 if (hex2bin(a->key, a->key_string, a->key_size))
3724 goto inval;
3725 }
3726
3727 return 0;
3728 inval:
3729 *error = error_inval;
3730 return -EINVAL;
3731 nomem:
3732 *error = "Out of memory for an argument";
3733 return -ENOMEM;
3734 }
3735
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)3736 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3737 char *error_alg, char *error_key)
3738 {
3739 int r;
3740
3741 if (a->alg_string) {
3742 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3743 if (IS_ERR(*hash)) {
3744 *error = error_alg;
3745 r = PTR_ERR(*hash);
3746 *hash = NULL;
3747 return r;
3748 }
3749
3750 if (a->key) {
3751 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3752 if (r) {
3753 *error = error_key;
3754 return r;
3755 }
3756 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3757 *error = error_key;
3758 return -ENOKEY;
3759 }
3760 }
3761
3762 return 0;
3763 }
3764
create_journal(struct dm_integrity_c * ic,char ** error)3765 static int create_journal(struct dm_integrity_c *ic, char **error)
3766 {
3767 int r = 0;
3768 unsigned int i;
3769 __u64 journal_pages, journal_desc_size, journal_tree_size;
3770 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3771 struct skcipher_request *req = NULL;
3772
3773 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3774 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3775 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3776 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3777
3778 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3779 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3780 journal_desc_size = journal_pages * sizeof(struct page_list);
3781 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3782 *error = "Journal doesn't fit into memory";
3783 r = -ENOMEM;
3784 goto bad;
3785 }
3786 ic->journal_pages = journal_pages;
3787
3788 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3789 if (!ic->journal) {
3790 *error = "Could not allocate memory for journal";
3791 r = -ENOMEM;
3792 goto bad;
3793 }
3794 if (ic->journal_crypt_alg.alg_string) {
3795 unsigned int ivsize, blocksize;
3796 struct journal_completion comp;
3797
3798 comp.ic = ic;
3799 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800 if (IS_ERR(ic->journal_crypt)) {
3801 *error = "Invalid journal cipher";
3802 r = PTR_ERR(ic->journal_crypt);
3803 ic->journal_crypt = NULL;
3804 goto bad;
3805 }
3806 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3807 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3808
3809 if (ic->journal_crypt_alg.key) {
3810 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3811 ic->journal_crypt_alg.key_size);
3812 if (r) {
3813 *error = "Error setting encryption key";
3814 goto bad;
3815 }
3816 }
3817 DEBUG_print("cipher %s, block size %u iv size %u\n",
3818 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3819
3820 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3821 if (!ic->journal_io) {
3822 *error = "Could not allocate memory for journal io";
3823 r = -ENOMEM;
3824 goto bad;
3825 }
3826
3827 if (blocksize == 1) {
3828 struct scatterlist *sg;
3829
3830 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3831 if (!req) {
3832 *error = "Could not allocate crypt request";
3833 r = -ENOMEM;
3834 goto bad;
3835 }
3836
3837 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3838 if (!crypt_iv) {
3839 *error = "Could not allocate iv";
3840 r = -ENOMEM;
3841 goto bad;
3842 }
3843
3844 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3845 if (!ic->journal_xor) {
3846 *error = "Could not allocate memory for journal xor";
3847 r = -ENOMEM;
3848 goto bad;
3849 }
3850
3851 sg = kvmalloc_array(ic->journal_pages + 1,
3852 sizeof(struct scatterlist),
3853 GFP_KERNEL);
3854 if (!sg) {
3855 *error = "Unable to allocate sg list";
3856 r = -ENOMEM;
3857 goto bad;
3858 }
3859 sg_init_table(sg, ic->journal_pages + 1);
3860 for (i = 0; i < ic->journal_pages; i++) {
3861 char *va = lowmem_page_address(ic->journal_xor[i].page);
3862
3863 clear_page(va);
3864 sg_set_buf(&sg[i], va, PAGE_SIZE);
3865 }
3866 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3867
3868 skcipher_request_set_crypt(req, sg, sg,
3869 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3870 init_completion(&comp.comp);
3871 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3872 if (do_crypt(true, req, &comp))
3873 wait_for_completion(&comp.comp);
3874 kvfree(sg);
3875 r = dm_integrity_failed(ic);
3876 if (r) {
3877 *error = "Unable to encrypt journal";
3878 goto bad;
3879 }
3880 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3881
3882 crypto_free_skcipher(ic->journal_crypt);
3883 ic->journal_crypt = NULL;
3884 } else {
3885 unsigned int crypt_len = roundup(ivsize, blocksize);
3886
3887 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888 if (!req) {
3889 *error = "Could not allocate crypt request";
3890 r = -ENOMEM;
3891 goto bad;
3892 }
3893
3894 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3895 if (!crypt_iv) {
3896 *error = "Could not allocate iv";
3897 r = -ENOMEM;
3898 goto bad;
3899 }
3900
3901 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3902 if (!crypt_data) {
3903 *error = "Unable to allocate crypt data";
3904 r = -ENOMEM;
3905 goto bad;
3906 }
3907
3908 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3909 if (!ic->journal_scatterlist) {
3910 *error = "Unable to allocate sg list";
3911 r = -ENOMEM;
3912 goto bad;
3913 }
3914 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3915 if (!ic->journal_io_scatterlist) {
3916 *error = "Unable to allocate sg list";
3917 r = -ENOMEM;
3918 goto bad;
3919 }
3920 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3921 sizeof(struct skcipher_request *),
3922 GFP_KERNEL | __GFP_ZERO);
3923 if (!ic->sk_requests) {
3924 *error = "Unable to allocate sk requests";
3925 r = -ENOMEM;
3926 goto bad;
3927 }
3928 for (i = 0; i < ic->journal_sections; i++) {
3929 struct scatterlist sg;
3930 struct skcipher_request *section_req;
3931 __le32 section_le = cpu_to_le32(i);
3932
3933 memset(crypt_iv, 0x00, ivsize);
3934 memset(crypt_data, 0x00, crypt_len);
3935 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
3936
3937 sg_init_one(&sg, crypt_data, crypt_len);
3938 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3939 init_completion(&comp.comp);
3940 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3941 if (do_crypt(true, req, &comp))
3942 wait_for_completion(&comp.comp);
3943
3944 r = dm_integrity_failed(ic);
3945 if (r) {
3946 *error = "Unable to generate iv";
3947 goto bad;
3948 }
3949
3950 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3951 if (!section_req) {
3952 *error = "Unable to allocate crypt request";
3953 r = -ENOMEM;
3954 goto bad;
3955 }
3956 section_req->iv = kmalloc_array(ivsize, 2,
3957 GFP_KERNEL);
3958 if (!section_req->iv) {
3959 skcipher_request_free(section_req);
3960 *error = "Unable to allocate iv";
3961 r = -ENOMEM;
3962 goto bad;
3963 }
3964 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3965 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3966 ic->sk_requests[i] = section_req;
3967 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3968 }
3969 }
3970 }
3971
3972 for (i = 0; i < N_COMMIT_IDS; i++) {
3973 unsigned int j;
3974
3975 retest_commit_id:
3976 for (j = 0; j < i; j++) {
3977 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3978 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3979 goto retest_commit_id;
3980 }
3981 }
3982 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3983 }
3984
3985 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3986 if (journal_tree_size > ULONG_MAX) {
3987 *error = "Journal doesn't fit into memory";
3988 r = -ENOMEM;
3989 goto bad;
3990 }
3991 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3992 if (!ic->journal_tree) {
3993 *error = "Could not allocate memory for journal tree";
3994 r = -ENOMEM;
3995 }
3996 bad:
3997 kfree(crypt_data);
3998 kfree(crypt_iv);
3999 skcipher_request_free(req);
4000
4001 return r;
4002 }
4003
4004 /*
4005 * Construct a integrity mapping
4006 *
4007 * Arguments:
4008 * device
4009 * offset from the start of the device
4010 * tag size
4011 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4012 * number of optional arguments
4013 * optional arguments:
4014 * journal_sectors
4015 * interleave_sectors
4016 * buffer_sectors
4017 * journal_watermark
4018 * commit_time
4019 * meta_device
4020 * block_size
4021 * sectors_per_bit
4022 * bitmap_flush_interval
4023 * internal_hash
4024 * journal_crypt
4025 * journal_mac
4026 * recalculate
4027 */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4028 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4029 {
4030 struct dm_integrity_c *ic;
4031 char dummy;
4032 int r;
4033 unsigned int extra_args;
4034 struct dm_arg_set as;
4035 static const struct dm_arg _args[] = {
4036 {0, 18, "Invalid number of feature args"},
4037 };
4038 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4039 bool should_write_sb;
4040 __u64 threshold;
4041 unsigned long long start;
4042 __s8 log2_sectors_per_bitmap_bit = -1;
4043 __s8 log2_blocks_per_bitmap_bit;
4044 __u64 bits_in_journal;
4045 __u64 n_bitmap_bits;
4046
4047 #define DIRECT_ARGUMENTS 4
4048
4049 if (argc <= DIRECT_ARGUMENTS) {
4050 ti->error = "Invalid argument count";
4051 return -EINVAL;
4052 }
4053
4054 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4055 if (!ic) {
4056 ti->error = "Cannot allocate integrity context";
4057 return -ENOMEM;
4058 }
4059 ti->private = ic;
4060 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4061 ic->ti = ti;
4062
4063 ic->in_progress = RB_ROOT;
4064 INIT_LIST_HEAD(&ic->wait_list);
4065 init_waitqueue_head(&ic->endio_wait);
4066 bio_list_init(&ic->flush_bio_list);
4067 init_waitqueue_head(&ic->copy_to_journal_wait);
4068 init_completion(&ic->crypto_backoff);
4069 atomic64_set(&ic->number_of_mismatches, 0);
4070 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4071
4072 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4073 if (r) {
4074 ti->error = "Device lookup failed";
4075 goto bad;
4076 }
4077
4078 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4079 ti->error = "Invalid starting offset";
4080 r = -EINVAL;
4081 goto bad;
4082 }
4083 ic->start = start;
4084
4085 if (strcmp(argv[2], "-")) {
4086 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4087 ti->error = "Invalid tag size";
4088 r = -EINVAL;
4089 goto bad;
4090 }
4091 }
4092
4093 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4094 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4095 ic->mode = argv[3][0];
4096 } else {
4097 ti->error = "Invalid mode (expecting J, B, D, R)";
4098 r = -EINVAL;
4099 goto bad;
4100 }
4101
4102 journal_sectors = 0;
4103 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4104 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4105 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4106 sync_msec = DEFAULT_SYNC_MSEC;
4107 ic->sectors_per_block = 1;
4108
4109 as.argc = argc - DIRECT_ARGUMENTS;
4110 as.argv = argv + DIRECT_ARGUMENTS;
4111 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4112 if (r)
4113 goto bad;
4114
4115 while (extra_args--) {
4116 const char *opt_string;
4117 unsigned int val;
4118 unsigned long long llval;
4119
4120 opt_string = dm_shift_arg(&as);
4121 if (!opt_string) {
4122 r = -EINVAL;
4123 ti->error = "Not enough feature arguments";
4124 goto bad;
4125 }
4126 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4127 journal_sectors = val ? val : 1;
4128 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4129 interleave_sectors = val;
4130 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4131 buffer_sectors = val;
4132 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4133 journal_watermark = val;
4134 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4135 sync_msec = val;
4136 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4137 if (ic->meta_dev) {
4138 dm_put_device(ti, ic->meta_dev);
4139 ic->meta_dev = NULL;
4140 }
4141 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4142 dm_table_get_mode(ti->table), &ic->meta_dev);
4143 if (r) {
4144 ti->error = "Device lookup failed";
4145 goto bad;
4146 }
4147 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4148 if (val < 1 << SECTOR_SHIFT ||
4149 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4150 (val & (val - 1))) {
4151 r = -EINVAL;
4152 ti->error = "Invalid block_size argument";
4153 goto bad;
4154 }
4155 ic->sectors_per_block = val >> SECTOR_SHIFT;
4156 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4157 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4158 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4159 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4160 r = -EINVAL;
4161 ti->error = "Invalid bitmap_flush_interval argument";
4162 goto bad;
4163 }
4164 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4165 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4166 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4167 "Invalid internal_hash argument");
4168 if (r)
4169 goto bad;
4170 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4171 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4172 "Invalid journal_crypt argument");
4173 if (r)
4174 goto bad;
4175 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4176 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4177 "Invalid journal_mac argument");
4178 if (r)
4179 goto bad;
4180 } else if (!strcmp(opt_string, "recalculate")) {
4181 ic->recalculate_flag = true;
4182 } else if (!strcmp(opt_string, "reset_recalculate")) {
4183 ic->recalculate_flag = true;
4184 ic->reset_recalculate_flag = true;
4185 } else if (!strcmp(opt_string, "allow_discards")) {
4186 ic->discard = true;
4187 } else if (!strcmp(opt_string, "fix_padding")) {
4188 ic->fix_padding = true;
4189 } else if (!strcmp(opt_string, "fix_hmac")) {
4190 ic->fix_hmac = true;
4191 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4192 ic->legacy_recalculate = true;
4193 } else {
4194 r = -EINVAL;
4195 ti->error = "Invalid argument";
4196 goto bad;
4197 }
4198 }
4199
4200 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4201 if (!ic->meta_dev)
4202 ic->meta_device_sectors = ic->data_device_sectors;
4203 else
4204 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4205
4206 if (!journal_sectors) {
4207 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4208 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4209 }
4210
4211 if (!buffer_sectors)
4212 buffer_sectors = 1;
4213 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4214
4215 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4216 "Invalid internal hash", "Error setting internal hash key");
4217 if (r)
4218 goto bad;
4219
4220 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4221 "Invalid journal mac", "Error setting journal mac key");
4222 if (r)
4223 goto bad;
4224
4225 if (!ic->tag_size) {
4226 if (!ic->internal_hash) {
4227 ti->error = "Unknown tag size";
4228 r = -EINVAL;
4229 goto bad;
4230 }
4231 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4232 }
4233 if (ic->tag_size > MAX_TAG_SIZE) {
4234 ti->error = "Too big tag size";
4235 r = -EINVAL;
4236 goto bad;
4237 }
4238 if (!(ic->tag_size & (ic->tag_size - 1)))
4239 ic->log2_tag_size = __ffs(ic->tag_size);
4240 else
4241 ic->log2_tag_size = -1;
4242
4243 if (ic->mode == 'B' && !ic->internal_hash) {
4244 r = -EINVAL;
4245 ti->error = "Bitmap mode can be only used with internal hash";
4246 goto bad;
4247 }
4248
4249 if (ic->discard && !ic->internal_hash) {
4250 r = -EINVAL;
4251 ti->error = "Discard can be only used with internal hash";
4252 goto bad;
4253 }
4254
4255 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4256 ic->autocommit_msec = sync_msec;
4257 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4258
4259 ic->io = dm_io_client_create();
4260 if (IS_ERR(ic->io)) {
4261 r = PTR_ERR(ic->io);
4262 ic->io = NULL;
4263 ti->error = "Cannot allocate dm io";
4264 goto bad;
4265 }
4266
4267 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4268 if (r) {
4269 ti->error = "Cannot allocate mempool";
4270 goto bad;
4271 }
4272
4273 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4274 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4275 if (!ic->metadata_wq) {
4276 ti->error = "Cannot allocate workqueue";
4277 r = -ENOMEM;
4278 goto bad;
4279 }
4280
4281 /*
4282 * If this workqueue weren't ordered, it would cause bio reordering
4283 * and reduced performance.
4284 */
4285 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4286 if (!ic->wait_wq) {
4287 ti->error = "Cannot allocate workqueue";
4288 r = -ENOMEM;
4289 goto bad;
4290 }
4291
4292 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4293 METADATA_WORKQUEUE_MAX_ACTIVE);
4294 if (!ic->offload_wq) {
4295 ti->error = "Cannot allocate workqueue";
4296 r = -ENOMEM;
4297 goto bad;
4298 }
4299
4300 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4301 if (!ic->commit_wq) {
4302 ti->error = "Cannot allocate workqueue";
4303 r = -ENOMEM;
4304 goto bad;
4305 }
4306 INIT_WORK(&ic->commit_work, integrity_commit);
4307
4308 if (ic->mode == 'J' || ic->mode == 'B') {
4309 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4310 if (!ic->writer_wq) {
4311 ti->error = "Cannot allocate workqueue";
4312 r = -ENOMEM;
4313 goto bad;
4314 }
4315 INIT_WORK(&ic->writer_work, integrity_writer);
4316 }
4317
4318 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4319 if (!ic->sb) {
4320 r = -ENOMEM;
4321 ti->error = "Cannot allocate superblock area";
4322 goto bad;
4323 }
4324
4325 r = sync_rw_sb(ic, REQ_OP_READ);
4326 if (r) {
4327 ti->error = "Error reading superblock";
4328 goto bad;
4329 }
4330 should_write_sb = false;
4331 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4332 if (ic->mode != 'R') {
4333 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4334 r = -EINVAL;
4335 ti->error = "The device is not initialized";
4336 goto bad;
4337 }
4338 }
4339
4340 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4341 if (r) {
4342 ti->error = "Could not initialize superblock";
4343 goto bad;
4344 }
4345 if (ic->mode != 'R')
4346 should_write_sb = true;
4347 }
4348
4349 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4350 r = -EINVAL;
4351 ti->error = "Unknown version";
4352 goto bad;
4353 }
4354 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4355 r = -EINVAL;
4356 ti->error = "Tag size doesn't match the information in superblock";
4357 goto bad;
4358 }
4359 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4360 r = -EINVAL;
4361 ti->error = "Block size doesn't match the information in superblock";
4362 goto bad;
4363 }
4364 if (!le32_to_cpu(ic->sb->journal_sections)) {
4365 r = -EINVAL;
4366 ti->error = "Corrupted superblock, journal_sections is 0";
4367 goto bad;
4368 }
4369 /* make sure that ti->max_io_len doesn't overflow */
4370 if (!ic->meta_dev) {
4371 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4372 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4373 r = -EINVAL;
4374 ti->error = "Invalid interleave_sectors in the superblock";
4375 goto bad;
4376 }
4377 } else {
4378 if (ic->sb->log2_interleave_sectors) {
4379 r = -EINVAL;
4380 ti->error = "Invalid interleave_sectors in the superblock";
4381 goto bad;
4382 }
4383 }
4384 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4385 r = -EINVAL;
4386 ti->error = "Journal mac mismatch";
4387 goto bad;
4388 }
4389
4390 get_provided_data_sectors(ic);
4391 if (!ic->provided_data_sectors) {
4392 r = -EINVAL;
4393 ti->error = "The device is too small";
4394 goto bad;
4395 }
4396
4397 try_smaller_buffer:
4398 r = calculate_device_limits(ic);
4399 if (r) {
4400 if (ic->meta_dev) {
4401 if (ic->log2_buffer_sectors > 3) {
4402 ic->log2_buffer_sectors--;
4403 goto try_smaller_buffer;
4404 }
4405 }
4406 ti->error = "The device is too small";
4407 goto bad;
4408 }
4409
4410 if (log2_sectors_per_bitmap_bit < 0)
4411 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4412 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4413 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4414
4415 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4416 if (bits_in_journal > UINT_MAX)
4417 bits_in_journal = UINT_MAX;
4418 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4419 log2_sectors_per_bitmap_bit++;
4420
4421 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4422 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4423 if (should_write_sb)
4424 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4425
4426 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4427 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4428 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4429
4430 if (!ic->meta_dev)
4431 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4432
4433 if (ti->len > ic->provided_data_sectors) {
4434 r = -EINVAL;
4435 ti->error = "Not enough provided sectors for requested mapping size";
4436 goto bad;
4437 }
4438
4439
4440 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4441 threshold += 50;
4442 do_div(threshold, 100);
4443 ic->free_sectors_threshold = threshold;
4444
4445 DEBUG_print("initialized:\n");
4446 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4447 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4448 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4449 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4450 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4451 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4452 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4453 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4454 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4455 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4456 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4457 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4458 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4459 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4460 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4461
4462 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4463 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4464 ic->sb->recalc_sector = cpu_to_le64(0);
4465 }
4466
4467 if (ic->internal_hash) {
4468 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4469 if (!ic->recalc_wq) {
4470 ti->error = "Cannot allocate workqueue";
4471 r = -ENOMEM;
4472 goto bad;
4473 }
4474 INIT_WORK(&ic->recalc_work, integrity_recalc);
4475 } else {
4476 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4477 ti->error = "Recalculate can only be specified with internal_hash";
4478 r = -EINVAL;
4479 goto bad;
4480 }
4481 }
4482
4483 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4484 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4485 dm_integrity_disable_recalculate(ic)) {
4486 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4487 r = -EOPNOTSUPP;
4488 goto bad;
4489 }
4490
4491 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4492 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4493 if (IS_ERR(ic->bufio)) {
4494 r = PTR_ERR(ic->bufio);
4495 ti->error = "Cannot initialize dm-bufio";
4496 ic->bufio = NULL;
4497 goto bad;
4498 }
4499 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4500
4501 if (ic->mode != 'R') {
4502 r = create_journal(ic, &ti->error);
4503 if (r)
4504 goto bad;
4505
4506 }
4507
4508 if (ic->mode == 'B') {
4509 unsigned int i;
4510 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4511
4512 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4513 if (!ic->recalc_bitmap) {
4514 r = -ENOMEM;
4515 goto bad;
4516 }
4517 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4518 if (!ic->may_write_bitmap) {
4519 r = -ENOMEM;
4520 goto bad;
4521 }
4522 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4523 if (!ic->bbs) {
4524 r = -ENOMEM;
4525 goto bad;
4526 }
4527 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4528 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4529 struct bitmap_block_status *bbs = &ic->bbs[i];
4530 unsigned int sector, pl_index, pl_offset;
4531
4532 INIT_WORK(&bbs->work, bitmap_block_work);
4533 bbs->ic = ic;
4534 bbs->idx = i;
4535 bio_list_init(&bbs->bio_queue);
4536 spin_lock_init(&bbs->bio_queue_lock);
4537
4538 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4539 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4540 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4541
4542 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4543 }
4544 }
4545
4546 if (should_write_sb) {
4547 init_journal(ic, 0, ic->journal_sections, 0);
4548 r = dm_integrity_failed(ic);
4549 if (unlikely(r)) {
4550 ti->error = "Error initializing journal";
4551 goto bad;
4552 }
4553 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4554 if (r) {
4555 ti->error = "Error initializing superblock";
4556 goto bad;
4557 }
4558 ic->just_formatted = true;
4559 }
4560
4561 if (!ic->meta_dev) {
4562 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4563 if (r)
4564 goto bad;
4565 }
4566 if (ic->mode == 'B') {
4567 unsigned int max_io_len;
4568
4569 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4570 if (!max_io_len)
4571 max_io_len = 1U << 31;
4572 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4573 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4574 r = dm_set_target_max_io_len(ti, max_io_len);
4575 if (r)
4576 goto bad;
4577 }
4578 }
4579
4580 if (!ic->internal_hash)
4581 dm_integrity_set(ti, ic);
4582
4583 ti->num_flush_bios = 1;
4584 ti->flush_supported = true;
4585 if (ic->discard)
4586 ti->num_discard_bios = 1;
4587
4588 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4589 return 0;
4590
4591 bad:
4592 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4593 dm_integrity_dtr(ti);
4594 return r;
4595 }
4596
dm_integrity_dtr(struct dm_target * ti)4597 static void dm_integrity_dtr(struct dm_target *ti)
4598 {
4599 struct dm_integrity_c *ic = ti->private;
4600
4601 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4602 BUG_ON(!list_empty(&ic->wait_list));
4603
4604 if (ic->mode == 'B')
4605 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4606 if (ic->metadata_wq)
4607 destroy_workqueue(ic->metadata_wq);
4608 if (ic->wait_wq)
4609 destroy_workqueue(ic->wait_wq);
4610 if (ic->offload_wq)
4611 destroy_workqueue(ic->offload_wq);
4612 if (ic->commit_wq)
4613 destroy_workqueue(ic->commit_wq);
4614 if (ic->writer_wq)
4615 destroy_workqueue(ic->writer_wq);
4616 if (ic->recalc_wq)
4617 destroy_workqueue(ic->recalc_wq);
4618 kvfree(ic->bbs);
4619 if (ic->bufio)
4620 dm_bufio_client_destroy(ic->bufio);
4621 mempool_exit(&ic->journal_io_mempool);
4622 if (ic->io)
4623 dm_io_client_destroy(ic->io);
4624 if (ic->dev)
4625 dm_put_device(ti, ic->dev);
4626 if (ic->meta_dev)
4627 dm_put_device(ti, ic->meta_dev);
4628 dm_integrity_free_page_list(ic->journal);
4629 dm_integrity_free_page_list(ic->journal_io);
4630 dm_integrity_free_page_list(ic->journal_xor);
4631 dm_integrity_free_page_list(ic->recalc_bitmap);
4632 dm_integrity_free_page_list(ic->may_write_bitmap);
4633 if (ic->journal_scatterlist)
4634 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4635 if (ic->journal_io_scatterlist)
4636 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4637 if (ic->sk_requests) {
4638 unsigned int i;
4639
4640 for (i = 0; i < ic->journal_sections; i++) {
4641 struct skcipher_request *req;
4642
4643 req = ic->sk_requests[i];
4644 if (req) {
4645 kfree_sensitive(req->iv);
4646 skcipher_request_free(req);
4647 }
4648 }
4649 kvfree(ic->sk_requests);
4650 }
4651 kvfree(ic->journal_tree);
4652 if (ic->sb)
4653 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4654
4655 if (ic->internal_hash)
4656 crypto_free_shash(ic->internal_hash);
4657 free_alg(&ic->internal_hash_alg);
4658
4659 if (ic->journal_crypt)
4660 crypto_free_skcipher(ic->journal_crypt);
4661 free_alg(&ic->journal_crypt_alg);
4662
4663 if (ic->journal_mac)
4664 crypto_free_shash(ic->journal_mac);
4665 free_alg(&ic->journal_mac_alg);
4666
4667 kfree(ic);
4668 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4669 }
4670
4671 static struct target_type integrity_target = {
4672 .name = "integrity",
4673 .version = {1, 10, 0},
4674 .module = THIS_MODULE,
4675 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4676 .ctr = dm_integrity_ctr,
4677 .dtr = dm_integrity_dtr,
4678 .map = dm_integrity_map,
4679 .postsuspend = dm_integrity_postsuspend,
4680 .resume = dm_integrity_resume,
4681 .status = dm_integrity_status,
4682 .iterate_devices = dm_integrity_iterate_devices,
4683 .io_hints = dm_integrity_io_hints,
4684 };
4685
dm_integrity_init(void)4686 static int __init dm_integrity_init(void)
4687 {
4688 int r;
4689
4690 journal_io_cache = kmem_cache_create("integrity_journal_io",
4691 sizeof(struct journal_io), 0, 0, NULL);
4692 if (!journal_io_cache) {
4693 DMERR("can't allocate journal io cache");
4694 return -ENOMEM;
4695 }
4696
4697 r = dm_register_target(&integrity_target);
4698 if (r < 0) {
4699 kmem_cache_destroy(journal_io_cache);
4700 return r;
4701 }
4702
4703 return 0;
4704 }
4705
dm_integrity_exit(void)4706 static void __exit dm_integrity_exit(void)
4707 {
4708 dm_unregister_target(&integrity_target);
4709 kmem_cache_destroy(journal_io_cache);
4710 }
4711
4712 module_init(dm_integrity_init);
4713 module_exit(dm_integrity_exit);
4714
4715 MODULE_AUTHOR("Milan Broz");
4716 MODULE_AUTHOR("Mikulas Patocka");
4717 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4718 MODULE_LICENSE("GPL");
4719