1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60 #define SEC_SQE_LEN_RATE_MASK 0x3
61
62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR 128
64 #define SEC_CIPHER_AUTH 0xfe
65 #define SEC_AUTH_CIPHER 0x1
66 #define SEC_MAX_MAC_LEN 64
67 #define SEC_MAX_AAD_LEN 65535
68 #define SEC_MAX_CCM_AAD_LEN 65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71 #define SEC_PBUF_SZ 512
72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
75 SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
81 SEC_PBUF_LEFT_SZ(depth))
82
83 #define SEC_SQE_LEN_RATE 4
84 #define SEC_SQE_CFLAG 2
85 #define SEC_SQE_AEAD_FLAG 3
86 #define SEC_SQE_DONE 0x1
87 #define SEC_ICV_ERR 0x2
88 #define MIN_MAC_LEN 4
89 #define MAC_LEN_MASK 0x1U
90 #define MAX_INPUT_DATA_LEN 0xFFFE00
91 #define BITS_MASK 0xFF
92 #define BYTE_BITS 0x8
93 #define SEC_XTS_NAME_SZ 0x3
94 #define IV_CM_CAL_NUM 2
95 #define IV_CL_MASK 0x7
96 #define IV_CL_MIN 2
97 #define IV_CL_MID 4
98 #define IV_CL_MAX 8
99 #define IV_FLAGS_OFFSET 0x6
100 #define IV_CM_OFFSET 0x3
101 #define IV_LAST_BYTE1 1
102 #define IV_LAST_BYTE2 2
103 #define IV_LAST_BYTE_MASK 0xFF
104 #define IV_CTR_INIT 0x1
105 #define IV_BYTE_OFFSET 0x8
106
107 struct sec_skcipher {
108 u64 alg_msk;
109 struct skcipher_alg alg;
110 };
111
112 struct sec_aead {
113 u64 alg_msk;
114 struct aead_alg alg;
115 };
116
117 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)118 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 {
120 if (req->c_req.encrypt)
121 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
122 ctx->hlf_q_num;
123
124 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
125 ctx->hlf_q_num;
126 }
127
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)128 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
129 {
130 if (req->c_req.encrypt)
131 atomic_dec(&ctx->enc_qcyclic);
132 else
133 atomic_dec(&ctx->dec_qcyclic);
134 }
135
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)136 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
137 {
138 int req_id;
139
140 spin_lock_bh(&qp_ctx->req_lock);
141 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
142 spin_unlock_bh(&qp_ctx->req_lock);
143 if (unlikely(req_id < 0)) {
144 dev_err(req->ctx->dev, "alloc req id fail!\n");
145 return req_id;
146 }
147
148 req->qp_ctx = qp_ctx;
149 qp_ctx->req_list[req_id] = req;
150
151 return req_id;
152 }
153
sec_free_req_id(struct sec_req * req)154 static void sec_free_req_id(struct sec_req *req)
155 {
156 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
157 int req_id = req->req_id;
158
159 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
160 dev_err(req->ctx->dev, "free request id invalid!\n");
161 return;
162 }
163
164 qp_ctx->req_list[req_id] = NULL;
165 req->qp_ctx = NULL;
166
167 spin_lock_bh(&qp_ctx->req_lock);
168 idr_remove(&qp_ctx->req_idr, req_id);
169 spin_unlock_bh(&qp_ctx->req_lock);
170 }
171
pre_parse_finished_bd(struct bd_status * status,void * resp)172 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
173 {
174 struct sec_sqe *bd = resp;
175
176 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
177 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
178 status->flag = (le16_to_cpu(bd->type2.done_flag) &
179 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
180 status->tag = le16_to_cpu(bd->type2.tag);
181 status->err_type = bd->type2.error_type;
182
183 return bd->type_cipher_auth & SEC_TYPE_MASK;
184 }
185
pre_parse_finished_bd3(struct bd_status * status,void * resp)186 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
187 {
188 struct sec_sqe3 *bd3 = resp;
189
190 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
191 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
192 status->flag = (le16_to_cpu(bd3->done_flag) &
193 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
194 status->tag = le64_to_cpu(bd3->tag);
195 status->err_type = bd3->error_type;
196
197 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
198 }
199
sec_cb_status_check(struct sec_req * req,struct bd_status * status)200 static int sec_cb_status_check(struct sec_req *req,
201 struct bd_status *status)
202 {
203 struct sec_ctx *ctx = req->ctx;
204
205 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
206 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
207 req->err_type, status->done);
208 return -EIO;
209 }
210
211 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
212 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
213 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
214 status->flag);
215 return -EIO;
216 }
217 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
218 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
219 status->icv == SEC_ICV_ERR)) {
220 dev_err_ratelimited(ctx->dev,
221 "flag[%u], icv[%u]\n",
222 status->flag, status->icv);
223 return -EBADMSG;
224 }
225 }
226
227 return 0;
228 }
229
sec_req_cb(struct hisi_qp * qp,void * resp)230 static void sec_req_cb(struct hisi_qp *qp, void *resp)
231 {
232 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
233 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
234 u8 type_supported = qp_ctx->ctx->type_supported;
235 struct bd_status status;
236 struct sec_ctx *ctx;
237 struct sec_req *req;
238 int err;
239 u8 type;
240
241 if (type_supported == SEC_BD_TYPE2) {
242 type = pre_parse_finished_bd(&status, resp);
243 req = qp_ctx->req_list[status.tag];
244 } else {
245 type = pre_parse_finished_bd3(&status, resp);
246 req = (void *)(uintptr_t)status.tag;
247 }
248
249 if (unlikely(type != type_supported)) {
250 atomic64_inc(&dfx->err_bd_cnt);
251 pr_err("err bd type [%u]\n", type);
252 return;
253 }
254
255 if (unlikely(!req)) {
256 atomic64_inc(&dfx->invalid_req_cnt);
257 atomic_inc(&qp->qp_status.used);
258 return;
259 }
260
261 req->err_type = status.err_type;
262 ctx = req->ctx;
263 err = sec_cb_status_check(req, &status);
264 if (err)
265 atomic64_inc(&dfx->done_flag_cnt);
266
267 atomic64_inc(&dfx->recv_cnt);
268
269 ctx->req_op->buf_unmap(ctx, req);
270
271 ctx->req_op->callback(ctx, req, err);
272 }
273
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)274 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
275 {
276 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
277 int ret;
278
279 if (ctx->fake_req_limit <=
280 atomic_read(&qp_ctx->qp->qp_status.used) &&
281 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
282 return -EBUSY;
283
284 spin_lock_bh(&qp_ctx->req_lock);
285 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
286 if (ctx->fake_req_limit <=
287 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
288 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
289 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
290 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
291 spin_unlock_bh(&qp_ctx->req_lock);
292 return -EBUSY;
293 }
294 spin_unlock_bh(&qp_ctx->req_lock);
295
296 if (unlikely(ret == -EBUSY))
297 return -ENOBUFS;
298
299 if (likely(!ret)) {
300 ret = -EINPROGRESS;
301 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
302 }
303
304 return ret;
305 }
306
307 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)308 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
309 {
310 u16 q_depth = res->depth;
311 int i;
312
313 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
314 &res->c_ivin_dma, GFP_KERNEL);
315 if (!res->c_ivin)
316 return -ENOMEM;
317
318 for (i = 1; i < q_depth; i++) {
319 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
320 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
321 }
322
323 return 0;
324 }
325
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)326 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
327 {
328 if (res->c_ivin)
329 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
330 res->c_ivin, res->c_ivin_dma);
331 }
332
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)333 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
334 {
335 u16 q_depth = res->depth;
336 int i;
337
338 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
339 &res->a_ivin_dma, GFP_KERNEL);
340 if (!res->a_ivin)
341 return -ENOMEM;
342
343 for (i = 1; i < q_depth; i++) {
344 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
345 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
346 }
347
348 return 0;
349 }
350
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)351 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
352 {
353 if (res->a_ivin)
354 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
355 res->a_ivin, res->a_ivin_dma);
356 }
357
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)358 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
359 {
360 u16 q_depth = res->depth;
361 int i;
362
363 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
364 &res->out_mac_dma, GFP_KERNEL);
365 if (!res->out_mac)
366 return -ENOMEM;
367
368 for (i = 1; i < q_depth; i++) {
369 res[i].out_mac_dma = res->out_mac_dma +
370 i * (SEC_MAX_MAC_LEN << 1);
371 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
372 }
373
374 return 0;
375 }
376
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)377 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
378 {
379 if (res->out_mac)
380 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
381 res->out_mac, res->out_mac_dma);
382 }
383
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)384 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
385 {
386 if (res->pbuf)
387 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
388 res->pbuf, res->pbuf_dma);
389 }
390
391 /*
392 * To improve performance, pbuffer is used for
393 * small packets (< 512Bytes) as IOMMU translation using.
394 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)395 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
396 {
397 u16 q_depth = res->depth;
398 int size = SEC_PBUF_PAGE_NUM(q_depth);
399 int pbuf_page_offset;
400 int i, j, k;
401
402 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
403 &res->pbuf_dma, GFP_KERNEL);
404 if (!res->pbuf)
405 return -ENOMEM;
406
407 /*
408 * SEC_PBUF_PKG contains data pbuf, iv and
409 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
410 * Every PAGE contains six SEC_PBUF_PKG
411 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
412 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
413 * for the SEC_TOTAL_PBUF_SZ
414 */
415 for (i = 0; i <= size; i++) {
416 pbuf_page_offset = PAGE_SIZE * i;
417 for (j = 0; j < SEC_PBUF_NUM; j++) {
418 k = i * SEC_PBUF_NUM + j;
419 if (k == q_depth)
420 break;
421 res[k].pbuf = res->pbuf +
422 j * SEC_PBUF_PKG + pbuf_page_offset;
423 res[k].pbuf_dma = res->pbuf_dma +
424 j * SEC_PBUF_PKG + pbuf_page_offset;
425 }
426 }
427
428 return 0;
429 }
430
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)431 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
432 struct sec_qp_ctx *qp_ctx)
433 {
434 struct sec_alg_res *res = qp_ctx->res;
435 struct device *dev = ctx->dev;
436 int ret;
437
438 ret = sec_alloc_civ_resource(dev, res);
439 if (ret)
440 return ret;
441
442 if (ctx->alg_type == SEC_AEAD) {
443 ret = sec_alloc_aiv_resource(dev, res);
444 if (ret)
445 goto alloc_aiv_fail;
446
447 ret = sec_alloc_mac_resource(dev, res);
448 if (ret)
449 goto alloc_mac_fail;
450 }
451 if (ctx->pbuf_supported) {
452 ret = sec_alloc_pbuf_resource(dev, res);
453 if (ret) {
454 dev_err(dev, "fail to alloc pbuf dma resource!\n");
455 goto alloc_pbuf_fail;
456 }
457 }
458
459 return 0;
460
461 alloc_pbuf_fail:
462 if (ctx->alg_type == SEC_AEAD)
463 sec_free_mac_resource(dev, qp_ctx->res);
464 alloc_mac_fail:
465 if (ctx->alg_type == SEC_AEAD)
466 sec_free_aiv_resource(dev, res);
467 alloc_aiv_fail:
468 sec_free_civ_resource(dev, res);
469 return ret;
470 }
471
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)472 static void sec_alg_resource_free(struct sec_ctx *ctx,
473 struct sec_qp_ctx *qp_ctx)
474 {
475 struct device *dev = ctx->dev;
476
477 sec_free_civ_resource(dev, qp_ctx->res);
478
479 if (ctx->pbuf_supported)
480 sec_free_pbuf_resource(dev, qp_ctx->res);
481 if (ctx->alg_type == SEC_AEAD)
482 sec_free_mac_resource(dev, qp_ctx->res);
483 }
484
sec_alloc_qp_ctx_resource(struct hisi_qm * qm,struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)485 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
486 struct sec_qp_ctx *qp_ctx)
487 {
488 u16 q_depth = qp_ctx->qp->sq_depth;
489 struct device *dev = ctx->dev;
490 int ret = -ENOMEM;
491
492 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
493 if (!qp_ctx->req_list)
494 return ret;
495
496 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
497 if (!qp_ctx->res)
498 goto err_free_req_list;
499 qp_ctx->res->depth = q_depth;
500
501 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
502 if (IS_ERR(qp_ctx->c_in_pool)) {
503 dev_err(dev, "fail to create sgl pool for input!\n");
504 goto err_free_res;
505 }
506
507 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
508 if (IS_ERR(qp_ctx->c_out_pool)) {
509 dev_err(dev, "fail to create sgl pool for output!\n");
510 goto err_free_c_in_pool;
511 }
512
513 ret = sec_alg_resource_alloc(ctx, qp_ctx);
514 if (ret)
515 goto err_free_c_out_pool;
516
517 return 0;
518
519 err_free_c_out_pool:
520 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
521 err_free_c_in_pool:
522 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
523 err_free_res:
524 kfree(qp_ctx->res);
525 err_free_req_list:
526 kfree(qp_ctx->req_list);
527 return ret;
528 }
529
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)530 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
531 {
532 struct device *dev = ctx->dev;
533
534 sec_alg_resource_free(ctx, qp_ctx);
535 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
536 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
537 kfree(qp_ctx->res);
538 kfree(qp_ctx->req_list);
539 }
540
sec_create_qp_ctx(struct hisi_qm * qm,struct sec_ctx * ctx,int qp_ctx_id,int alg_type)541 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
542 int qp_ctx_id, int alg_type)
543 {
544 struct sec_qp_ctx *qp_ctx;
545 struct hisi_qp *qp;
546 int ret;
547
548 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
549 qp = ctx->qps[qp_ctx_id];
550 qp->req_type = 0;
551 qp->qp_ctx = qp_ctx;
552 qp_ctx->qp = qp;
553 qp_ctx->ctx = ctx;
554
555 qp->req_cb = sec_req_cb;
556
557 spin_lock_init(&qp_ctx->req_lock);
558 idr_init(&qp_ctx->req_idr);
559 INIT_LIST_HEAD(&qp_ctx->backlog);
560
561 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
562 if (ret)
563 goto err_destroy_idr;
564
565 ret = hisi_qm_start_qp(qp, 0);
566 if (ret < 0)
567 goto err_resource_free;
568
569 return 0;
570
571 err_resource_free:
572 sec_free_qp_ctx_resource(ctx, qp_ctx);
573 err_destroy_idr:
574 idr_destroy(&qp_ctx->req_idr);
575 return ret;
576 }
577
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)578 static void sec_release_qp_ctx(struct sec_ctx *ctx,
579 struct sec_qp_ctx *qp_ctx)
580 {
581 hisi_qm_stop_qp(qp_ctx->qp);
582 sec_free_qp_ctx_resource(ctx, qp_ctx);
583 idr_destroy(&qp_ctx->req_idr);
584 }
585
sec_ctx_base_init(struct sec_ctx * ctx)586 static int sec_ctx_base_init(struct sec_ctx *ctx)
587 {
588 struct sec_dev *sec;
589 int i, ret;
590
591 ctx->qps = sec_create_qps();
592 if (!ctx->qps) {
593 pr_err("Can not create sec qps!\n");
594 return -ENODEV;
595 }
596
597 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
598 ctx->sec = sec;
599 ctx->dev = &sec->qm.pdev->dev;
600 ctx->hlf_q_num = sec->ctx_q_num >> 1;
601
602 ctx->pbuf_supported = ctx->sec->iommu_used;
603
604 /* Half of queue depth is taken as fake requests limit in the queue. */
605 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
606 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
607 GFP_KERNEL);
608 if (!ctx->qp_ctx) {
609 ret = -ENOMEM;
610 goto err_destroy_qps;
611 }
612
613 for (i = 0; i < sec->ctx_q_num; i++) {
614 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
615 if (ret)
616 goto err_sec_release_qp_ctx;
617 }
618
619 return 0;
620
621 err_sec_release_qp_ctx:
622 for (i = i - 1; i >= 0; i--)
623 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
624 kfree(ctx->qp_ctx);
625 err_destroy_qps:
626 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
627 return ret;
628 }
629
sec_ctx_base_uninit(struct sec_ctx * ctx)630 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
631 {
632 int i;
633
634 for (i = 0; i < ctx->sec->ctx_q_num; i++)
635 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
636
637 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
638 kfree(ctx->qp_ctx);
639 }
640
sec_cipher_init(struct sec_ctx * ctx)641 static int sec_cipher_init(struct sec_ctx *ctx)
642 {
643 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
644
645 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
646 &c_ctx->c_key_dma, GFP_KERNEL);
647 if (!c_ctx->c_key)
648 return -ENOMEM;
649
650 return 0;
651 }
652
sec_cipher_uninit(struct sec_ctx * ctx)653 static void sec_cipher_uninit(struct sec_ctx *ctx)
654 {
655 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
656
657 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
658 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
659 c_ctx->c_key, c_ctx->c_key_dma);
660 }
661
sec_auth_init(struct sec_ctx * ctx)662 static int sec_auth_init(struct sec_ctx *ctx)
663 {
664 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
665
666 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
667 &a_ctx->a_key_dma, GFP_KERNEL);
668 if (!a_ctx->a_key)
669 return -ENOMEM;
670
671 return 0;
672 }
673
sec_auth_uninit(struct sec_ctx * ctx)674 static void sec_auth_uninit(struct sec_ctx *ctx)
675 {
676 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
677
678 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
679 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
680 a_ctx->a_key, a_ctx->a_key_dma);
681 }
682
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)683 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
684 {
685 const char *alg = crypto_tfm_alg_name(&tfm->base);
686 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
687 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
688
689 c_ctx->fallback = false;
690
691 /* Currently, only XTS mode need fallback tfm when using 192bit key */
692 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
693 return 0;
694
695 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
696 CRYPTO_ALG_NEED_FALLBACK);
697 if (IS_ERR(c_ctx->fbtfm)) {
698 pr_err("failed to alloc xts mode fallback tfm!\n");
699 return PTR_ERR(c_ctx->fbtfm);
700 }
701
702 return 0;
703 }
704
sec_skcipher_init(struct crypto_skcipher * tfm)705 static int sec_skcipher_init(struct crypto_skcipher *tfm)
706 {
707 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
708 int ret;
709
710 ctx->alg_type = SEC_SKCIPHER;
711 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
712 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
713 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
714 pr_err("get error skcipher iv size!\n");
715 return -EINVAL;
716 }
717
718 ret = sec_ctx_base_init(ctx);
719 if (ret)
720 return ret;
721
722 ret = sec_cipher_init(ctx);
723 if (ret)
724 goto err_cipher_init;
725
726 ret = sec_skcipher_fbtfm_init(tfm);
727 if (ret)
728 goto err_fbtfm_init;
729
730 return 0;
731
732 err_fbtfm_init:
733 sec_cipher_uninit(ctx);
734 err_cipher_init:
735 sec_ctx_base_uninit(ctx);
736 return ret;
737 }
738
sec_skcipher_uninit(struct crypto_skcipher * tfm)739 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
740 {
741 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
742
743 if (ctx->c_ctx.fbtfm)
744 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
745
746 sec_cipher_uninit(ctx);
747 sec_ctx_base_uninit(ctx);
748 }
749
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_cmode c_mode)750 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
751 const u32 keylen,
752 const enum sec_cmode c_mode)
753 {
754 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
755 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
756 int ret;
757
758 ret = verify_skcipher_des3_key(tfm, key);
759 if (ret)
760 return ret;
761
762 switch (keylen) {
763 case SEC_DES3_2KEY_SIZE:
764 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
765 break;
766 case SEC_DES3_3KEY_SIZE:
767 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
768 break;
769 default:
770 return -EINVAL;
771 }
772
773 return 0;
774 }
775
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)776 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
777 const u32 keylen,
778 const enum sec_cmode c_mode)
779 {
780 if (c_mode == SEC_CMODE_XTS) {
781 switch (keylen) {
782 case SEC_XTS_MIN_KEY_SIZE:
783 c_ctx->c_key_len = SEC_CKEY_128BIT;
784 break;
785 case SEC_XTS_MID_KEY_SIZE:
786 c_ctx->fallback = true;
787 break;
788 case SEC_XTS_MAX_KEY_SIZE:
789 c_ctx->c_key_len = SEC_CKEY_256BIT;
790 break;
791 default:
792 pr_err("hisi_sec2: xts mode key error!\n");
793 return -EINVAL;
794 }
795 } else {
796 if (c_ctx->c_alg == SEC_CALG_SM4 &&
797 keylen != AES_KEYSIZE_128) {
798 pr_err("hisi_sec2: sm4 key error!\n");
799 return -EINVAL;
800 } else {
801 switch (keylen) {
802 case AES_KEYSIZE_128:
803 c_ctx->c_key_len = SEC_CKEY_128BIT;
804 break;
805 case AES_KEYSIZE_192:
806 c_ctx->c_key_len = SEC_CKEY_192BIT;
807 break;
808 case AES_KEYSIZE_256:
809 c_ctx->c_key_len = SEC_CKEY_256BIT;
810 break;
811 default:
812 pr_err("hisi_sec2: aes key error!\n");
813 return -EINVAL;
814 }
815 }
816 }
817
818 return 0;
819 }
820
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)821 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
822 const u32 keylen, const enum sec_calg c_alg,
823 const enum sec_cmode c_mode)
824 {
825 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
826 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
827 struct device *dev = ctx->dev;
828 int ret;
829
830 if (c_mode == SEC_CMODE_XTS) {
831 ret = xts_verify_key(tfm, key, keylen);
832 if (ret) {
833 dev_err(dev, "xts mode key err!\n");
834 return ret;
835 }
836 }
837
838 c_ctx->c_alg = c_alg;
839 c_ctx->c_mode = c_mode;
840
841 switch (c_alg) {
842 case SEC_CALG_3DES:
843 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
844 break;
845 case SEC_CALG_AES:
846 case SEC_CALG_SM4:
847 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
848 break;
849 default:
850 return -EINVAL;
851 }
852
853 if (ret) {
854 dev_err(dev, "set sec key err!\n");
855 return ret;
856 }
857
858 memcpy(c_ctx->c_key, key, keylen);
859 if (c_ctx->fallback && c_ctx->fbtfm) {
860 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
861 if (ret) {
862 dev_err(dev, "failed to set fallback skcipher key!\n");
863 return ret;
864 }
865 }
866 return 0;
867 }
868
869 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
870 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
871 u32 keylen) \
872 { \
873 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
874 }
875
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)876 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
877 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
878 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
879 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
880 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
881 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
882 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
883 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
884 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
885 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
886 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
887 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
888 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
889
890 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
891 struct scatterlist *src)
892 {
893 struct sec_aead_req *a_req = &req->aead_req;
894 struct aead_request *aead_req = a_req->aead_req;
895 struct sec_cipher_req *c_req = &req->c_req;
896 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
897 struct device *dev = ctx->dev;
898 int copy_size, pbuf_length;
899 int req_id = req->req_id;
900 struct crypto_aead *tfm;
901 size_t authsize;
902 u8 *mac_offset;
903
904 if (ctx->alg_type == SEC_AEAD)
905 copy_size = aead_req->cryptlen + aead_req->assoclen;
906 else
907 copy_size = c_req->c_len;
908
909 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
910 qp_ctx->res[req_id].pbuf, copy_size);
911 if (unlikely(pbuf_length != copy_size)) {
912 dev_err(dev, "copy src data to pbuf error!\n");
913 return -EINVAL;
914 }
915 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
916 tfm = crypto_aead_reqtfm(aead_req);
917 authsize = crypto_aead_authsize(tfm);
918 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
919 memcpy(a_req->out_mac, mac_offset, authsize);
920 }
921
922 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
923 c_req->c_out_dma = req->in_dma;
924
925 return 0;
926 }
927
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)928 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
929 struct scatterlist *dst)
930 {
931 struct aead_request *aead_req = req->aead_req.aead_req;
932 struct sec_cipher_req *c_req = &req->c_req;
933 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
934 int copy_size, pbuf_length;
935 int req_id = req->req_id;
936
937 if (ctx->alg_type == SEC_AEAD)
938 copy_size = c_req->c_len + aead_req->assoclen;
939 else
940 copy_size = c_req->c_len;
941
942 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
943 qp_ctx->res[req_id].pbuf, copy_size);
944 if (unlikely(pbuf_length != copy_size))
945 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
946 }
947
sec_aead_mac_init(struct sec_aead_req * req)948 static int sec_aead_mac_init(struct sec_aead_req *req)
949 {
950 struct aead_request *aead_req = req->aead_req;
951 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
952 size_t authsize = crypto_aead_authsize(tfm);
953 u8 *mac_out = req->out_mac;
954 struct scatterlist *sgl = aead_req->src;
955 size_t copy_size;
956 off_t skip_size;
957
958 /* Copy input mac */
959 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
960 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
961 authsize, skip_size);
962 if (unlikely(copy_size != authsize))
963 return -EINVAL;
964
965 return 0;
966 }
967
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)968 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
969 struct scatterlist *src, struct scatterlist *dst)
970 {
971 struct sec_cipher_req *c_req = &req->c_req;
972 struct sec_aead_req *a_req = &req->aead_req;
973 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
974 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
975 struct device *dev = ctx->dev;
976 int ret;
977
978 if (req->use_pbuf) {
979 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
980 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
981 if (ctx->alg_type == SEC_AEAD) {
982 a_req->a_ivin = res->a_ivin;
983 a_req->a_ivin_dma = res->a_ivin_dma;
984 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
985 a_req->out_mac_dma = res->pbuf_dma +
986 SEC_PBUF_MAC_OFFSET;
987 }
988 ret = sec_cipher_pbuf_map(ctx, req, src);
989
990 return ret;
991 }
992 c_req->c_ivin = res->c_ivin;
993 c_req->c_ivin_dma = res->c_ivin_dma;
994 if (ctx->alg_type == SEC_AEAD) {
995 a_req->a_ivin = res->a_ivin;
996 a_req->a_ivin_dma = res->a_ivin_dma;
997 a_req->out_mac = res->out_mac;
998 a_req->out_mac_dma = res->out_mac_dma;
999 }
1000
1001 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1002 qp_ctx->c_in_pool,
1003 req->req_id,
1004 &req->in_dma);
1005 if (IS_ERR(req->in)) {
1006 dev_err(dev, "fail to dma map input sgl buffers!\n");
1007 return PTR_ERR(req->in);
1008 }
1009
1010 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1011 ret = sec_aead_mac_init(a_req);
1012 if (unlikely(ret)) {
1013 dev_err(dev, "fail to init mac data for ICV!\n");
1014 return ret;
1015 }
1016 }
1017
1018 if (dst == src) {
1019 c_req->c_out = req->in;
1020 c_req->c_out_dma = req->in_dma;
1021 } else {
1022 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1023 qp_ctx->c_out_pool,
1024 req->req_id,
1025 &c_req->c_out_dma);
1026
1027 if (IS_ERR(c_req->c_out)) {
1028 dev_err(dev, "fail to dma map output sgl buffers!\n");
1029 hisi_acc_sg_buf_unmap(dev, src, req->in);
1030 return PTR_ERR(c_req->c_out);
1031 }
1032 }
1033
1034 return 0;
1035 }
1036
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1037 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1038 struct scatterlist *src, struct scatterlist *dst)
1039 {
1040 struct sec_cipher_req *c_req = &req->c_req;
1041 struct device *dev = ctx->dev;
1042
1043 if (req->use_pbuf) {
1044 sec_cipher_pbuf_unmap(ctx, req, dst);
1045 } else {
1046 if (dst != src)
1047 hisi_acc_sg_buf_unmap(dev, src, req->in);
1048
1049 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1050 }
1051 }
1052
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1053 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1054 {
1055 struct skcipher_request *sq = req->c_req.sk_req;
1056
1057 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1058 }
1059
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1060 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1061 {
1062 struct skcipher_request *sq = req->c_req.sk_req;
1063
1064 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1065 }
1066
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1067 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1068 struct crypto_authenc_keys *keys)
1069 {
1070 switch (keys->enckeylen) {
1071 case AES_KEYSIZE_128:
1072 c_ctx->c_key_len = SEC_CKEY_128BIT;
1073 break;
1074 case AES_KEYSIZE_192:
1075 c_ctx->c_key_len = SEC_CKEY_192BIT;
1076 break;
1077 case AES_KEYSIZE_256:
1078 c_ctx->c_key_len = SEC_CKEY_256BIT;
1079 break;
1080 default:
1081 pr_err("hisi_sec2: aead aes key error!\n");
1082 return -EINVAL;
1083 }
1084 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1085
1086 return 0;
1087 }
1088
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1089 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1090 struct crypto_authenc_keys *keys)
1091 {
1092 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1093 int blocksize, digestsize, ret;
1094
1095 if (!keys->authkeylen) {
1096 pr_err("hisi_sec2: aead auth key error!\n");
1097 return -EINVAL;
1098 }
1099
1100 blocksize = crypto_shash_blocksize(hash_tfm);
1101 digestsize = crypto_shash_digestsize(hash_tfm);
1102 if (keys->authkeylen > blocksize) {
1103 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1104 keys->authkeylen, ctx->a_key);
1105 if (ret) {
1106 pr_err("hisi_sec2: aead auth digest error!\n");
1107 return -EINVAL;
1108 }
1109 ctx->a_key_len = digestsize;
1110 } else {
1111 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1112 ctx->a_key_len = keys->authkeylen;
1113 }
1114
1115 return 0;
1116 }
1117
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1118 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1119 {
1120 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1121 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1122 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1123
1124 if (unlikely(a_ctx->fallback_aead_tfm))
1125 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1126
1127 return 0;
1128 }
1129
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1130 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1131 struct crypto_aead *tfm, const u8 *key,
1132 unsigned int keylen)
1133 {
1134 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1135 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1136 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1137 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1138 }
1139
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_mac_len mac_len,const enum sec_cmode c_mode)1140 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1141 const u32 keylen, const enum sec_hash_alg a_alg,
1142 const enum sec_calg c_alg,
1143 const enum sec_mac_len mac_len,
1144 const enum sec_cmode c_mode)
1145 {
1146 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1147 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1148 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1149 struct device *dev = ctx->dev;
1150 struct crypto_authenc_keys keys;
1151 int ret;
1152
1153 ctx->a_ctx.a_alg = a_alg;
1154 ctx->c_ctx.c_alg = c_alg;
1155 ctx->a_ctx.mac_len = mac_len;
1156 c_ctx->c_mode = c_mode;
1157
1158 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1159 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1160 if (ret) {
1161 dev_err(dev, "set sec aes ccm cipher key err!\n");
1162 return ret;
1163 }
1164 memcpy(c_ctx->c_key, key, keylen);
1165
1166 if (unlikely(a_ctx->fallback_aead_tfm)) {
1167 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
1175 if (crypto_authenc_extractkeys(&keys, key, keylen))
1176 goto bad_key;
1177
1178 ret = sec_aead_aes_set_key(c_ctx, &keys);
1179 if (ret) {
1180 dev_err(dev, "set sec cipher key err!\n");
1181 goto bad_key;
1182 }
1183
1184 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1185 if (ret) {
1186 dev_err(dev, "set sec auth key err!\n");
1187 goto bad_key;
1188 }
1189
1190 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
1191 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1192 dev_err(dev, "MAC or AUTH key length error!\n");
1193 goto bad_key;
1194 }
1195
1196 return 0;
1197
1198 bad_key:
1199 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1200 return -EINVAL;
1201 }
1202
1203
1204 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
1205 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
1206 u32 keylen) \
1207 { \
1208 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1209 }
1210
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_HMAC_SHA1_MAC,SEC_CMODE_CBC)1211 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1212 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1213 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1214 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1215 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1216 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1217 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1218 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1219 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1220 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1221 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1222 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1223 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1224 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1225
1226 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1227 {
1228 struct aead_request *aq = req->aead_req.aead_req;
1229
1230 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1231 }
1232
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1233 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1234 {
1235 struct aead_request *aq = req->aead_req.aead_req;
1236
1237 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1238 }
1239
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1240 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1241 {
1242 int ret;
1243
1244 ret = ctx->req_op->buf_map(ctx, req);
1245 if (unlikely(ret))
1246 return ret;
1247
1248 ctx->req_op->do_transfer(ctx, req);
1249
1250 ret = ctx->req_op->bd_fill(ctx, req);
1251 if (unlikely(ret))
1252 goto unmap_req_buf;
1253
1254 return ret;
1255
1256 unmap_req_buf:
1257 ctx->req_op->buf_unmap(ctx, req);
1258 return ret;
1259 }
1260
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1261 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1262 {
1263 ctx->req_op->buf_unmap(ctx, req);
1264 }
1265
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1266 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1267 {
1268 struct skcipher_request *sk_req = req->c_req.sk_req;
1269 struct sec_cipher_req *c_req = &req->c_req;
1270
1271 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1272 }
1273
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1274 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1275 {
1276 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1277 struct sec_cipher_req *c_req = &req->c_req;
1278 struct sec_sqe *sec_sqe = &req->sec_sqe;
1279 u8 scene, sa_type, da_type;
1280 u8 bd_type, cipher;
1281 u8 de = 0;
1282
1283 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1284
1285 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1286 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1287 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1288 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1289
1290 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1291 SEC_CMODE_OFFSET);
1292 sec_sqe->type2.c_alg = c_ctx->c_alg;
1293 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1294 SEC_CKEY_OFFSET);
1295
1296 bd_type = SEC_BD_TYPE2;
1297 if (c_req->encrypt)
1298 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1299 else
1300 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1301 sec_sqe->type_cipher_auth = bd_type | cipher;
1302
1303 /* Set destination and source address type */
1304 if (req->use_pbuf) {
1305 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1306 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1307 } else {
1308 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1309 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1310 }
1311
1312 sec_sqe->sdm_addr_type |= da_type;
1313 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1314 if (req->in_dma != c_req->c_out_dma)
1315 de = 0x1 << SEC_DE_OFFSET;
1316
1317 sec_sqe->sds_sa_type = (de | scene | sa_type);
1318
1319 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1320 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1321
1322 return 0;
1323 }
1324
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1325 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1326 {
1327 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1328 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1329 struct sec_cipher_req *c_req = &req->c_req;
1330 u32 bd_param = 0;
1331 u16 cipher;
1332
1333 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1334
1335 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1336 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1337 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1338 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1339
1340 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1341 c_ctx->c_mode;
1342 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1343 SEC_CKEY_OFFSET_V3);
1344
1345 if (c_req->encrypt)
1346 cipher = SEC_CIPHER_ENC;
1347 else
1348 cipher = SEC_CIPHER_DEC;
1349 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1350
1351 /* Set the CTR counter mode is 128bit rollover */
1352 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1353 SEC_CTR_CNT_OFFSET);
1354
1355 if (req->use_pbuf) {
1356 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1357 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1358 } else {
1359 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1360 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1361 }
1362
1363 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1364 if (req->in_dma != c_req->c_out_dma)
1365 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1366
1367 bd_param |= SEC_BD_TYPE3;
1368 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1369
1370 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1371 sec_sqe3->tag = cpu_to_le64(req);
1372
1373 return 0;
1374 }
1375
1376 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1377 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1378 {
1379 do {
1380 --bits;
1381 nums += counter[bits];
1382 counter[bits] = nums & BITS_MASK;
1383 nums >>= BYTE_BITS;
1384 } while (bits && nums);
1385 }
1386
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1387 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1388 {
1389 struct aead_request *aead_req = req->aead_req.aead_req;
1390 struct skcipher_request *sk_req = req->c_req.sk_req;
1391 u32 iv_size = req->ctx->c_ctx.ivsize;
1392 struct scatterlist *sgl;
1393 unsigned int cryptlen;
1394 size_t sz;
1395 u8 *iv;
1396
1397 if (req->c_req.encrypt)
1398 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1399 else
1400 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1401
1402 if (alg_type == SEC_SKCIPHER) {
1403 iv = sk_req->iv;
1404 cryptlen = sk_req->cryptlen;
1405 } else {
1406 iv = aead_req->iv;
1407 cryptlen = aead_req->cryptlen;
1408 }
1409
1410 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1411 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1412 cryptlen - iv_size);
1413 if (unlikely(sz != iv_size))
1414 dev_err(req->ctx->dev, "copy output iv error!\n");
1415 } else {
1416 sz = cryptlen / iv_size;
1417 if (cryptlen % iv_size)
1418 sz += 1;
1419 ctr_iv_inc(iv, iv_size, sz);
1420 }
1421 }
1422
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1423 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1424 struct sec_qp_ctx *qp_ctx)
1425 {
1426 struct sec_req *backlog_req = NULL;
1427
1428 spin_lock_bh(&qp_ctx->req_lock);
1429 if (ctx->fake_req_limit >=
1430 atomic_read(&qp_ctx->qp->qp_status.used) &&
1431 !list_empty(&qp_ctx->backlog)) {
1432 backlog_req = list_first_entry(&qp_ctx->backlog,
1433 typeof(*backlog_req), backlog_head);
1434 list_del(&backlog_req->backlog_head);
1435 }
1436 spin_unlock_bh(&qp_ctx->req_lock);
1437
1438 return backlog_req;
1439 }
1440
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1441 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1442 int err)
1443 {
1444 struct skcipher_request *sk_req = req->c_req.sk_req;
1445 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1446 struct skcipher_request *backlog_sk_req;
1447 struct sec_req *backlog_req;
1448
1449 sec_free_req_id(req);
1450
1451 /* IV output at encrypto of CBC/CTR mode */
1452 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1453 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1454 sec_update_iv(req, SEC_SKCIPHER);
1455
1456 while (1) {
1457 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1458 if (!backlog_req)
1459 break;
1460
1461 backlog_sk_req = backlog_req->c_req.sk_req;
1462 skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1463 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1464 }
1465
1466 skcipher_request_complete(sk_req, err);
1467 }
1468
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1469 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1470 {
1471 struct aead_request *aead_req = req->aead_req.aead_req;
1472 struct sec_cipher_req *c_req = &req->c_req;
1473 struct sec_aead_req *a_req = &req->aead_req;
1474 size_t authsize = ctx->a_ctx.mac_len;
1475 u32 data_size = aead_req->cryptlen;
1476 u8 flage = 0;
1477 u8 cm, cl;
1478
1479 /* the specification has been checked in aead_iv_demension_check() */
1480 cl = c_req->c_ivin[0] + 1;
1481 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1482 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1483 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1484
1485 /* the last 3bit is L' */
1486 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1487
1488 /* the M' is bit3~bit5, the Flags is bit6 */
1489 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1490 flage |= cm << IV_CM_OFFSET;
1491 if (aead_req->assoclen)
1492 flage |= 0x01 << IV_FLAGS_OFFSET;
1493
1494 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1495 a_req->a_ivin[0] = flage;
1496
1497 /*
1498 * the last 32bit is counter's initial number,
1499 * but the nonce uses the first 16bit
1500 * the tail 16bit fill with the cipher length
1501 */
1502 if (!c_req->encrypt)
1503 data_size = aead_req->cryptlen - authsize;
1504
1505 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1506 data_size & IV_LAST_BYTE_MASK;
1507 data_size >>= IV_BYTE_OFFSET;
1508 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1509 data_size & IV_LAST_BYTE_MASK;
1510 }
1511
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1512 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1513 {
1514 struct aead_request *aead_req = req->aead_req.aead_req;
1515 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1516 size_t authsize = crypto_aead_authsize(tfm);
1517 struct sec_cipher_req *c_req = &req->c_req;
1518 struct sec_aead_req *a_req = &req->aead_req;
1519
1520 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1521
1522 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1523 /*
1524 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1525 * the counter must set to 0x01
1526 */
1527 ctx->a_ctx.mac_len = authsize;
1528 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1529 set_aead_auth_iv(ctx, req);
1530 }
1531
1532 /* GCM 12Byte Cipher_IV == Auth_IV */
1533 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1534 ctx->a_ctx.mac_len = authsize;
1535 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1536 }
1537 }
1538
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1539 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1540 struct sec_req *req, struct sec_sqe *sec_sqe)
1541 {
1542 struct sec_aead_req *a_req = &req->aead_req;
1543 struct aead_request *aq = a_req->aead_req;
1544
1545 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1546 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1547
1548 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1549 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1550 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1551 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1552
1553 if (dir)
1554 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1555 else
1556 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1557
1558 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1559 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1560 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1561
1562 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1563 }
1564
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1565 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1566 struct sec_req *req, struct sec_sqe3 *sqe3)
1567 {
1568 struct sec_aead_req *a_req = &req->aead_req;
1569 struct aead_request *aq = a_req->aead_req;
1570
1571 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1572 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1573
1574 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1575 sqe3->a_key_addr = sqe3->c_key_addr;
1576 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1577 sqe3->auth_mac_key |= SEC_NO_AUTH;
1578
1579 if (dir)
1580 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1581 else
1582 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1583
1584 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1585 sqe3->auth_src_offset = cpu_to_le16(0x0);
1586 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1587 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1588 }
1589
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1590 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1591 struct sec_req *req, struct sec_sqe *sec_sqe)
1592 {
1593 struct sec_aead_req *a_req = &req->aead_req;
1594 struct sec_cipher_req *c_req = &req->c_req;
1595 struct aead_request *aq = a_req->aead_req;
1596
1597 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1598
1599 sec_sqe->type2.mac_key_alg =
1600 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1601
1602 sec_sqe->type2.mac_key_alg |=
1603 cpu_to_le32((u32)((ctx->a_key_len) /
1604 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1605
1606 sec_sqe->type2.mac_key_alg |=
1607 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1608
1609 if (dir) {
1610 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1611 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1612 } else {
1613 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1614 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1615 }
1616 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1617
1618 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1619
1620 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1621 }
1622
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1623 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1624 {
1625 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1626 struct sec_sqe *sec_sqe = &req->sec_sqe;
1627 int ret;
1628
1629 ret = sec_skcipher_bd_fill(ctx, req);
1630 if (unlikely(ret)) {
1631 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1632 return ret;
1633 }
1634
1635 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1636 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1637 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1638 else
1639 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1640
1641 return 0;
1642 }
1643
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1644 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1645 struct sec_req *req, struct sec_sqe3 *sqe3)
1646 {
1647 struct sec_aead_req *a_req = &req->aead_req;
1648 struct sec_cipher_req *c_req = &req->c_req;
1649 struct aead_request *aq = a_req->aead_req;
1650
1651 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1652
1653 sqe3->auth_mac_key |=
1654 cpu_to_le32((u32)(ctx->mac_len /
1655 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1656
1657 sqe3->auth_mac_key |=
1658 cpu_to_le32((u32)(ctx->a_key_len /
1659 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1660
1661 sqe3->auth_mac_key |=
1662 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1663
1664 if (dir) {
1665 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1666 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1667 } else {
1668 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1669 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1670 }
1671 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1672
1673 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1674
1675 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1676 }
1677
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1678 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1679 {
1680 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1681 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1682 int ret;
1683
1684 ret = sec_skcipher_bd_fill_v3(ctx, req);
1685 if (unlikely(ret)) {
1686 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1687 return ret;
1688 }
1689
1690 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1691 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1692 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1693 req, sec_sqe3);
1694 else
1695 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1696 req, sec_sqe3);
1697
1698 return 0;
1699 }
1700
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1701 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1702 {
1703 struct aead_request *a_req = req->aead_req.aead_req;
1704 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1705 struct sec_aead_req *aead_req = &req->aead_req;
1706 struct sec_cipher_req *c_req = &req->c_req;
1707 size_t authsize = crypto_aead_authsize(tfm);
1708 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1709 struct aead_request *backlog_aead_req;
1710 struct sec_req *backlog_req;
1711 size_t sz;
1712
1713 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1714 sec_update_iv(req, SEC_AEAD);
1715
1716 /* Copy output mac */
1717 if (!err && c_req->encrypt) {
1718 struct scatterlist *sgl = a_req->dst;
1719
1720 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1721 aead_req->out_mac,
1722 authsize, a_req->cryptlen +
1723 a_req->assoclen);
1724 if (unlikely(sz != authsize)) {
1725 dev_err(c->dev, "copy out mac err!\n");
1726 err = -EINVAL;
1727 }
1728 }
1729
1730 sec_free_req_id(req);
1731
1732 while (1) {
1733 backlog_req = sec_back_req_clear(c, qp_ctx);
1734 if (!backlog_req)
1735 break;
1736
1737 backlog_aead_req = backlog_req->aead_req.aead_req;
1738 aead_request_complete(backlog_aead_req, -EINPROGRESS);
1739 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1740 }
1741
1742 aead_request_complete(a_req, err);
1743 }
1744
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1745 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1746 {
1747 sec_free_req_id(req);
1748 sec_free_queue_id(ctx, req);
1749 }
1750
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1751 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1752 {
1753 struct sec_qp_ctx *qp_ctx;
1754 int queue_id;
1755
1756 /* To load balance */
1757 queue_id = sec_alloc_queue_id(ctx, req);
1758 qp_ctx = &ctx->qp_ctx[queue_id];
1759
1760 req->req_id = sec_alloc_req_id(req, qp_ctx);
1761 if (unlikely(req->req_id < 0)) {
1762 sec_free_queue_id(ctx, req);
1763 return req->req_id;
1764 }
1765
1766 return 0;
1767 }
1768
sec_process(struct sec_ctx * ctx,struct sec_req * req)1769 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1770 {
1771 struct sec_cipher_req *c_req = &req->c_req;
1772 int ret;
1773
1774 ret = sec_request_init(ctx, req);
1775 if (unlikely(ret))
1776 return ret;
1777
1778 ret = sec_request_transfer(ctx, req);
1779 if (unlikely(ret))
1780 goto err_uninit_req;
1781
1782 /* Output IV as decrypto */
1783 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1784 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1785 sec_update_iv(req, ctx->alg_type);
1786
1787 ret = ctx->req_op->bd_send(ctx, req);
1788 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1789 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1790 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1791 goto err_send_req;
1792 }
1793
1794 return ret;
1795
1796 err_send_req:
1797 /* As failing, restore the IV from user */
1798 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1799 if (ctx->alg_type == SEC_SKCIPHER)
1800 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1801 ctx->c_ctx.ivsize);
1802 else
1803 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1804 ctx->c_ctx.ivsize);
1805 }
1806
1807 sec_request_untransfer(ctx, req);
1808 err_uninit_req:
1809 sec_request_uninit(ctx, req);
1810 return ret;
1811 }
1812
1813 static const struct sec_req_op sec_skcipher_req_ops = {
1814 .buf_map = sec_skcipher_sgl_map,
1815 .buf_unmap = sec_skcipher_sgl_unmap,
1816 .do_transfer = sec_skcipher_copy_iv,
1817 .bd_fill = sec_skcipher_bd_fill,
1818 .bd_send = sec_bd_send,
1819 .callback = sec_skcipher_callback,
1820 .process = sec_process,
1821 };
1822
1823 static const struct sec_req_op sec_aead_req_ops = {
1824 .buf_map = sec_aead_sgl_map,
1825 .buf_unmap = sec_aead_sgl_unmap,
1826 .do_transfer = sec_aead_set_iv,
1827 .bd_fill = sec_aead_bd_fill,
1828 .bd_send = sec_bd_send,
1829 .callback = sec_aead_callback,
1830 .process = sec_process,
1831 };
1832
1833 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1834 .buf_map = sec_skcipher_sgl_map,
1835 .buf_unmap = sec_skcipher_sgl_unmap,
1836 .do_transfer = sec_skcipher_copy_iv,
1837 .bd_fill = sec_skcipher_bd_fill_v3,
1838 .bd_send = sec_bd_send,
1839 .callback = sec_skcipher_callback,
1840 .process = sec_process,
1841 };
1842
1843 static const struct sec_req_op sec_aead_req_ops_v3 = {
1844 .buf_map = sec_aead_sgl_map,
1845 .buf_unmap = sec_aead_sgl_unmap,
1846 .do_transfer = sec_aead_set_iv,
1847 .bd_fill = sec_aead_bd_fill_v3,
1848 .bd_send = sec_bd_send,
1849 .callback = sec_aead_callback,
1850 .process = sec_process,
1851 };
1852
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1853 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1854 {
1855 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1856 int ret;
1857
1858 ret = sec_skcipher_init(tfm);
1859 if (ret)
1860 return ret;
1861
1862 if (ctx->sec->qm.ver < QM_HW_V3) {
1863 ctx->type_supported = SEC_BD_TYPE2;
1864 ctx->req_op = &sec_skcipher_req_ops;
1865 } else {
1866 ctx->type_supported = SEC_BD_TYPE3;
1867 ctx->req_op = &sec_skcipher_req_ops_v3;
1868 }
1869
1870 return ret;
1871 }
1872
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1873 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1874 {
1875 sec_skcipher_uninit(tfm);
1876 }
1877
sec_aead_init(struct crypto_aead * tfm)1878 static int sec_aead_init(struct crypto_aead *tfm)
1879 {
1880 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1881 int ret;
1882
1883 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1884 ctx->alg_type = SEC_AEAD;
1885 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1886 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1887 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1888 pr_err("get error aead iv size!\n");
1889 return -EINVAL;
1890 }
1891
1892 ret = sec_ctx_base_init(ctx);
1893 if (ret)
1894 return ret;
1895 if (ctx->sec->qm.ver < QM_HW_V3) {
1896 ctx->type_supported = SEC_BD_TYPE2;
1897 ctx->req_op = &sec_aead_req_ops;
1898 } else {
1899 ctx->type_supported = SEC_BD_TYPE3;
1900 ctx->req_op = &sec_aead_req_ops_v3;
1901 }
1902
1903 ret = sec_auth_init(ctx);
1904 if (ret)
1905 goto err_auth_init;
1906
1907 ret = sec_cipher_init(ctx);
1908 if (ret)
1909 goto err_cipher_init;
1910
1911 return ret;
1912
1913 err_cipher_init:
1914 sec_auth_uninit(ctx);
1915 err_auth_init:
1916 sec_ctx_base_uninit(ctx);
1917 return ret;
1918 }
1919
sec_aead_exit(struct crypto_aead * tfm)1920 static void sec_aead_exit(struct crypto_aead *tfm)
1921 {
1922 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1923
1924 sec_cipher_uninit(ctx);
1925 sec_auth_uninit(ctx);
1926 sec_ctx_base_uninit(ctx);
1927 }
1928
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1929 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1930 {
1931 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1932 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1933 int ret;
1934
1935 ret = sec_aead_init(tfm);
1936 if (ret) {
1937 pr_err("hisi_sec2: aead init error!\n");
1938 return ret;
1939 }
1940
1941 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1942 if (IS_ERR(auth_ctx->hash_tfm)) {
1943 dev_err(ctx->dev, "aead alloc shash error!\n");
1944 sec_aead_exit(tfm);
1945 return PTR_ERR(auth_ctx->hash_tfm);
1946 }
1947
1948 return 0;
1949 }
1950
sec_aead_ctx_exit(struct crypto_aead * tfm)1951 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1952 {
1953 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1954
1955 crypto_free_shash(ctx->a_ctx.hash_tfm);
1956 sec_aead_exit(tfm);
1957 }
1958
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1959 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1960 {
1961 struct aead_alg *alg = crypto_aead_alg(tfm);
1962 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1963 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1964 const char *aead_name = alg->base.cra_name;
1965 int ret;
1966
1967 ret = sec_aead_init(tfm);
1968 if (ret) {
1969 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1970 return ret;
1971 }
1972
1973 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1974 CRYPTO_ALG_NEED_FALLBACK |
1975 CRYPTO_ALG_ASYNC);
1976 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1977 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1978 sec_aead_exit(tfm);
1979 return PTR_ERR(a_ctx->fallback_aead_tfm);
1980 }
1981 a_ctx->fallback = false;
1982
1983 return 0;
1984 }
1985
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1986 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1987 {
1988 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1989
1990 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1991 sec_aead_exit(tfm);
1992 }
1993
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1994 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1995 {
1996 return sec_aead_ctx_init(tfm, "sha1");
1997 }
1998
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)1999 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2000 {
2001 return sec_aead_ctx_init(tfm, "sha256");
2002 }
2003
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)2004 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2005 {
2006 return sec_aead_ctx_init(tfm, "sha512");
2007 }
2008
sec_skcipher_cryptlen_check(struct sec_ctx * ctx,struct sec_req * sreq)2009 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2010 struct sec_req *sreq)
2011 {
2012 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2013 struct device *dev = ctx->dev;
2014 u8 c_mode = ctx->c_ctx.c_mode;
2015 int ret = 0;
2016
2017 switch (c_mode) {
2018 case SEC_CMODE_XTS:
2019 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2020 dev_err(dev, "skcipher XTS mode input length error!\n");
2021 ret = -EINVAL;
2022 }
2023 break;
2024 case SEC_CMODE_ECB:
2025 case SEC_CMODE_CBC:
2026 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2027 dev_err(dev, "skcipher AES input length error!\n");
2028 ret = -EINVAL;
2029 }
2030 break;
2031 case SEC_CMODE_CFB:
2032 case SEC_CMODE_OFB:
2033 case SEC_CMODE_CTR:
2034 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2035 dev_err(dev, "skcipher HW version error!\n");
2036 ret = -EINVAL;
2037 }
2038 break;
2039 default:
2040 ret = -EINVAL;
2041 }
2042
2043 return ret;
2044 }
2045
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2046 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2047 {
2048 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2049 struct device *dev = ctx->dev;
2050 u8 c_alg = ctx->c_ctx.c_alg;
2051
2052 if (unlikely(!sk_req->src || !sk_req->dst ||
2053 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2054 dev_err(dev, "skcipher input param error!\n");
2055 return -EINVAL;
2056 }
2057 sreq->c_req.c_len = sk_req->cryptlen;
2058
2059 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2060 sreq->use_pbuf = true;
2061 else
2062 sreq->use_pbuf = false;
2063
2064 if (c_alg == SEC_CALG_3DES) {
2065 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2066 dev_err(dev, "skcipher 3des input length error!\n");
2067 return -EINVAL;
2068 }
2069 return 0;
2070 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2071 return sec_skcipher_cryptlen_check(ctx, sreq);
2072 }
2073
2074 dev_err(dev, "skcipher algorithm error!\n");
2075
2076 return -EINVAL;
2077 }
2078
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2079 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2080 struct skcipher_request *sreq, bool encrypt)
2081 {
2082 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2083 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2084 struct device *dev = ctx->dev;
2085 int ret;
2086
2087 if (!c_ctx->fbtfm) {
2088 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2089 return -EINVAL;
2090 }
2091
2092 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2093
2094 /* software need sync mode to do crypto */
2095 skcipher_request_set_callback(subreq, sreq->base.flags,
2096 NULL, NULL);
2097 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2098 sreq->cryptlen, sreq->iv);
2099 if (encrypt)
2100 ret = crypto_skcipher_encrypt(subreq);
2101 else
2102 ret = crypto_skcipher_decrypt(subreq);
2103
2104 skcipher_request_zero(subreq);
2105
2106 return ret;
2107 }
2108
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2109 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2110 {
2111 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2112 struct sec_req *req = skcipher_request_ctx(sk_req);
2113 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2114 int ret;
2115
2116 if (!sk_req->cryptlen) {
2117 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2118 return -EINVAL;
2119 return 0;
2120 }
2121
2122 req->flag = sk_req->base.flags;
2123 req->c_req.sk_req = sk_req;
2124 req->c_req.encrypt = encrypt;
2125 req->ctx = ctx;
2126
2127 ret = sec_skcipher_param_check(ctx, req);
2128 if (unlikely(ret))
2129 return -EINVAL;
2130
2131 if (unlikely(ctx->c_ctx.fallback))
2132 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2133
2134 return ctx->req_op->process(ctx, req);
2135 }
2136
sec_skcipher_encrypt(struct skcipher_request * sk_req)2137 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2138 {
2139 return sec_skcipher_crypto(sk_req, true);
2140 }
2141
sec_skcipher_decrypt(struct skcipher_request * sk_req)2142 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2143 {
2144 return sec_skcipher_crypto(sk_req, false);
2145 }
2146
2147 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2148 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2149 {\
2150 .base = {\
2151 .cra_name = sec_cra_name,\
2152 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2153 .cra_priority = SEC_PRIORITY,\
2154 .cra_flags = CRYPTO_ALG_ASYNC |\
2155 CRYPTO_ALG_NEED_FALLBACK,\
2156 .cra_blocksize = blk_size,\
2157 .cra_ctxsize = sizeof(struct sec_ctx),\
2158 .cra_module = THIS_MODULE,\
2159 },\
2160 .init = ctx_init,\
2161 .exit = ctx_exit,\
2162 .setkey = sec_set_key,\
2163 .decrypt = sec_skcipher_decrypt,\
2164 .encrypt = sec_skcipher_encrypt,\
2165 .min_keysize = sec_min_key_size,\
2166 .max_keysize = sec_max_key_size,\
2167 .ivsize = iv_size,\
2168 }
2169
2170 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2171 max_key_size, blk_size, iv_size) \
2172 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2173 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2174
2175 static struct sec_skcipher sec_skciphers[] = {
2176 {
2177 .alg_msk = BIT(0),
2178 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2179 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2180 },
2181 {
2182 .alg_msk = BIT(1),
2183 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2184 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2185 },
2186 {
2187 .alg_msk = BIT(2),
2188 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2189 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2190 },
2191 {
2192 .alg_msk = BIT(3),
2193 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2194 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2195 },
2196 {
2197 .alg_msk = BIT(4),
2198 .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
2199 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2200 },
2201 {
2202 .alg_msk = BIT(5),
2203 .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
2204 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2205 },
2206 {
2207 .alg_msk = BIT(12),
2208 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2209 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2210 },
2211 {
2212 .alg_msk = BIT(13),
2213 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2214 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2215 },
2216 {
2217 .alg_msk = BIT(14),
2218 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2219 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2220 },
2221 {
2222 .alg_msk = BIT(15),
2223 .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
2224 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2225 },
2226 {
2227 .alg_msk = BIT(16),
2228 .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
2229 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2230 },
2231 {
2232 .alg_msk = BIT(23),
2233 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2234 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2235 },
2236 {
2237 .alg_msk = BIT(24),
2238 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2239 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2240 DES3_EDE_BLOCK_SIZE),
2241 },
2242 };
2243
aead_iv_demension_check(struct aead_request * aead_req)2244 static int aead_iv_demension_check(struct aead_request *aead_req)
2245 {
2246 u8 cl;
2247
2248 cl = aead_req->iv[0] + 1;
2249 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2250 return -EINVAL;
2251
2252 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2253 return -EOVERFLOW;
2254
2255 return 0;
2256 }
2257
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2258 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2259 {
2260 struct aead_request *req = sreq->aead_req.aead_req;
2261 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2262 size_t authsize = crypto_aead_authsize(tfm);
2263 u8 c_mode = ctx->c_ctx.c_mode;
2264 struct device *dev = ctx->dev;
2265 int ret;
2266
2267 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2268 req->assoclen > SEC_MAX_AAD_LEN)) {
2269 dev_err(dev, "aead input spec error!\n");
2270 return -EINVAL;
2271 }
2272
2273 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2274 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2275 authsize & MAC_LEN_MASK)))) {
2276 dev_err(dev, "aead input mac length error!\n");
2277 return -EINVAL;
2278 }
2279
2280 if (c_mode == SEC_CMODE_CCM) {
2281 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2282 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2283 return -EINVAL;
2284 }
2285 ret = aead_iv_demension_check(req);
2286 if (ret) {
2287 dev_err(dev, "aead input iv param error!\n");
2288 return ret;
2289 }
2290 }
2291
2292 if (sreq->c_req.encrypt)
2293 sreq->c_req.c_len = req->cryptlen;
2294 else
2295 sreq->c_req.c_len = req->cryptlen - authsize;
2296 if (c_mode == SEC_CMODE_CBC) {
2297 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2298 dev_err(dev, "aead crypto length error!\n");
2299 return -EINVAL;
2300 }
2301 }
2302
2303 return 0;
2304 }
2305
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2306 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2307 {
2308 struct aead_request *req = sreq->aead_req.aead_req;
2309 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2310 size_t authsize = crypto_aead_authsize(tfm);
2311 struct device *dev = ctx->dev;
2312 u8 c_alg = ctx->c_ctx.c_alg;
2313
2314 if (unlikely(!req->src || !req->dst)) {
2315 dev_err(dev, "aead input param error!\n");
2316 return -EINVAL;
2317 }
2318
2319 if (ctx->sec->qm.ver == QM_HW_V2) {
2320 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2321 req->cryptlen <= authsize))) {
2322 ctx->a_ctx.fallback = true;
2323 return -EINVAL;
2324 }
2325 }
2326
2327 /* Support AES or SM4 */
2328 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2329 dev_err(dev, "aead crypto alg error!\n");
2330 return -EINVAL;
2331 }
2332
2333 if (unlikely(sec_aead_spec_check(ctx, sreq)))
2334 return -EINVAL;
2335
2336 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2337 SEC_PBUF_SZ)
2338 sreq->use_pbuf = true;
2339 else
2340 sreq->use_pbuf = false;
2341
2342 return 0;
2343 }
2344
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2345 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2346 struct aead_request *aead_req,
2347 bool encrypt)
2348 {
2349 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2350 struct device *dev = ctx->dev;
2351 struct aead_request *subreq;
2352 int ret;
2353
2354 /* Kunpeng920 aead mode not support input 0 size */
2355 if (!a_ctx->fallback_aead_tfm) {
2356 dev_err(dev, "aead fallback tfm is NULL!\n");
2357 return -EINVAL;
2358 }
2359
2360 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2361 if (!subreq)
2362 return -ENOMEM;
2363
2364 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2365 aead_request_set_callback(subreq, aead_req->base.flags,
2366 aead_req->base.complete, aead_req->base.data);
2367 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2368 aead_req->cryptlen, aead_req->iv);
2369 aead_request_set_ad(subreq, aead_req->assoclen);
2370
2371 if (encrypt)
2372 ret = crypto_aead_encrypt(subreq);
2373 else
2374 ret = crypto_aead_decrypt(subreq);
2375 aead_request_free(subreq);
2376
2377 return ret;
2378 }
2379
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2380 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2381 {
2382 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2383 struct sec_req *req = aead_request_ctx(a_req);
2384 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2385 int ret;
2386
2387 req->flag = a_req->base.flags;
2388 req->aead_req.aead_req = a_req;
2389 req->c_req.encrypt = encrypt;
2390 req->ctx = ctx;
2391
2392 ret = sec_aead_param_check(ctx, req);
2393 if (unlikely(ret)) {
2394 if (ctx->a_ctx.fallback)
2395 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2396 return -EINVAL;
2397 }
2398
2399 return ctx->req_op->process(ctx, req);
2400 }
2401
sec_aead_encrypt(struct aead_request * a_req)2402 static int sec_aead_encrypt(struct aead_request *a_req)
2403 {
2404 return sec_aead_crypto(a_req, true);
2405 }
2406
sec_aead_decrypt(struct aead_request * a_req)2407 static int sec_aead_decrypt(struct aead_request *a_req)
2408 {
2409 return sec_aead_crypto(a_req, false);
2410 }
2411
2412 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2413 ctx_exit, blk_size, iv_size, max_authsize)\
2414 {\
2415 .base = {\
2416 .cra_name = sec_cra_name,\
2417 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2418 .cra_priority = SEC_PRIORITY,\
2419 .cra_flags = CRYPTO_ALG_ASYNC |\
2420 CRYPTO_ALG_NEED_FALLBACK,\
2421 .cra_blocksize = blk_size,\
2422 .cra_ctxsize = sizeof(struct sec_ctx),\
2423 .cra_module = THIS_MODULE,\
2424 },\
2425 .init = ctx_init,\
2426 .exit = ctx_exit,\
2427 .setkey = sec_set_key,\
2428 .setauthsize = sec_aead_setauthsize,\
2429 .decrypt = sec_aead_decrypt,\
2430 .encrypt = sec_aead_encrypt,\
2431 .ivsize = iv_size,\
2432 .maxauthsize = max_authsize,\
2433 }
2434
2435 static struct sec_aead sec_aeads[] = {
2436 {
2437 .alg_msk = BIT(6),
2438 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2439 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2440 AES_BLOCK_SIZE),
2441 },
2442 {
2443 .alg_msk = BIT(7),
2444 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2445 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2446 AES_BLOCK_SIZE),
2447 },
2448 {
2449 .alg_msk = BIT(17),
2450 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2451 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2452 AES_BLOCK_SIZE),
2453 },
2454 {
2455 .alg_msk = BIT(18),
2456 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2457 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2458 AES_BLOCK_SIZE),
2459 },
2460 {
2461 .alg_msk = BIT(43),
2462 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2463 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2464 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2465 },
2466 {
2467 .alg_msk = BIT(44),
2468 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2469 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2470 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2471 },
2472 {
2473 .alg_msk = BIT(45),
2474 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2475 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2476 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2477 },
2478 };
2479
sec_unregister_skcipher(u64 alg_mask,int end)2480 static void sec_unregister_skcipher(u64 alg_mask, int end)
2481 {
2482 int i;
2483
2484 for (i = 0; i < end; i++)
2485 if (sec_skciphers[i].alg_msk & alg_mask)
2486 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2487 }
2488
sec_register_skcipher(u64 alg_mask)2489 static int sec_register_skcipher(u64 alg_mask)
2490 {
2491 int i, ret, count;
2492
2493 count = ARRAY_SIZE(sec_skciphers);
2494
2495 for (i = 0; i < count; i++) {
2496 if (!(sec_skciphers[i].alg_msk & alg_mask))
2497 continue;
2498
2499 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2500 if (ret)
2501 goto err;
2502 }
2503
2504 return 0;
2505
2506 err:
2507 sec_unregister_skcipher(alg_mask, i);
2508
2509 return ret;
2510 }
2511
sec_unregister_aead(u64 alg_mask,int end)2512 static void sec_unregister_aead(u64 alg_mask, int end)
2513 {
2514 int i;
2515
2516 for (i = 0; i < end; i++)
2517 if (sec_aeads[i].alg_msk & alg_mask)
2518 crypto_unregister_aead(&sec_aeads[i].alg);
2519 }
2520
sec_register_aead(u64 alg_mask)2521 static int sec_register_aead(u64 alg_mask)
2522 {
2523 int i, ret, count;
2524
2525 count = ARRAY_SIZE(sec_aeads);
2526
2527 for (i = 0; i < count; i++) {
2528 if (!(sec_aeads[i].alg_msk & alg_mask))
2529 continue;
2530
2531 ret = crypto_register_aead(&sec_aeads[i].alg);
2532 if (ret)
2533 goto err;
2534 }
2535
2536 return 0;
2537
2538 err:
2539 sec_unregister_aead(alg_mask, i);
2540
2541 return ret;
2542 }
2543
sec_register_to_crypto(struct hisi_qm * qm)2544 int sec_register_to_crypto(struct hisi_qm *qm)
2545 {
2546 u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW);
2547 int ret;
2548
2549 ret = sec_register_skcipher(alg_mask);
2550 if (ret)
2551 return ret;
2552
2553 ret = sec_register_aead(alg_mask);
2554 if (ret)
2555 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2556
2557 return ret;
2558 }
2559
sec_unregister_from_crypto(struct hisi_qm * qm)2560 void sec_unregister_from_crypto(struct hisi_qm *qm)
2561 {
2562 u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW);
2563
2564 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2565 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2566 }
2567