1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201 return 0;
202 }
203
204 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 unsigned long offset, unsigned long npages,
207 unsigned long *hmm_pfns)
208 {
209 struct kfd_process *p;
210 uint32_t gpuidx;
211 int r;
212
213 p = container_of(prange->svms, struct kfd_process, svms);
214
215 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 struct kfd_process_device *pdd;
217
218 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 if (!pdd) {
221 pr_debug("failed to find device idx %d\n", gpuidx);
222 return -EINVAL;
223 }
224
225 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 hmm_pfns, gpuidx);
227 if (r)
228 break;
229 }
230
231 return r;
232 }
233
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
235 unsigned long offset, unsigned long npages)
236 {
237 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 int i;
239
240 if (!dma_addr)
241 return;
242
243 for (i = offset; i < offset + npages; i++) {
244 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 continue;
246 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 dma_addr[i] = 0;
249 }
250 }
251
svm_range_free_dma_mappings(struct svm_range * prange,bool unmap_dma)252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma)
253 {
254 struct kfd_process_device *pdd;
255 dma_addr_t *dma_addr;
256 struct device *dev;
257 struct kfd_process *p;
258 uint32_t gpuidx;
259
260 p = container_of(prange->svms, struct kfd_process, svms);
261
262 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 dma_addr = prange->dma_addr[gpuidx];
264 if (!dma_addr)
265 continue;
266
267 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 if (!pdd) {
269 pr_debug("failed to find device idx %d\n", gpuidx);
270 continue;
271 }
272 dev = &pdd->dev->adev->pdev->dev;
273 if (unmap_dma)
274 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
275 kvfree(dma_addr);
276 prange->dma_addr[gpuidx] = NULL;
277 }
278 }
279
svm_range_free(struct svm_range * prange,bool do_unmap)280 static void svm_range_free(struct svm_range *prange, bool do_unmap)
281 {
282 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 svm_range_free_dma_mappings(prange, do_unmap);
290
291 if (do_unmap && !p->xnack_enabled) {
292 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 }
296 mutex_destroy(&prange->lock);
297 mutex_destroy(&prange->migrate_mutex);
298 kfree(prange);
299 }
300
301 static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
303 uint8_t *granularity, uint32_t *flags)
304 {
305 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
306 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
307 *granularity = 9;
308 *flags =
309 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
310 }
311
312 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
314 uint64_t last, bool update_mem_usage)
315 {
316 uint64_t size = last - start + 1;
317 struct svm_range *prange;
318 struct kfd_process *p;
319
320 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
321 if (!prange)
322 return NULL;
323
324 p = container_of(svms, struct kfd_process, svms);
325 if (!p->xnack_enabled && update_mem_usage &&
326 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
327 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
328 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
329 kfree(prange);
330 return NULL;
331 }
332 prange->npages = size;
333 prange->svms = svms;
334 prange->start = start;
335 prange->last = last;
336 INIT_LIST_HEAD(&prange->list);
337 INIT_LIST_HEAD(&prange->update_list);
338 INIT_LIST_HEAD(&prange->svm_bo_list);
339 INIT_LIST_HEAD(&prange->deferred_list);
340 INIT_LIST_HEAD(&prange->child_list);
341 atomic_set(&prange->invalid, 0);
342 prange->validate_timestamp = 0;
343 mutex_init(&prange->migrate_mutex);
344 mutex_init(&prange->lock);
345
346 if (p->xnack_enabled)
347 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
348 MAX_GPU_INSTANCE);
349
350 svm_range_set_default_attributes(&prange->preferred_loc,
351 &prange->prefetch_loc,
352 &prange->granularity, &prange->flags);
353
354 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
355
356 return prange;
357 }
358
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
360 {
361 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
362 return false;
363
364 return true;
365 }
366
svm_range_bo_release(struct kref * kref)367 static void svm_range_bo_release(struct kref *kref)
368 {
369 struct svm_range_bo *svm_bo;
370
371 svm_bo = container_of(kref, struct svm_range_bo, kref);
372 pr_debug("svm_bo 0x%p\n", svm_bo);
373
374 spin_lock(&svm_bo->list_lock);
375 while (!list_empty(&svm_bo->range_list)) {
376 struct svm_range *prange =
377 list_first_entry(&svm_bo->range_list,
378 struct svm_range, svm_bo_list);
379 /* list_del_init tells a concurrent svm_range_vram_node_new when
380 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
381 */
382 list_del_init(&prange->svm_bo_list);
383 spin_unlock(&svm_bo->list_lock);
384
385 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
386 prange->start, prange->last);
387 mutex_lock(&prange->lock);
388 prange->svm_bo = NULL;
389 mutex_unlock(&prange->lock);
390
391 spin_lock(&svm_bo->list_lock);
392 }
393 spin_unlock(&svm_bo->list_lock);
394 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
395 /* We're not in the eviction worker.
396 * Signal the fence and synchronize with any
397 * pending eviction work.
398 */
399 dma_fence_signal(&svm_bo->eviction_fence->base);
400 cancel_work_sync(&svm_bo->eviction_work);
401 }
402 dma_fence_put(&svm_bo->eviction_fence->base);
403 amdgpu_bo_unref(&svm_bo->bo);
404 kfree(svm_bo);
405 }
406
svm_range_bo_wq_release(struct work_struct * work)407 static void svm_range_bo_wq_release(struct work_struct *work)
408 {
409 struct svm_range_bo *svm_bo;
410
411 svm_bo = container_of(work, struct svm_range_bo, release_work);
412 svm_range_bo_release(&svm_bo->kref);
413 }
414
svm_range_bo_release_async(struct kref * kref)415 static void svm_range_bo_release_async(struct kref *kref)
416 {
417 struct svm_range_bo *svm_bo;
418
419 svm_bo = container_of(kref, struct svm_range_bo, kref);
420 pr_debug("svm_bo 0x%p\n", svm_bo);
421 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
422 schedule_work(&svm_bo->release_work);
423 }
424
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)425 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
426 {
427 kref_put(&svm_bo->kref, svm_range_bo_release_async);
428 }
429
svm_range_bo_unref(struct svm_range_bo * svm_bo)430 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
431 {
432 if (svm_bo)
433 kref_put(&svm_bo->kref, svm_range_bo_release);
434 }
435
436 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)437 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
438 {
439 mutex_lock(&prange->lock);
440 if (!prange->svm_bo) {
441 mutex_unlock(&prange->lock);
442 return false;
443 }
444 if (prange->ttm_res) {
445 /* We still have a reference, all is well */
446 mutex_unlock(&prange->lock);
447 return true;
448 }
449 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
450 /*
451 * Migrate from GPU to GPU, remove range from source svm_bo->node
452 * range list, and return false to allocate svm_bo from destination
453 * node.
454 */
455 if (prange->svm_bo->node != node) {
456 mutex_unlock(&prange->lock);
457
458 spin_lock(&prange->svm_bo->list_lock);
459 list_del_init(&prange->svm_bo_list);
460 spin_unlock(&prange->svm_bo->list_lock);
461
462 svm_range_bo_unref(prange->svm_bo);
463 return false;
464 }
465 if (READ_ONCE(prange->svm_bo->evicting)) {
466 struct dma_fence *f;
467 struct svm_range_bo *svm_bo;
468 /* The BO is getting evicted,
469 * we need to get a new one
470 */
471 mutex_unlock(&prange->lock);
472 svm_bo = prange->svm_bo;
473 f = dma_fence_get(&svm_bo->eviction_fence->base);
474 svm_range_bo_unref(prange->svm_bo);
475 /* wait for the fence to avoid long spin-loop
476 * at list_empty_careful
477 */
478 dma_fence_wait(f, false);
479 dma_fence_put(f);
480 } else {
481 /* The BO was still around and we got
482 * a new reference to it
483 */
484 mutex_unlock(&prange->lock);
485 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
486 prange->svms, prange->start, prange->last);
487
488 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
489 return true;
490 }
491
492 } else {
493 mutex_unlock(&prange->lock);
494 }
495
496 /* We need a new svm_bo. Spin-loop to wait for concurrent
497 * svm_range_bo_release to finish removing this range from
498 * its range list. After this, it is safe to reuse the
499 * svm_bo pointer and svm_bo_list head.
500 */
501 while (!list_empty_careful(&prange->svm_bo_list))
502 ;
503
504 return false;
505 }
506
svm_range_bo_new(void)507 static struct svm_range_bo *svm_range_bo_new(void)
508 {
509 struct svm_range_bo *svm_bo;
510
511 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
512 if (!svm_bo)
513 return NULL;
514
515 kref_init(&svm_bo->kref);
516 INIT_LIST_HEAD(&svm_bo->range_list);
517 spin_lock_init(&svm_bo->list_lock);
518
519 return svm_bo;
520 }
521
522 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)523 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
524 bool clear)
525 {
526 struct amdgpu_bo_param bp;
527 struct svm_range_bo *svm_bo;
528 struct amdgpu_bo_user *ubo;
529 struct amdgpu_bo *bo;
530 struct kfd_process *p;
531 struct mm_struct *mm;
532 int r;
533
534 p = container_of(prange->svms, struct kfd_process, svms);
535 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
536 prange->start, prange->last);
537
538 if (svm_range_validate_svm_bo(node, prange))
539 return 0;
540
541 svm_bo = svm_range_bo_new();
542 if (!svm_bo) {
543 pr_debug("failed to alloc svm bo\n");
544 return -ENOMEM;
545 }
546 mm = get_task_mm(p->lead_thread);
547 if (!mm) {
548 pr_debug("failed to get mm\n");
549 kfree(svm_bo);
550 return -ESRCH;
551 }
552 svm_bo->node = node;
553 svm_bo->eviction_fence =
554 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
555 mm,
556 svm_bo);
557 mmput(mm);
558 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
559 svm_bo->evicting = 0;
560 memset(&bp, 0, sizeof(bp));
561 bp.size = prange->npages * PAGE_SIZE;
562 bp.byte_align = PAGE_SIZE;
563 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
564 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
565 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
566 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
567 bp.type = ttm_bo_type_device;
568 bp.resv = NULL;
569 if (node->xcp)
570 bp.xcp_id_plus1 = node->xcp->id + 1;
571
572 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
573 if (r) {
574 pr_debug("failed %d to create bo\n", r);
575 goto create_bo_failed;
576 }
577 bo = &ubo->bo;
578
579 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
580 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
581 bp.xcp_id_plus1 - 1);
582
583 r = amdgpu_bo_reserve(bo, true);
584 if (r) {
585 pr_debug("failed %d to reserve bo\n", r);
586 goto reserve_bo_failed;
587 }
588
589 if (clear) {
590 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
591 if (r) {
592 pr_debug("failed %d to sync bo\n", r);
593 amdgpu_bo_unreserve(bo);
594 goto reserve_bo_failed;
595 }
596 }
597
598 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
599 if (r) {
600 pr_debug("failed %d to reserve bo\n", r);
601 amdgpu_bo_unreserve(bo);
602 goto reserve_bo_failed;
603 }
604 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
605
606 amdgpu_bo_unreserve(bo);
607
608 svm_bo->bo = bo;
609 prange->svm_bo = svm_bo;
610 prange->ttm_res = bo->tbo.resource;
611 prange->offset = 0;
612
613 spin_lock(&svm_bo->list_lock);
614 list_add(&prange->svm_bo_list, &svm_bo->range_list);
615 spin_unlock(&svm_bo->list_lock);
616
617 return 0;
618
619 reserve_bo_failed:
620 amdgpu_bo_unref(&bo);
621 create_bo_failed:
622 dma_fence_put(&svm_bo->eviction_fence->base);
623 kfree(svm_bo);
624 prange->ttm_res = NULL;
625
626 return r;
627 }
628
svm_range_vram_node_free(struct svm_range * prange)629 void svm_range_vram_node_free(struct svm_range *prange)
630 {
631 svm_range_bo_unref(prange->svm_bo);
632 prange->ttm_res = NULL;
633 }
634
635 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)636 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
637 {
638 struct kfd_process *p;
639 struct kfd_process_device *pdd;
640
641 p = container_of(prange->svms, struct kfd_process, svms);
642 pdd = kfd_process_device_data_by_id(p, gpu_id);
643 if (!pdd) {
644 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
645 return NULL;
646 }
647
648 return pdd->dev;
649 }
650
651 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)652 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
653 {
654 struct kfd_process *p;
655
656 p = container_of(prange->svms, struct kfd_process, svms);
657
658 return kfd_get_process_device_data(node, p);
659 }
660
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)661 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
662 {
663 struct ttm_operation_ctx ctx = { false, false };
664
665 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
666
667 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
668 }
669
670 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)671 svm_range_check_attr(struct kfd_process *p,
672 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
673 {
674 uint32_t i;
675
676 for (i = 0; i < nattr; i++) {
677 uint32_t val = attrs[i].value;
678 int gpuidx = MAX_GPU_INSTANCE;
679
680 switch (attrs[i].type) {
681 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
682 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
683 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
684 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
685 break;
686 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
687 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
688 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
689 break;
690 case KFD_IOCTL_SVM_ATTR_ACCESS:
691 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
692 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
693 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
694 break;
695 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
696 break;
697 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
698 break;
699 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
700 break;
701 default:
702 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
703 return -EINVAL;
704 }
705
706 if (gpuidx < 0) {
707 pr_debug("no GPU 0x%x found\n", val);
708 return -EINVAL;
709 } else if (gpuidx < MAX_GPU_INSTANCE &&
710 !test_bit(gpuidx, p->svms.bitmap_supported)) {
711 pr_debug("GPU 0x%x not supported\n", val);
712 return -EINVAL;
713 }
714 }
715
716 return 0;
717 }
718
719 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)720 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
721 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
722 bool *update_mapping)
723 {
724 uint32_t i;
725 int gpuidx;
726
727 for (i = 0; i < nattr; i++) {
728 switch (attrs[i].type) {
729 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
730 prange->preferred_loc = attrs[i].value;
731 break;
732 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
733 prange->prefetch_loc = attrs[i].value;
734 break;
735 case KFD_IOCTL_SVM_ATTR_ACCESS:
736 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
737 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
738 if (!p->xnack_enabled)
739 *update_mapping = true;
740
741 gpuidx = kfd_process_gpuidx_from_gpuid(p,
742 attrs[i].value);
743 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
744 bitmap_clear(prange->bitmap_access, gpuidx, 1);
745 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
746 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
747 bitmap_set(prange->bitmap_access, gpuidx, 1);
748 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
749 } else {
750 bitmap_clear(prange->bitmap_access, gpuidx, 1);
751 bitmap_set(prange->bitmap_aip, gpuidx, 1);
752 }
753 break;
754 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
755 *update_mapping = true;
756 prange->flags |= attrs[i].value;
757 break;
758 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
759 *update_mapping = true;
760 prange->flags &= ~attrs[i].value;
761 break;
762 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
763 prange->granularity = attrs[i].value;
764 break;
765 default:
766 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
767 }
768 }
769 }
770
771 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)772 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
773 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
774 {
775 uint32_t i;
776 int gpuidx;
777
778 for (i = 0; i < nattr; i++) {
779 switch (attrs[i].type) {
780 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
781 if (prange->preferred_loc != attrs[i].value)
782 return false;
783 break;
784 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
785 /* Prefetch should always trigger a migration even
786 * if the value of the attribute didn't change.
787 */
788 return false;
789 case KFD_IOCTL_SVM_ATTR_ACCESS:
790 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
791 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
792 gpuidx = kfd_process_gpuidx_from_gpuid(p,
793 attrs[i].value);
794 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
795 if (test_bit(gpuidx, prange->bitmap_access) ||
796 test_bit(gpuidx, prange->bitmap_aip))
797 return false;
798 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
799 if (!test_bit(gpuidx, prange->bitmap_access))
800 return false;
801 } else {
802 if (!test_bit(gpuidx, prange->bitmap_aip))
803 return false;
804 }
805 break;
806 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
807 if ((prange->flags & attrs[i].value) != attrs[i].value)
808 return false;
809 break;
810 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
811 if ((prange->flags & attrs[i].value) != 0)
812 return false;
813 break;
814 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
815 if (prange->granularity != attrs[i].value)
816 return false;
817 break;
818 default:
819 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
820 }
821 }
822
823 return !prange->is_error_flag;
824 }
825
826 /**
827 * svm_range_debug_dump - print all range information from svms
828 * @svms: svm range list header
829 *
830 * debug output svm range start, end, prefetch location from svms
831 * interval tree and link list
832 *
833 * Context: The caller must hold svms->lock
834 */
svm_range_debug_dump(struct svm_range_list * svms)835 static void svm_range_debug_dump(struct svm_range_list *svms)
836 {
837 struct interval_tree_node *node;
838 struct svm_range *prange;
839
840 pr_debug("dump svms 0x%p list\n", svms);
841 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
842
843 list_for_each_entry(prange, &svms->list, list) {
844 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
845 prange, prange->start, prange->npages,
846 prange->start + prange->npages - 1,
847 prange->actual_loc);
848 }
849
850 pr_debug("dump svms 0x%p interval tree\n", svms);
851 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
852 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
853 while (node) {
854 prange = container_of(node, struct svm_range, it_node);
855 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
856 prange, prange->start, prange->npages,
857 prange->start + prange->npages - 1,
858 prange->actual_loc);
859 node = interval_tree_iter_next(node, 0, ~0ULL);
860 }
861 }
862
863 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset)864 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
865 uint64_t offset)
866 {
867 unsigned char *dst;
868
869 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
870 if (!dst)
871 return NULL;
872 memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
873
874 return (void *)dst;
875 }
876
877 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)878 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
879 {
880 int i;
881
882 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
883 if (!src->dma_addr[i])
884 continue;
885 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
886 sizeof(*src->dma_addr[i]), src->npages, 0);
887 if (!dst->dma_addr[i])
888 return -ENOMEM;
889 }
890
891 return 0;
892 }
893
894 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)895 svm_range_split_array(void *ppnew, void *ppold, size_t size,
896 uint64_t old_start, uint64_t old_n,
897 uint64_t new_start, uint64_t new_n)
898 {
899 unsigned char *new, *old, *pold;
900 uint64_t d;
901
902 if (!ppold)
903 return 0;
904 pold = *(unsigned char **)ppold;
905 if (!pold)
906 return 0;
907
908 d = (new_start - old_start) * size;
909 new = svm_range_copy_array(pold, size, new_n, d);
910 if (!new)
911 return -ENOMEM;
912 d = (new_start == old_start) ? new_n * size : 0;
913 old = svm_range_copy_array(pold, size, old_n, d);
914 if (!old) {
915 kvfree(new);
916 return -ENOMEM;
917 }
918 kvfree(pold);
919 *(void **)ppold = old;
920 *(void **)ppnew = new;
921
922 return 0;
923 }
924
925 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)926 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
927 uint64_t start, uint64_t last)
928 {
929 uint64_t npages = last - start + 1;
930 int i, r;
931
932 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
933 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
934 sizeof(*old->dma_addr[i]), old->start,
935 npages, new->start, new->npages);
936 if (r)
937 return r;
938 }
939
940 return 0;
941 }
942
943 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)944 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
945 uint64_t start, uint64_t last)
946 {
947 uint64_t npages = last - start + 1;
948
949 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
950 new->svms, new, new->start, start, last);
951
952 if (new->start == old->start) {
953 new->offset = old->offset;
954 old->offset += new->npages;
955 } else {
956 new->offset = old->offset + npages;
957 }
958
959 new->svm_bo = svm_range_bo_ref(old->svm_bo);
960 new->ttm_res = old->ttm_res;
961
962 spin_lock(&new->svm_bo->list_lock);
963 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
964 spin_unlock(&new->svm_bo->list_lock);
965
966 return 0;
967 }
968
969 /**
970 * svm_range_split_adjust - split range and adjust
971 *
972 * @new: new range
973 * @old: the old range
974 * @start: the old range adjust to start address in pages
975 * @last: the old range adjust to last address in pages
976 *
977 * Copy system memory dma_addr or vram ttm_res in old range to new
978 * range from new_start up to size new->npages, the remaining old range is from
979 * start to last
980 *
981 * Return:
982 * 0 - OK, -ENOMEM - out of memory
983 */
984 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
986 uint64_t start, uint64_t last)
987 {
988 int r;
989
990 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
991 new->svms, new->start, old->start, old->last, start, last);
992
993 if (new->start < old->start ||
994 new->last > old->last) {
995 WARN_ONCE(1, "invalid new range start or last\n");
996 return -EINVAL;
997 }
998
999 r = svm_range_split_pages(new, old, start, last);
1000 if (r)
1001 return r;
1002
1003 if (old->actual_loc && old->ttm_res) {
1004 r = svm_range_split_nodes(new, old, start, last);
1005 if (r)
1006 return r;
1007 }
1008
1009 old->npages = last - start + 1;
1010 old->start = start;
1011 old->last = last;
1012 new->flags = old->flags;
1013 new->preferred_loc = old->preferred_loc;
1014 new->prefetch_loc = old->prefetch_loc;
1015 new->actual_loc = old->actual_loc;
1016 new->granularity = old->granularity;
1017 new->mapped_to_gpu = old->mapped_to_gpu;
1018 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1019 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1020
1021 return 0;
1022 }
1023
1024 /**
1025 * svm_range_split - split a range in 2 ranges
1026 *
1027 * @prange: the svm range to split
1028 * @start: the remaining range start address in pages
1029 * @last: the remaining range last address in pages
1030 * @new: the result new range generated
1031 *
1032 * Two cases only:
1033 * case 1: if start == prange->start
1034 * prange ==> prange[start, last]
1035 * new range [last + 1, prange->last]
1036 *
1037 * case 2: if last == prange->last
1038 * prange ==> prange[start, last]
1039 * new range [prange->start, start - 1]
1040 *
1041 * Return:
1042 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1043 */
1044 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1045 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1046 struct svm_range **new)
1047 {
1048 uint64_t old_start = prange->start;
1049 uint64_t old_last = prange->last;
1050 struct svm_range_list *svms;
1051 int r = 0;
1052
1053 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1054 old_start, old_last, start, last);
1055
1056 if (old_start != start && old_last != last)
1057 return -EINVAL;
1058 if (start < old_start || last > old_last)
1059 return -EINVAL;
1060
1061 svms = prange->svms;
1062 if (old_start == start)
1063 *new = svm_range_new(svms, last + 1, old_last, false);
1064 else
1065 *new = svm_range_new(svms, old_start, start - 1, false);
1066 if (!*new)
1067 return -ENOMEM;
1068
1069 r = svm_range_split_adjust(*new, prange, start, last);
1070 if (r) {
1071 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1072 r, old_start, old_last, start, last);
1073 svm_range_free(*new, false);
1074 *new = NULL;
1075 }
1076
1077 return r;
1078 }
1079
1080 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)1081 svm_range_split_tail(struct svm_range *prange,
1082 uint64_t new_last, struct list_head *insert_list)
1083 {
1084 struct svm_range *tail;
1085 int r = svm_range_split(prange, prange->start, new_last, &tail);
1086
1087 if (!r)
1088 list_add(&tail->list, insert_list);
1089 return r;
1090 }
1091
1092 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)1093 svm_range_split_head(struct svm_range *prange,
1094 uint64_t new_start, struct list_head *insert_list)
1095 {
1096 struct svm_range *head;
1097 int r = svm_range_split(prange, new_start, prange->last, &head);
1098
1099 if (!r)
1100 list_add(&head->list, insert_list);
1101 return r;
1102 }
1103
1104 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1105 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1106 struct svm_range *pchild, enum svm_work_list_ops op)
1107 {
1108 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1109 pchild, pchild->start, pchild->last, prange, op);
1110
1111 pchild->work_item.mm = mm;
1112 pchild->work_item.op = op;
1113 list_add_tail(&pchild->child_list, &prange->child_list);
1114 }
1115
1116 /**
1117 * svm_range_split_by_granularity - collect ranges within granularity boundary
1118 *
1119 * @p: the process with svms list
1120 * @mm: mm structure
1121 * @addr: the vm fault address in pages, to split the prange
1122 * @parent: parent range if prange is from child list
1123 * @prange: prange to split
1124 *
1125 * Trims @prange to be a single aligned block of prange->granularity if
1126 * possible. The head and tail are added to the child_list in @parent.
1127 *
1128 * Context: caller must hold mmap_read_lock and prange->lock
1129 *
1130 * Return:
1131 * 0 - OK, otherwise error code
1132 */
1133 int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)1134 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1135 unsigned long addr, struct svm_range *parent,
1136 struct svm_range *prange)
1137 {
1138 struct svm_range *head, *tail;
1139 unsigned long start, last, size;
1140 int r;
1141
1142 /* Align splited range start and size to granularity size, then a single
1143 * PTE will be used for whole range, this reduces the number of PTE
1144 * updated and the L1 TLB space used for translation.
1145 */
1146 size = 1UL << prange->granularity;
1147 start = ALIGN_DOWN(addr, size);
1148 last = ALIGN(addr + 1, size) - 1;
1149
1150 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1151 prange->svms, prange->start, prange->last, start, last, size);
1152
1153 if (start > prange->start) {
1154 r = svm_range_split(prange, start, prange->last, &head);
1155 if (r)
1156 return r;
1157 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1158 }
1159
1160 if (last < prange->last) {
1161 r = svm_range_split(prange, prange->start, last, &tail);
1162 if (r)
1163 return r;
1164 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1165 }
1166
1167 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1168 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1169 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1170 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1171 prange, prange->start, prange->last,
1172 SVM_OP_ADD_RANGE_AND_MAP);
1173 }
1174 return 0;
1175 }
1176 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1177 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1178 {
1179 return (node_a->adev == node_b->adev ||
1180 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1181 }
1182
1183 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1184 svm_range_get_pte_flags(struct kfd_node *node,
1185 struct svm_range *prange, int domain)
1186 {
1187 struct kfd_node *bo_node;
1188 uint32_t flags = prange->flags;
1189 uint32_t mapping_flags = 0;
1190 uint64_t pte_flags;
1191 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1192 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1193 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1194 unsigned int mtype_local;
1195
1196 if (domain == SVM_RANGE_VRAM_DOMAIN)
1197 bo_node = prange->svm_bo->node;
1198
1199 switch (node->adev->ip_versions[GC_HWIP][0]) {
1200 case IP_VERSION(9, 4, 1):
1201 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1202 if (bo_node == node) {
1203 mapping_flags |= coherent ?
1204 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1205 } else {
1206 mapping_flags |= coherent ?
1207 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1208 if (svm_nodes_in_same_hive(node, bo_node))
1209 snoop = true;
1210 }
1211 } else {
1212 mapping_flags |= coherent ?
1213 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1214 }
1215 break;
1216 case IP_VERSION(9, 4, 2):
1217 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1218 if (bo_node == node) {
1219 mapping_flags |= coherent ?
1220 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1221 if (node->adev->gmc.xgmi.connected_to_cpu)
1222 snoop = true;
1223 } else {
1224 mapping_flags |= coherent ?
1225 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1226 if (svm_nodes_in_same_hive(node, bo_node))
1227 snoop = true;
1228 }
1229 } else {
1230 mapping_flags |= coherent ?
1231 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1232 }
1233 break;
1234 case IP_VERSION(9, 4, 3):
1235 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1236 (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1237 snoop = true;
1238 if (uncached) {
1239 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1240 } else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1241 /* local HBM region close to partition */
1242 if (bo_node->adev == node->adev &&
1243 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1244 mapping_flags |= mtype_local;
1245 /* local HBM region far from partition or remote XGMI GPU */
1246 else if (svm_nodes_in_same_hive(bo_node, node))
1247 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1248 /* PCIe P2P */
1249 else
1250 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1251 /* system memory accessed by the APU */
1252 } else if (node->adev->flags & AMD_IS_APU) {
1253 /* On NUMA systems, locality is determined per-page
1254 * in amdgpu_gmc_override_vm_pte_flags
1255 */
1256 if (num_possible_nodes() <= 1)
1257 mapping_flags |= mtype_local;
1258 else
1259 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1260 /* system memory accessed by the dGPU */
1261 } else {
1262 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1263 }
1264 break;
1265 default:
1266 mapping_flags |= coherent ?
1267 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1268 }
1269
1270 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1271
1272 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1273 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1274 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1275 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1276
1277 pte_flags = AMDGPU_PTE_VALID;
1278 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1279 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1280
1281 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1282 return pte_flags;
1283 }
1284
1285 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1286 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1287 uint64_t start, uint64_t last,
1288 struct dma_fence **fence)
1289 {
1290 uint64_t init_pte_value = 0;
1291
1292 pr_debug("[0x%llx 0x%llx]\n", start, last);
1293
1294 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1295 last, init_pte_value, 0, 0, NULL, NULL,
1296 fence);
1297 }
1298
1299 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1300 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1301 unsigned long last, uint32_t trigger)
1302 {
1303 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1304 struct kfd_process_device *pdd;
1305 struct dma_fence *fence = NULL;
1306 struct kfd_process *p;
1307 uint32_t gpuidx;
1308 int r = 0;
1309
1310 if (!prange->mapped_to_gpu) {
1311 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1312 prange, prange->start, prange->last);
1313 return 0;
1314 }
1315
1316 if (prange->start == start && prange->last == last) {
1317 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1318 prange->mapped_to_gpu = false;
1319 }
1320
1321 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1322 MAX_GPU_INSTANCE);
1323 p = container_of(prange->svms, struct kfd_process, svms);
1324
1325 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1326 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1327 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1328 if (!pdd) {
1329 pr_debug("failed to find device idx %d\n", gpuidx);
1330 return -EINVAL;
1331 }
1332
1333 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1334 start, last, trigger);
1335
1336 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1337 drm_priv_to_vm(pdd->drm_priv),
1338 start, last, &fence);
1339 if (r)
1340 break;
1341
1342 if (fence) {
1343 r = dma_fence_wait(fence, false);
1344 dma_fence_put(fence);
1345 fence = NULL;
1346 if (r)
1347 break;
1348 }
1349 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1350 }
1351
1352 return r;
1353 }
1354
1355 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1356 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1357 unsigned long offset, unsigned long npages, bool readonly,
1358 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1359 struct dma_fence **fence, bool flush_tlb)
1360 {
1361 struct amdgpu_device *adev = pdd->dev->adev;
1362 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1363 uint64_t pte_flags;
1364 unsigned long last_start;
1365 int last_domain;
1366 int r = 0;
1367 int64_t i, j;
1368
1369 last_start = prange->start + offset;
1370
1371 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1372 last_start, last_start + npages - 1, readonly);
1373
1374 for (i = offset; i < offset + npages; i++) {
1375 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1376 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1377
1378 /* Collect all pages in the same address range and memory domain
1379 * that can be mapped with a single call to update mapping.
1380 */
1381 if (i < offset + npages - 1 &&
1382 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1383 continue;
1384
1385 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1386 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1387
1388 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1389 if (readonly)
1390 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1391
1392 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1393 prange->svms, last_start, prange->start + i,
1394 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1395 pte_flags);
1396
1397 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1398 * different memory partition based on fpfn/lpfn, we should use
1399 * same vm_manager.vram_base_offset regardless memory partition.
1400 */
1401 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1402 last_start, prange->start + i,
1403 pte_flags,
1404 (last_start - prange->start) << PAGE_SHIFT,
1405 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1406 NULL, dma_addr, &vm->last_update);
1407
1408 for (j = last_start - prange->start; j <= i; j++)
1409 dma_addr[j] |= last_domain;
1410
1411 if (r) {
1412 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1413 goto out;
1414 }
1415 last_start = prange->start + i + 1;
1416 }
1417
1418 r = amdgpu_vm_update_pdes(adev, vm, false);
1419 if (r) {
1420 pr_debug("failed %d to update directories 0x%lx\n", r,
1421 prange->start);
1422 goto out;
1423 }
1424
1425 if (fence)
1426 *fence = dma_fence_get(vm->last_update);
1427
1428 out:
1429 return r;
1430 }
1431
1432 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1433 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1434 unsigned long npages, bool readonly,
1435 unsigned long *bitmap, bool wait, bool flush_tlb)
1436 {
1437 struct kfd_process_device *pdd;
1438 struct amdgpu_device *bo_adev = NULL;
1439 struct kfd_process *p;
1440 struct dma_fence *fence = NULL;
1441 uint32_t gpuidx;
1442 int r = 0;
1443
1444 if (prange->svm_bo && prange->ttm_res)
1445 bo_adev = prange->svm_bo->node->adev;
1446
1447 p = container_of(prange->svms, struct kfd_process, svms);
1448 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1449 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1450 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1451 if (!pdd) {
1452 pr_debug("failed to find device idx %d\n", gpuidx);
1453 return -EINVAL;
1454 }
1455
1456 pdd = kfd_bind_process_to_device(pdd->dev, p);
1457 if (IS_ERR(pdd))
1458 return -EINVAL;
1459
1460 if (bo_adev && pdd->dev->adev != bo_adev &&
1461 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1462 pr_debug("cannot map to device idx %d\n", gpuidx);
1463 continue;
1464 }
1465
1466 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1467 prange->dma_addr[gpuidx],
1468 bo_adev, wait ? &fence : NULL,
1469 flush_tlb);
1470 if (r)
1471 break;
1472
1473 if (fence) {
1474 r = dma_fence_wait(fence, false);
1475 dma_fence_put(fence);
1476 fence = NULL;
1477 if (r) {
1478 pr_debug("failed %d to dma fence wait\n", r);
1479 break;
1480 }
1481 }
1482
1483 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1484 }
1485
1486 return r;
1487 }
1488
1489 struct svm_validate_context {
1490 struct kfd_process *process;
1491 struct svm_range *prange;
1492 bool intr;
1493 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1494 struct drm_exec exec;
1495 };
1496
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1497 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1498 {
1499 struct kfd_process_device *pdd;
1500 struct amdgpu_vm *vm;
1501 uint32_t gpuidx;
1502 int r;
1503
1504 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1505 drm_exec_until_all_locked(&ctx->exec) {
1506 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1507 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1508 if (!pdd) {
1509 pr_debug("failed to find device idx %d\n", gpuidx);
1510 r = -EINVAL;
1511 goto unreserve_out;
1512 }
1513 vm = drm_priv_to_vm(pdd->drm_priv);
1514
1515 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1516 drm_exec_retry_on_contention(&ctx->exec);
1517 if (unlikely(r)) {
1518 pr_debug("failed %d to reserve bo\n", r);
1519 goto unreserve_out;
1520 }
1521 }
1522 }
1523
1524 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1525 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1526 if (!pdd) {
1527 pr_debug("failed to find device idx %d\n", gpuidx);
1528 r = -EINVAL;
1529 goto unreserve_out;
1530 }
1531
1532 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1533 drm_priv_to_vm(pdd->drm_priv),
1534 svm_range_bo_validate, NULL);
1535 if (r) {
1536 pr_debug("failed %d validate pt bos\n", r);
1537 goto unreserve_out;
1538 }
1539 }
1540
1541 return 0;
1542
1543 unreserve_out:
1544 drm_exec_fini(&ctx->exec);
1545 return r;
1546 }
1547
svm_range_unreserve_bos(struct svm_validate_context * ctx)1548 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1549 {
1550 drm_exec_fini(&ctx->exec);
1551 }
1552
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1553 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1554 {
1555 struct kfd_process_device *pdd;
1556
1557 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1558 if (!pdd)
1559 return NULL;
1560
1561 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1562 }
1563
1564 /*
1565 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1566 *
1567 * To prevent concurrent destruction or change of range attributes, the
1568 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1569 * because that would block concurrent evictions and lead to deadlocks. To
1570 * serialize concurrent migrations or validations of the same range, the
1571 * prange->migrate_mutex must be held.
1572 *
1573 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1574 * eviction fence.
1575 *
1576 * The following sequence ensures race-free validation and GPU mapping:
1577 *
1578 * 1. Reserve page table (and SVM BO if range is in VRAM)
1579 * 2. hmm_range_fault to get page addresses (if system memory)
1580 * 3. DMA-map pages (if system memory)
1581 * 4-a. Take notifier lock
1582 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1583 * 4-c. Check that the range was not split or otherwise invalidated
1584 * 4-d. Update GPU page table
1585 * 4.e. Release notifier lock
1586 * 5. Release page table (and SVM BO) reservation
1587 */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1588 static int svm_range_validate_and_map(struct mm_struct *mm,
1589 struct svm_range *prange, int32_t gpuidx,
1590 bool intr, bool wait, bool flush_tlb)
1591 {
1592 struct svm_validate_context *ctx;
1593 unsigned long start, end, addr;
1594 struct kfd_process *p;
1595 void *owner;
1596 int32_t idx;
1597 int r = 0;
1598
1599 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1600 if (!ctx)
1601 return -ENOMEM;
1602 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1603 ctx->prange = prange;
1604 ctx->intr = intr;
1605
1606 if (gpuidx < MAX_GPU_INSTANCE) {
1607 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1608 bitmap_set(ctx->bitmap, gpuidx, 1);
1609 } else if (ctx->process->xnack_enabled) {
1610 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1611
1612 /* If prefetch range to GPU, or GPU retry fault migrate range to
1613 * GPU, which has ACCESS attribute to the range, create mapping
1614 * on that GPU.
1615 */
1616 if (prange->actual_loc) {
1617 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1618 prange->actual_loc);
1619 if (gpuidx < 0) {
1620 WARN_ONCE(1, "failed get device by id 0x%x\n",
1621 prange->actual_loc);
1622 r = -EINVAL;
1623 goto free_ctx;
1624 }
1625 if (test_bit(gpuidx, prange->bitmap_access))
1626 bitmap_set(ctx->bitmap, gpuidx, 1);
1627 }
1628 } else {
1629 bitmap_or(ctx->bitmap, prange->bitmap_access,
1630 prange->bitmap_aip, MAX_GPU_INSTANCE);
1631 }
1632
1633 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1634 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1635 if (!prange->mapped_to_gpu ||
1636 bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1637 r = 0;
1638 goto free_ctx;
1639 }
1640 }
1641
1642 if (prange->actual_loc && !prange->ttm_res) {
1643 /* This should never happen. actual_loc gets set by
1644 * svm_migrate_ram_to_vram after allocating a BO.
1645 */
1646 WARN_ONCE(1, "VRAM BO missing during validation\n");
1647 r = -EINVAL;
1648 goto free_ctx;
1649 }
1650
1651 svm_range_reserve_bos(ctx, intr);
1652
1653 p = container_of(prange->svms, struct kfd_process, svms);
1654 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1655 MAX_GPU_INSTANCE));
1656 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1657 if (kfd_svm_page_owner(p, idx) != owner) {
1658 owner = NULL;
1659 break;
1660 }
1661 }
1662
1663 start = prange->start << PAGE_SHIFT;
1664 end = (prange->last + 1) << PAGE_SHIFT;
1665 for (addr = start; addr < end && !r; ) {
1666 struct hmm_range *hmm_range;
1667 struct vm_area_struct *vma;
1668 unsigned long next;
1669 unsigned long offset;
1670 unsigned long npages;
1671 bool readonly;
1672
1673 vma = vma_lookup(mm, addr);
1674 if (!vma) {
1675 r = -EFAULT;
1676 goto unreserve_out;
1677 }
1678 readonly = !(vma->vm_flags & VM_WRITE);
1679
1680 next = min(vma->vm_end, end);
1681 npages = (next - addr) >> PAGE_SHIFT;
1682 WRITE_ONCE(p->svms.faulting_task, current);
1683 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1684 readonly, owner, NULL,
1685 &hmm_range);
1686 WRITE_ONCE(p->svms.faulting_task, NULL);
1687 if (r) {
1688 pr_debug("failed %d to get svm range pages\n", r);
1689 if (r == -EBUSY)
1690 r = -EAGAIN;
1691 goto unreserve_out;
1692 }
1693
1694 offset = (addr - start) >> PAGE_SHIFT;
1695 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1696 hmm_range->hmm_pfns);
1697 if (r) {
1698 pr_debug("failed %d to dma map range\n", r);
1699 goto unreserve_out;
1700 }
1701
1702 svm_range_lock(prange);
1703 if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
1704 pr_debug("hmm update the range, need validate again\n");
1705 r = -EAGAIN;
1706 goto unlock_out;
1707 }
1708 if (!list_empty(&prange->child_list)) {
1709 pr_debug("range split by unmap in parallel, validate again\n");
1710 r = -EAGAIN;
1711 goto unlock_out;
1712 }
1713
1714 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1715 ctx->bitmap, wait, flush_tlb);
1716
1717 unlock_out:
1718 svm_range_unlock(prange);
1719
1720 addr = next;
1721 }
1722
1723 if (addr == end) {
1724 prange->validated_once = true;
1725 prange->mapped_to_gpu = true;
1726 }
1727
1728 unreserve_out:
1729 svm_range_unreserve_bos(ctx);
1730
1731 prange->is_error_flag = !!r;
1732 if (!r)
1733 prange->validate_timestamp = ktime_get_boottime();
1734
1735 free_ctx:
1736 kfree(ctx);
1737
1738 return r;
1739 }
1740
1741 /**
1742 * svm_range_list_lock_and_flush_work - flush pending deferred work
1743 *
1744 * @svms: the svm range list
1745 * @mm: the mm structure
1746 *
1747 * Context: Returns with mmap write lock held, pending deferred work flushed
1748 *
1749 */
1750 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1751 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1752 struct mm_struct *mm)
1753 {
1754 retry_flush_work:
1755 flush_work(&svms->deferred_list_work);
1756 mmap_write_lock(mm);
1757
1758 if (list_empty(&svms->deferred_range_list))
1759 return;
1760 mmap_write_unlock(mm);
1761 pr_debug("retry flush\n");
1762 goto retry_flush_work;
1763 }
1764
svm_range_restore_work(struct work_struct * work)1765 static void svm_range_restore_work(struct work_struct *work)
1766 {
1767 struct delayed_work *dwork = to_delayed_work(work);
1768 struct amdkfd_process_info *process_info;
1769 struct svm_range_list *svms;
1770 struct svm_range *prange;
1771 struct kfd_process *p;
1772 struct mm_struct *mm;
1773 int evicted_ranges;
1774 int invalid;
1775 int r;
1776
1777 svms = container_of(dwork, struct svm_range_list, restore_work);
1778 evicted_ranges = atomic_read(&svms->evicted_ranges);
1779 if (!evicted_ranges)
1780 return;
1781
1782 pr_debug("restore svm ranges\n");
1783
1784 p = container_of(svms, struct kfd_process, svms);
1785 process_info = p->kgd_process_info;
1786
1787 /* Keep mm reference when svm_range_validate_and_map ranges */
1788 mm = get_task_mm(p->lead_thread);
1789 if (!mm) {
1790 pr_debug("svms 0x%p process mm gone\n", svms);
1791 return;
1792 }
1793
1794 mutex_lock(&process_info->lock);
1795 svm_range_list_lock_and_flush_work(svms, mm);
1796 mutex_lock(&svms->lock);
1797
1798 evicted_ranges = atomic_read(&svms->evicted_ranges);
1799
1800 list_for_each_entry(prange, &svms->list, list) {
1801 invalid = atomic_read(&prange->invalid);
1802 if (!invalid)
1803 continue;
1804
1805 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1806 prange->svms, prange, prange->start, prange->last,
1807 invalid);
1808
1809 /*
1810 * If range is migrating, wait for migration is done.
1811 */
1812 mutex_lock(&prange->migrate_mutex);
1813
1814 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1815 false, true, false);
1816 if (r)
1817 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1818 prange->start);
1819
1820 mutex_unlock(&prange->migrate_mutex);
1821 if (r)
1822 goto out_reschedule;
1823
1824 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1825 goto out_reschedule;
1826 }
1827
1828 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1829 evicted_ranges)
1830 goto out_reschedule;
1831
1832 evicted_ranges = 0;
1833
1834 r = kgd2kfd_resume_mm(mm);
1835 if (r) {
1836 /* No recovery from this failure. Probably the CP is
1837 * hanging. No point trying again.
1838 */
1839 pr_debug("failed %d to resume KFD\n", r);
1840 }
1841
1842 pr_debug("restore svm ranges successfully\n");
1843
1844 out_reschedule:
1845 mutex_unlock(&svms->lock);
1846 mmap_write_unlock(mm);
1847 mutex_unlock(&process_info->lock);
1848
1849 /* If validation failed, reschedule another attempt */
1850 if (evicted_ranges) {
1851 pr_debug("reschedule to restore svm range\n");
1852 schedule_delayed_work(&svms->restore_work,
1853 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1854
1855 kfd_smi_event_queue_restore_rescheduled(mm);
1856 }
1857 mmput(mm);
1858 }
1859
1860 /**
1861 * svm_range_evict - evict svm range
1862 * @prange: svm range structure
1863 * @mm: current process mm_struct
1864 * @start: starting process queue number
1865 * @last: last process queue number
1866 * @event: mmu notifier event when range is evicted or migrated
1867 *
1868 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1869 * return to let CPU evict the buffer and proceed CPU pagetable update.
1870 *
1871 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1872 * If invalidation happens while restore work is running, restore work will
1873 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1874 * the queues.
1875 */
1876 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1877 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1878 unsigned long start, unsigned long last,
1879 enum mmu_notifier_event event)
1880 {
1881 struct svm_range_list *svms = prange->svms;
1882 struct svm_range *pchild;
1883 struct kfd_process *p;
1884 int r = 0;
1885
1886 p = container_of(svms, struct kfd_process, svms);
1887
1888 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1889 svms, prange->start, prange->last, start, last);
1890
1891 if (!p->xnack_enabled ||
1892 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1893 int evicted_ranges;
1894 bool mapped = prange->mapped_to_gpu;
1895
1896 list_for_each_entry(pchild, &prange->child_list, child_list) {
1897 if (!pchild->mapped_to_gpu)
1898 continue;
1899 mapped = true;
1900 mutex_lock_nested(&pchild->lock, 1);
1901 if (pchild->start <= last && pchild->last >= start) {
1902 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1903 pchild->start, pchild->last);
1904 atomic_inc(&pchild->invalid);
1905 }
1906 mutex_unlock(&pchild->lock);
1907 }
1908
1909 if (!mapped)
1910 return r;
1911
1912 if (prange->start <= last && prange->last >= start)
1913 atomic_inc(&prange->invalid);
1914
1915 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1916 if (evicted_ranges != 1)
1917 return r;
1918
1919 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1920 prange->svms, prange->start, prange->last);
1921
1922 /* First eviction, stop the queues */
1923 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1924 if (r)
1925 pr_debug("failed to quiesce KFD\n");
1926
1927 pr_debug("schedule to restore svm %p ranges\n", svms);
1928 schedule_delayed_work(&svms->restore_work,
1929 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1930 } else {
1931 unsigned long s, l;
1932 uint32_t trigger;
1933
1934 if (event == MMU_NOTIFY_MIGRATE)
1935 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1936 else
1937 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1938
1939 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1940 prange->svms, start, last);
1941 list_for_each_entry(pchild, &prange->child_list, child_list) {
1942 mutex_lock_nested(&pchild->lock, 1);
1943 s = max(start, pchild->start);
1944 l = min(last, pchild->last);
1945 if (l >= s)
1946 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1947 mutex_unlock(&pchild->lock);
1948 }
1949 s = max(start, prange->start);
1950 l = min(last, prange->last);
1951 if (l >= s)
1952 svm_range_unmap_from_gpus(prange, s, l, trigger);
1953 }
1954
1955 return r;
1956 }
1957
svm_range_clone(struct svm_range * old)1958 static struct svm_range *svm_range_clone(struct svm_range *old)
1959 {
1960 struct svm_range *new;
1961
1962 new = svm_range_new(old->svms, old->start, old->last, false);
1963 if (!new)
1964 return NULL;
1965 if (svm_range_copy_dma_addrs(new, old)) {
1966 svm_range_free(new, false);
1967 return NULL;
1968 }
1969 if (old->svm_bo) {
1970 new->ttm_res = old->ttm_res;
1971 new->offset = old->offset;
1972 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1973 spin_lock(&new->svm_bo->list_lock);
1974 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1975 spin_unlock(&new->svm_bo->list_lock);
1976 }
1977 new->flags = old->flags;
1978 new->preferred_loc = old->preferred_loc;
1979 new->prefetch_loc = old->prefetch_loc;
1980 new->actual_loc = old->actual_loc;
1981 new->granularity = old->granularity;
1982 new->mapped_to_gpu = old->mapped_to_gpu;
1983 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1984 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1985
1986 return new;
1987 }
1988
svm_range_set_max_pages(struct amdgpu_device * adev)1989 void svm_range_set_max_pages(struct amdgpu_device *adev)
1990 {
1991 uint64_t max_pages;
1992 uint64_t pages, _pages;
1993 uint64_t min_pages = 0;
1994 int i, id;
1995
1996 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
1997 if (adev->kfd.dev->nodes[i]->xcp)
1998 id = adev->kfd.dev->nodes[i]->xcp->id;
1999 else
2000 id = -1;
2001 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2002 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2003 pages = rounddown_pow_of_two(pages);
2004 min_pages = min_not_zero(min_pages, pages);
2005 }
2006
2007 do {
2008 max_pages = READ_ONCE(max_svm_range_pages);
2009 _pages = min_not_zero(max_pages, min_pages);
2010 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2011 }
2012
2013 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2014 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2015 uint64_t max_pages, struct list_head *insert_list,
2016 struct list_head *update_list)
2017 {
2018 struct svm_range *prange;
2019 uint64_t l;
2020
2021 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2022 max_pages, start, last);
2023
2024 while (last >= start) {
2025 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2026
2027 prange = svm_range_new(svms, start, l, true);
2028 if (!prange)
2029 return -ENOMEM;
2030 list_add(&prange->list, insert_list);
2031 list_add(&prange->update_list, update_list);
2032
2033 start = l + 1;
2034 }
2035 return 0;
2036 }
2037
2038 /**
2039 * svm_range_add - add svm range and handle overlap
2040 * @p: the range add to this process svms
2041 * @start: page size aligned
2042 * @size: page size aligned
2043 * @nattr: number of attributes
2044 * @attrs: array of attributes
2045 * @update_list: output, the ranges need validate and update GPU mapping
2046 * @insert_list: output, the ranges need insert to svms
2047 * @remove_list: output, the ranges are replaced and need remove from svms
2048 *
2049 * Check if the virtual address range has overlap with any existing ranges,
2050 * split partly overlapping ranges and add new ranges in the gaps. All changes
2051 * should be applied to the range_list and interval tree transactionally. If
2052 * any range split or allocation fails, the entire update fails. Therefore any
2053 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2054 * unchanged.
2055 *
2056 * If the transaction succeeds, the caller can update and insert clones and
2057 * new ranges, then free the originals.
2058 *
2059 * Otherwise the caller can free the clones and new ranges, while the old
2060 * svm_ranges remain unchanged.
2061 *
2062 * Context: Process context, caller must hold svms->lock
2063 *
2064 * Return:
2065 * 0 - OK, otherwise error code
2066 */
2067 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)2068 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2069 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2070 struct list_head *update_list, struct list_head *insert_list,
2071 struct list_head *remove_list)
2072 {
2073 unsigned long last = start + size - 1UL;
2074 struct svm_range_list *svms = &p->svms;
2075 struct interval_tree_node *node;
2076 struct svm_range *prange;
2077 struct svm_range *tmp;
2078 struct list_head new_list;
2079 int r = 0;
2080
2081 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2082
2083 INIT_LIST_HEAD(update_list);
2084 INIT_LIST_HEAD(insert_list);
2085 INIT_LIST_HEAD(remove_list);
2086 INIT_LIST_HEAD(&new_list);
2087
2088 node = interval_tree_iter_first(&svms->objects, start, last);
2089 while (node) {
2090 struct interval_tree_node *next;
2091 unsigned long next_start;
2092
2093 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2094 node->last);
2095
2096 prange = container_of(node, struct svm_range, it_node);
2097 next = interval_tree_iter_next(node, start, last);
2098 next_start = min(node->last, last) + 1;
2099
2100 if (svm_range_is_same_attrs(p, prange, nattr, attrs)) {
2101 /* nothing to do */
2102 } else if (node->start < start || node->last > last) {
2103 /* node intersects the update range and its attributes
2104 * will change. Clone and split it, apply updates only
2105 * to the overlapping part
2106 */
2107 struct svm_range *old = prange;
2108
2109 prange = svm_range_clone(old);
2110 if (!prange) {
2111 r = -ENOMEM;
2112 goto out;
2113 }
2114
2115 list_add(&old->update_list, remove_list);
2116 list_add(&prange->list, insert_list);
2117 list_add(&prange->update_list, update_list);
2118
2119 if (node->start < start) {
2120 pr_debug("change old range start\n");
2121 r = svm_range_split_head(prange, start,
2122 insert_list);
2123 if (r)
2124 goto out;
2125 }
2126 if (node->last > last) {
2127 pr_debug("change old range last\n");
2128 r = svm_range_split_tail(prange, last,
2129 insert_list);
2130 if (r)
2131 goto out;
2132 }
2133 } else {
2134 /* The node is contained within start..last,
2135 * just update it
2136 */
2137 list_add(&prange->update_list, update_list);
2138 }
2139
2140 /* insert a new node if needed */
2141 if (node->start > start) {
2142 r = svm_range_split_new(svms, start, node->start - 1,
2143 READ_ONCE(max_svm_range_pages),
2144 &new_list, update_list);
2145 if (r)
2146 goto out;
2147 }
2148
2149 node = next;
2150 start = next_start;
2151 }
2152
2153 /* add a final range at the end if needed */
2154 if (start <= last)
2155 r = svm_range_split_new(svms, start, last,
2156 READ_ONCE(max_svm_range_pages),
2157 &new_list, update_list);
2158
2159 out:
2160 if (r) {
2161 list_for_each_entry_safe(prange, tmp, insert_list, list)
2162 svm_range_free(prange, false);
2163 list_for_each_entry_safe(prange, tmp, &new_list, list)
2164 svm_range_free(prange, true);
2165 } else {
2166 list_splice(&new_list, insert_list);
2167 }
2168
2169 return r;
2170 }
2171
2172 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2173 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2174 struct svm_range *prange)
2175 {
2176 unsigned long start;
2177 unsigned long last;
2178
2179 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2180 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2181
2182 if (prange->start == start && prange->last == last)
2183 return;
2184
2185 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2186 prange->svms, prange, start, last, prange->start,
2187 prange->last);
2188
2189 if (start != 0 && last != 0) {
2190 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2191 svm_range_remove_notifier(prange);
2192 }
2193 prange->it_node.start = prange->start;
2194 prange->it_node.last = prange->last;
2195
2196 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2197 svm_range_add_notifier_locked(mm, prange);
2198 }
2199
2200 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2201 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2202 struct mm_struct *mm)
2203 {
2204 switch (prange->work_item.op) {
2205 case SVM_OP_NULL:
2206 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2207 svms, prange, prange->start, prange->last);
2208 break;
2209 case SVM_OP_UNMAP_RANGE:
2210 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2211 svms, prange, prange->start, prange->last);
2212 svm_range_unlink(prange);
2213 svm_range_remove_notifier(prange);
2214 svm_range_free(prange, true);
2215 break;
2216 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2217 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2218 svms, prange, prange->start, prange->last);
2219 svm_range_update_notifier_and_interval_tree(mm, prange);
2220 break;
2221 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2222 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2223 svms, prange, prange->start, prange->last);
2224 svm_range_update_notifier_and_interval_tree(mm, prange);
2225 /* TODO: implement deferred validation and mapping */
2226 break;
2227 case SVM_OP_ADD_RANGE:
2228 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2229 prange->start, prange->last);
2230 svm_range_add_to_svms(prange);
2231 svm_range_add_notifier_locked(mm, prange);
2232 break;
2233 case SVM_OP_ADD_RANGE_AND_MAP:
2234 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2235 prange, prange->start, prange->last);
2236 svm_range_add_to_svms(prange);
2237 svm_range_add_notifier_locked(mm, prange);
2238 /* TODO: implement deferred validation and mapping */
2239 break;
2240 default:
2241 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2242 prange->work_item.op);
2243 }
2244 }
2245
svm_range_drain_retry_fault(struct svm_range_list * svms)2246 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2247 {
2248 struct kfd_process_device *pdd;
2249 struct kfd_process *p;
2250 int drain;
2251 uint32_t i;
2252
2253 p = container_of(svms, struct kfd_process, svms);
2254
2255 restart:
2256 drain = atomic_read(&svms->drain_pagefaults);
2257 if (!drain)
2258 return;
2259
2260 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2261 pdd = p->pdds[i];
2262 if (!pdd)
2263 continue;
2264
2265 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2266
2267 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2268 pdd->dev->adev->irq.retry_cam_enabled ?
2269 &pdd->dev->adev->irq.ih :
2270 &pdd->dev->adev->irq.ih1);
2271
2272 if (pdd->dev->adev->irq.retry_cam_enabled)
2273 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2274 &pdd->dev->adev->irq.ih_soft);
2275
2276
2277 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2278 }
2279 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2280 goto restart;
2281 }
2282
svm_range_deferred_list_work(struct work_struct * work)2283 static void svm_range_deferred_list_work(struct work_struct *work)
2284 {
2285 struct svm_range_list *svms;
2286 struct svm_range *prange;
2287 struct mm_struct *mm;
2288
2289 svms = container_of(work, struct svm_range_list, deferred_list_work);
2290 pr_debug("enter svms 0x%p\n", svms);
2291
2292 spin_lock(&svms->deferred_list_lock);
2293 while (!list_empty(&svms->deferred_range_list)) {
2294 prange = list_first_entry(&svms->deferred_range_list,
2295 struct svm_range, deferred_list);
2296 spin_unlock(&svms->deferred_list_lock);
2297
2298 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2299 prange->start, prange->last, prange->work_item.op);
2300
2301 mm = prange->work_item.mm;
2302 retry:
2303 mmap_write_lock(mm);
2304
2305 /* Checking for the need to drain retry faults must be inside
2306 * mmap write lock to serialize with munmap notifiers.
2307 */
2308 if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2309 mmap_write_unlock(mm);
2310 svm_range_drain_retry_fault(svms);
2311 goto retry;
2312 }
2313
2314 /* Remove from deferred_list must be inside mmap write lock, for
2315 * two race cases:
2316 * 1. unmap_from_cpu may change work_item.op and add the range
2317 * to deferred_list again, cause use after free bug.
2318 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2319 * lock and continue because deferred_list is empty, but
2320 * deferred_list work is actually waiting for mmap lock.
2321 */
2322 spin_lock(&svms->deferred_list_lock);
2323 list_del_init(&prange->deferred_list);
2324 spin_unlock(&svms->deferred_list_lock);
2325
2326 mutex_lock(&svms->lock);
2327 mutex_lock(&prange->migrate_mutex);
2328 while (!list_empty(&prange->child_list)) {
2329 struct svm_range *pchild;
2330
2331 pchild = list_first_entry(&prange->child_list,
2332 struct svm_range, child_list);
2333 pr_debug("child prange 0x%p op %d\n", pchild,
2334 pchild->work_item.op);
2335 list_del_init(&pchild->child_list);
2336 svm_range_handle_list_op(svms, pchild, mm);
2337 }
2338 mutex_unlock(&prange->migrate_mutex);
2339
2340 svm_range_handle_list_op(svms, prange, mm);
2341 mutex_unlock(&svms->lock);
2342 mmap_write_unlock(mm);
2343
2344 /* Pairs with mmget in svm_range_add_list_work */
2345 mmput(mm);
2346
2347 spin_lock(&svms->deferred_list_lock);
2348 }
2349 spin_unlock(&svms->deferred_list_lock);
2350 pr_debug("exit svms 0x%p\n", svms);
2351 }
2352
2353 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2354 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2355 struct mm_struct *mm, enum svm_work_list_ops op)
2356 {
2357 spin_lock(&svms->deferred_list_lock);
2358 /* if prange is on the deferred list */
2359 if (!list_empty(&prange->deferred_list)) {
2360 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2361 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2362 if (op != SVM_OP_NULL &&
2363 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2364 prange->work_item.op = op;
2365 } else {
2366 prange->work_item.op = op;
2367
2368 /* Pairs with mmput in deferred_list_work */
2369 mmget(mm);
2370 prange->work_item.mm = mm;
2371 list_add_tail(&prange->deferred_list,
2372 &prange->svms->deferred_range_list);
2373 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2374 prange, prange->start, prange->last, op);
2375 }
2376 spin_unlock(&svms->deferred_list_lock);
2377 }
2378
schedule_deferred_list_work(struct svm_range_list * svms)2379 void schedule_deferred_list_work(struct svm_range_list *svms)
2380 {
2381 spin_lock(&svms->deferred_list_lock);
2382 if (!list_empty(&svms->deferred_range_list))
2383 schedule_work(&svms->deferred_list_work);
2384 spin_unlock(&svms->deferred_list_lock);
2385 }
2386
2387 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2388 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2389 struct svm_range *prange, unsigned long start,
2390 unsigned long last)
2391 {
2392 struct svm_range *head;
2393 struct svm_range *tail;
2394
2395 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2396 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2397 prange->start, prange->last);
2398 return;
2399 }
2400 if (start > prange->last || last < prange->start)
2401 return;
2402
2403 head = tail = prange;
2404 if (start > prange->start)
2405 svm_range_split(prange, prange->start, start - 1, &tail);
2406 if (last < tail->last)
2407 svm_range_split(tail, last + 1, tail->last, &head);
2408
2409 if (head != prange && tail != prange) {
2410 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2411 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2412 } else if (tail != prange) {
2413 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2414 } else if (head != prange) {
2415 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2416 } else if (parent != prange) {
2417 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2418 }
2419 }
2420
2421 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2422 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2423 unsigned long start, unsigned long last)
2424 {
2425 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2426 struct svm_range_list *svms;
2427 struct svm_range *pchild;
2428 struct kfd_process *p;
2429 unsigned long s, l;
2430 bool unmap_parent;
2431
2432 p = kfd_lookup_process_by_mm(mm);
2433 if (!p)
2434 return;
2435 svms = &p->svms;
2436
2437 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2438 prange, prange->start, prange->last, start, last);
2439
2440 /* Make sure pending page faults are drained in the deferred worker
2441 * before the range is freed to avoid straggler interrupts on
2442 * unmapped memory causing "phantom faults".
2443 */
2444 atomic_inc(&svms->drain_pagefaults);
2445
2446 unmap_parent = start <= prange->start && last >= prange->last;
2447
2448 list_for_each_entry(pchild, &prange->child_list, child_list) {
2449 mutex_lock_nested(&pchild->lock, 1);
2450 s = max(start, pchild->start);
2451 l = min(last, pchild->last);
2452 if (l >= s)
2453 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2454 svm_range_unmap_split(mm, prange, pchild, start, last);
2455 mutex_unlock(&pchild->lock);
2456 }
2457 s = max(start, prange->start);
2458 l = min(last, prange->last);
2459 if (l >= s)
2460 svm_range_unmap_from_gpus(prange, s, l, trigger);
2461 svm_range_unmap_split(mm, prange, prange, start, last);
2462
2463 if (unmap_parent)
2464 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2465 else
2466 svm_range_add_list_work(svms, prange, mm,
2467 SVM_OP_UPDATE_RANGE_NOTIFIER);
2468 schedule_deferred_list_work(svms);
2469
2470 kfd_unref_process(p);
2471 }
2472
2473 /**
2474 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2475 * @mni: mmu_interval_notifier struct
2476 * @range: mmu_notifier_range struct
2477 * @cur_seq: value to pass to mmu_interval_set_seq()
2478 *
2479 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2480 * is from migration, or CPU page invalidation callback.
2481 *
2482 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2483 * work thread, and split prange if only part of prange is unmapped.
2484 *
2485 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2486 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2487 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2488 * update GPU mapping to recover.
2489 *
2490 * Context: mmap lock, notifier_invalidate_start lock are held
2491 * for invalidate event, prange lock is held if this is from migration
2492 */
2493 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2494 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2495 const struct mmu_notifier_range *range,
2496 unsigned long cur_seq)
2497 {
2498 struct svm_range *prange;
2499 unsigned long start;
2500 unsigned long last;
2501
2502 if (range->event == MMU_NOTIFY_RELEASE)
2503 return true;
2504 if (!mmget_not_zero(mni->mm))
2505 return true;
2506
2507 start = mni->interval_tree.start;
2508 last = mni->interval_tree.last;
2509 start = max(start, range->start) >> PAGE_SHIFT;
2510 last = min(last, range->end - 1) >> PAGE_SHIFT;
2511 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2512 start, last, range->start >> PAGE_SHIFT,
2513 (range->end - 1) >> PAGE_SHIFT,
2514 mni->interval_tree.start >> PAGE_SHIFT,
2515 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2516
2517 prange = container_of(mni, struct svm_range, notifier);
2518
2519 svm_range_lock(prange);
2520 mmu_interval_set_seq(mni, cur_seq);
2521
2522 switch (range->event) {
2523 case MMU_NOTIFY_UNMAP:
2524 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2525 break;
2526 default:
2527 svm_range_evict(prange, mni->mm, start, last, range->event);
2528 break;
2529 }
2530
2531 svm_range_unlock(prange);
2532 mmput(mni->mm);
2533
2534 return true;
2535 }
2536
2537 /**
2538 * svm_range_from_addr - find svm range from fault address
2539 * @svms: svm range list header
2540 * @addr: address to search range interval tree, in pages
2541 * @parent: parent range if range is on child list
2542 *
2543 * Context: The caller must hold svms->lock
2544 *
2545 * Return: the svm_range found or NULL
2546 */
2547 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2548 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2549 struct svm_range **parent)
2550 {
2551 struct interval_tree_node *node;
2552 struct svm_range *prange;
2553 struct svm_range *pchild;
2554
2555 node = interval_tree_iter_first(&svms->objects, addr, addr);
2556 if (!node)
2557 return NULL;
2558
2559 prange = container_of(node, struct svm_range, it_node);
2560 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2561 addr, prange->start, prange->last, node->start, node->last);
2562
2563 if (addr >= prange->start && addr <= prange->last) {
2564 if (parent)
2565 *parent = prange;
2566 return prange;
2567 }
2568 list_for_each_entry(pchild, &prange->child_list, child_list)
2569 if (addr >= pchild->start && addr <= pchild->last) {
2570 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2571 addr, pchild->start, pchild->last);
2572 if (parent)
2573 *parent = prange;
2574 return pchild;
2575 }
2576
2577 return NULL;
2578 }
2579
2580 /* svm_range_best_restore_location - decide the best fault restore location
2581 * @prange: svm range structure
2582 * @adev: the GPU on which vm fault happened
2583 *
2584 * This is only called when xnack is on, to decide the best location to restore
2585 * the range mapping after GPU vm fault. Caller uses the best location to do
2586 * migration if actual loc is not best location, then update GPU page table
2587 * mapping to the best location.
2588 *
2589 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2590 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2591 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2592 * if range actual loc is cpu, best_loc is cpu
2593 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2594 * range actual loc.
2595 * Otherwise, GPU no access, best_loc is -1.
2596 *
2597 * Return:
2598 * -1 means vm fault GPU no access
2599 * 0 for CPU or GPU id
2600 */
2601 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2602 svm_range_best_restore_location(struct svm_range *prange,
2603 struct kfd_node *node,
2604 int32_t *gpuidx)
2605 {
2606 struct kfd_node *bo_node, *preferred_node;
2607 struct kfd_process *p;
2608 uint32_t gpuid;
2609 int r;
2610
2611 p = container_of(prange->svms, struct kfd_process, svms);
2612
2613 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2614 if (r < 0) {
2615 pr_debug("failed to get gpuid from kgd\n");
2616 return -1;
2617 }
2618
2619 if (node->adev->gmc.is_app_apu)
2620 return 0;
2621
2622 if (prange->preferred_loc == gpuid ||
2623 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2624 return prange->preferred_loc;
2625 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2626 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2627 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2628 return prange->preferred_loc;
2629 /* fall through */
2630 }
2631
2632 if (test_bit(*gpuidx, prange->bitmap_access))
2633 return gpuid;
2634
2635 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2636 if (!prange->actual_loc)
2637 return 0;
2638
2639 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2640 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2641 return prange->actual_loc;
2642 else
2643 return 0;
2644 }
2645
2646 return -1;
2647 }
2648
2649 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2650 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2651 unsigned long *start, unsigned long *last,
2652 bool *is_heap_stack)
2653 {
2654 struct vm_area_struct *vma;
2655 struct interval_tree_node *node;
2656 unsigned long start_limit, end_limit;
2657
2658 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2659 if (!vma) {
2660 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2661 return -EFAULT;
2662 }
2663
2664 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2665
2666 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2667 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2668 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2669 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2670 /* First range that starts after the fault address */
2671 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2672 if (node) {
2673 end_limit = min(end_limit, node->start);
2674 /* Last range that ends before the fault address */
2675 node = container_of(rb_prev(&node->rb),
2676 struct interval_tree_node, rb);
2677 } else {
2678 /* Last range must end before addr because
2679 * there was no range after addr
2680 */
2681 node = container_of(rb_last(&p->svms.objects.rb_root),
2682 struct interval_tree_node, rb);
2683 }
2684 if (node) {
2685 if (node->last >= addr) {
2686 WARN(1, "Overlap with prev node and page fault addr\n");
2687 return -EFAULT;
2688 }
2689 start_limit = max(start_limit, node->last + 1);
2690 }
2691
2692 *start = start_limit;
2693 *last = end_limit - 1;
2694
2695 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2696 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2697 *start, *last, *is_heap_stack);
2698
2699 return 0;
2700 }
2701
2702 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2703 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2704 uint64_t *bo_s, uint64_t *bo_l)
2705 {
2706 struct amdgpu_bo_va_mapping *mapping;
2707 struct interval_tree_node *node;
2708 struct amdgpu_bo *bo = NULL;
2709 unsigned long userptr;
2710 uint32_t i;
2711 int r;
2712
2713 for (i = 0; i < p->n_pdds; i++) {
2714 struct amdgpu_vm *vm;
2715
2716 if (!p->pdds[i]->drm_priv)
2717 continue;
2718
2719 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2720 r = amdgpu_bo_reserve(vm->root.bo, false);
2721 if (r)
2722 return r;
2723
2724 /* Check userptr by searching entire vm->va interval tree */
2725 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2726 while (node) {
2727 mapping = container_of((struct rb_node *)node,
2728 struct amdgpu_bo_va_mapping, rb);
2729 bo = mapping->bo_va->base.bo;
2730
2731 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2732 start << PAGE_SHIFT,
2733 last << PAGE_SHIFT,
2734 &userptr)) {
2735 node = interval_tree_iter_next(node, 0, ~0ULL);
2736 continue;
2737 }
2738
2739 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2740 start, last);
2741 if (bo_s && bo_l) {
2742 *bo_s = userptr >> PAGE_SHIFT;
2743 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2744 }
2745 amdgpu_bo_unreserve(vm->root.bo);
2746 return -EADDRINUSE;
2747 }
2748 amdgpu_bo_unreserve(vm->root.bo);
2749 }
2750 return 0;
2751 }
2752
2753 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2754 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2755 struct kfd_process *p,
2756 struct mm_struct *mm,
2757 int64_t addr)
2758 {
2759 struct svm_range *prange = NULL;
2760 unsigned long start, last;
2761 uint32_t gpuid, gpuidx;
2762 bool is_heap_stack;
2763 uint64_t bo_s = 0;
2764 uint64_t bo_l = 0;
2765 int r;
2766
2767 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2768 &is_heap_stack))
2769 return NULL;
2770
2771 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2772 if (r != -EADDRINUSE)
2773 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2774
2775 if (r == -EADDRINUSE) {
2776 if (addr >= bo_s && addr <= bo_l)
2777 return NULL;
2778
2779 /* Create one page svm range if 2MB range overlapping */
2780 start = addr;
2781 last = addr;
2782 }
2783
2784 prange = svm_range_new(&p->svms, start, last, true);
2785 if (!prange) {
2786 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2787 return NULL;
2788 }
2789 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2790 pr_debug("failed to get gpuid from kgd\n");
2791 svm_range_free(prange, true);
2792 return NULL;
2793 }
2794
2795 if (is_heap_stack)
2796 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2797
2798 svm_range_add_to_svms(prange);
2799 svm_range_add_notifier_locked(mm, prange);
2800
2801 return prange;
2802 }
2803
2804 /* svm_range_skip_recover - decide if prange can be recovered
2805 * @prange: svm range structure
2806 *
2807 * GPU vm retry fault handle skip recover the range for cases:
2808 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2809 * deferred list work will drain the stale fault before free the prange.
2810 * 2. prange is on deferred list to add interval notifier after split, or
2811 * 3. prange is child range, it is split from parent prange, recover later
2812 * after interval notifier is added.
2813 *
2814 * Return: true to skip recover, false to recover
2815 */
svm_range_skip_recover(struct svm_range * prange)2816 static bool svm_range_skip_recover(struct svm_range *prange)
2817 {
2818 struct svm_range_list *svms = prange->svms;
2819
2820 spin_lock(&svms->deferred_list_lock);
2821 if (list_empty(&prange->deferred_list) &&
2822 list_empty(&prange->child_list)) {
2823 spin_unlock(&svms->deferred_list_lock);
2824 return false;
2825 }
2826 spin_unlock(&svms->deferred_list_lock);
2827
2828 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2829 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2830 svms, prange, prange->start, prange->last);
2831 return true;
2832 }
2833 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2834 prange->work_item.op == SVM_OP_ADD_RANGE) {
2835 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2836 svms, prange, prange->start, prange->last);
2837 return true;
2838 }
2839 return false;
2840 }
2841
2842 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2843 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2844 int32_t gpuidx)
2845 {
2846 struct kfd_process_device *pdd;
2847
2848 /* fault is on different page of same range
2849 * or fault is skipped to recover later
2850 * or fault is on invalid virtual address
2851 */
2852 if (gpuidx == MAX_GPU_INSTANCE) {
2853 uint32_t gpuid;
2854 int r;
2855
2856 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2857 if (r < 0)
2858 return;
2859 }
2860
2861 /* fault is recovered
2862 * or fault cannot recover because GPU no access on the range
2863 */
2864 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2865 if (pdd)
2866 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2867 }
2868
2869 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2870 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2871 {
2872 unsigned long requested = VM_READ;
2873
2874 if (write_fault)
2875 requested |= VM_WRITE;
2876
2877 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2878 vma->vm_flags);
2879 return (vma->vm_flags & requested) == requested;
2880 }
2881
2882 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,bool write_fault)2883 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2884 uint32_t vmid, uint32_t node_id,
2885 uint64_t addr, bool write_fault)
2886 {
2887 struct mm_struct *mm = NULL;
2888 struct svm_range_list *svms;
2889 struct svm_range *prange;
2890 struct kfd_process *p;
2891 ktime_t timestamp = ktime_get_boottime();
2892 struct kfd_node *node;
2893 int32_t best_loc;
2894 int32_t gpuidx = MAX_GPU_INSTANCE;
2895 bool write_locked = false;
2896 struct vm_area_struct *vma;
2897 bool migration = false;
2898 int r = 0;
2899
2900 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2901 pr_debug("device does not support SVM\n");
2902 return -EFAULT;
2903 }
2904
2905 p = kfd_lookup_process_by_pasid(pasid);
2906 if (!p) {
2907 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2908 return 0;
2909 }
2910 svms = &p->svms;
2911
2912 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2913
2914 if (atomic_read(&svms->drain_pagefaults)) {
2915 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2916 r = 0;
2917 goto out;
2918 }
2919
2920 if (!p->xnack_enabled) {
2921 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2922 r = -EFAULT;
2923 goto out;
2924 }
2925
2926 /* p->lead_thread is available as kfd_process_wq_release flush the work
2927 * before releasing task ref.
2928 */
2929 mm = get_task_mm(p->lead_thread);
2930 if (!mm) {
2931 pr_debug("svms 0x%p failed to get mm\n", svms);
2932 r = 0;
2933 goto out;
2934 }
2935
2936 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2937 if (!node) {
2938 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2939 vmid);
2940 r = -EFAULT;
2941 goto out;
2942 }
2943 mmap_read_lock(mm);
2944 retry_write_locked:
2945 mutex_lock(&svms->lock);
2946 prange = svm_range_from_addr(svms, addr, NULL);
2947 if (!prange) {
2948 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2949 svms, addr);
2950 if (!write_locked) {
2951 /* Need the write lock to create new range with MMU notifier.
2952 * Also flush pending deferred work to make sure the interval
2953 * tree is up to date before we add a new range
2954 */
2955 mutex_unlock(&svms->lock);
2956 mmap_read_unlock(mm);
2957 mmap_write_lock(mm);
2958 write_locked = true;
2959 goto retry_write_locked;
2960 }
2961 prange = svm_range_create_unregistered_range(node, p, mm, addr);
2962 if (!prange) {
2963 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2964 svms, addr);
2965 mmap_write_downgrade(mm);
2966 r = -EFAULT;
2967 goto out_unlock_svms;
2968 }
2969 }
2970 if (write_locked)
2971 mmap_write_downgrade(mm);
2972
2973 mutex_lock(&prange->migrate_mutex);
2974
2975 if (svm_range_skip_recover(prange)) {
2976 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2977 r = 0;
2978 goto out_unlock_range;
2979 }
2980
2981 /* skip duplicate vm fault on different pages of same range */
2982 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2983 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2984 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2985 svms, prange->start, prange->last);
2986 r = 0;
2987 goto out_unlock_range;
2988 }
2989
2990 /* __do_munmap removed VMA, return success as we are handling stale
2991 * retry fault.
2992 */
2993 vma = vma_lookup(mm, addr << PAGE_SHIFT);
2994 if (!vma) {
2995 pr_debug("address 0x%llx VMA is removed\n", addr);
2996 r = 0;
2997 goto out_unlock_range;
2998 }
2999
3000 if (!svm_fault_allowed(vma, write_fault)) {
3001 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3002 write_fault ? "write" : "read");
3003 r = -EPERM;
3004 goto out_unlock_range;
3005 }
3006
3007 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3008 if (best_loc == -1) {
3009 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3010 svms, prange->start, prange->last);
3011 r = -EACCES;
3012 goto out_unlock_range;
3013 }
3014
3015 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3016 svms, prange->start, prange->last, best_loc,
3017 prange->actual_loc);
3018
3019 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3020 write_fault, timestamp);
3021
3022 if (prange->actual_loc != best_loc) {
3023 migration = true;
3024 if (best_loc) {
3025 r = svm_migrate_to_vram(prange, best_loc, mm,
3026 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3027 if (r) {
3028 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3029 r, addr);
3030 /* Fallback to system memory if migration to
3031 * VRAM failed
3032 */
3033 if (prange->actual_loc)
3034 r = svm_migrate_vram_to_ram(prange, mm,
3035 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3036 NULL);
3037 else
3038 r = 0;
3039 }
3040 } else {
3041 r = svm_migrate_vram_to_ram(prange, mm,
3042 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3043 NULL);
3044 }
3045 if (r) {
3046 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3047 r, svms, prange->start, prange->last);
3048 goto out_unlock_range;
3049 }
3050 }
3051
3052 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3053 if (r)
3054 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3055 r, svms, prange->start, prange->last);
3056
3057 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3058 migration);
3059
3060 out_unlock_range:
3061 mutex_unlock(&prange->migrate_mutex);
3062 out_unlock_svms:
3063 mutex_unlock(&svms->lock);
3064 mmap_read_unlock(mm);
3065
3066 svm_range_count_fault(node, p, gpuidx);
3067
3068 mmput(mm);
3069 out:
3070 kfd_unref_process(p);
3071
3072 if (r == -EAGAIN) {
3073 pr_debug("recover vm fault later\n");
3074 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3075 r = 0;
3076 }
3077 return r;
3078 }
3079
3080 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3081 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3082 {
3083 struct svm_range *prange, *pchild;
3084 uint64_t reserved_size = 0;
3085 uint64_t size;
3086 int r = 0;
3087
3088 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3089
3090 mutex_lock(&p->svms.lock);
3091
3092 list_for_each_entry(prange, &p->svms.list, list) {
3093 svm_range_lock(prange);
3094 list_for_each_entry(pchild, &prange->child_list, child_list) {
3095 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3096 if (xnack_enabled) {
3097 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3098 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3099 } else {
3100 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3101 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3102 if (r)
3103 goto out_unlock;
3104 reserved_size += size;
3105 }
3106 }
3107
3108 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3109 if (xnack_enabled) {
3110 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3111 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3112 } else {
3113 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3114 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3115 if (r)
3116 goto out_unlock;
3117 reserved_size += size;
3118 }
3119 out_unlock:
3120 svm_range_unlock(prange);
3121 if (r)
3122 break;
3123 }
3124
3125 if (r)
3126 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3127 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3128 else
3129 /* Change xnack mode must be inside svms lock, to avoid race with
3130 * svm_range_deferred_list_work unreserve memory in parallel.
3131 */
3132 p->xnack_enabled = xnack_enabled;
3133
3134 mutex_unlock(&p->svms.lock);
3135 return r;
3136 }
3137
svm_range_list_fini(struct kfd_process * p)3138 void svm_range_list_fini(struct kfd_process *p)
3139 {
3140 struct svm_range *prange;
3141 struct svm_range *next;
3142
3143 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3144
3145 cancel_delayed_work_sync(&p->svms.restore_work);
3146
3147 /* Ensure list work is finished before process is destroyed */
3148 flush_work(&p->svms.deferred_list_work);
3149
3150 /*
3151 * Ensure no retry fault comes in afterwards, as page fault handler will
3152 * not find kfd process and take mm lock to recover fault.
3153 */
3154 atomic_inc(&p->svms.drain_pagefaults);
3155 svm_range_drain_retry_fault(&p->svms);
3156
3157 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3158 svm_range_unlink(prange);
3159 svm_range_remove_notifier(prange);
3160 svm_range_free(prange, true);
3161 }
3162
3163 mutex_destroy(&p->svms.lock);
3164
3165 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3166 }
3167
svm_range_list_init(struct kfd_process * p)3168 int svm_range_list_init(struct kfd_process *p)
3169 {
3170 struct svm_range_list *svms = &p->svms;
3171 int i;
3172
3173 svms->objects = RB_ROOT_CACHED;
3174 mutex_init(&svms->lock);
3175 INIT_LIST_HEAD(&svms->list);
3176 atomic_set(&svms->evicted_ranges, 0);
3177 atomic_set(&svms->drain_pagefaults, 0);
3178 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3179 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3180 INIT_LIST_HEAD(&svms->deferred_range_list);
3181 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3182 spin_lock_init(&svms->deferred_list_lock);
3183
3184 for (i = 0; i < p->n_pdds; i++)
3185 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3186 bitmap_set(svms->bitmap_supported, i, 1);
3187
3188 return 0;
3189 }
3190
3191 /**
3192 * svm_range_check_vm - check if virtual address range mapped already
3193 * @p: current kfd_process
3194 * @start: range start address, in pages
3195 * @last: range last address, in pages
3196 * @bo_s: mapping start address in pages if address range already mapped
3197 * @bo_l: mapping last address in pages if address range already mapped
3198 *
3199 * The purpose is to avoid virtual address ranges already allocated by
3200 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3201 * It looks for each pdd in the kfd_process.
3202 *
3203 * Context: Process context
3204 *
3205 * Return 0 - OK, if the range is not mapped.
3206 * Otherwise error code:
3207 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3208 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3209 * a signal. Release all buffer reservations and return to user-space.
3210 */
3211 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3212 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3213 uint64_t *bo_s, uint64_t *bo_l)
3214 {
3215 struct amdgpu_bo_va_mapping *mapping;
3216 struct interval_tree_node *node;
3217 uint32_t i;
3218 int r;
3219
3220 for (i = 0; i < p->n_pdds; i++) {
3221 struct amdgpu_vm *vm;
3222
3223 if (!p->pdds[i]->drm_priv)
3224 continue;
3225
3226 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3227 r = amdgpu_bo_reserve(vm->root.bo, false);
3228 if (r)
3229 return r;
3230
3231 node = interval_tree_iter_first(&vm->va, start, last);
3232 if (node) {
3233 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3234 start, last);
3235 mapping = container_of((struct rb_node *)node,
3236 struct amdgpu_bo_va_mapping, rb);
3237 if (bo_s && bo_l) {
3238 *bo_s = mapping->start;
3239 *bo_l = mapping->last;
3240 }
3241 amdgpu_bo_unreserve(vm->root.bo);
3242 return -EADDRINUSE;
3243 }
3244 amdgpu_bo_unreserve(vm->root.bo);
3245 }
3246
3247 return 0;
3248 }
3249
3250 /**
3251 * svm_range_is_valid - check if virtual address range is valid
3252 * @p: current kfd_process
3253 * @start: range start address, in pages
3254 * @size: range size, in pages
3255 *
3256 * Valid virtual address range means it belongs to one or more VMAs
3257 *
3258 * Context: Process context
3259 *
3260 * Return:
3261 * 0 - OK, otherwise error code
3262 */
3263 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3264 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3265 {
3266 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3267 struct vm_area_struct *vma;
3268 unsigned long end;
3269 unsigned long start_unchg = start;
3270
3271 start <<= PAGE_SHIFT;
3272 end = start + (size << PAGE_SHIFT);
3273 do {
3274 vma = vma_lookup(p->mm, start);
3275 if (!vma || (vma->vm_flags & device_vma))
3276 return -EFAULT;
3277 start = min(end, vma->vm_end);
3278 } while (start < end);
3279
3280 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3281 NULL);
3282 }
3283
3284 /**
3285 * svm_range_best_prefetch_location - decide the best prefetch location
3286 * @prange: svm range structure
3287 *
3288 * For xnack off:
3289 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3290 * can be CPU or GPU.
3291 *
3292 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3293 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3294 * the best prefetch location is always CPU, because GPU can not have coherent
3295 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3296 *
3297 * For xnack on:
3298 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3299 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3300 *
3301 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3302 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3303 * prefetch location is always CPU.
3304 *
3305 * Context: Process context
3306 *
3307 * Return:
3308 * 0 for CPU or GPU id
3309 */
3310 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3311 svm_range_best_prefetch_location(struct svm_range *prange)
3312 {
3313 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3314 uint32_t best_loc = prange->prefetch_loc;
3315 struct kfd_process_device *pdd;
3316 struct kfd_node *bo_node;
3317 struct kfd_process *p;
3318 uint32_t gpuidx;
3319
3320 p = container_of(prange->svms, struct kfd_process, svms);
3321
3322 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3323 goto out;
3324
3325 bo_node = svm_range_get_node_by_id(prange, best_loc);
3326 if (!bo_node) {
3327 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3328 best_loc = 0;
3329 goto out;
3330 }
3331
3332 if (bo_node->adev->gmc.is_app_apu) {
3333 best_loc = 0;
3334 goto out;
3335 }
3336
3337 if (p->xnack_enabled)
3338 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3339 else
3340 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3341 MAX_GPU_INSTANCE);
3342
3343 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3344 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3345 if (!pdd) {
3346 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3347 continue;
3348 }
3349
3350 if (pdd->dev->adev == bo_node->adev)
3351 continue;
3352
3353 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3354 best_loc = 0;
3355 break;
3356 }
3357 }
3358
3359 out:
3360 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3361 p->xnack_enabled, &p->svms, prange->start, prange->last,
3362 best_loc);
3363
3364 return best_loc;
3365 }
3366
3367 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3368 * @mm: current process mm_struct
3369 * @prange: svm range structure
3370 * @migrated: output, true if migration is triggered
3371 *
3372 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3373 * from ram to vram.
3374 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3375 * from vram to ram.
3376 *
3377 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3378 * and restore work:
3379 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3380 * stops all queues, schedule restore work
3381 * 2. svm_range_restore_work wait for migration is done by
3382 * a. svm_range_validate_vram takes prange->migrate_mutex
3383 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3384 * 3. restore work update mappings of GPU, resume all queues.
3385 *
3386 * Context: Process context
3387 *
3388 * Return:
3389 * 0 - OK, otherwise - error code of migration
3390 */
3391 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3392 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3393 bool *migrated)
3394 {
3395 uint32_t best_loc;
3396 int r = 0;
3397
3398 *migrated = false;
3399 best_loc = svm_range_best_prefetch_location(prange);
3400
3401 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3402 best_loc == prange->actual_loc)
3403 return 0;
3404
3405 if (!best_loc) {
3406 r = svm_migrate_vram_to_ram(prange, mm,
3407 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3408 *migrated = !r;
3409 return r;
3410 }
3411
3412 r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3413 *migrated = !r;
3414
3415 return r;
3416 }
3417
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3418 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3419 {
3420 if (!fence)
3421 return -EINVAL;
3422
3423 if (dma_fence_is_signaled(&fence->base))
3424 return 0;
3425
3426 if (fence->svm_bo) {
3427 WRITE_ONCE(fence->svm_bo->evicting, 1);
3428 schedule_work(&fence->svm_bo->eviction_work);
3429 }
3430
3431 return 0;
3432 }
3433
svm_range_evict_svm_bo_worker(struct work_struct * work)3434 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3435 {
3436 struct svm_range_bo *svm_bo;
3437 struct mm_struct *mm;
3438 int r = 0;
3439
3440 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3441 if (!svm_bo_ref_unless_zero(svm_bo))
3442 return; /* svm_bo was freed while eviction was pending */
3443
3444 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3445 mm = svm_bo->eviction_fence->mm;
3446 } else {
3447 svm_range_bo_unref(svm_bo);
3448 return;
3449 }
3450
3451 mmap_read_lock(mm);
3452 spin_lock(&svm_bo->list_lock);
3453 while (!list_empty(&svm_bo->range_list) && !r) {
3454 struct svm_range *prange =
3455 list_first_entry(&svm_bo->range_list,
3456 struct svm_range, svm_bo_list);
3457 int retries = 3;
3458
3459 list_del_init(&prange->svm_bo_list);
3460 spin_unlock(&svm_bo->list_lock);
3461
3462 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3463 prange->start, prange->last);
3464
3465 mutex_lock(&prange->migrate_mutex);
3466 do {
3467 r = svm_migrate_vram_to_ram(prange, mm,
3468 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3469 } while (!r && prange->actual_loc && --retries);
3470
3471 if (!r && prange->actual_loc)
3472 pr_info_once("Migration failed during eviction");
3473
3474 if (!prange->actual_loc) {
3475 mutex_lock(&prange->lock);
3476 prange->svm_bo = NULL;
3477 mutex_unlock(&prange->lock);
3478 }
3479 mutex_unlock(&prange->migrate_mutex);
3480
3481 spin_lock(&svm_bo->list_lock);
3482 }
3483 spin_unlock(&svm_bo->list_lock);
3484 mmap_read_unlock(mm);
3485 mmput(mm);
3486
3487 dma_fence_signal(&svm_bo->eviction_fence->base);
3488
3489 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3490 * has been called in svm_migrate_vram_to_ram
3491 */
3492 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3493 svm_range_bo_unref(svm_bo);
3494 }
3495
3496 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3497 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3498 uint64_t start, uint64_t size, uint32_t nattr,
3499 struct kfd_ioctl_svm_attribute *attrs)
3500 {
3501 struct amdkfd_process_info *process_info = p->kgd_process_info;
3502 struct list_head update_list;
3503 struct list_head insert_list;
3504 struct list_head remove_list;
3505 struct svm_range_list *svms;
3506 struct svm_range *prange;
3507 struct svm_range *next;
3508 bool update_mapping = false;
3509 bool flush_tlb;
3510 int r = 0;
3511
3512 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3513 p->pasid, &p->svms, start, start + size - 1, size);
3514
3515 r = svm_range_check_attr(p, nattr, attrs);
3516 if (r)
3517 return r;
3518
3519 svms = &p->svms;
3520
3521 mutex_lock(&process_info->lock);
3522
3523 svm_range_list_lock_and_flush_work(svms, mm);
3524
3525 r = svm_range_is_valid(p, start, size);
3526 if (r) {
3527 pr_debug("invalid range r=%d\n", r);
3528 mmap_write_unlock(mm);
3529 goto out;
3530 }
3531
3532 mutex_lock(&svms->lock);
3533
3534 /* Add new range and split existing ranges as needed */
3535 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3536 &insert_list, &remove_list);
3537 if (r) {
3538 mutex_unlock(&svms->lock);
3539 mmap_write_unlock(mm);
3540 goto out;
3541 }
3542 /* Apply changes as a transaction */
3543 list_for_each_entry_safe(prange, next, &insert_list, list) {
3544 svm_range_add_to_svms(prange);
3545 svm_range_add_notifier_locked(mm, prange);
3546 }
3547 list_for_each_entry(prange, &update_list, update_list) {
3548 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3549 /* TODO: unmap ranges from GPU that lost access */
3550 }
3551 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3552 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3553 prange->svms, prange, prange->start,
3554 prange->last);
3555 svm_range_unlink(prange);
3556 svm_range_remove_notifier(prange);
3557 svm_range_free(prange, false);
3558 }
3559
3560 mmap_write_downgrade(mm);
3561 /* Trigger migrations and revalidate and map to GPUs as needed. If
3562 * this fails we may be left with partially completed actions. There
3563 * is no clean way of rolling back to the previous state in such a
3564 * case because the rollback wouldn't be guaranteed to work either.
3565 */
3566 list_for_each_entry(prange, &update_list, update_list) {
3567 bool migrated;
3568
3569 mutex_lock(&prange->migrate_mutex);
3570
3571 r = svm_range_trigger_migration(mm, prange, &migrated);
3572 if (r)
3573 goto out_unlock_range;
3574
3575 if (migrated && (!p->xnack_enabled ||
3576 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3577 prange->mapped_to_gpu) {
3578 pr_debug("restore_work will update mappings of GPUs\n");
3579 mutex_unlock(&prange->migrate_mutex);
3580 continue;
3581 }
3582
3583 if (!migrated && !update_mapping) {
3584 mutex_unlock(&prange->migrate_mutex);
3585 continue;
3586 }
3587
3588 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3589
3590 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3591 true, true, flush_tlb);
3592 if (r)
3593 pr_debug("failed %d to map svm range\n", r);
3594
3595 out_unlock_range:
3596 mutex_unlock(&prange->migrate_mutex);
3597 if (r)
3598 break;
3599 }
3600
3601 dynamic_svm_range_dump(svms);
3602
3603 mutex_unlock(&svms->lock);
3604 mmap_read_unlock(mm);
3605 out:
3606 mutex_unlock(&process_info->lock);
3607
3608 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3609 &p->svms, start, start + size - 1, r);
3610
3611 return r;
3612 }
3613
3614 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3615 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3616 uint64_t start, uint64_t size, uint32_t nattr,
3617 struct kfd_ioctl_svm_attribute *attrs)
3618 {
3619 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3620 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3621 bool get_preferred_loc = false;
3622 bool get_prefetch_loc = false;
3623 bool get_granularity = false;
3624 bool get_accessible = false;
3625 bool get_flags = false;
3626 uint64_t last = start + size - 1UL;
3627 uint8_t granularity = 0xff;
3628 struct interval_tree_node *node;
3629 struct svm_range_list *svms;
3630 struct svm_range *prange;
3631 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3632 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3633 uint32_t flags_and = 0xffffffff;
3634 uint32_t flags_or = 0;
3635 int gpuidx;
3636 uint32_t i;
3637 int r = 0;
3638
3639 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3640 start + size - 1, nattr);
3641
3642 /* Flush pending deferred work to avoid racing with deferred actions from
3643 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3644 * can still race with get_attr because we don't hold the mmap lock. But that
3645 * would be a race condition in the application anyway, and undefined
3646 * behaviour is acceptable in that case.
3647 */
3648 flush_work(&p->svms.deferred_list_work);
3649
3650 mmap_read_lock(mm);
3651 r = svm_range_is_valid(p, start, size);
3652 mmap_read_unlock(mm);
3653 if (r) {
3654 pr_debug("invalid range r=%d\n", r);
3655 return r;
3656 }
3657
3658 for (i = 0; i < nattr; i++) {
3659 switch (attrs[i].type) {
3660 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3661 get_preferred_loc = true;
3662 break;
3663 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3664 get_prefetch_loc = true;
3665 break;
3666 case KFD_IOCTL_SVM_ATTR_ACCESS:
3667 get_accessible = true;
3668 break;
3669 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3670 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3671 get_flags = true;
3672 break;
3673 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3674 get_granularity = true;
3675 break;
3676 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3677 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3678 fallthrough;
3679 default:
3680 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3681 return -EINVAL;
3682 }
3683 }
3684
3685 svms = &p->svms;
3686
3687 mutex_lock(&svms->lock);
3688
3689 node = interval_tree_iter_first(&svms->objects, start, last);
3690 if (!node) {
3691 pr_debug("range attrs not found return default values\n");
3692 svm_range_set_default_attributes(&location, &prefetch_loc,
3693 &granularity, &flags_and);
3694 flags_or = flags_and;
3695 if (p->xnack_enabled)
3696 bitmap_copy(bitmap_access, svms->bitmap_supported,
3697 MAX_GPU_INSTANCE);
3698 else
3699 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3700 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3701 goto fill_values;
3702 }
3703 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3704 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3705
3706 while (node) {
3707 struct interval_tree_node *next;
3708
3709 prange = container_of(node, struct svm_range, it_node);
3710 next = interval_tree_iter_next(node, start, last);
3711
3712 if (get_preferred_loc) {
3713 if (prange->preferred_loc ==
3714 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3715 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3716 location != prange->preferred_loc)) {
3717 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3718 get_preferred_loc = false;
3719 } else {
3720 location = prange->preferred_loc;
3721 }
3722 }
3723 if (get_prefetch_loc) {
3724 if (prange->prefetch_loc ==
3725 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3726 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3727 prefetch_loc != prange->prefetch_loc)) {
3728 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3729 get_prefetch_loc = false;
3730 } else {
3731 prefetch_loc = prange->prefetch_loc;
3732 }
3733 }
3734 if (get_accessible) {
3735 bitmap_and(bitmap_access, bitmap_access,
3736 prange->bitmap_access, MAX_GPU_INSTANCE);
3737 bitmap_and(bitmap_aip, bitmap_aip,
3738 prange->bitmap_aip, MAX_GPU_INSTANCE);
3739 }
3740 if (get_flags) {
3741 flags_and &= prange->flags;
3742 flags_or |= prange->flags;
3743 }
3744
3745 if (get_granularity && prange->granularity < granularity)
3746 granularity = prange->granularity;
3747
3748 node = next;
3749 }
3750 fill_values:
3751 mutex_unlock(&svms->lock);
3752
3753 for (i = 0; i < nattr; i++) {
3754 switch (attrs[i].type) {
3755 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3756 attrs[i].value = location;
3757 break;
3758 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3759 attrs[i].value = prefetch_loc;
3760 break;
3761 case KFD_IOCTL_SVM_ATTR_ACCESS:
3762 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3763 attrs[i].value);
3764 if (gpuidx < 0) {
3765 pr_debug("invalid gpuid %x\n", attrs[i].value);
3766 return -EINVAL;
3767 }
3768 if (test_bit(gpuidx, bitmap_access))
3769 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3770 else if (test_bit(gpuidx, bitmap_aip))
3771 attrs[i].type =
3772 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3773 else
3774 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3775 break;
3776 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3777 attrs[i].value = flags_and;
3778 break;
3779 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3780 attrs[i].value = ~flags_or;
3781 break;
3782 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3783 attrs[i].value = (uint32_t)granularity;
3784 break;
3785 }
3786 }
3787
3788 return 0;
3789 }
3790
kfd_criu_resume_svm(struct kfd_process * p)3791 int kfd_criu_resume_svm(struct kfd_process *p)
3792 {
3793 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3794 int nattr_common = 4, nattr_accessibility = 1;
3795 struct criu_svm_metadata *criu_svm_md = NULL;
3796 struct svm_range_list *svms = &p->svms;
3797 struct criu_svm_metadata *next = NULL;
3798 uint32_t set_flags = 0xffffffff;
3799 int i, j, num_attrs, ret = 0;
3800 uint64_t set_attr_size;
3801 struct mm_struct *mm;
3802
3803 if (list_empty(&svms->criu_svm_metadata_list)) {
3804 pr_debug("No SVM data from CRIU restore stage 2\n");
3805 return ret;
3806 }
3807
3808 mm = get_task_mm(p->lead_thread);
3809 if (!mm) {
3810 pr_err("failed to get mm for the target process\n");
3811 return -ESRCH;
3812 }
3813
3814 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3815
3816 i = j = 0;
3817 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3818 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3819 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3820
3821 for (j = 0; j < num_attrs; j++) {
3822 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3823 i, j, criu_svm_md->data.attrs[j].type,
3824 i, j, criu_svm_md->data.attrs[j].value);
3825 switch (criu_svm_md->data.attrs[j].type) {
3826 /* During Checkpoint operation, the query for
3827 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3828 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3829 * not used by the range which was checkpointed. Care
3830 * must be taken to not restore with an invalid value
3831 * otherwise the gpuidx value will be invalid and
3832 * set_attr would eventually fail so just replace those
3833 * with another dummy attribute such as
3834 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3835 */
3836 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3837 if (criu_svm_md->data.attrs[j].value ==
3838 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3839 criu_svm_md->data.attrs[j].type =
3840 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3841 criu_svm_md->data.attrs[j].value = 0;
3842 }
3843 break;
3844 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3845 set_flags = criu_svm_md->data.attrs[j].value;
3846 break;
3847 default:
3848 break;
3849 }
3850 }
3851
3852 /* CLR_FLAGS is not available via get_attr during checkpoint but
3853 * it needs to be inserted before restoring the ranges so
3854 * allocate extra space for it before calling set_attr
3855 */
3856 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3857 (num_attrs + 1);
3858 set_attr_new = krealloc(set_attr, set_attr_size,
3859 GFP_KERNEL);
3860 if (!set_attr_new) {
3861 ret = -ENOMEM;
3862 goto exit;
3863 }
3864 set_attr = set_attr_new;
3865
3866 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3867 sizeof(struct kfd_ioctl_svm_attribute));
3868 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3869 set_attr[num_attrs].value = ~set_flags;
3870
3871 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3872 criu_svm_md->data.size, num_attrs + 1,
3873 set_attr);
3874 if (ret) {
3875 pr_err("CRIU: failed to set range attributes\n");
3876 goto exit;
3877 }
3878
3879 i++;
3880 }
3881 exit:
3882 kfree(set_attr);
3883 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3884 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3885 criu_svm_md->data.start_addr);
3886 kfree(criu_svm_md);
3887 }
3888
3889 mmput(mm);
3890 return ret;
3891
3892 }
3893
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)3894 int kfd_criu_restore_svm(struct kfd_process *p,
3895 uint8_t __user *user_priv_ptr,
3896 uint64_t *priv_data_offset,
3897 uint64_t max_priv_data_size)
3898 {
3899 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3900 int nattr_common = 4, nattr_accessibility = 1;
3901 struct criu_svm_metadata *criu_svm_md = NULL;
3902 struct svm_range_list *svms = &p->svms;
3903 uint32_t num_devices;
3904 int ret = 0;
3905
3906 num_devices = p->n_pdds;
3907 /* Handle one SVM range object at a time, also the number of gpus are
3908 * assumed to be same on the restore node, checking must be done while
3909 * evaluating the topology earlier
3910 */
3911
3912 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3913 (nattr_common + nattr_accessibility * num_devices);
3914 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3915
3916 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3917 svm_attrs_size;
3918
3919 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3920 if (!criu_svm_md) {
3921 pr_err("failed to allocate memory to store svm metadata\n");
3922 return -ENOMEM;
3923 }
3924 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3925 ret = -EINVAL;
3926 goto exit;
3927 }
3928
3929 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3930 svm_priv_data_size);
3931 if (ret) {
3932 ret = -EFAULT;
3933 goto exit;
3934 }
3935 *priv_data_offset += svm_priv_data_size;
3936
3937 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3938
3939 return 0;
3940
3941
3942 exit:
3943 kfree(criu_svm_md);
3944 return ret;
3945 }
3946
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)3947 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3948 uint64_t *svm_priv_data_size)
3949 {
3950 uint64_t total_size, accessibility_size, common_attr_size;
3951 int nattr_common = 4, nattr_accessibility = 1;
3952 int num_devices = p->n_pdds;
3953 struct svm_range_list *svms;
3954 struct svm_range *prange;
3955 uint32_t count = 0;
3956
3957 *svm_priv_data_size = 0;
3958
3959 svms = &p->svms;
3960 if (!svms)
3961 return -EINVAL;
3962
3963 mutex_lock(&svms->lock);
3964 list_for_each_entry(prange, &svms->list, list) {
3965 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3966 prange, prange->start, prange->npages,
3967 prange->start + prange->npages - 1);
3968 count++;
3969 }
3970 mutex_unlock(&svms->lock);
3971
3972 *num_svm_ranges = count;
3973 /* Only the accessbility attributes need to be queried for all the gpus
3974 * individually, remaining ones are spanned across the entire process
3975 * regardless of the various gpu nodes. Of the remaining attributes,
3976 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
3977 *
3978 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
3979 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
3980 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
3981 * KFD_IOCTL_SVM_ATTR_GRANULARITY
3982 *
3983 * ** ACCESSBILITY ATTRIBUTES **
3984 * (Considered as one, type is altered during query, value is gpuid)
3985 * KFD_IOCTL_SVM_ATTR_ACCESS
3986 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
3987 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
3988 */
3989 if (*num_svm_ranges > 0) {
3990 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3991 nattr_common;
3992 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
3993 nattr_accessibility * num_devices;
3994
3995 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3996 common_attr_size + accessibility_size;
3997
3998 *svm_priv_data_size = *num_svm_ranges * total_size;
3999 }
4000
4001 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4002 *svm_priv_data_size);
4003 return 0;
4004 }
4005
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4006 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4007 uint8_t __user *user_priv_data,
4008 uint64_t *priv_data_offset)
4009 {
4010 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4011 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4012 uint64_t svm_priv_data_size, query_attr_size = 0;
4013 int index, nattr_common = 4, ret = 0;
4014 struct svm_range_list *svms;
4015 int num_devices = p->n_pdds;
4016 struct svm_range *prange;
4017 struct mm_struct *mm;
4018
4019 svms = &p->svms;
4020 if (!svms)
4021 return -EINVAL;
4022
4023 mm = get_task_mm(p->lead_thread);
4024 if (!mm) {
4025 pr_err("failed to get mm for the target process\n");
4026 return -ESRCH;
4027 }
4028
4029 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4030 (nattr_common + num_devices);
4031
4032 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4033 if (!query_attr) {
4034 ret = -ENOMEM;
4035 goto exit;
4036 }
4037
4038 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4039 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4040 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4041 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4042
4043 for (index = 0; index < num_devices; index++) {
4044 struct kfd_process_device *pdd = p->pdds[index];
4045
4046 query_attr[index + nattr_common].type =
4047 KFD_IOCTL_SVM_ATTR_ACCESS;
4048 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4049 }
4050
4051 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4052
4053 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4054 if (!svm_priv) {
4055 ret = -ENOMEM;
4056 goto exit_query;
4057 }
4058
4059 index = 0;
4060 list_for_each_entry(prange, &svms->list, list) {
4061
4062 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4063 svm_priv->start_addr = prange->start;
4064 svm_priv->size = prange->npages;
4065 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4066 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4067 prange, prange->start, prange->npages,
4068 prange->start + prange->npages - 1,
4069 prange->npages * PAGE_SIZE);
4070
4071 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4072 svm_priv->size,
4073 (nattr_common + num_devices),
4074 svm_priv->attrs);
4075 if (ret) {
4076 pr_err("CRIU: failed to obtain range attributes\n");
4077 goto exit_priv;
4078 }
4079
4080 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4081 svm_priv_data_size)) {
4082 pr_err("Failed to copy svm priv to user\n");
4083 ret = -EFAULT;
4084 goto exit_priv;
4085 }
4086
4087 *priv_data_offset += svm_priv_data_size;
4088
4089 }
4090
4091
4092 exit_priv:
4093 kfree(svm_priv);
4094 exit_query:
4095 kfree(query_attr);
4096 exit:
4097 mmput(mm);
4098 return ret;
4099 }
4100
4101 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4102 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4103 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4104 {
4105 struct mm_struct *mm = current->mm;
4106 int r;
4107
4108 start >>= PAGE_SHIFT;
4109 size >>= PAGE_SHIFT;
4110
4111 switch (op) {
4112 case KFD_IOCTL_SVM_OP_SET_ATTR:
4113 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4114 break;
4115 case KFD_IOCTL_SVM_OP_GET_ATTR:
4116 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4117 break;
4118 default:
4119 r = EINVAL;
4120 break;
4121 }
4122
4123 return r;
4124 }
4125