1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
4 *
5 * Copyright 2019 Dan Robertson <dan@dlrobertson.com>
6 *
7 * TODO:
8 * - Support for power management
9 * - Support events and interrupts
10 * - Create channel for step count
11 * - Create channel for sensor time
12 */
13
14 #include <linux/bitfield.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/slab.h>
23
24 #include <asm/unaligned.h>
25
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/sysfs.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
33
34 #include "bma400.h"
35
36 /*
37 * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
38 * be selected with the acc_range bits of the ACC_CONFIG1 register.
39 * NB: This buffer is populated in the device init.
40 */
41 static int bma400_scales[8];
42
43 /*
44 * See the ACC_CONFIG1 section of the datasheet.
45 * NB: This buffer is populated in the device init.
46 */
47 static int bma400_sample_freqs[14];
48
49 static const int bma400_osr_range[] = { 0, 1, 3 };
50
51 static int tap_reset_timeout[BMA400_TAP_TIM_LIST_LEN] = {
52 300000,
53 400000,
54 500000,
55 600000
56 };
57
58 static int tap_max2min_time[BMA400_TAP_TIM_LIST_LEN] = {
59 30000,
60 45000,
61 60000,
62 90000
63 };
64
65 static int double_tap2_min_delay[BMA400_TAP_TIM_LIST_LEN] = {
66 20000,
67 40000,
68 60000,
69 80000
70 };
71
72 /* See the ACC_CONFIG0 section of the datasheet */
73 enum bma400_power_mode {
74 POWER_MODE_SLEEP = 0x00,
75 POWER_MODE_LOW = 0x01,
76 POWER_MODE_NORMAL = 0x02,
77 POWER_MODE_INVALID = 0x03,
78 };
79
80 enum bma400_scan {
81 BMA400_ACCL_X,
82 BMA400_ACCL_Y,
83 BMA400_ACCL_Z,
84 BMA400_TEMP,
85 };
86
87 struct bma400_sample_freq {
88 int hz;
89 int uhz;
90 };
91
92 enum bma400_activity {
93 BMA400_STILL,
94 BMA400_WALKING,
95 BMA400_RUNNING,
96 };
97
98 struct bma400_data {
99 struct device *dev;
100 struct regmap *regmap;
101 struct mutex mutex; /* data register lock */
102 struct iio_mount_matrix orientation;
103 enum bma400_power_mode power_mode;
104 struct bma400_sample_freq sample_freq;
105 int oversampling_ratio;
106 int scale;
107 struct iio_trigger *trig;
108 int steps_enabled;
109 bool step_event_en;
110 bool activity_event_en;
111 unsigned int generic_event_en;
112 unsigned int tap_event_en_bitmask;
113 /* Correct time stamp alignment */
114 struct {
115 __le16 buff[3];
116 u8 temperature;
117 s64 ts __aligned(8);
118 } buffer __aligned(IIO_DMA_MINALIGN);
119 __le16 status;
120 __be16 duration;
121 };
122
bma400_is_writable_reg(struct device * dev,unsigned int reg)123 static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
124 {
125 switch (reg) {
126 case BMA400_CHIP_ID_REG:
127 case BMA400_ERR_REG:
128 case BMA400_STATUS_REG:
129 case BMA400_X_AXIS_LSB_REG:
130 case BMA400_X_AXIS_MSB_REG:
131 case BMA400_Y_AXIS_LSB_REG:
132 case BMA400_Y_AXIS_MSB_REG:
133 case BMA400_Z_AXIS_LSB_REG:
134 case BMA400_Z_AXIS_MSB_REG:
135 case BMA400_SENSOR_TIME0:
136 case BMA400_SENSOR_TIME1:
137 case BMA400_SENSOR_TIME2:
138 case BMA400_EVENT_REG:
139 case BMA400_INT_STAT0_REG:
140 case BMA400_INT_STAT1_REG:
141 case BMA400_INT_STAT2_REG:
142 case BMA400_TEMP_DATA_REG:
143 case BMA400_FIFO_LENGTH0_REG:
144 case BMA400_FIFO_LENGTH1_REG:
145 case BMA400_FIFO_DATA_REG:
146 case BMA400_STEP_CNT0_REG:
147 case BMA400_STEP_CNT1_REG:
148 case BMA400_STEP_CNT3_REG:
149 case BMA400_STEP_STAT_REG:
150 return false;
151 default:
152 return true;
153 }
154 }
155
bma400_is_volatile_reg(struct device * dev,unsigned int reg)156 static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
157 {
158 switch (reg) {
159 case BMA400_ERR_REG:
160 case BMA400_STATUS_REG:
161 case BMA400_X_AXIS_LSB_REG:
162 case BMA400_X_AXIS_MSB_REG:
163 case BMA400_Y_AXIS_LSB_REG:
164 case BMA400_Y_AXIS_MSB_REG:
165 case BMA400_Z_AXIS_LSB_REG:
166 case BMA400_Z_AXIS_MSB_REG:
167 case BMA400_SENSOR_TIME0:
168 case BMA400_SENSOR_TIME1:
169 case BMA400_SENSOR_TIME2:
170 case BMA400_EVENT_REG:
171 case BMA400_INT_STAT0_REG:
172 case BMA400_INT_STAT1_REG:
173 case BMA400_INT_STAT2_REG:
174 case BMA400_TEMP_DATA_REG:
175 case BMA400_FIFO_LENGTH0_REG:
176 case BMA400_FIFO_LENGTH1_REG:
177 case BMA400_FIFO_DATA_REG:
178 case BMA400_STEP_CNT0_REG:
179 case BMA400_STEP_CNT1_REG:
180 case BMA400_STEP_CNT3_REG:
181 case BMA400_STEP_STAT_REG:
182 return true;
183 default:
184 return false;
185 }
186 }
187
188 const struct regmap_config bma400_regmap_config = {
189 .reg_bits = 8,
190 .val_bits = 8,
191 .max_register = BMA400_CMD_REG,
192 .cache_type = REGCACHE_RBTREE,
193 .writeable_reg = bma400_is_writable_reg,
194 .volatile_reg = bma400_is_volatile_reg,
195 };
196 EXPORT_SYMBOL_NS(bma400_regmap_config, IIO_BMA400);
197
198 static const struct iio_mount_matrix *
bma400_accel_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)199 bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
200 const struct iio_chan_spec *chan)
201 {
202 struct bma400_data *data = iio_priv(indio_dev);
203
204 return &data->orientation;
205 }
206
207 static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
208 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
209 { }
210 };
211
212 static const struct iio_event_spec bma400_step_detect_event = {
213 .type = IIO_EV_TYPE_CHANGE,
214 .dir = IIO_EV_DIR_NONE,
215 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
216 };
217
218 static const struct iio_event_spec bma400_activity_event = {
219 .type = IIO_EV_TYPE_CHANGE,
220 .dir = IIO_EV_DIR_NONE,
221 .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE),
222 };
223
224 static const struct iio_event_spec bma400_accel_event[] = {
225 {
226 .type = IIO_EV_TYPE_MAG,
227 .dir = IIO_EV_DIR_FALLING,
228 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
229 BIT(IIO_EV_INFO_PERIOD) |
230 BIT(IIO_EV_INFO_HYSTERESIS) |
231 BIT(IIO_EV_INFO_ENABLE),
232 },
233 {
234 .type = IIO_EV_TYPE_MAG,
235 .dir = IIO_EV_DIR_RISING,
236 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
237 BIT(IIO_EV_INFO_PERIOD) |
238 BIT(IIO_EV_INFO_HYSTERESIS) |
239 BIT(IIO_EV_INFO_ENABLE),
240 },
241 {
242 .type = IIO_EV_TYPE_GESTURE,
243 .dir = IIO_EV_DIR_SINGLETAP,
244 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
245 BIT(IIO_EV_INFO_ENABLE) |
246 BIT(IIO_EV_INFO_RESET_TIMEOUT),
247 },
248 {
249 .type = IIO_EV_TYPE_GESTURE,
250 .dir = IIO_EV_DIR_DOUBLETAP,
251 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
252 BIT(IIO_EV_INFO_ENABLE) |
253 BIT(IIO_EV_INFO_RESET_TIMEOUT) |
254 BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
255 },
256 };
257
usec_to_tapreg_raw(int usec,const int * time_list)258 static int usec_to_tapreg_raw(int usec, const int *time_list)
259 {
260 int index;
261
262 for (index = 0; index < BMA400_TAP_TIM_LIST_LEN; index++) {
263 if (usec == time_list[index])
264 return index;
265 }
266 return -EINVAL;
267 }
268
in_accel_gesture_tap_maxtomin_time_show(struct device * dev,struct device_attribute * attr,char * buf)269 static ssize_t in_accel_gesture_tap_maxtomin_time_show(struct device *dev,
270 struct device_attribute *attr,
271 char *buf)
272 {
273 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
274 struct bma400_data *data = iio_priv(indio_dev);
275 int ret, reg_val, raw, vals[2];
276
277 ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1, ®_val);
278 if (ret)
279 return ret;
280
281 raw = FIELD_GET(BMA400_TAP_TICSTH_MSK, reg_val);
282 vals[0] = 0;
283 vals[1] = tap_max2min_time[raw];
284
285 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
286 }
287
in_accel_gesture_tap_maxtomin_time_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)288 static ssize_t in_accel_gesture_tap_maxtomin_time_store(struct device *dev,
289 struct device_attribute *attr,
290 const char *buf, size_t len)
291 {
292 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
293 struct bma400_data *data = iio_priv(indio_dev);
294 int ret, val_int, val_fract, raw;
295
296 ret = iio_str_to_fixpoint(buf, 100000, &val_int, &val_fract);
297 if (ret)
298 return ret;
299
300 raw = usec_to_tapreg_raw(val_fract, tap_max2min_time);
301 if (raw < 0)
302 return -EINVAL;
303
304 ret = regmap_update_bits(data->regmap, BMA400_TAP_CONFIG1,
305 BMA400_TAP_TICSTH_MSK,
306 FIELD_PREP(BMA400_TAP_TICSTH_MSK, raw));
307 if (ret)
308 return ret;
309
310 return len;
311 }
312
313 static IIO_DEVICE_ATTR_RW(in_accel_gesture_tap_maxtomin_time, 0);
314
315 /*
316 * Tap interrupts works with 200 Hz input data rate and the time based tap
317 * controls are in the terms of data samples so the below calculation is
318 * used to convert the configuration values into seconds.
319 * e.g.:
320 * 60 data samples * 0.005 ms = 0.3 seconds.
321 * 80 data samples * 0.005 ms = 0.4 seconds.
322 */
323
324 /* quiet configuration values in seconds */
325 static IIO_CONST_ATTR(in_accel_gesture_tap_reset_timeout_available,
326 "0.3 0.4 0.5 0.6");
327
328 /* tics_th configuration values in seconds */
329 static IIO_CONST_ATTR(in_accel_gesture_tap_maxtomin_time_available,
330 "0.03 0.045 0.06 0.09");
331
332 /* quiet_dt configuration values in seconds */
333 static IIO_CONST_ATTR(in_accel_gesture_doubletap_tap2_min_delay_available,
334 "0.02 0.04 0.06 0.08");
335
336 /* List of sensitivity values available to configure tap interrupts */
337 static IIO_CONST_ATTR(in_accel_gesture_tap_value_available, "0 1 2 3 4 5 6 7");
338
339 static struct attribute *bma400_event_attributes[] = {
340 &iio_const_attr_in_accel_gesture_tap_value_available.dev_attr.attr,
341 &iio_const_attr_in_accel_gesture_tap_reset_timeout_available.dev_attr.attr,
342 &iio_const_attr_in_accel_gesture_tap_maxtomin_time_available.dev_attr.attr,
343 &iio_const_attr_in_accel_gesture_doubletap_tap2_min_delay_available.dev_attr.attr,
344 &iio_dev_attr_in_accel_gesture_tap_maxtomin_time.dev_attr.attr,
345 NULL
346 };
347
348 static const struct attribute_group bma400_event_attribute_group = {
349 .attrs = bma400_event_attributes,
350 };
351
352 #define BMA400_ACC_CHANNEL(_index, _axis) { \
353 .type = IIO_ACCEL, \
354 .modified = 1, \
355 .channel2 = IIO_MOD_##_axis, \
356 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
357 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
358 BIT(IIO_CHAN_INFO_SCALE) | \
359 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
360 .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
361 BIT(IIO_CHAN_INFO_SCALE) | \
362 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
363 .ext_info = bma400_ext_info, \
364 .scan_index = _index, \
365 .scan_type = { \
366 .sign = 's', \
367 .realbits = 12, \
368 .storagebits = 16, \
369 .endianness = IIO_LE, \
370 }, \
371 .event_spec = bma400_accel_event, \
372 .num_event_specs = ARRAY_SIZE(bma400_accel_event) \
373 }
374
375 #define BMA400_ACTIVITY_CHANNEL(_chan2) { \
376 .type = IIO_ACTIVITY, \
377 .modified = 1, \
378 .channel2 = _chan2, \
379 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
380 .scan_index = -1, /* No buffer support */ \
381 .event_spec = &bma400_activity_event, \
382 .num_event_specs = 1, \
383 }
384
385 static const struct iio_chan_spec bma400_channels[] = {
386 BMA400_ACC_CHANNEL(0, X),
387 BMA400_ACC_CHANNEL(1, Y),
388 BMA400_ACC_CHANNEL(2, Z),
389 {
390 .type = IIO_TEMP,
391 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
392 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
393 .scan_index = 3,
394 .scan_type = {
395 .sign = 's',
396 .realbits = 8,
397 .storagebits = 8,
398 .endianness = IIO_LE,
399 },
400 },
401 {
402 .type = IIO_STEPS,
403 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
404 BIT(IIO_CHAN_INFO_ENABLE),
405 .scan_index = -1, /* No buffer support */
406 .event_spec = &bma400_step_detect_event,
407 .num_event_specs = 1,
408 },
409 BMA400_ACTIVITY_CHANNEL(IIO_MOD_STILL),
410 BMA400_ACTIVITY_CHANNEL(IIO_MOD_WALKING),
411 BMA400_ACTIVITY_CHANNEL(IIO_MOD_RUNNING),
412 IIO_CHAN_SOFT_TIMESTAMP(4),
413 };
414
bma400_get_temp_reg(struct bma400_data * data,int * val,int * val2)415 static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
416 {
417 unsigned int raw_temp;
418 int host_temp;
419 int ret;
420
421 if (data->power_mode == POWER_MODE_SLEEP)
422 return -EBUSY;
423
424 ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
425 if (ret)
426 return ret;
427
428 host_temp = sign_extend32(raw_temp, 7);
429 /*
430 * The formula for the TEMP_DATA register in the datasheet
431 * is: x * 0.5 + 23
432 */
433 *val = (host_temp >> 1) + 23;
434 *val2 = (host_temp & 0x1) * 500000;
435 return IIO_VAL_INT_PLUS_MICRO;
436 }
437
bma400_get_accel_reg(struct bma400_data * data,const struct iio_chan_spec * chan,int * val)438 static int bma400_get_accel_reg(struct bma400_data *data,
439 const struct iio_chan_spec *chan,
440 int *val)
441 {
442 __le16 raw_accel;
443 int lsb_reg;
444 int ret;
445
446 if (data->power_mode == POWER_MODE_SLEEP)
447 return -EBUSY;
448
449 switch (chan->channel2) {
450 case IIO_MOD_X:
451 lsb_reg = BMA400_X_AXIS_LSB_REG;
452 break;
453 case IIO_MOD_Y:
454 lsb_reg = BMA400_Y_AXIS_LSB_REG;
455 break;
456 case IIO_MOD_Z:
457 lsb_reg = BMA400_Z_AXIS_LSB_REG;
458 break;
459 default:
460 dev_err(data->dev, "invalid axis channel modifier\n");
461 return -EINVAL;
462 }
463
464 /* bulk read two registers, with the base being the LSB register */
465 ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
466 sizeof(raw_accel));
467 if (ret)
468 return ret;
469
470 *val = sign_extend32(le16_to_cpu(raw_accel), 11);
471 return IIO_VAL_INT;
472 }
473
bma400_output_data_rate_from_raw(int raw,unsigned int * val,unsigned int * val2)474 static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
475 unsigned int *val2)
476 {
477 *val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
478 if (raw > BMA400_ACC_ODR_MIN_RAW)
479 *val2 = 0;
480 else
481 *val2 = 500000;
482 }
483
bma400_get_accel_output_data_rate(struct bma400_data * data)484 static int bma400_get_accel_output_data_rate(struct bma400_data *data)
485 {
486 unsigned int val;
487 unsigned int odr;
488 int ret;
489
490 switch (data->power_mode) {
491 case POWER_MODE_LOW:
492 /*
493 * Runs at a fixed rate in low-power mode. See section 4.3
494 * in the datasheet.
495 */
496 bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
497 &data->sample_freq.hz,
498 &data->sample_freq.uhz);
499 return 0;
500 case POWER_MODE_NORMAL:
501 /*
502 * In normal mode the ODR can be found in the ACC_CONFIG1
503 * register.
504 */
505 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
506 if (ret)
507 goto error;
508
509 odr = val & BMA400_ACC_ODR_MASK;
510 if (odr < BMA400_ACC_ODR_MIN_RAW ||
511 odr > BMA400_ACC_ODR_MAX_RAW) {
512 ret = -EINVAL;
513 goto error;
514 }
515
516 bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
517 &data->sample_freq.uhz);
518 return 0;
519 case POWER_MODE_SLEEP:
520 data->sample_freq.hz = 0;
521 data->sample_freq.uhz = 0;
522 return 0;
523 default:
524 ret = 0;
525 goto error;
526 }
527 error:
528 data->sample_freq.hz = -1;
529 data->sample_freq.uhz = -1;
530 return ret;
531 }
532
bma400_set_accel_output_data_rate(struct bma400_data * data,int hz,int uhz)533 static int bma400_set_accel_output_data_rate(struct bma400_data *data,
534 int hz, int uhz)
535 {
536 unsigned int idx;
537 unsigned int odr;
538 unsigned int val;
539 int ret;
540
541 if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
542 if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
543 return -EINVAL;
544
545 /* Note this works because MIN_WHOLE_HZ is odd */
546 idx = __ffs(hz);
547
548 if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
549 return -EINVAL;
550
551 idx += BMA400_ACC_ODR_MIN_RAW + 1;
552 } else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
553 idx = BMA400_ACC_ODR_MIN_RAW;
554 } else {
555 return -EINVAL;
556 }
557
558 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
559 if (ret)
560 return ret;
561
562 /* preserve the range and normal mode osr */
563 odr = (~BMA400_ACC_ODR_MASK & val) | idx;
564
565 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
566 if (ret)
567 return ret;
568
569 bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
570 &data->sample_freq.uhz);
571 return 0;
572 }
573
bma400_get_accel_oversampling_ratio(struct bma400_data * data)574 static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
575 {
576 unsigned int val;
577 unsigned int osr;
578 int ret;
579
580 /*
581 * The oversampling ratio is stored in a different register
582 * based on the power-mode. In normal mode the OSR is stored
583 * in ACC_CONFIG1. In low-power mode it is stored in
584 * ACC_CONFIG0.
585 */
586 switch (data->power_mode) {
587 case POWER_MODE_LOW:
588 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
589 if (ret) {
590 data->oversampling_ratio = -1;
591 return ret;
592 }
593
594 osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
595
596 data->oversampling_ratio = osr;
597 return 0;
598 case POWER_MODE_NORMAL:
599 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
600 if (ret) {
601 data->oversampling_ratio = -1;
602 return ret;
603 }
604
605 osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
606
607 data->oversampling_ratio = osr;
608 return 0;
609 case POWER_MODE_SLEEP:
610 data->oversampling_ratio = 0;
611 return 0;
612 default:
613 data->oversampling_ratio = -1;
614 return -EINVAL;
615 }
616 }
617
bma400_set_accel_oversampling_ratio(struct bma400_data * data,int val)618 static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
619 int val)
620 {
621 unsigned int acc_config;
622 int ret;
623
624 if (val & ~BMA400_TWO_BITS_MASK)
625 return -EINVAL;
626
627 /*
628 * The oversampling ratio is stored in a different register
629 * based on the power-mode.
630 */
631 switch (data->power_mode) {
632 case POWER_MODE_LOW:
633 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
634 &acc_config);
635 if (ret)
636 return ret;
637
638 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
639 (acc_config & ~BMA400_LP_OSR_MASK) |
640 (val << BMA400_LP_OSR_SHIFT));
641 if (ret) {
642 dev_err(data->dev, "Failed to write out OSR\n");
643 return ret;
644 }
645
646 data->oversampling_ratio = val;
647 return 0;
648 case POWER_MODE_NORMAL:
649 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
650 &acc_config);
651 if (ret)
652 return ret;
653
654 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
655 (acc_config & ~BMA400_NP_OSR_MASK) |
656 (val << BMA400_NP_OSR_SHIFT));
657 if (ret) {
658 dev_err(data->dev, "Failed to write out OSR\n");
659 return ret;
660 }
661
662 data->oversampling_ratio = val;
663 return 0;
664 default:
665 return -EINVAL;
666 }
667 return ret;
668 }
669
bma400_accel_scale_to_raw(struct bma400_data * data,unsigned int val)670 static int bma400_accel_scale_to_raw(struct bma400_data *data,
671 unsigned int val)
672 {
673 int raw;
674
675 if (val == 0)
676 return -EINVAL;
677
678 /* Note this works because BMA400_SCALE_MIN is odd */
679 raw = __ffs(val);
680
681 if (val >> raw != BMA400_SCALE_MIN)
682 return -EINVAL;
683
684 return raw;
685 }
686
bma400_get_accel_scale(struct bma400_data * data)687 static int bma400_get_accel_scale(struct bma400_data *data)
688 {
689 unsigned int raw_scale;
690 unsigned int val;
691 int ret;
692
693 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
694 if (ret)
695 return ret;
696
697 raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
698 if (raw_scale > BMA400_TWO_BITS_MASK)
699 return -EINVAL;
700
701 data->scale = BMA400_SCALE_MIN << raw_scale;
702
703 return 0;
704 }
705
bma400_set_accel_scale(struct bma400_data * data,unsigned int val)706 static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
707 {
708 unsigned int acc_config;
709 int raw;
710 int ret;
711
712 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
713 if (ret)
714 return ret;
715
716 raw = bma400_accel_scale_to_raw(data, val);
717 if (raw < 0)
718 return raw;
719
720 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
721 (acc_config & ~BMA400_ACC_SCALE_MASK) |
722 (raw << BMA400_SCALE_SHIFT));
723 if (ret)
724 return ret;
725
726 data->scale = val;
727 return 0;
728 }
729
bma400_get_power_mode(struct bma400_data * data)730 static int bma400_get_power_mode(struct bma400_data *data)
731 {
732 unsigned int val;
733 int ret;
734
735 ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
736 if (ret) {
737 dev_err(data->dev, "Failed to read status register\n");
738 return ret;
739 }
740
741 data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
742 return 0;
743 }
744
bma400_set_power_mode(struct bma400_data * data,enum bma400_power_mode mode)745 static int bma400_set_power_mode(struct bma400_data *data,
746 enum bma400_power_mode mode)
747 {
748 unsigned int val;
749 int ret;
750
751 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
752 if (ret)
753 return ret;
754
755 if (data->power_mode == mode)
756 return 0;
757
758 if (mode == POWER_MODE_INVALID)
759 return -EINVAL;
760
761 /* Preserve the low-power oversample ratio etc */
762 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
763 mode | (val & ~BMA400_TWO_BITS_MASK));
764 if (ret) {
765 dev_err(data->dev, "Failed to write to power-mode\n");
766 return ret;
767 }
768
769 data->power_mode = mode;
770
771 /*
772 * Update our cached osr and odr based on the new
773 * power-mode.
774 */
775 bma400_get_accel_output_data_rate(data);
776 bma400_get_accel_oversampling_ratio(data);
777 return 0;
778 }
779
bma400_enable_steps(struct bma400_data * data,int val)780 static int bma400_enable_steps(struct bma400_data *data, int val)
781 {
782 int ret;
783
784 if (data->steps_enabled == val)
785 return 0;
786
787 ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG,
788 BMA400_STEP_INT_MSK,
789 FIELD_PREP(BMA400_STEP_INT_MSK, val ? 1 : 0));
790 if (ret)
791 return ret;
792 data->steps_enabled = val;
793 return ret;
794 }
795
bma400_get_steps_reg(struct bma400_data * data,int * val)796 static int bma400_get_steps_reg(struct bma400_data *data, int *val)
797 {
798 u8 *steps_raw;
799 int ret;
800
801 steps_raw = kmalloc(BMA400_STEP_RAW_LEN, GFP_KERNEL);
802 if (!steps_raw)
803 return -ENOMEM;
804
805 ret = regmap_bulk_read(data->regmap, BMA400_STEP_CNT0_REG,
806 steps_raw, BMA400_STEP_RAW_LEN);
807 if (ret) {
808 kfree(steps_raw);
809 return ret;
810 }
811 *val = get_unaligned_le24(steps_raw);
812 kfree(steps_raw);
813 return IIO_VAL_INT;
814 }
815
bma400_init_tables(void)816 static void bma400_init_tables(void)
817 {
818 int raw;
819 int i;
820
821 for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
822 raw = (i / 2) + 5;
823 bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
824 &bma400_sample_freqs[i + 1]);
825 }
826
827 for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
828 raw = i / 2;
829 bma400_scales[i] = 0;
830 bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
831 }
832 }
833
bma400_power_disable(void * data_ptr)834 static void bma400_power_disable(void *data_ptr)
835 {
836 struct bma400_data *data = data_ptr;
837 int ret;
838
839 mutex_lock(&data->mutex);
840 ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
841 mutex_unlock(&data->mutex);
842 if (ret)
843 dev_warn(data->dev, "Failed to put device into sleep mode (%pe)\n",
844 ERR_PTR(ret));
845 }
846
bma400_act_to_mod(enum bma400_activity activity)847 static enum iio_modifier bma400_act_to_mod(enum bma400_activity activity)
848 {
849 switch (activity) {
850 case BMA400_STILL:
851 return IIO_MOD_STILL;
852 case BMA400_WALKING:
853 return IIO_MOD_WALKING;
854 case BMA400_RUNNING:
855 return IIO_MOD_RUNNING;
856 default:
857 return IIO_NO_MOD;
858 }
859 }
860
bma400_init(struct bma400_data * data)861 static int bma400_init(struct bma400_data *data)
862 {
863 static const char * const regulator_names[] = { "vdd", "vddio" };
864 unsigned int val;
865 int ret;
866
867 ret = devm_regulator_bulk_get_enable(data->dev,
868 ARRAY_SIZE(regulator_names),
869 regulator_names);
870 if (ret)
871 return dev_err_probe(data->dev, ret, "Failed to get regulators\n");
872
873 /* Try to read chip_id register. It must return 0x90. */
874 ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
875 if (ret) {
876 dev_err(data->dev, "Failed to read chip id register\n");
877 return ret;
878 }
879
880 if (val != BMA400_ID_REG_VAL) {
881 dev_err(data->dev, "Chip ID mismatch\n");
882 return -ENODEV;
883 }
884
885 ret = bma400_get_power_mode(data);
886 if (ret) {
887 dev_err(data->dev, "Failed to get the initial power-mode\n");
888 return ret;
889 }
890
891 if (data->power_mode != POWER_MODE_NORMAL) {
892 ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
893 if (ret) {
894 dev_err(data->dev, "Failed to wake up the device\n");
895 return ret;
896 }
897 /*
898 * TODO: The datasheet waits 1500us here in the example, but
899 * lists 2/ODR as the wakeup time.
900 */
901 usleep_range(1500, 2000);
902 }
903
904 ret = devm_add_action_or_reset(data->dev, bma400_power_disable, data);
905 if (ret)
906 return ret;
907
908 bma400_init_tables();
909
910 ret = bma400_get_accel_output_data_rate(data);
911 if (ret)
912 return ret;
913
914 ret = bma400_get_accel_oversampling_ratio(data);
915 if (ret)
916 return ret;
917
918 ret = bma400_get_accel_scale(data);
919 if (ret)
920 return ret;
921
922 /* Configure INT1 pin to open drain */
923 ret = regmap_write(data->regmap, BMA400_INT_IO_CTRL_REG, 0x06);
924 if (ret)
925 return ret;
926 /*
927 * Once the interrupt engine is supported we might use the
928 * data_src_reg, but for now ensure this is set to the
929 * variable ODR filter selectable by the sample frequency
930 * channel.
931 */
932 return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
933 }
934
bma400_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)935 static int bma400_read_raw(struct iio_dev *indio_dev,
936 struct iio_chan_spec const *chan, int *val,
937 int *val2, long mask)
938 {
939 struct bma400_data *data = iio_priv(indio_dev);
940 unsigned int activity;
941 int ret;
942
943 switch (mask) {
944 case IIO_CHAN_INFO_PROCESSED:
945 switch (chan->type) {
946 case IIO_TEMP:
947 mutex_lock(&data->mutex);
948 ret = bma400_get_temp_reg(data, val, val2);
949 mutex_unlock(&data->mutex);
950 return ret;
951 case IIO_STEPS:
952 return bma400_get_steps_reg(data, val);
953 case IIO_ACTIVITY:
954 ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG,
955 &activity);
956 if (ret)
957 return ret;
958 /*
959 * The device does not support confidence value levels,
960 * so we will always have 100% for current activity and
961 * 0% for the others.
962 */
963 if (chan->channel2 == bma400_act_to_mod(activity))
964 *val = 100;
965 else
966 *val = 0;
967 return IIO_VAL_INT;
968 default:
969 return -EINVAL;
970 }
971 case IIO_CHAN_INFO_RAW:
972 mutex_lock(&data->mutex);
973 ret = bma400_get_accel_reg(data, chan, val);
974 mutex_unlock(&data->mutex);
975 return ret;
976 case IIO_CHAN_INFO_SAMP_FREQ:
977 switch (chan->type) {
978 case IIO_ACCEL:
979 if (data->sample_freq.hz < 0)
980 return -EINVAL;
981
982 *val = data->sample_freq.hz;
983 *val2 = data->sample_freq.uhz;
984 return IIO_VAL_INT_PLUS_MICRO;
985 case IIO_TEMP:
986 /*
987 * Runs at a fixed sampling frequency. See Section 4.4
988 * of the datasheet.
989 */
990 *val = 6;
991 *val2 = 250000;
992 return IIO_VAL_INT_PLUS_MICRO;
993 default:
994 return -EINVAL;
995 }
996 case IIO_CHAN_INFO_SCALE:
997 *val = 0;
998 *val2 = data->scale;
999 return IIO_VAL_INT_PLUS_MICRO;
1000 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1001 /*
1002 * TODO: We could avoid this logic and returning -EINVAL here if
1003 * we set both the low-power and normal mode OSR registers when
1004 * we configure the device.
1005 */
1006 if (data->oversampling_ratio < 0)
1007 return -EINVAL;
1008
1009 *val = data->oversampling_ratio;
1010 return IIO_VAL_INT;
1011 case IIO_CHAN_INFO_ENABLE:
1012 *val = data->steps_enabled;
1013 return IIO_VAL_INT;
1014 default:
1015 return -EINVAL;
1016 }
1017 }
1018
bma400_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)1019 static int bma400_read_avail(struct iio_dev *indio_dev,
1020 struct iio_chan_spec const *chan,
1021 const int **vals, int *type, int *length,
1022 long mask)
1023 {
1024 switch (mask) {
1025 case IIO_CHAN_INFO_SCALE:
1026 *type = IIO_VAL_INT_PLUS_MICRO;
1027 *vals = bma400_scales;
1028 *length = ARRAY_SIZE(bma400_scales);
1029 return IIO_AVAIL_LIST;
1030 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1031 *type = IIO_VAL_INT;
1032 *vals = bma400_osr_range;
1033 *length = ARRAY_SIZE(bma400_osr_range);
1034 return IIO_AVAIL_RANGE;
1035 case IIO_CHAN_INFO_SAMP_FREQ:
1036 *type = IIO_VAL_INT_PLUS_MICRO;
1037 *vals = bma400_sample_freqs;
1038 *length = ARRAY_SIZE(bma400_sample_freqs);
1039 return IIO_AVAIL_LIST;
1040 default:
1041 return -EINVAL;
1042 }
1043 }
1044
bma400_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1045 static int bma400_write_raw(struct iio_dev *indio_dev,
1046 struct iio_chan_spec const *chan, int val, int val2,
1047 long mask)
1048 {
1049 struct bma400_data *data = iio_priv(indio_dev);
1050 int ret;
1051
1052 switch (mask) {
1053 case IIO_CHAN_INFO_SAMP_FREQ:
1054 /*
1055 * The sample frequency is readonly for the temperature
1056 * register and a fixed value in low-power mode.
1057 */
1058 if (chan->type != IIO_ACCEL)
1059 return -EINVAL;
1060
1061 mutex_lock(&data->mutex);
1062 ret = bma400_set_accel_output_data_rate(data, val, val2);
1063 mutex_unlock(&data->mutex);
1064 return ret;
1065 case IIO_CHAN_INFO_SCALE:
1066 if (val != 0 ||
1067 val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
1068 return -EINVAL;
1069
1070 mutex_lock(&data->mutex);
1071 ret = bma400_set_accel_scale(data, val2);
1072 mutex_unlock(&data->mutex);
1073 return ret;
1074 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1075 mutex_lock(&data->mutex);
1076 ret = bma400_set_accel_oversampling_ratio(data, val);
1077 mutex_unlock(&data->mutex);
1078 return ret;
1079 case IIO_CHAN_INFO_ENABLE:
1080 mutex_lock(&data->mutex);
1081 ret = bma400_enable_steps(data, val);
1082 mutex_unlock(&data->mutex);
1083 return ret;
1084 default:
1085 return -EINVAL;
1086 }
1087 }
1088
bma400_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)1089 static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
1090 struct iio_chan_spec const *chan,
1091 long mask)
1092 {
1093 switch (mask) {
1094 case IIO_CHAN_INFO_SAMP_FREQ:
1095 return IIO_VAL_INT_PLUS_MICRO;
1096 case IIO_CHAN_INFO_SCALE:
1097 return IIO_VAL_INT_PLUS_MICRO;
1098 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1099 return IIO_VAL_INT;
1100 case IIO_CHAN_INFO_ENABLE:
1101 return IIO_VAL_INT;
1102 default:
1103 return -EINVAL;
1104 }
1105 }
1106
bma400_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1107 static int bma400_read_event_config(struct iio_dev *indio_dev,
1108 const struct iio_chan_spec *chan,
1109 enum iio_event_type type,
1110 enum iio_event_direction dir)
1111 {
1112 struct bma400_data *data = iio_priv(indio_dev);
1113
1114 switch (chan->type) {
1115 case IIO_ACCEL:
1116 switch (dir) {
1117 case IIO_EV_DIR_RISING:
1118 return FIELD_GET(BMA400_INT_GEN1_MSK,
1119 data->generic_event_en);
1120 case IIO_EV_DIR_FALLING:
1121 return FIELD_GET(BMA400_INT_GEN2_MSK,
1122 data->generic_event_en);
1123 case IIO_EV_DIR_SINGLETAP:
1124 return FIELD_GET(BMA400_S_TAP_MSK,
1125 data->tap_event_en_bitmask);
1126 case IIO_EV_DIR_DOUBLETAP:
1127 return FIELD_GET(BMA400_D_TAP_MSK,
1128 data->tap_event_en_bitmask);
1129 default:
1130 return -EINVAL;
1131 }
1132 case IIO_STEPS:
1133 return data->step_event_en;
1134 case IIO_ACTIVITY:
1135 return data->activity_event_en;
1136 default:
1137 return -EINVAL;
1138 }
1139 }
1140
bma400_steps_event_enable(struct bma400_data * data,int state)1141 static int bma400_steps_event_enable(struct bma400_data *data, int state)
1142 {
1143 int ret;
1144
1145 ret = bma400_enable_steps(data, 1);
1146 if (ret)
1147 return ret;
1148
1149 ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG,
1150 BMA400_STEP_INT_MSK,
1151 FIELD_PREP(BMA400_STEP_INT_MSK,
1152 state));
1153 if (ret)
1154 return ret;
1155 data->step_event_en = state;
1156 return 0;
1157 }
1158
bma400_activity_event_en(struct bma400_data * data,enum iio_event_direction dir,int state)1159 static int bma400_activity_event_en(struct bma400_data *data,
1160 enum iio_event_direction dir,
1161 int state)
1162 {
1163 int ret, reg, msk, value;
1164 int field_value = 0;
1165
1166 switch (dir) {
1167 case IIO_EV_DIR_RISING:
1168 reg = BMA400_GEN1INT_CONFIG0;
1169 msk = BMA400_INT_GEN1_MSK;
1170 value = 2;
1171 set_mask_bits(&field_value, BMA400_INT_GEN1_MSK,
1172 FIELD_PREP(BMA400_INT_GEN1_MSK, state));
1173 break;
1174 case IIO_EV_DIR_FALLING:
1175 reg = BMA400_GEN2INT_CONFIG0;
1176 msk = BMA400_INT_GEN2_MSK;
1177 value = 0;
1178 set_mask_bits(&field_value, BMA400_INT_GEN2_MSK,
1179 FIELD_PREP(BMA400_INT_GEN2_MSK, state));
1180 break;
1181 default:
1182 return -EINVAL;
1183 }
1184
1185 /* Enabling all axis for interrupt evaluation */
1186 ret = regmap_write(data->regmap, reg, 0xF8);
1187 if (ret)
1188 return ret;
1189
1190 /* OR combination of all axis for interrupt evaluation */
1191 ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG1_OFF, value);
1192 if (ret)
1193 return ret;
1194
1195 /* Initial value to avoid interrupts while enabling*/
1196 ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG2_OFF, 0x0A);
1197 if (ret)
1198 return ret;
1199
1200 /* Initial duration value to avoid interrupts while enabling*/
1201 ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG31_OFF, 0x0F);
1202 if (ret)
1203 return ret;
1204
1205 ret = regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG, msk,
1206 field_value);
1207 if (ret)
1208 return ret;
1209
1210 ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG, msk,
1211 field_value);
1212 if (ret)
1213 return ret;
1214
1215 set_mask_bits(&data->generic_event_en, msk, field_value);
1216 return 0;
1217 }
1218
bma400_tap_event_en(struct bma400_data * data,enum iio_event_direction dir,int state)1219 static int bma400_tap_event_en(struct bma400_data *data,
1220 enum iio_event_direction dir, int state)
1221 {
1222 unsigned int mask, field_value;
1223 int ret;
1224
1225 /*
1226 * Tap interrupts can be configured only in normal mode.
1227 * See table in section 4.3 "Power modes - performance modes" of
1228 * datasheet v1.2.
1229 */
1230 if (data->power_mode != POWER_MODE_NORMAL)
1231 return -EINVAL;
1232
1233 /*
1234 * Tap interrupts are operating with a data rate of 200Hz.
1235 * See section 4.7 "Tap sensing interrupt" in datasheet v1.2.
1236 */
1237 if (data->sample_freq.hz != 200 && state) {
1238 dev_err(data->dev, "Invalid data rate for tap interrupts.\n");
1239 return -EINVAL;
1240 }
1241
1242 ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG,
1243 BMA400_S_TAP_MSK,
1244 FIELD_PREP(BMA400_S_TAP_MSK, state));
1245 if (ret)
1246 return ret;
1247
1248 switch (dir) {
1249 case IIO_EV_DIR_SINGLETAP:
1250 mask = BMA400_S_TAP_MSK;
1251 set_mask_bits(&field_value, BMA400_S_TAP_MSK,
1252 FIELD_PREP(BMA400_S_TAP_MSK, state));
1253 break;
1254 case IIO_EV_DIR_DOUBLETAP:
1255 mask = BMA400_D_TAP_MSK;
1256 set_mask_bits(&field_value, BMA400_D_TAP_MSK,
1257 FIELD_PREP(BMA400_D_TAP_MSK, state));
1258 break;
1259 default:
1260 return -EINVAL;
1261 }
1262
1263 ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG, mask,
1264 field_value);
1265 if (ret)
1266 return ret;
1267
1268 set_mask_bits(&data->tap_event_en_bitmask, mask, field_value);
1269
1270 return 0;
1271 }
1272
bma400_disable_adv_interrupt(struct bma400_data * data)1273 static int bma400_disable_adv_interrupt(struct bma400_data *data)
1274 {
1275 int ret;
1276
1277 ret = regmap_write(data->regmap, BMA400_INT_CONFIG0_REG, 0);
1278 if (ret)
1279 return ret;
1280
1281 ret = regmap_write(data->regmap, BMA400_INT_CONFIG1_REG, 0);
1282 if (ret)
1283 return ret;
1284
1285 data->tap_event_en_bitmask = 0;
1286 data->generic_event_en = 0;
1287 data->step_event_en = false;
1288 data->activity_event_en = false;
1289
1290 return 0;
1291 }
1292
bma400_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)1293 static int bma400_write_event_config(struct iio_dev *indio_dev,
1294 const struct iio_chan_spec *chan,
1295 enum iio_event_type type,
1296 enum iio_event_direction dir, int state)
1297 {
1298 struct bma400_data *data = iio_priv(indio_dev);
1299 int ret;
1300
1301 switch (chan->type) {
1302 case IIO_ACCEL:
1303 switch (type) {
1304 case IIO_EV_TYPE_MAG:
1305 mutex_lock(&data->mutex);
1306 ret = bma400_activity_event_en(data, dir, state);
1307 mutex_unlock(&data->mutex);
1308 return ret;
1309 case IIO_EV_TYPE_GESTURE:
1310 mutex_lock(&data->mutex);
1311 ret = bma400_tap_event_en(data, dir, state);
1312 mutex_unlock(&data->mutex);
1313 return ret;
1314 default:
1315 return -EINVAL;
1316 }
1317 case IIO_STEPS:
1318 mutex_lock(&data->mutex);
1319 ret = bma400_steps_event_enable(data, state);
1320 mutex_unlock(&data->mutex);
1321 return ret;
1322 case IIO_ACTIVITY:
1323 mutex_lock(&data->mutex);
1324 if (!data->step_event_en) {
1325 ret = bma400_steps_event_enable(data, true);
1326 if (ret) {
1327 mutex_unlock(&data->mutex);
1328 return ret;
1329 }
1330 }
1331 data->activity_event_en = state;
1332 mutex_unlock(&data->mutex);
1333 return 0;
1334 default:
1335 return -EINVAL;
1336 }
1337 }
1338
get_gen_config_reg(enum iio_event_direction dir)1339 static int get_gen_config_reg(enum iio_event_direction dir)
1340 {
1341 switch (dir) {
1342 case IIO_EV_DIR_FALLING:
1343 return BMA400_GEN2INT_CONFIG0;
1344 case IIO_EV_DIR_RISING:
1345 return BMA400_GEN1INT_CONFIG0;
1346 default:
1347 return -EINVAL;
1348 }
1349 }
1350
bma400_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1351 static int bma400_read_event_value(struct iio_dev *indio_dev,
1352 const struct iio_chan_spec *chan,
1353 enum iio_event_type type,
1354 enum iio_event_direction dir,
1355 enum iio_event_info info,
1356 int *val, int *val2)
1357 {
1358 struct bma400_data *data = iio_priv(indio_dev);
1359 int ret, reg, reg_val, raw;
1360
1361 if (chan->type != IIO_ACCEL)
1362 return -EINVAL;
1363
1364 switch (type) {
1365 case IIO_EV_TYPE_MAG:
1366 reg = get_gen_config_reg(dir);
1367 if (reg < 0)
1368 return -EINVAL;
1369
1370 *val2 = 0;
1371 switch (info) {
1372 case IIO_EV_INFO_VALUE:
1373 ret = regmap_read(data->regmap,
1374 reg + BMA400_GEN_CONFIG2_OFF,
1375 val);
1376 if (ret)
1377 return ret;
1378 return IIO_VAL_INT;
1379 case IIO_EV_INFO_PERIOD:
1380 mutex_lock(&data->mutex);
1381 ret = regmap_bulk_read(data->regmap,
1382 reg + BMA400_GEN_CONFIG3_OFF,
1383 &data->duration,
1384 sizeof(data->duration));
1385 if (ret) {
1386 mutex_unlock(&data->mutex);
1387 return ret;
1388 }
1389 *val = be16_to_cpu(data->duration);
1390 mutex_unlock(&data->mutex);
1391 return IIO_VAL_INT;
1392 case IIO_EV_INFO_HYSTERESIS:
1393 ret = regmap_read(data->regmap, reg, val);
1394 if (ret)
1395 return ret;
1396 *val = FIELD_GET(BMA400_GEN_HYST_MSK, *val);
1397 return IIO_VAL_INT;
1398 default:
1399 return -EINVAL;
1400 }
1401 case IIO_EV_TYPE_GESTURE:
1402 switch (info) {
1403 case IIO_EV_INFO_VALUE:
1404 ret = regmap_read(data->regmap, BMA400_TAP_CONFIG,
1405 ®_val);
1406 if (ret)
1407 return ret;
1408
1409 *val = FIELD_GET(BMA400_TAP_SEN_MSK, reg_val);
1410 return IIO_VAL_INT;
1411 case IIO_EV_INFO_RESET_TIMEOUT:
1412 ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1,
1413 ®_val);
1414 if (ret)
1415 return ret;
1416
1417 raw = FIELD_GET(BMA400_TAP_QUIET_MSK, reg_val);
1418 *val = 0;
1419 *val2 = tap_reset_timeout[raw];
1420 return IIO_VAL_INT_PLUS_MICRO;
1421 case IIO_EV_INFO_TAP2_MIN_DELAY:
1422 ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1,
1423 ®_val);
1424 if (ret)
1425 return ret;
1426
1427 raw = FIELD_GET(BMA400_TAP_QUIETDT_MSK, reg_val);
1428 *val = 0;
1429 *val2 = double_tap2_min_delay[raw];
1430 return IIO_VAL_INT_PLUS_MICRO;
1431 default:
1432 return -EINVAL;
1433 }
1434 default:
1435 return -EINVAL;
1436 }
1437 }
1438
bma400_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1439 static int bma400_write_event_value(struct iio_dev *indio_dev,
1440 const struct iio_chan_spec *chan,
1441 enum iio_event_type type,
1442 enum iio_event_direction dir,
1443 enum iio_event_info info,
1444 int val, int val2)
1445 {
1446 struct bma400_data *data = iio_priv(indio_dev);
1447 int reg, ret, raw;
1448
1449 if (chan->type != IIO_ACCEL)
1450 return -EINVAL;
1451
1452 switch (type) {
1453 case IIO_EV_TYPE_MAG:
1454 reg = get_gen_config_reg(dir);
1455 if (reg < 0)
1456 return -EINVAL;
1457
1458 switch (info) {
1459 case IIO_EV_INFO_VALUE:
1460 if (val < 1 || val > 255)
1461 return -EINVAL;
1462
1463 return regmap_write(data->regmap,
1464 reg + BMA400_GEN_CONFIG2_OFF,
1465 val);
1466 case IIO_EV_INFO_PERIOD:
1467 if (val < 1 || val > 65535)
1468 return -EINVAL;
1469
1470 mutex_lock(&data->mutex);
1471 put_unaligned_be16(val, &data->duration);
1472 ret = regmap_bulk_write(data->regmap,
1473 reg + BMA400_GEN_CONFIG3_OFF,
1474 &data->duration,
1475 sizeof(data->duration));
1476 mutex_unlock(&data->mutex);
1477 return ret;
1478 case IIO_EV_INFO_HYSTERESIS:
1479 if (val < 0 || val > 3)
1480 return -EINVAL;
1481
1482 return regmap_update_bits(data->regmap, reg,
1483 BMA400_GEN_HYST_MSK,
1484 FIELD_PREP(BMA400_GEN_HYST_MSK,
1485 val));
1486 default:
1487 return -EINVAL;
1488 }
1489 case IIO_EV_TYPE_GESTURE:
1490 switch (info) {
1491 case IIO_EV_INFO_VALUE:
1492 if (val < 0 || val > 7)
1493 return -EINVAL;
1494
1495 return regmap_update_bits(data->regmap,
1496 BMA400_TAP_CONFIG,
1497 BMA400_TAP_SEN_MSK,
1498 FIELD_PREP(BMA400_TAP_SEN_MSK,
1499 val));
1500 case IIO_EV_INFO_RESET_TIMEOUT:
1501 raw = usec_to_tapreg_raw(val2, tap_reset_timeout);
1502 if (raw < 0)
1503 return -EINVAL;
1504
1505 return regmap_update_bits(data->regmap,
1506 BMA400_TAP_CONFIG1,
1507 BMA400_TAP_QUIET_MSK,
1508 FIELD_PREP(BMA400_TAP_QUIET_MSK,
1509 raw));
1510 case IIO_EV_INFO_TAP2_MIN_DELAY:
1511 raw = usec_to_tapreg_raw(val2, double_tap2_min_delay);
1512 if (raw < 0)
1513 return -EINVAL;
1514
1515 return regmap_update_bits(data->regmap,
1516 BMA400_TAP_CONFIG1,
1517 BMA400_TAP_QUIETDT_MSK,
1518 FIELD_PREP(BMA400_TAP_QUIETDT_MSK,
1519 raw));
1520 default:
1521 return -EINVAL;
1522 }
1523 default:
1524 return -EINVAL;
1525 }
1526 }
1527
bma400_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)1528 static int bma400_data_rdy_trigger_set_state(struct iio_trigger *trig,
1529 bool state)
1530 {
1531 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1532 struct bma400_data *data = iio_priv(indio_dev);
1533 int ret;
1534
1535 ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG,
1536 BMA400_INT_DRDY_MSK,
1537 FIELD_PREP(BMA400_INT_DRDY_MSK, state));
1538 if (ret)
1539 return ret;
1540
1541 return regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG,
1542 BMA400_INT_DRDY_MSK,
1543 FIELD_PREP(BMA400_INT_DRDY_MSK, state));
1544 }
1545
1546 static const unsigned long bma400_avail_scan_masks[] = {
1547 BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z),
1548 BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z)
1549 | BIT(BMA400_TEMP),
1550 0
1551 };
1552
1553 static const struct iio_info bma400_info = {
1554 .read_raw = bma400_read_raw,
1555 .read_avail = bma400_read_avail,
1556 .write_raw = bma400_write_raw,
1557 .write_raw_get_fmt = bma400_write_raw_get_fmt,
1558 .read_event_config = bma400_read_event_config,
1559 .write_event_config = bma400_write_event_config,
1560 .write_event_value = bma400_write_event_value,
1561 .read_event_value = bma400_read_event_value,
1562 .event_attrs = &bma400_event_attribute_group,
1563 };
1564
1565 static const struct iio_trigger_ops bma400_trigger_ops = {
1566 .set_trigger_state = &bma400_data_rdy_trigger_set_state,
1567 .validate_device = &iio_trigger_validate_own_device,
1568 };
1569
bma400_trigger_handler(int irq,void * p)1570 static irqreturn_t bma400_trigger_handler(int irq, void *p)
1571 {
1572 struct iio_poll_func *pf = p;
1573 struct iio_dev *indio_dev = pf->indio_dev;
1574 struct bma400_data *data = iio_priv(indio_dev);
1575 int ret, temp;
1576
1577 /* Lock to protect the data->buffer */
1578 mutex_lock(&data->mutex);
1579
1580 /* bulk read six registers, with the base being the LSB register */
1581 ret = regmap_bulk_read(data->regmap, BMA400_X_AXIS_LSB_REG,
1582 &data->buffer.buff, sizeof(data->buffer.buff));
1583 if (ret)
1584 goto unlock_err;
1585
1586 if (test_bit(BMA400_TEMP, indio_dev->active_scan_mask)) {
1587 ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &temp);
1588 if (ret)
1589 goto unlock_err;
1590
1591 data->buffer.temperature = temp;
1592 }
1593
1594 iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
1595 iio_get_time_ns(indio_dev));
1596
1597 mutex_unlock(&data->mutex);
1598 iio_trigger_notify_done(indio_dev->trig);
1599 return IRQ_HANDLED;
1600
1601 unlock_err:
1602 mutex_unlock(&data->mutex);
1603 return IRQ_NONE;
1604 }
1605
bma400_interrupt(int irq,void * private)1606 static irqreturn_t bma400_interrupt(int irq, void *private)
1607 {
1608 struct iio_dev *indio_dev = private;
1609 struct bma400_data *data = iio_priv(indio_dev);
1610 s64 timestamp = iio_get_time_ns(indio_dev);
1611 unsigned int act, ev_dir = IIO_EV_DIR_NONE;
1612 int ret;
1613
1614 /* Lock to protect the data->status */
1615 mutex_lock(&data->mutex);
1616 ret = regmap_bulk_read(data->regmap, BMA400_INT_STAT0_REG,
1617 &data->status,
1618 sizeof(data->status));
1619 /*
1620 * if none of the bit is set in the status register then it is
1621 * spurious interrupt.
1622 */
1623 if (ret || !data->status)
1624 goto unlock_err;
1625
1626 /*
1627 * Disable all advance interrupts if interrupt engine overrun occurs.
1628 * See section 4.7 "Interrupt engine overrun" in datasheet v1.2.
1629 */
1630 if (FIELD_GET(BMA400_INT_ENG_OVRUN_MSK, le16_to_cpu(data->status))) {
1631 bma400_disable_adv_interrupt(data);
1632 dev_err(data->dev, "Interrupt engine overrun\n");
1633 goto unlock_err;
1634 }
1635
1636 if (FIELD_GET(BMA400_INT_S_TAP_MSK, le16_to_cpu(data->status)))
1637 iio_push_event(indio_dev,
1638 IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1639 IIO_MOD_X_OR_Y_OR_Z,
1640 IIO_EV_TYPE_GESTURE,
1641 IIO_EV_DIR_SINGLETAP),
1642 timestamp);
1643
1644 if (FIELD_GET(BMA400_INT_D_TAP_MSK, le16_to_cpu(data->status)))
1645 iio_push_event(indio_dev,
1646 IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1647 IIO_MOD_X_OR_Y_OR_Z,
1648 IIO_EV_TYPE_GESTURE,
1649 IIO_EV_DIR_DOUBLETAP),
1650 timestamp);
1651
1652 if (FIELD_GET(BMA400_INT_GEN1_MSK, le16_to_cpu(data->status)))
1653 ev_dir = IIO_EV_DIR_RISING;
1654
1655 if (FIELD_GET(BMA400_INT_GEN2_MSK, le16_to_cpu(data->status)))
1656 ev_dir = IIO_EV_DIR_FALLING;
1657
1658 if (ev_dir != IIO_EV_DIR_NONE) {
1659 iio_push_event(indio_dev,
1660 IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1661 IIO_MOD_X_OR_Y_OR_Z,
1662 IIO_EV_TYPE_MAG, ev_dir),
1663 timestamp);
1664 }
1665
1666 if (FIELD_GET(BMA400_STEP_STAT_MASK, le16_to_cpu(data->status))) {
1667 iio_push_event(indio_dev,
1668 IIO_MOD_EVENT_CODE(IIO_STEPS, 0, IIO_NO_MOD,
1669 IIO_EV_TYPE_CHANGE,
1670 IIO_EV_DIR_NONE),
1671 timestamp);
1672
1673 if (data->activity_event_en) {
1674 ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG,
1675 &act);
1676 if (ret)
1677 goto unlock_err;
1678
1679 iio_push_event(indio_dev,
1680 IIO_MOD_EVENT_CODE(IIO_ACTIVITY, 0,
1681 bma400_act_to_mod(act),
1682 IIO_EV_TYPE_CHANGE,
1683 IIO_EV_DIR_NONE),
1684 timestamp);
1685 }
1686 }
1687
1688 if (FIELD_GET(BMA400_INT_DRDY_MSK, le16_to_cpu(data->status))) {
1689 mutex_unlock(&data->mutex);
1690 iio_trigger_poll_nested(data->trig);
1691 return IRQ_HANDLED;
1692 }
1693
1694 mutex_unlock(&data->mutex);
1695 return IRQ_HANDLED;
1696
1697 unlock_err:
1698 mutex_unlock(&data->mutex);
1699 return IRQ_NONE;
1700 }
1701
bma400_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)1702 int bma400_probe(struct device *dev, struct regmap *regmap, int irq,
1703 const char *name)
1704 {
1705 struct iio_dev *indio_dev;
1706 struct bma400_data *data;
1707 int ret;
1708
1709 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1710 if (!indio_dev)
1711 return -ENOMEM;
1712
1713 data = iio_priv(indio_dev);
1714 data->regmap = regmap;
1715 data->dev = dev;
1716
1717 ret = bma400_init(data);
1718 if (ret)
1719 return ret;
1720
1721 ret = iio_read_mount_matrix(dev, &data->orientation);
1722 if (ret)
1723 return ret;
1724
1725 mutex_init(&data->mutex);
1726 indio_dev->name = name;
1727 indio_dev->info = &bma400_info;
1728 indio_dev->channels = bma400_channels;
1729 indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
1730 indio_dev->available_scan_masks = bma400_avail_scan_masks;
1731 indio_dev->modes = INDIO_DIRECT_MODE;
1732
1733 if (irq > 0) {
1734 data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
1735 indio_dev->name,
1736 iio_device_id(indio_dev));
1737 if (!data->trig)
1738 return -ENOMEM;
1739
1740 data->trig->ops = &bma400_trigger_ops;
1741 iio_trigger_set_drvdata(data->trig, indio_dev);
1742
1743 ret = devm_iio_trigger_register(data->dev, data->trig);
1744 if (ret)
1745 return dev_err_probe(data->dev, ret,
1746 "iio trigger register fail\n");
1747
1748 indio_dev->trig = iio_trigger_get(data->trig);
1749 ret = devm_request_threaded_irq(dev, irq, NULL,
1750 &bma400_interrupt,
1751 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
1752 indio_dev->name, indio_dev);
1753 if (ret)
1754 return dev_err_probe(data->dev, ret,
1755 "request irq %d failed\n", irq);
1756 }
1757
1758 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
1759 &bma400_trigger_handler, NULL);
1760 if (ret)
1761 return dev_err_probe(data->dev, ret,
1762 "iio triggered buffer setup failed\n");
1763
1764 return devm_iio_device_register(dev, indio_dev);
1765 }
1766 EXPORT_SYMBOL_NS(bma400_probe, IIO_BMA400);
1767
1768 MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
1769 MODULE_AUTHOR("Jagath Jog J <jagathjog1996@gmail.com>");
1770 MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
1771 MODULE_LICENSE("GPL");
1772