1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF CMA heap exporter
4 *
5 * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6 * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
7 *
8 * Also utilizing parts of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
11 */
12 #include <linux/cma.h>
13 #include <linux/dma-buf.h>
14 #include <linux/dma-heap.h>
15 #include <linux/dma-map-ops.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/io.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25
26 struct cma_heap {
27 struct dma_heap *heap;
28 struct cma *cma;
29 };
30
31 struct cma_heap_buffer {
32 struct cma_heap *heap;
33 struct list_head attachments;
34 struct mutex lock;
35 unsigned long len;
36 struct page *cma_pages;
37 struct page **pages;
38 pgoff_t pagecount;
39 int vmap_cnt;
40 void *vaddr;
41 };
42
43 struct dma_heap_attachment {
44 struct device *dev;
45 struct sg_table table;
46 struct list_head list;
47 bool mapped;
48 };
49
cma_heap_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)50 static int cma_heap_attach(struct dma_buf *dmabuf,
51 struct dma_buf_attachment *attachment)
52 {
53 struct cma_heap_buffer *buffer = dmabuf->priv;
54 struct dma_heap_attachment *a;
55 int ret;
56
57 a = kzalloc(sizeof(*a), GFP_KERNEL);
58 if (!a)
59 return -ENOMEM;
60
61 ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
62 buffer->pagecount, 0,
63 buffer->pagecount << PAGE_SHIFT,
64 GFP_KERNEL);
65 if (ret) {
66 kfree(a);
67 return ret;
68 }
69
70 a->dev = attachment->dev;
71 INIT_LIST_HEAD(&a->list);
72 a->mapped = false;
73
74 attachment->priv = a;
75
76 mutex_lock(&buffer->lock);
77 list_add(&a->list, &buffer->attachments);
78 mutex_unlock(&buffer->lock);
79
80 return 0;
81 }
82
cma_heap_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)83 static void cma_heap_detach(struct dma_buf *dmabuf,
84 struct dma_buf_attachment *attachment)
85 {
86 struct cma_heap_buffer *buffer = dmabuf->priv;
87 struct dma_heap_attachment *a = attachment->priv;
88
89 mutex_lock(&buffer->lock);
90 list_del(&a->list);
91 mutex_unlock(&buffer->lock);
92
93 sg_free_table(&a->table);
94 kfree(a);
95 }
96
cma_heap_map_dma_buf(struct dma_buf_attachment * attachment,enum dma_data_direction direction)97 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
98 enum dma_data_direction direction)
99 {
100 struct dma_heap_attachment *a = attachment->priv;
101 struct sg_table *table = &a->table;
102 int ret;
103
104 ret = dma_map_sgtable(attachment->dev, table, direction, 0);
105 if (ret)
106 return ERR_PTR(-ENOMEM);
107 a->mapped = true;
108 return table;
109 }
110
cma_heap_unmap_dma_buf(struct dma_buf_attachment * attachment,struct sg_table * table,enum dma_data_direction direction)111 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
112 struct sg_table *table,
113 enum dma_data_direction direction)
114 {
115 struct dma_heap_attachment *a = attachment->priv;
116
117 a->mapped = false;
118 dma_unmap_sgtable(attachment->dev, table, direction, 0);
119 }
120
cma_heap_dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)121 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
122 enum dma_data_direction direction)
123 {
124 struct cma_heap_buffer *buffer = dmabuf->priv;
125 struct dma_heap_attachment *a;
126
127 mutex_lock(&buffer->lock);
128
129 if (buffer->vmap_cnt)
130 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
131
132 list_for_each_entry(a, &buffer->attachments, list) {
133 if (!a->mapped)
134 continue;
135 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
136 }
137 mutex_unlock(&buffer->lock);
138
139 return 0;
140 }
141
cma_heap_dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)142 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
143 enum dma_data_direction direction)
144 {
145 struct cma_heap_buffer *buffer = dmabuf->priv;
146 struct dma_heap_attachment *a;
147
148 mutex_lock(&buffer->lock);
149
150 if (buffer->vmap_cnt)
151 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
152
153 list_for_each_entry(a, &buffer->attachments, list) {
154 if (!a->mapped)
155 continue;
156 dma_sync_sgtable_for_device(a->dev, &a->table, direction);
157 }
158 mutex_unlock(&buffer->lock);
159
160 return 0;
161 }
162
cma_heap_vm_fault(struct vm_fault * vmf)163 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
164 {
165 struct vm_area_struct *vma = vmf->vma;
166 struct cma_heap_buffer *buffer = vma->vm_private_data;
167
168 if (vmf->pgoff > buffer->pagecount)
169 return VM_FAULT_SIGBUS;
170
171 vmf->page = buffer->pages[vmf->pgoff];
172 get_page(vmf->page);
173
174 return 0;
175 }
176
177 static const struct vm_operations_struct dma_heap_vm_ops = {
178 .fault = cma_heap_vm_fault,
179 };
180
cma_heap_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma)181 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
182 {
183 struct cma_heap_buffer *buffer = dmabuf->priv;
184
185 if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
186 return -EINVAL;
187
188 vma->vm_ops = &dma_heap_vm_ops;
189 vma->vm_private_data = buffer;
190
191 return 0;
192 }
193
cma_heap_do_vmap(struct cma_heap_buffer * buffer)194 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
195 {
196 void *vaddr;
197
198 vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
199 if (!vaddr)
200 return ERR_PTR(-ENOMEM);
201
202 return vaddr;
203 }
204
cma_heap_vmap(struct dma_buf * dmabuf,struct iosys_map * map)205 static int cma_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
206 {
207 struct cma_heap_buffer *buffer = dmabuf->priv;
208 void *vaddr;
209 int ret = 0;
210
211 mutex_lock(&buffer->lock);
212 if (buffer->vmap_cnt) {
213 buffer->vmap_cnt++;
214 iosys_map_set_vaddr(map, buffer->vaddr);
215 goto out;
216 }
217
218 vaddr = cma_heap_do_vmap(buffer);
219 if (IS_ERR(vaddr)) {
220 ret = PTR_ERR(vaddr);
221 goto out;
222 }
223 buffer->vaddr = vaddr;
224 buffer->vmap_cnt++;
225 iosys_map_set_vaddr(map, buffer->vaddr);
226 out:
227 mutex_unlock(&buffer->lock);
228
229 return ret;
230 }
231
cma_heap_vunmap(struct dma_buf * dmabuf,struct iosys_map * map)232 static void cma_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
233 {
234 struct cma_heap_buffer *buffer = dmabuf->priv;
235
236 mutex_lock(&buffer->lock);
237 if (!--buffer->vmap_cnt) {
238 vunmap(buffer->vaddr);
239 buffer->vaddr = NULL;
240 }
241 mutex_unlock(&buffer->lock);
242 iosys_map_clear(map);
243 }
244
cma_heap_dma_buf_release(struct dma_buf * dmabuf)245 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
246 {
247 struct cma_heap_buffer *buffer = dmabuf->priv;
248 struct cma_heap *cma_heap = buffer->heap;
249
250 if (buffer->vmap_cnt > 0) {
251 WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
252 vunmap(buffer->vaddr);
253 buffer->vaddr = NULL;
254 }
255
256 /* free page list */
257 kfree(buffer->pages);
258 /* release memory */
259 cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
260 kfree(buffer);
261 }
262
263 static const struct dma_buf_ops cma_heap_buf_ops = {
264 .attach = cma_heap_attach,
265 .detach = cma_heap_detach,
266 .map_dma_buf = cma_heap_map_dma_buf,
267 .unmap_dma_buf = cma_heap_unmap_dma_buf,
268 .begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
269 .end_cpu_access = cma_heap_dma_buf_end_cpu_access,
270 .mmap = cma_heap_mmap,
271 .vmap = cma_heap_vmap,
272 .vunmap = cma_heap_vunmap,
273 .release = cma_heap_dma_buf_release,
274 };
275
cma_heap_allocate(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags)276 static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
277 unsigned long len,
278 unsigned long fd_flags,
279 unsigned long heap_flags)
280 {
281 struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
282 struct cma_heap_buffer *buffer;
283 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
284 size_t size = PAGE_ALIGN(len);
285 pgoff_t pagecount = size >> PAGE_SHIFT;
286 unsigned long align = get_order(size);
287 struct page *cma_pages;
288 struct dma_buf *dmabuf;
289 int ret = -ENOMEM;
290 pgoff_t pg;
291
292 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
293 if (!buffer)
294 return ERR_PTR(-ENOMEM);
295
296 INIT_LIST_HEAD(&buffer->attachments);
297 mutex_init(&buffer->lock);
298 buffer->len = size;
299
300 if (align > CONFIG_CMA_ALIGNMENT)
301 align = CONFIG_CMA_ALIGNMENT;
302
303 cma_pages = cma_alloc(cma_heap->cma, pagecount, align, false);
304 if (!cma_pages)
305 goto free_buffer;
306
307 /* Clear the cma pages */
308 if (PageHighMem(cma_pages)) {
309 unsigned long nr_clear_pages = pagecount;
310 struct page *page = cma_pages;
311
312 while (nr_clear_pages > 0) {
313 void *vaddr = kmap_atomic(page);
314
315 memset(vaddr, 0, PAGE_SIZE);
316 kunmap_atomic(vaddr);
317 /*
318 * Avoid wasting time zeroing memory if the process
319 * has been killed by by SIGKILL
320 */
321 if (fatal_signal_pending(current))
322 goto free_cma;
323 page++;
324 nr_clear_pages--;
325 }
326 } else {
327 memset(page_address(cma_pages), 0, size);
328 }
329
330 buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
331 if (!buffer->pages) {
332 ret = -ENOMEM;
333 goto free_cma;
334 }
335
336 for (pg = 0; pg < pagecount; pg++)
337 buffer->pages[pg] = &cma_pages[pg];
338
339 buffer->cma_pages = cma_pages;
340 buffer->heap = cma_heap;
341 buffer->pagecount = pagecount;
342
343 /* create the dmabuf */
344 exp_info.exp_name = dma_heap_get_name(heap);
345 exp_info.ops = &cma_heap_buf_ops;
346 exp_info.size = buffer->len;
347 exp_info.flags = fd_flags;
348 exp_info.priv = buffer;
349 dmabuf = dma_buf_export(&exp_info);
350 if (IS_ERR(dmabuf)) {
351 ret = PTR_ERR(dmabuf);
352 goto free_pages;
353 }
354 return dmabuf;
355
356 free_pages:
357 kfree(buffer->pages);
358 free_cma:
359 cma_release(cma_heap->cma, cma_pages, pagecount);
360 free_buffer:
361 kfree(buffer);
362
363 return ERR_PTR(ret);
364 }
365
366 static const struct dma_heap_ops cma_heap_ops = {
367 .allocate = cma_heap_allocate,
368 };
369
__add_cma_heap(struct cma * cma,void * data)370 static int __add_cma_heap(struct cma *cma, void *data)
371 {
372 struct cma_heap *cma_heap;
373 struct dma_heap_export_info exp_info;
374
375 cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
376 if (!cma_heap)
377 return -ENOMEM;
378 cma_heap->cma = cma;
379
380 exp_info.name = cma_get_name(cma);
381 exp_info.ops = &cma_heap_ops;
382 exp_info.priv = cma_heap;
383
384 cma_heap->heap = dma_heap_add(&exp_info);
385 if (IS_ERR(cma_heap->heap)) {
386 int ret = PTR_ERR(cma_heap->heap);
387
388 kfree(cma_heap);
389 return ret;
390 }
391
392 return 0;
393 }
394
add_default_cma_heap(void)395 static int add_default_cma_heap(void)
396 {
397 struct cma *default_cma = dev_get_cma_area(NULL);
398 int ret = 0;
399
400 if (default_cma)
401 ret = __add_cma_heap(default_cma, NULL);
402
403 return ret;
404 }
405 module_init(add_default_cma_heap);
406 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
407