1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE 0x04
39 #define LPSS_LTR_SIZE 0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43 #define LPSS_RESETS 0x04
44 #define LPSS_RESETS_RESET_FUNC BIT(0)
45 #define LPSS_RESETS_RESET_APB BIT(1)
46 #define LPSS_GENERAL 0x08
47 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49 #define LPSS_SW_LTR 0x10
50 #define LPSS_AUTO_LTR 0x14
51 #define LPSS_LTR_SNOOP_REQ BIT(15)
52 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US 0x800
54 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57 #define LPSS_LTR_MAX_VAL 0x3FF
58 #define LPSS_TX_INT 0x20
59 #define LPSS_TX_INT_MASK BIT(1)
60
61 #define LPSS_PRV_REG_COUNT 9
62
63 /* LPSS Flags */
64 #define LPSS_CLK BIT(0)
65 #define LPSS_CLK_GATE BIT(1)
66 #define LPSS_CLK_DIVIDER BIT(2)
67 #define LPSS_LTR BIT(3)
68 #define LPSS_SAVE_CTX BIT(4)
69 /*
70 * For some devices the DSDT AML code for another device turns off the device
71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72 * as ctx register values.
73 * Luckily these devices always use the same ctx register values, so we can
74 * work around this by saving the ctx registers once on activation.
75 */
76 #define LPSS_SAVE_CTX_ONCE BIT(5)
77 #define LPSS_NO_D3_DELAY BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82 unsigned int flags;
83 const char *clk_con_id;
84 unsigned int prv_offset;
85 size_t prv_size_override;
86 const struct property_entry *properties;
87 void (*setup)(struct lpss_private_data *pdata);
88 bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92 .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96 struct acpi_device *adev;
97 void __iomem *mmio_base;
98 resource_size_t mmio_size;
99 unsigned int fixed_clk_rate;
100 struct clk *clk;
101 const struct lpss_device_desc *dev_desc;
102 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 *
114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115 * it can be powered off automatically whenever the last LPSS device goes down.
116 * In case of no power any access to the DMA controller will hang the system.
117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118 * well as on ASuS T100TA transformer.
119 *
120 * This quirk overrides power state of entire LPSS island to keep DMA powered
121 * on whenever we have at least one other device in use.
122 */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR 0xF4
127 #define LPSS_UART_CPR_AFCE BIT(4)
128
lpss_uart_setup(struct lpss_private_data * pdata)129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131 unsigned int offset;
132 u32 val;
133
134 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 val = readl(pdata->mmio_base + offset);
136 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138 val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 if (!(val & LPSS_UART_CPR_AFCE)) {
140 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 val = readl(pdata->mmio_base + offset);
142 val |= LPSS_GENERAL_UART_RTS_OVRD;
143 writel(val, pdata->mmio_base + offset);
144 }
145 }
146
lpss_deassert_reset(struct lpss_private_data * pdata)147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149 unsigned int offset;
150 u32 val;
151
152 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 val = readl(pdata->mmio_base + offset);
154 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159 * BYT PWM used for backlight control by the i915 driver on systems without
160 * the Crystal Cove PMIC.
161 */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 "pwm-lpss-platform"),
166 };
167
byt_pwm_setup(struct lpss_private_data * pdata)168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170 u64 uid;
171
172 /* Only call pwm_add_table for the first PWM controller */
173 if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
174 return;
175
176 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE 0x6c
180
byt_i2c_setup(struct lpss_private_data * pdata)181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
185 acpi_status status;
186 u64 uid;
187
188 /* Expected to always be successfull, but better safe then sorry */
189 if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194 }
195
196 lpss_deassert_reset(pdata);
197
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
200
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /*
205 * BSW PWM1 is used for backlight control by the i915 driver
206 * BSW PWM2 is used for backlight control for fixed (etched into the glass)
207 * touch controls on some models. These touch-controls have specialized
208 * drivers which know they need the "pwm_soc_lpss_2" con-id.
209 */
210 static struct pwm_lookup bsw_pwm_lookup[] = {
211 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
212 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
213 "pwm-lpss-platform"),
214 PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
215 "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
216 "pwm-lpss-platform"),
217 };
218
bsw_pwm_setup(struct lpss_private_data * pdata)219 static void bsw_pwm_setup(struct lpss_private_data *pdata)
220 {
221 u64 uid;
222
223 /* Only call pwm_add_table for the first PWM controller */
224 if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
225 return;
226
227 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
228 }
229
230 static const struct property_entry lpt_spi_properties[] = {
231 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
232 { }
233 };
234
235 static const struct lpss_device_desc lpt_spi_dev_desc = {
236 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
237 | LPSS_SAVE_CTX,
238 .prv_offset = 0x800,
239 .properties = lpt_spi_properties,
240 };
241
242 static const struct lpss_device_desc lpt_i2c_dev_desc = {
243 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
244 .prv_offset = 0x800,
245 };
246
247 static struct property_entry uart_properties[] = {
248 PROPERTY_ENTRY_U32("reg-io-width", 4),
249 PROPERTY_ENTRY_U32("reg-shift", 2),
250 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
251 { },
252 };
253
254 static const struct lpss_device_desc lpt_uart_dev_desc = {
255 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
256 | LPSS_SAVE_CTX,
257 .clk_con_id = "baudclk",
258 .prv_offset = 0x800,
259 .setup = lpss_uart_setup,
260 .properties = uart_properties,
261 };
262
263 static const struct lpss_device_desc lpt_sdio_dev_desc = {
264 .flags = LPSS_LTR,
265 .prv_offset = 0x1000,
266 .prv_size_override = 0x1018,
267 };
268
269 static const struct lpss_device_desc byt_pwm_dev_desc = {
270 .flags = LPSS_SAVE_CTX,
271 .prv_offset = 0x800,
272 .setup = byt_pwm_setup,
273 };
274
275 static const struct lpss_device_desc bsw_pwm_dev_desc = {
276 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
277 .prv_offset = 0x800,
278 .setup = bsw_pwm_setup,
279 .resume_from_noirq = true,
280 };
281
282 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
283 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
284 .prv_offset = 0x800,
285 .resume_from_noirq = true,
286 };
287
288 static const struct lpss_device_desc byt_uart_dev_desc = {
289 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
290 .clk_con_id = "baudclk",
291 .prv_offset = 0x800,
292 .setup = lpss_uart_setup,
293 .properties = uart_properties,
294 };
295
296 static const struct lpss_device_desc bsw_uart_dev_desc = {
297 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
298 | LPSS_NO_D3_DELAY,
299 .clk_con_id = "baudclk",
300 .prv_offset = 0x800,
301 .setup = lpss_uart_setup,
302 .properties = uart_properties,
303 };
304
305 static const struct property_entry byt_spi_properties[] = {
306 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
307 { }
308 };
309
310 static const struct lpss_device_desc byt_spi_dev_desc = {
311 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
312 .prv_offset = 0x400,
313 .properties = byt_spi_properties,
314 };
315
316 static const struct lpss_device_desc byt_sdio_dev_desc = {
317 .flags = LPSS_CLK,
318 };
319
320 static const struct lpss_device_desc byt_i2c_dev_desc = {
321 .flags = LPSS_CLK | LPSS_SAVE_CTX,
322 .prv_offset = 0x800,
323 .setup = byt_i2c_setup,
324 .resume_from_noirq = true,
325 };
326
327 static const struct lpss_device_desc bsw_i2c_dev_desc = {
328 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
329 .prv_offset = 0x800,
330 .setup = byt_i2c_setup,
331 .resume_from_noirq = true,
332 };
333
334 static const struct property_entry bsw_spi_properties[] = {
335 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
336 { }
337 };
338
339 static const struct lpss_device_desc bsw_spi_dev_desc = {
340 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
341 | LPSS_NO_D3_DELAY,
342 .prv_offset = 0x400,
343 .setup = lpss_deassert_reset,
344 .properties = bsw_spi_properties,
345 };
346
347 static const struct x86_cpu_id lpss_cpu_ids[] = {
348 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
349 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
350 {}
351 };
352
353 #else
354
355 #define LPSS_ADDR(desc) (0UL)
356
357 #endif /* CONFIG_X86_INTEL_LPSS */
358
359 static const struct acpi_device_id acpi_lpss_device_ids[] = {
360 /* Generic LPSS devices */
361 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
362
363 /* Lynxpoint LPSS devices */
364 { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
365 { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
366 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
367 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
368 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
369 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
370 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
371 { "INT33C7", },
372
373 /* BayTrail LPSS devices */
374 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
375 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
376 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
377 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
378 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
379 { "INT33B2", },
380 { "INT33FC", },
381
382 /* Braswell LPSS devices */
383 { "80862286", LPSS_ADDR(lpss_dma_desc) },
384 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
385 { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
386 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
387 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
388 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
389 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
390
391 /* Broadwell LPSS devices */
392 { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
393 { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
394 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
395 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
396 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
397 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
398 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
399 { "INT3437", },
400
401 /* Wildcat Point LPSS devices */
402 { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
403
404 { }
405 };
406
407 #ifdef CONFIG_X86_INTEL_LPSS
408
409 /* LPSS main clock device. */
410 static struct platform_device *lpss_clk_dev;
411
lpt_register_clock_device(void)412 static inline void lpt_register_clock_device(void)
413 {
414 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
415 PLATFORM_DEVID_NONE,
416 NULL, 0);
417 }
418
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)419 static int register_device_clock(struct acpi_device *adev,
420 struct lpss_private_data *pdata)
421 {
422 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
423 const char *devname = dev_name(&adev->dev);
424 struct clk *clk;
425 struct lpss_clk_data *clk_data;
426 const char *parent, *clk_name;
427 void __iomem *prv_base;
428
429 if (!lpss_clk_dev)
430 lpt_register_clock_device();
431
432 if (IS_ERR(lpss_clk_dev))
433 return PTR_ERR(lpss_clk_dev);
434
435 clk_data = platform_get_drvdata(lpss_clk_dev);
436 if (!clk_data)
437 return -ENODEV;
438 clk = clk_data->clk;
439
440 if (!pdata->mmio_base
441 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
442 return -ENODATA;
443
444 parent = clk_data->name;
445 prv_base = pdata->mmio_base + dev_desc->prv_offset;
446
447 if (pdata->fixed_clk_rate) {
448 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
449 pdata->fixed_clk_rate);
450 goto out;
451 }
452
453 if (dev_desc->flags & LPSS_CLK_GATE) {
454 clk = clk_register_gate(NULL, devname, parent, 0,
455 prv_base, 0, 0, NULL);
456 parent = devname;
457 }
458
459 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
460 /* Prevent division by zero */
461 if (!readl(prv_base))
462 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
463
464 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
465 if (!clk_name)
466 return -ENOMEM;
467 clk = clk_register_fractional_divider(NULL, clk_name, parent,
468 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
469 prv_base, 1, 15, 16, 15, 0, NULL);
470 parent = clk_name;
471
472 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
473 if (!clk_name) {
474 kfree(parent);
475 return -ENOMEM;
476 }
477 clk = clk_register_gate(NULL, clk_name, parent,
478 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
479 prv_base, 31, 0, NULL);
480 kfree(parent);
481 kfree(clk_name);
482 }
483 out:
484 if (IS_ERR(clk))
485 return PTR_ERR(clk);
486
487 pdata->clk = clk;
488 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
489 return 0;
490 }
491
492 struct lpss_device_links {
493 const char *supplier_hid;
494 const char *supplier_uid;
495 const char *consumer_hid;
496 const char *consumer_uid;
497 u32 flags;
498 const struct dmi_system_id *dep_missing_ids;
499 };
500
501 /* Please keep this list sorted alphabetically by vendor and model */
502 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
503 {
504 .matches = {
505 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
506 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
507 },
508 },
509 {}
510 };
511
512 /*
513 * The _DEP method is used to identify dependencies but instead of creating
514 * device links for every handle in _DEP, only links in the following list are
515 * created. That is necessary because, in the general case, _DEP can refer to
516 * devices that might not have drivers, or that are on different buses, or where
517 * the supplier is not enumerated until after the consumer is probed.
518 */
519 static const struct lpss_device_links lpss_device_links[] = {
520 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
521 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
522 /* CHT iGPU depends on PMIC I2C controller */
523 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
524 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
525 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
526 i2c1_dep_missing_dmi_ids},
527 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
528 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
529 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
530 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
531 };
532
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)533 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
534 const struct lpss_device_links *link)
535 {
536 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
537 }
538
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)539 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
540 const struct lpss_device_links *link)
541 {
542 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
543 }
544
545 struct hid_uid {
546 const char *hid;
547 const char *uid;
548 };
549
match_hid_uid(struct device * dev,const void * data)550 static int match_hid_uid(struct device *dev, const void *data)
551 {
552 struct acpi_device *adev = ACPI_COMPANION(dev);
553 const struct hid_uid *id = data;
554
555 if (!adev)
556 return 0;
557
558 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
559 }
560
acpi_lpss_find_device(const char * hid,const char * uid)561 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
562 {
563 struct device *dev;
564
565 struct hid_uid data = {
566 .hid = hid,
567 .uid = uid,
568 };
569
570 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
571 if (dev)
572 return dev;
573
574 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
575 }
576
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)577 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
578 {
579 struct acpi_handle_list dep_devices;
580 acpi_status status;
581 int i;
582
583 if (!acpi_has_method(adev->handle, "_DEP"))
584 return false;
585
586 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
587 &dep_devices);
588 if (ACPI_FAILURE(status)) {
589 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
590 return false;
591 }
592
593 for (i = 0; i < dep_devices.count; i++) {
594 if (dep_devices.handles[i] == handle)
595 return true;
596 }
597
598 return false;
599 }
600
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)601 static void acpi_lpss_link_consumer(struct device *dev1,
602 const struct lpss_device_links *link)
603 {
604 struct device *dev2;
605
606 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
607 if (!dev2)
608 return;
609
610 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
611 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
612 device_link_add(dev2, dev1, link->flags);
613
614 put_device(dev2);
615 }
616
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)617 static void acpi_lpss_link_supplier(struct device *dev1,
618 const struct lpss_device_links *link)
619 {
620 struct device *dev2;
621
622 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
623 if (!dev2)
624 return;
625
626 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
627 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
628 device_link_add(dev1, dev2, link->flags);
629
630 put_device(dev2);
631 }
632
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)633 static void acpi_lpss_create_device_links(struct acpi_device *adev,
634 struct platform_device *pdev)
635 {
636 int i;
637
638 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
639 const struct lpss_device_links *link = &lpss_device_links[i];
640
641 if (acpi_lpss_is_supplier(adev, link))
642 acpi_lpss_link_consumer(&pdev->dev, link);
643
644 if (acpi_lpss_is_consumer(adev, link))
645 acpi_lpss_link_supplier(&pdev->dev, link);
646 }
647 }
648
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)649 static int acpi_lpss_create_device(struct acpi_device *adev,
650 const struct acpi_device_id *id)
651 {
652 const struct lpss_device_desc *dev_desc;
653 struct lpss_private_data *pdata;
654 struct resource_entry *rentry;
655 struct list_head resource_list;
656 struct platform_device *pdev;
657 int ret;
658
659 dev_desc = (const struct lpss_device_desc *)id->driver_data;
660 if (!dev_desc) {
661 pdev = acpi_create_platform_device(adev, NULL);
662 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
663 }
664 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
665 if (!pdata)
666 return -ENOMEM;
667
668 INIT_LIST_HEAD(&resource_list);
669 ret = acpi_dev_get_memory_resources(adev, &resource_list);
670 if (ret < 0)
671 goto err_out;
672
673 rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
674 if (rentry) {
675 if (dev_desc->prv_size_override)
676 pdata->mmio_size = dev_desc->prv_size_override;
677 else
678 pdata->mmio_size = resource_size(rentry->res);
679 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
680 }
681
682 acpi_dev_free_resource_list(&resource_list);
683
684 if (!pdata->mmio_base) {
685 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
686 adev->pnp.type.platform_id = 0;
687 goto out_free;
688 }
689
690 pdata->adev = adev;
691 pdata->dev_desc = dev_desc;
692
693 if (dev_desc->setup)
694 dev_desc->setup(pdata);
695
696 if (dev_desc->flags & LPSS_CLK) {
697 ret = register_device_clock(adev, pdata);
698 if (ret)
699 goto out_free;
700 }
701
702 /*
703 * This works around a known issue in ACPI tables where LPSS devices
704 * have _PS0 and _PS3 without _PSC (and no power resources), so
705 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
706 */
707 acpi_device_fix_up_power(adev);
708
709 adev->driver_data = pdata;
710 pdev = acpi_create_platform_device(adev, dev_desc->properties);
711 if (IS_ERR_OR_NULL(pdev)) {
712 adev->driver_data = NULL;
713 ret = PTR_ERR(pdev);
714 goto err_out;
715 }
716
717 acpi_lpss_create_device_links(adev, pdev);
718 return 1;
719
720 out_free:
721 /* Skip the device, but continue the namespace scan */
722 ret = 0;
723 err_out:
724 kfree(pdata);
725 return ret;
726 }
727
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)728 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
729 {
730 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
731 }
732
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)733 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
734 unsigned int reg)
735 {
736 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
737 }
738
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)739 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
740 {
741 struct acpi_device *adev = ACPI_COMPANION(dev);
742 struct lpss_private_data *pdata;
743 unsigned long flags;
744 int ret;
745
746 if (WARN_ON(!adev))
747 return -ENODEV;
748
749 spin_lock_irqsave(&dev->power.lock, flags);
750 if (pm_runtime_suspended(dev)) {
751 ret = -EAGAIN;
752 goto out;
753 }
754 pdata = acpi_driver_data(adev);
755 if (WARN_ON(!pdata || !pdata->mmio_base)) {
756 ret = -ENODEV;
757 goto out;
758 }
759 *val = __lpss_reg_read(pdata, reg);
760 ret = 0;
761
762 out:
763 spin_unlock_irqrestore(&dev->power.lock, flags);
764 return ret;
765 }
766
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)767 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
768 char *buf)
769 {
770 u32 ltr_value = 0;
771 unsigned int reg;
772 int ret;
773
774 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
775 ret = lpss_reg_read(dev, reg, <r_value);
776 if (ret)
777 return ret;
778
779 return sysfs_emit(buf, "%08x\n", ltr_value);
780 }
781
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)782 static ssize_t lpss_ltr_mode_show(struct device *dev,
783 struct device_attribute *attr, char *buf)
784 {
785 u32 ltr_mode = 0;
786 char *outstr;
787 int ret;
788
789 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
790 if (ret)
791 return ret;
792
793 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
794 return sprintf(buf, "%s\n", outstr);
795 }
796
797 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
798 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
799 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
800
801 static struct attribute *lpss_attrs[] = {
802 &dev_attr_auto_ltr.attr,
803 &dev_attr_sw_ltr.attr,
804 &dev_attr_ltr_mode.attr,
805 NULL,
806 };
807
808 static const struct attribute_group lpss_attr_group = {
809 .attrs = lpss_attrs,
810 .name = "lpss_ltr",
811 };
812
acpi_lpss_set_ltr(struct device * dev,s32 val)813 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
814 {
815 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
816 u32 ltr_mode, ltr_val;
817
818 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
819 if (val < 0) {
820 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
821 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
822 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
823 }
824 return;
825 }
826 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
827 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
828 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
829 val = LPSS_LTR_MAX_VAL;
830 } else if (val > LPSS_LTR_MAX_VAL) {
831 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
832 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
833 } else {
834 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
835 }
836 ltr_val |= val;
837 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
838 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
839 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
840 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
841 }
842 }
843
844 #ifdef CONFIG_PM
845 /**
846 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
847 * @dev: LPSS device
848 * @pdata: pointer to the private data of the LPSS device
849 *
850 * Most LPSS devices have private registers which may loose their context when
851 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
852 * prv_reg_ctx array.
853 */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)854 static void acpi_lpss_save_ctx(struct device *dev,
855 struct lpss_private_data *pdata)
856 {
857 unsigned int i;
858
859 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
860 unsigned long offset = i * sizeof(u32);
861
862 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
863 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
864 pdata->prv_reg_ctx[i], offset);
865 }
866 }
867
868 /**
869 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
870 * @dev: LPSS device
871 * @pdata: pointer to the private data of the LPSS device
872 *
873 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
874 */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)875 static void acpi_lpss_restore_ctx(struct device *dev,
876 struct lpss_private_data *pdata)
877 {
878 unsigned int i;
879
880 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
881 unsigned long offset = i * sizeof(u32);
882
883 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
884 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
885 pdata->prv_reg_ctx[i], offset);
886 }
887 }
888
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)889 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
890 {
891 /*
892 * The following delay is needed or the subsequent write operations may
893 * fail. The LPSS devices are actually PCI devices and the PCI spec
894 * expects 10ms delay before the device can be accessed after D3 to D0
895 * transition. However some platforms like BSW does not need this delay.
896 */
897 unsigned int delay = 10; /* default 10ms delay */
898
899 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
900 delay = 0;
901
902 msleep(delay);
903 }
904
acpi_lpss_activate(struct device * dev)905 static int acpi_lpss_activate(struct device *dev)
906 {
907 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
908 int ret;
909
910 ret = acpi_dev_resume(dev);
911 if (ret)
912 return ret;
913
914 acpi_lpss_d3_to_d0_delay(pdata);
915
916 /*
917 * This is called only on ->probe() stage where a device is either in
918 * known state defined by BIOS or most likely powered off. Due to this
919 * we have to deassert reset line to be sure that ->probe() will
920 * recognize the device.
921 */
922 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
923 lpss_deassert_reset(pdata);
924
925 #ifdef CONFIG_PM
926 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
927 acpi_lpss_save_ctx(dev, pdata);
928 #endif
929
930 return 0;
931 }
932
acpi_lpss_dismiss(struct device * dev)933 static void acpi_lpss_dismiss(struct device *dev)
934 {
935 acpi_dev_suspend(dev, false);
936 }
937
938 /* IOSF SB for LPSS island */
939 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
940 #define LPSS_IOSF_UNIT_LPIO1 0xAB
941 #define LPSS_IOSF_UNIT_LPIO2 0xAC
942
943 #define LPSS_IOSF_PMCSR 0x84
944 #define LPSS_PMCSR_D0 0
945 #define LPSS_PMCSR_D3hot 3
946 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
947
948 #define LPSS_IOSF_GPIODEF0 0x154
949 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
950 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
951 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
952 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
953
954 static DEFINE_MUTEX(lpss_iosf_mutex);
955 static bool lpss_iosf_d3_entered = true;
956
lpss_iosf_enter_d3_state(void)957 static void lpss_iosf_enter_d3_state(void)
958 {
959 u32 value1 = 0;
960 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
961 u32 value2 = LPSS_PMCSR_D3hot;
962 u32 mask2 = LPSS_PMCSR_Dx_MASK;
963 /*
964 * PMC provides an information about actual status of the LPSS devices.
965 * Here we read the values related to LPSS power island, i.e. LPSS
966 * devices, excluding both LPSS DMA controllers, along with SCC domain.
967 */
968 u32 func_dis, d3_sts_0, pmc_status;
969 int ret;
970
971 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
972 if (ret)
973 return;
974
975 mutex_lock(&lpss_iosf_mutex);
976
977 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
978 if (ret)
979 goto exit;
980
981 /*
982 * Get the status of entire LPSS power island per device basis.
983 * Shutdown both LPSS DMA controllers if and only if all other devices
984 * are already in D3hot.
985 */
986 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
987 if (pmc_status)
988 goto exit;
989
990 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991 LPSS_IOSF_PMCSR, value2, mask2);
992
993 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
994 LPSS_IOSF_PMCSR, value2, mask2);
995
996 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
997 LPSS_IOSF_GPIODEF0, value1, mask1);
998
999 lpss_iosf_d3_entered = true;
1000
1001 exit:
1002 mutex_unlock(&lpss_iosf_mutex);
1003 }
1004
lpss_iosf_exit_d3_state(void)1005 static void lpss_iosf_exit_d3_state(void)
1006 {
1007 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1008 LPSS_GPIODEF0_DMA_LLP;
1009 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1010 u32 value2 = LPSS_PMCSR_D0;
1011 u32 mask2 = LPSS_PMCSR_Dx_MASK;
1012
1013 mutex_lock(&lpss_iosf_mutex);
1014
1015 if (!lpss_iosf_d3_entered)
1016 goto exit;
1017
1018 lpss_iosf_d3_entered = false;
1019
1020 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1021 LPSS_IOSF_GPIODEF0, value1, mask1);
1022
1023 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1024 LPSS_IOSF_PMCSR, value2, mask2);
1025
1026 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1027 LPSS_IOSF_PMCSR, value2, mask2);
1028
1029 exit:
1030 mutex_unlock(&lpss_iosf_mutex);
1031 }
1032
acpi_lpss_suspend(struct device * dev,bool wakeup)1033 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1034 {
1035 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1036 int ret;
1037
1038 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1039 acpi_lpss_save_ctx(dev, pdata);
1040
1041 ret = acpi_dev_suspend(dev, wakeup);
1042
1043 /*
1044 * This call must be last in the sequence, otherwise PMC will return
1045 * wrong status for devices being about to be powered off. See
1046 * lpss_iosf_enter_d3_state() for further information.
1047 */
1048 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1049 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1050 lpss_iosf_enter_d3_state();
1051
1052 return ret;
1053 }
1054
acpi_lpss_resume(struct device * dev)1055 static int acpi_lpss_resume(struct device *dev)
1056 {
1057 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058 int ret;
1059
1060 /*
1061 * This call is kept first to be in symmetry with
1062 * acpi_lpss_runtime_suspend() one.
1063 */
1064 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1065 lpss_iosf_exit_d3_state();
1066
1067 ret = acpi_dev_resume(dev);
1068 if (ret)
1069 return ret;
1070
1071 acpi_lpss_d3_to_d0_delay(pdata);
1072
1073 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1074 acpi_lpss_restore_ctx(dev, pdata);
1075
1076 return 0;
1077 }
1078
1079 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1080 static int acpi_lpss_do_suspend_late(struct device *dev)
1081 {
1082 int ret;
1083
1084 if (dev_pm_skip_suspend(dev))
1085 return 0;
1086
1087 ret = pm_generic_suspend_late(dev);
1088 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1089 }
1090
acpi_lpss_suspend_late(struct device * dev)1091 static int acpi_lpss_suspend_late(struct device *dev)
1092 {
1093 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1094
1095 if (pdata->dev_desc->resume_from_noirq)
1096 return 0;
1097
1098 return acpi_lpss_do_suspend_late(dev);
1099 }
1100
acpi_lpss_suspend_noirq(struct device * dev)1101 static int acpi_lpss_suspend_noirq(struct device *dev)
1102 {
1103 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1104 int ret;
1105
1106 if (pdata->dev_desc->resume_from_noirq) {
1107 /*
1108 * The driver's ->suspend_late callback will be invoked by
1109 * acpi_lpss_do_suspend_late(), with the assumption that the
1110 * driver really wanted to run that code in ->suspend_noirq, but
1111 * it could not run after acpi_dev_suspend() and the driver
1112 * expected the latter to be called in the "late" phase.
1113 */
1114 ret = acpi_lpss_do_suspend_late(dev);
1115 if (ret)
1116 return ret;
1117 }
1118
1119 return acpi_subsys_suspend_noirq(dev);
1120 }
1121
acpi_lpss_do_resume_early(struct device * dev)1122 static int acpi_lpss_do_resume_early(struct device *dev)
1123 {
1124 int ret = acpi_lpss_resume(dev);
1125
1126 return ret ? ret : pm_generic_resume_early(dev);
1127 }
1128
acpi_lpss_resume_early(struct device * dev)1129 static int acpi_lpss_resume_early(struct device *dev)
1130 {
1131 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1132
1133 if (pdata->dev_desc->resume_from_noirq)
1134 return 0;
1135
1136 if (dev_pm_skip_resume(dev))
1137 return 0;
1138
1139 return acpi_lpss_do_resume_early(dev);
1140 }
1141
acpi_lpss_resume_noirq(struct device * dev)1142 static int acpi_lpss_resume_noirq(struct device *dev)
1143 {
1144 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1145 int ret;
1146
1147 /* Follow acpi_subsys_resume_noirq(). */
1148 if (dev_pm_skip_resume(dev))
1149 return 0;
1150
1151 ret = pm_generic_resume_noirq(dev);
1152 if (ret)
1153 return ret;
1154
1155 if (!pdata->dev_desc->resume_from_noirq)
1156 return 0;
1157
1158 /*
1159 * The driver's ->resume_early callback will be invoked by
1160 * acpi_lpss_do_resume_early(), with the assumption that the driver
1161 * really wanted to run that code in ->resume_noirq, but it could not
1162 * run before acpi_dev_resume() and the driver expected the latter to be
1163 * called in the "early" phase.
1164 */
1165 return acpi_lpss_do_resume_early(dev);
1166 }
1167
acpi_lpss_do_restore_early(struct device * dev)1168 static int acpi_lpss_do_restore_early(struct device *dev)
1169 {
1170 int ret = acpi_lpss_resume(dev);
1171
1172 return ret ? ret : pm_generic_restore_early(dev);
1173 }
1174
acpi_lpss_restore_early(struct device * dev)1175 static int acpi_lpss_restore_early(struct device *dev)
1176 {
1177 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1178
1179 if (pdata->dev_desc->resume_from_noirq)
1180 return 0;
1181
1182 return acpi_lpss_do_restore_early(dev);
1183 }
1184
acpi_lpss_restore_noirq(struct device * dev)1185 static int acpi_lpss_restore_noirq(struct device *dev)
1186 {
1187 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188 int ret;
1189
1190 ret = pm_generic_restore_noirq(dev);
1191 if (ret)
1192 return ret;
1193
1194 if (!pdata->dev_desc->resume_from_noirq)
1195 return 0;
1196
1197 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1198 return acpi_lpss_do_restore_early(dev);
1199 }
1200
acpi_lpss_do_poweroff_late(struct device * dev)1201 static int acpi_lpss_do_poweroff_late(struct device *dev)
1202 {
1203 int ret = pm_generic_poweroff_late(dev);
1204
1205 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1206 }
1207
acpi_lpss_poweroff_late(struct device * dev)1208 static int acpi_lpss_poweroff_late(struct device *dev)
1209 {
1210 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1211
1212 if (dev_pm_skip_suspend(dev))
1213 return 0;
1214
1215 if (pdata->dev_desc->resume_from_noirq)
1216 return 0;
1217
1218 return acpi_lpss_do_poweroff_late(dev);
1219 }
1220
acpi_lpss_poweroff_noirq(struct device * dev)1221 static int acpi_lpss_poweroff_noirq(struct device *dev)
1222 {
1223 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1224
1225 if (dev_pm_skip_suspend(dev))
1226 return 0;
1227
1228 if (pdata->dev_desc->resume_from_noirq) {
1229 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1230 int ret = acpi_lpss_do_poweroff_late(dev);
1231
1232 if (ret)
1233 return ret;
1234 }
1235
1236 return pm_generic_poweroff_noirq(dev);
1237 }
1238 #endif /* CONFIG_PM_SLEEP */
1239
acpi_lpss_runtime_suspend(struct device * dev)1240 static int acpi_lpss_runtime_suspend(struct device *dev)
1241 {
1242 int ret = pm_generic_runtime_suspend(dev);
1243
1244 return ret ? ret : acpi_lpss_suspend(dev, true);
1245 }
1246
acpi_lpss_runtime_resume(struct device * dev)1247 static int acpi_lpss_runtime_resume(struct device *dev)
1248 {
1249 int ret = acpi_lpss_resume(dev);
1250
1251 return ret ? ret : pm_generic_runtime_resume(dev);
1252 }
1253 #endif /* CONFIG_PM */
1254
1255 static struct dev_pm_domain acpi_lpss_pm_domain = {
1256 #ifdef CONFIG_PM
1257 .activate = acpi_lpss_activate,
1258 .dismiss = acpi_lpss_dismiss,
1259 #endif
1260 .ops = {
1261 #ifdef CONFIG_PM
1262 #ifdef CONFIG_PM_SLEEP
1263 .prepare = acpi_subsys_prepare,
1264 .complete = acpi_subsys_complete,
1265 .suspend = acpi_subsys_suspend,
1266 .suspend_late = acpi_lpss_suspend_late,
1267 .suspend_noirq = acpi_lpss_suspend_noirq,
1268 .resume_noirq = acpi_lpss_resume_noirq,
1269 .resume_early = acpi_lpss_resume_early,
1270 .freeze = acpi_subsys_freeze,
1271 .poweroff = acpi_subsys_poweroff,
1272 .poweroff_late = acpi_lpss_poweroff_late,
1273 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1274 .restore_noirq = acpi_lpss_restore_noirq,
1275 .restore_early = acpi_lpss_restore_early,
1276 #endif
1277 .runtime_suspend = acpi_lpss_runtime_suspend,
1278 .runtime_resume = acpi_lpss_runtime_resume,
1279 #endif
1280 },
1281 };
1282
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1283 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1284 unsigned long action, void *data)
1285 {
1286 struct platform_device *pdev = to_platform_device(data);
1287 struct lpss_private_data *pdata;
1288 struct acpi_device *adev;
1289 const struct acpi_device_id *id;
1290
1291 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1292 if (!id || !id->driver_data)
1293 return 0;
1294
1295 adev = ACPI_COMPANION(&pdev->dev);
1296 if (!adev)
1297 return 0;
1298
1299 pdata = acpi_driver_data(adev);
1300 if (!pdata)
1301 return 0;
1302
1303 if (pdata->mmio_base &&
1304 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1305 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1306 return 0;
1307 }
1308
1309 switch (action) {
1310 case BUS_NOTIFY_BIND_DRIVER:
1311 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1312 break;
1313 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1314 case BUS_NOTIFY_UNBOUND_DRIVER:
1315 dev_pm_domain_set(&pdev->dev, NULL);
1316 break;
1317 case BUS_NOTIFY_ADD_DEVICE:
1318 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1319 if (pdata->dev_desc->flags & LPSS_LTR)
1320 return sysfs_create_group(&pdev->dev.kobj,
1321 &lpss_attr_group);
1322 break;
1323 case BUS_NOTIFY_DEL_DEVICE:
1324 if (pdata->dev_desc->flags & LPSS_LTR)
1325 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1326 dev_pm_domain_set(&pdev->dev, NULL);
1327 break;
1328 default:
1329 break;
1330 }
1331
1332 return 0;
1333 }
1334
1335 static struct notifier_block acpi_lpss_nb = {
1336 .notifier_call = acpi_lpss_platform_notify,
1337 };
1338
acpi_lpss_bind(struct device * dev)1339 static void acpi_lpss_bind(struct device *dev)
1340 {
1341 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1342
1343 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1344 return;
1345
1346 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1347 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1348 else
1349 dev_err(dev, "MMIO size insufficient to access LTR\n");
1350 }
1351
acpi_lpss_unbind(struct device * dev)1352 static void acpi_lpss_unbind(struct device *dev)
1353 {
1354 dev->power.set_latency_tolerance = NULL;
1355 }
1356
1357 static struct acpi_scan_handler lpss_handler = {
1358 .ids = acpi_lpss_device_ids,
1359 .attach = acpi_lpss_create_device,
1360 .bind = acpi_lpss_bind,
1361 .unbind = acpi_lpss_unbind,
1362 };
1363
acpi_lpss_init(void)1364 void __init acpi_lpss_init(void)
1365 {
1366 const struct x86_cpu_id *id;
1367 int ret;
1368
1369 ret = lpss_atom_clk_init();
1370 if (ret)
1371 return;
1372
1373 id = x86_match_cpu(lpss_cpu_ids);
1374 if (id)
1375 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1376
1377 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1378 acpi_scan_add_handler(&lpss_handler);
1379 }
1380
1381 #else
1382
1383 static struct acpi_scan_handler lpss_handler = {
1384 .ids = acpi_lpss_device_ids,
1385 };
1386
acpi_lpss_init(void)1387 void __init acpi_lpss_init(void)
1388 {
1389 acpi_scan_add_handler(&lpss_handler);
1390 }
1391
1392 #endif /* CONFIG_X86_INTEL_LPSS */
1393