1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <linux/slab.h>
9
10 #include "../habanalabs.h"
11
12 #include <trace/events/habanalabs.h>
13
14 /**
15 * hl_mmu_get_funcs() - get MMU functions structure
16 * @hdev: habanalabs device structure.
17 * @pgt_residency: page table residency.
18 * @is_dram_addr: true if we need HMMU functions
19 *
20 * @return appropriate MMU functions structure
21 */
hl_mmu_get_funcs(struct hl_device * hdev,int pgt_residency,bool is_dram_addr)22 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
23 bool is_dram_addr)
24 {
25 return &hdev->mmu_func[pgt_residency];
26 }
27
hl_is_dram_va(struct hl_device * hdev,u64 virt_addr)28 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
29 {
30 struct asic_fixed_properties *prop = &hdev->asic_prop;
31
32 return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
33 prop->dmmu.start_addr,
34 prop->dmmu.end_addr);
35 }
36
37 /**
38 * hl_mmu_init() - initialize the MMU module.
39 * @hdev: habanalabs device structure.
40 *
41 * Return: 0 for success, non-zero for failure.
42 */
hl_mmu_init(struct hl_device * hdev)43 int hl_mmu_init(struct hl_device *hdev)
44 {
45 int rc = -EOPNOTSUPP;
46
47 if (hdev->mmu_disable)
48 return 0;
49
50 mutex_init(&hdev->mmu_lock);
51
52 if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
53 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
54 if (rc)
55 return rc;
56 }
57
58 if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
59 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
60 if (rc)
61 goto fini_dr_mmu;
62 }
63
64 return 0;
65
66 fini_dr_mmu:
67 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
68 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
69
70 return rc;
71 }
72
73 /**
74 * hl_mmu_fini() - release the MMU module.
75 * @hdev: habanalabs device structure.
76 *
77 * This function does the following:
78 * - Disable MMU in H/W.
79 * - Free the pgt_infos pool.
80 *
81 * All contexts should be freed before calling this function.
82 */
hl_mmu_fini(struct hl_device * hdev)83 void hl_mmu_fini(struct hl_device *hdev)
84 {
85 if (hdev->mmu_disable)
86 return;
87
88 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
89 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
90
91 if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
92 hdev->mmu_func[MMU_HR_PGT].fini(hdev);
93
94 mutex_destroy(&hdev->mmu_lock);
95 }
96
97 /**
98 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
99 * @ctx: pointer to the context structure to initialize.
100 *
101 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
102 * page tables hops related to this context.
103 * Return: 0 on success, non-zero otherwise.
104 */
hl_mmu_ctx_init(struct hl_ctx * ctx)105 int hl_mmu_ctx_init(struct hl_ctx *ctx)
106 {
107 struct hl_device *hdev = ctx->hdev;
108 int rc = -EOPNOTSUPP;
109
110 if (hdev->mmu_disable)
111 return 0;
112
113 if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
114 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
115 if (rc)
116 return rc;
117 }
118
119 if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
120 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
121 if (rc)
122 goto fini_dr_ctx;
123 }
124
125 return 0;
126
127 fini_dr_ctx:
128 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
129 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
130
131 return rc;
132 }
133
134 /*
135 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
136 *
137 * @ctx: pointer to the context structure
138 *
139 * This function does the following:
140 * - Free any pgts which were not freed yet
141 * - Free the mutex
142 * - Free DRAM default page mapping hops
143 */
hl_mmu_ctx_fini(struct hl_ctx * ctx)144 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
145 {
146 struct hl_device *hdev = ctx->hdev;
147
148 if (hdev->mmu_disable)
149 return;
150
151 if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
152 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
153
154 if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
155 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
156 }
157
158 /*
159 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
160 *
161 * @hdev: pointer to device data.
162 * @mmu_prop: MMU properties.
163 * @page_size: page size
164 * @real_page_size: set here the actual page size to use for the operation
165 * @is_dram_addr: true if DRAM address, otherwise false.
166 *
167 * @return 0 on success, otherwise non 0 error code
168 *
169 * note that this is general implementation that can fit most MMU arch. but as this is used as an
170 * MMU function:
171 * 1. it shall not be called directly- only from mmu_func structure instance
172 * 2. each MMU may modify the implementation internally
173 */
hl_mmu_get_real_page_size(struct hl_device * hdev,struct hl_mmu_properties * mmu_prop,u32 page_size,u32 * real_page_size,bool is_dram_addr)174 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
175 u32 page_size, u32 *real_page_size, bool is_dram_addr)
176 {
177 /*
178 * The H/W handles mapping of specific page sizes. Hence if the page
179 * size is bigger, we break it to sub-pages and map them separately.
180 */
181 if ((page_size % mmu_prop->page_size) == 0) {
182 *real_page_size = mmu_prop->page_size;
183 return 0;
184 }
185
186 dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
187 page_size, mmu_prop->page_size >> 10);
188
189 return -EFAULT;
190 }
191
hl_mmu_get_prop(struct hl_device * hdev,u32 page_size,bool is_dram_addr)192 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
193 bool is_dram_addr)
194 {
195 struct asic_fixed_properties *prop = &hdev->asic_prop;
196
197 if (is_dram_addr)
198 return &prop->dmmu;
199 else if ((page_size % prop->pmmu_huge.page_size) == 0)
200 return &prop->pmmu_huge;
201
202 return &prop->pmmu;
203 }
204
205 /*
206 * hl_mmu_unmap_page - unmaps a virtual addr
207 *
208 * @ctx: pointer to the context structure
209 * @virt_addr: virt addr to map from
210 * @page_size: size of the page to unmap
211 * @flush_pte: whether to do a PCI flush
212 *
213 * This function does the following:
214 * - Check that the virt addr is mapped
215 * - Unmap the virt addr and frees pgts if possible
216 * - Returns 0 on success, -EINVAL if the given addr is not mapped
217 *
218 * Because this function changes the page tables in the device and because it
219 * changes the MMU hash, it must be protected by a lock.
220 * However, because it maps only a single page, the lock should be implemented
221 * in a higher level in order to protect the entire mapping of the memory area
222 *
223 * For optimization reasons PCI flush may be requested once after unmapping of
224 * large area.
225 */
hl_mmu_unmap_page(struct hl_ctx * ctx,u64 virt_addr,u32 page_size,bool flush_pte)226 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
227 {
228 struct hl_device *hdev = ctx->hdev;
229 struct hl_mmu_properties *mmu_prop;
230 struct hl_mmu_funcs *mmu_funcs;
231 int i, pgt_residency, rc = 0;
232 u32 real_page_size, npages;
233 u64 real_virt_addr;
234 bool is_dram_addr;
235
236 if (hdev->mmu_disable)
237 return 0;
238
239 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
240 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
241
242 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
243 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
244
245 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
246 is_dram_addr);
247 if (rc)
248 return rc;
249
250 npages = page_size / real_page_size;
251 real_virt_addr = virt_addr;
252
253 for (i = 0 ; i < npages ; i++) {
254 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
255 if (rc)
256 break;
257
258 real_virt_addr += real_page_size;
259 }
260
261 if (flush_pte)
262 mmu_funcs->flush(ctx);
263
264 if (trace_habanalabs_mmu_unmap_enabled() && !rc)
265 trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
266
267 return rc;
268 }
269
270 /*
271 * hl_mmu_map_page - maps a virtual addr to physical addr
272 *
273 * @ctx: pointer to the context structure
274 * @virt_addr: virt addr to map from
275 * @phys_addr: phys addr to map to
276 * @page_size: physical page size
277 * @flush_pte: whether to do a PCI flush
278 *
279 * This function does the following:
280 * - Check that the virt addr is not mapped
281 * - Allocate pgts as necessary in order to map the virt addr to the phys
282 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
283 *
284 * Because this function changes the page tables in the device and because it
285 * changes the MMU hash, it must be protected by a lock.
286 * However, because it maps only a single page, the lock should be implemented
287 * in a higher level in order to protect the entire mapping of the memory area
288 *
289 * For optimization reasons PCI flush may be requested once after mapping of
290 * large area.
291 */
hl_mmu_map_page(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 page_size,bool flush_pte)292 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
293 bool flush_pte)
294 {
295 int i, rc, pgt_residency, mapped_cnt = 0;
296 struct hl_device *hdev = ctx->hdev;
297 struct hl_mmu_properties *mmu_prop;
298 u64 real_virt_addr, real_phys_addr;
299 struct hl_mmu_funcs *mmu_funcs;
300 u32 real_page_size, npages;
301 bool is_dram_addr;
302
303
304 if (hdev->mmu_disable)
305 return 0;
306
307 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
308 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
309
310 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
311 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
312
313 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
314 is_dram_addr);
315 if (rc)
316 return rc;
317
318 /*
319 * Verify that the phys and virt addresses are aligned with the
320 * MMU page size (in dram this means checking the address and MMU
321 * after scrambling)
322 */
323 if ((is_dram_addr &&
324 ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
325 (mmu_prop->page_size - 1)) ||
326 (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
327 (mmu_prop->page_size - 1)))) ||
328 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
329 (virt_addr & (real_page_size - 1)))))
330 dev_crit(hdev->dev,
331 "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
332 phys_addr, virt_addr, real_page_size);
333
334 npages = page_size / real_page_size;
335 real_virt_addr = virt_addr;
336 real_phys_addr = phys_addr;
337
338 for (i = 0 ; i < npages ; i++) {
339 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
340 is_dram_addr);
341 if (rc)
342 goto err;
343
344 real_virt_addr += real_page_size;
345 real_phys_addr += real_page_size;
346 mapped_cnt++;
347 }
348
349 if (flush_pte)
350 mmu_funcs->flush(ctx);
351
352 trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
353
354 return 0;
355
356 err:
357 real_virt_addr = virt_addr;
358 for (i = 0 ; i < mapped_cnt ; i++) {
359 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
360 dev_warn_ratelimited(hdev->dev,
361 "failed to unmap va: 0x%llx\n", real_virt_addr);
362
363 real_virt_addr += real_page_size;
364 }
365
366 mmu_funcs->flush(ctx);
367
368 return rc;
369 }
370
371 /*
372 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
373 * for mapping contiguous physical memory
374 *
375 * @ctx: pointer to the context structure
376 * @virt_addr: virt addr to map from
377 * @phys_addr: phys addr to map to
378 * @size: size to map
379 *
380 */
hl_mmu_map_contiguous(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 size)381 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
382 u64 phys_addr, u32 size)
383 {
384 struct hl_device *hdev = ctx->hdev;
385 struct asic_fixed_properties *prop = &hdev->asic_prop;
386 u64 curr_va, curr_pa;
387 u32 page_size;
388 bool flush_pte;
389 int rc = 0, off;
390
391 if (hl_mem_area_inside_range(virt_addr, size,
392 prop->dmmu.start_addr, prop->dmmu.end_addr))
393 page_size = prop->dmmu.page_size;
394 else if (hl_mem_area_inside_range(virt_addr, size,
395 prop->pmmu.start_addr, prop->pmmu.end_addr))
396 page_size = prop->pmmu.page_size;
397 else if (hl_mem_area_inside_range(virt_addr, size,
398 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
399 page_size = prop->pmmu_huge.page_size;
400 else
401 return -EINVAL;
402
403 for (off = 0 ; off < size ; off += page_size) {
404 curr_va = virt_addr + off;
405 curr_pa = phys_addr + off;
406 flush_pte = (off + page_size) >= size;
407 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
408 flush_pte);
409 if (rc) {
410 dev_err(hdev->dev,
411 "Map failed for va 0x%llx to pa 0x%llx\n",
412 curr_va, curr_pa);
413 /* last mapping failed so don't try to unmap it - reduce off by page_size */
414 off -= page_size;
415 goto unmap;
416 }
417 }
418
419 return rc;
420
421 unmap:
422 for (; off >= 0 ; off -= page_size) {
423 curr_va = virt_addr + off;
424 flush_pte = (off - (s32) page_size) < 0;
425 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
426 dev_warn_ratelimited(hdev->dev,
427 "failed to unmap va 0x%llx\n", curr_va);
428 }
429
430 return rc;
431 }
432
433 /*
434 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
435 * for unmapping contiguous physical memory
436 *
437 * @ctx: pointer to the context structure
438 * @virt_addr: virt addr to unmap
439 * @size: size to unmap
440 *
441 */
hl_mmu_unmap_contiguous(struct hl_ctx * ctx,u64 virt_addr,u32 size)442 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
443 {
444 struct hl_device *hdev = ctx->hdev;
445 struct asic_fixed_properties *prop = &hdev->asic_prop;
446 u64 curr_va;
447 u32 page_size;
448 bool flush_pte;
449 int rc = 0, off;
450
451 if (hl_mem_area_inside_range(virt_addr, size,
452 prop->dmmu.start_addr, prop->dmmu.end_addr))
453 page_size = prop->dmmu.page_size;
454 else if (hl_mem_area_inside_range(virt_addr, size,
455 prop->pmmu.start_addr, prop->pmmu.end_addr))
456 page_size = prop->pmmu.page_size;
457 else if (hl_mem_area_inside_range(virt_addr, size,
458 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
459 page_size = prop->pmmu_huge.page_size;
460 else
461 return -EINVAL;
462
463 for (off = 0 ; off < size ; off += page_size) {
464 curr_va = virt_addr + off;
465 flush_pte = (off + page_size) >= size;
466 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
467 if (rc)
468 dev_warn_ratelimited(hdev->dev,
469 "Unmap failed for va 0x%llx\n", curr_va);
470 }
471
472 return rc;
473 }
474
hl_mmu_pa_page_with_offset(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,u64 * phys_addr)475 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
476 struct hl_mmu_hop_info *hops,
477 u64 *phys_addr)
478 {
479 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
480 u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
481 struct hl_mmu_properties *mmu_prop;
482
483 /* last hop holds the phys address and flags */
484 if (hops->unscrambled_paddr)
485 tmp_phys_addr = hops->unscrambled_paddr;
486 else
487 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
488
489 if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
490 mmu_prop = &prop->pmmu_huge;
491 else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
492 mmu_prop = &prop->pmmu;
493 else /* HL_VA_RANGE_TYPE_DRAM */
494 mmu_prop = &prop->dmmu;
495
496 if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
497 !is_power_of_2(prop->dram_page_size)) {
498 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
499 page_id, page_start;
500 u32 page_off;
501
502 /*
503 * Bit arithmetic cannot be used for non power of two page
504 * sizes. In addition, since bit arithmetic is not used,
505 * we cannot ignore dram base. All that shall be considered.
506 */
507
508 dram_page_size = prop->dram_page_size;
509 dram_base = prop->dram_base_address;
510 abs_phys_addr = tmp_phys_addr - dram_base;
511 abs_virt_addr = virt_addr - dram_base;
512 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
513 page_start = page_id * dram_page_size;
514 div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
515
516 *phys_addr = page_start + page_off + dram_base;
517 } else {
518 /*
519 * find the correct hop shift field in hl_mmu_properties
520 * structure in order to determine the right masks
521 * for the page offset.
522 */
523 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
524 offset_mask = (1ull << hop_shift) - 1;
525 addr_mask = ~(offset_mask);
526 *phys_addr = (tmp_phys_addr & addr_mask) |
527 (virt_addr & offset_mask);
528 }
529 }
530
hl_mmu_va_to_pa(struct hl_ctx * ctx,u64 virt_addr,u64 * phys_addr)531 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
532 {
533 struct hl_mmu_hop_info hops;
534 int rc;
535
536 memset(&hops, 0, sizeof(hops));
537
538 rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
539 if (rc)
540 return rc;
541
542 hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
543
544 return 0;
545 }
546
hl_mmu_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops)547 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
548 struct hl_mmu_hop_info *hops)
549 {
550 struct hl_device *hdev = ctx->hdev;
551 struct asic_fixed_properties *prop;
552 struct hl_mmu_properties *mmu_prop;
553 struct hl_mmu_funcs *mmu_funcs;
554 int pgt_residency, rc;
555 bool is_dram_addr;
556
557 if (hdev->mmu_disable)
558 return -EOPNOTSUPP;
559
560 prop = &hdev->asic_prop;
561 hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
562
563 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
564 prop->dmmu.start_addr,
565 prop->dmmu.end_addr);
566
567 /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
568 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
569 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
570 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
571
572 mutex_lock(&hdev->mmu_lock);
573 rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
574 mutex_unlock(&hdev->mmu_lock);
575
576 if (rc)
577 return rc;
578
579 /* add page offset to physical address */
580 if (hops->unscrambled_paddr)
581 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
582
583 return 0;
584 }
585
hl_mmu_if_set_funcs(struct hl_device * hdev)586 int hl_mmu_if_set_funcs(struct hl_device *hdev)
587 {
588 if (hdev->mmu_disable)
589 return 0;
590
591 switch (hdev->asic_type) {
592 case ASIC_GOYA:
593 case ASIC_GAUDI:
594 case ASIC_GAUDI_SEC:
595 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
596 break;
597 case ASIC_GAUDI2:
598 case ASIC_GAUDI2B:
599 /* MMUs in Gaudi2 are always host resident */
600 hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
601 break;
602 default:
603 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
604 hdev->asic_type);
605 return -EOPNOTSUPP;
606 }
607
608 return 0;
609 }
610
611 /**
612 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
613 * @hdev: pointer to device data.
614 * @addr: The address to scramble.
615 *
616 * Return: The scrambled address.
617 */
hl_mmu_scramble_addr(struct hl_device * hdev,u64 addr)618 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
619 {
620 return addr;
621 }
622
623 /**
624 * hl_mmu_descramble_addr() - The generic mmu address descrambling
625 * routine.
626 * @hdev: pointer to device data.
627 * @addr: The address to descramble.
628 *
629 * Return: The un-scrambled address.
630 */
hl_mmu_descramble_addr(struct hl_device * hdev,u64 addr)631 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
632 {
633 return addr;
634 }
635
hl_mmu_invalidate_cache(struct hl_device * hdev,bool is_hard,u32 flags)636 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
637 {
638 int rc;
639
640 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
641 if (rc)
642 dev_err_ratelimited(hdev->dev,
643 "%s cache invalidation failed, rc=%d\n",
644 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
645
646 return rc;
647 }
648
hl_mmu_invalidate_cache_range(struct hl_device * hdev,bool is_hard,u32 flags,u32 asid,u64 va,u64 size)649 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
650 u32 flags, u32 asid, u64 va, u64 size)
651 {
652 int rc;
653
654 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
655 asid, va, size);
656 if (rc)
657 dev_err_ratelimited(hdev->dev,
658 "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
659 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc);
660
661 return rc;
662 }
663
hl_mmu_prefetch_work_function(struct work_struct * work)664 static void hl_mmu_prefetch_work_function(struct work_struct *work)
665 {
666 struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
667 struct hl_ctx *ctx = pfw->ctx;
668 struct hl_device *hdev = ctx->hdev;
669
670 if (!hl_device_operational(hdev, NULL))
671 goto put_ctx;
672
673 mutex_lock(&hdev->mmu_lock);
674
675 hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
676
677 mutex_unlock(&hdev->mmu_lock);
678
679 put_ctx:
680 /*
681 * context was taken in the common mmu prefetch function- see comment there about
682 * context handling.
683 */
684 hl_ctx_put(ctx);
685 kfree(pfw);
686 }
687
hl_mmu_prefetch_cache_range(struct hl_ctx * ctx,u32 flags,u32 asid,u64 va,u64 size)688 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
689 {
690 struct hl_prefetch_work *handle_prefetch_work;
691
692 handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
693 if (!handle_prefetch_work)
694 return -ENOMEM;
695
696 INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
697 handle_prefetch_work->ctx = ctx;
698 handle_prefetch_work->va = va;
699 handle_prefetch_work->size = size;
700 handle_prefetch_work->flags = flags;
701 handle_prefetch_work->asid = asid;
702
703 /*
704 * as actual prefetch is done in a WQ we must get the context (and put it
705 * at the end of the work function)
706 */
707 hl_ctx_get(ctx);
708 queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
709
710 return 0;
711 }
712
hl_mmu_get_next_hop_addr(struct hl_ctx * ctx,u64 curr_pte)713 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
714 {
715 return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
716 }
717
718 /**
719 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
720 * @ctx: pointer to the context structure to initialize.
721 * @mmu_prop: MMU properties.
722 * @hop_idx: HOP index.
723 * @hop_addr: HOP address.
724 * @virt_addr: virtual address for the translation.
725 *
726 * @return the matching PTE value on success, otherwise U64_MAX.
727 */
hl_mmu_get_hop_pte_phys_addr(struct hl_ctx * ctx,struct hl_mmu_properties * mmu_prop,u8 hop_idx,u64 hop_addr,u64 virt_addr)728 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
729 u8 hop_idx, u64 hop_addr, u64 virt_addr)
730 {
731 u64 mask, shift;
732
733 if (hop_idx >= mmu_prop->num_hops) {
734 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
735 return U64_MAX;
736 }
737
738 shift = mmu_prop->hop_shifts[hop_idx];
739 mask = mmu_prop->hop_masks[hop_idx];
740
741 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
742 }
743
mmu_dma_mem_free_from_chunk(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data)744 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
745 struct gen_pool_chunk *chunk,
746 void *data)
747 {
748 struct hl_device *hdev = data;
749
750 hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
751 (void *)chunk->start_addr, chunk->phys_addr);
752 }
753
hl_mmu_hr_flush(struct hl_ctx * ctx)754 void hl_mmu_hr_flush(struct hl_ctx *ctx)
755 {
756 /* a flush operation requires memory barrier */
757 mb();
758 }
759
760 /**
761 * hl_mmu_hr_pool_destroy() - destroy genpool
762 * @hdev: habanalabs device structure.
763 * @hr_priv: MMU HR private data.
764 * @hop_table_size: HOP table size.
765 *
766 * This function does the following:
767 * - free entries allocated for shadow HOP0
768 * - free pool chunks
769 * - free pool
770 */
hl_mmu_hr_pool_destroy(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)771 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
772 u32 hop_table_size)
773 {
774 struct asic_fixed_properties *prop = &hdev->asic_prop;
775 struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
776 struct pgt_info *hop0_pgt;
777 int asid;
778
779 if (ZERO_OR_NULL_PTR(*pool))
780 return;
781
782 /* Free the Fixed allocation of HOPs0 */
783 if (hr_priv->mmu_asid_hop0) {
784 for (asid = 0 ; asid < prop->max_asid ; asid++) {
785 hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
786 if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
787 continue;
788
789 gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
790 }
791 }
792
793 gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
794 gen_pool_destroy(*pool);
795
796 /* Make sure that if we arrive here again without init was called we
797 * won't cause kernel panic. This can happen for example if we fail
798 * during hard reset code at certain points
799 */
800 *pool = NULL;
801 }
802
803 /**
804 * hl_mmu_hr_init() - initialize the MMU module.
805 * @hdev: habanalabs device structure.
806 * @hr_priv: MMU HR private data.
807 * @hop_table_size: HOP table size.
808 * @pgt_size: memory size allocated for the page table
809 *
810 * @return 0 on success otherwise non-zero error code
811 *
812 * This function does the following:
813 * - Create a pool of pages for pgt_infos.
814 * - Create a shadow table for pgt
815 */
hl_mmu_hr_init(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size,u64 pgt_size)816 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
817 u64 pgt_size)
818 {
819 struct asic_fixed_properties *prop = &hdev->asic_prop;
820 size_t pool_chunk_size = SZ_4M;
821 struct pgt_info *hop0_pgt;
822 dma_addr_t dma_addr;
823 u64 virt_addr;
824 int i, rc;
825
826 /*
827 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
828 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
829 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
830 * allocations with higher-order alignment restrictions
831 */
832 hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
833 if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
834 dev_err(hdev->dev, "Failed to create hr page pool\n");
835 return -ENOMEM;
836 }
837
838 hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
839 if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
840 dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
841 rc = -ENOMEM;
842 goto destroy_mmu_pgt_pool;
843 }
844
845 for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
846 virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
847 &dma_addr,
848 GFP_KERNEL | __GFP_ZERO);
849 if (ZERO_OR_NULL_PTR(virt_addr)) {
850 dev_err(hdev->dev,
851 "Failed to allocate memory for host-resident page pool\n");
852 rc = -ENOMEM;
853 goto destroy_mmu_pgt_pool;
854 }
855
856 rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
857 pool_chunk_size, -1);
858 if (rc) {
859 dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
860 goto destroy_mmu_pgt_pool;
861 }
862 }
863
864 for (i = 0 ; i < prop->max_asid ; i++) {
865 hop0_pgt = &hr_priv->mmu_asid_hop0[i];
866 hop0_pgt->virt_addr = (uintptr_t)
867 gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
868 hop_table_size,
869 (dma_addr_t *) &hop0_pgt->phys_addr,
870 hop_table_size);
871 if (!hop0_pgt->virt_addr) {
872 dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
873 rc = -ENOMEM;
874 goto destroy_mmu_pgt_pool;
875 }
876 }
877
878 /* MMU H/W init will be done in device hw_init() */
879
880 return 0;
881
882 destroy_mmu_pgt_pool:
883 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
884 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
885 kvfree(hr_priv->mmu_asid_hop0);
886
887 return rc;
888 }
889
890 /**
891 * hl_mmu_hr_fini() - release the MMU module.
892 * @hdev: habanalabs device structure.
893 * @hr_priv: MMU host resident private info.
894 * @hop_table_size: HOP table size
895 *
896 * This function does the following:
897 * - Disable MMU in H/W.
898 * - Free the pgt_infos pool.
899 *
900 * All contexts should be freed before calling this function.
901 */
hl_mmu_hr_fini(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)902 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
903 {
904 /* MMU H/W fini was already done in device hw_fini() */
905
906 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
907
908 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
909 kvfree(hr_priv->mmu_asid_hop0);
910
911 /* Make sure that if we arrive here again without init was
912 * called we won't cause kernel panic. This can happen for
913 * example if we fail during hard reset code at certain points
914 */
915 hr_priv->mmu_asid_hop0 = NULL;
916 }
917 }
918
919 /**
920 * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
921 * @pgt_info: page table info structure.
922 * @hr_priv: MMU HR private data.
923 * @hop_table_size: HOP table size.
924 */
hl_mmu_hr_free_hop_remove_pgt(struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)925 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
926 u32 hop_table_size)
927 {
928 gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
929 hash_del(&pgt_info->node);
930 kfree(pgt_info);
931 }
932
933 /**
934 * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
935 * @ctx: pointer to the context structure
936 * @pgt: pgt_info for the HOP hosting the PTE
937 * @phys_pte_addr: phys address of the PTE
938 * @hop_table_size: HOP table size
939 *
940 * @return PTE virtual address
941 *
942 * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
943 * by adding the PTE offset.
944 */
hl_mmu_hr_pte_phys_to_virt(struct hl_ctx * ctx,struct pgt_info * pgt,u64 phys_pte_addr,u32 hop_table_size)945 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
946 u64 phys_pte_addr, u32 hop_table_size)
947 {
948 u64 page_mask = (hop_table_size - 1);
949 u64 pte_offset = phys_pte_addr & page_mask;
950
951 return pgt->virt_addr + pte_offset;
952 }
953
954 /**
955 * hl_mmu_hr_write_pte() - write HR PTE
956 * @ctx: pointer to the context structure
957 * @pgt_info: HOP's page table info structure
958 * @phys_pte_addr: phys PTE address
959 * @val: raw PTE data
960 * @hop_table_size: HOP table size
961 */
hl_mmu_hr_write_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u64 val,u32 hop_table_size)962 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
963 u64 val, u32 hop_table_size)
964 {
965 /*
966 * The value to write is the phys address of the next hop +
967 * flags at the 12 LSBs.
968 */
969 u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
970
971 *((u64 *) (uintptr_t) virt_addr) = val;
972 }
973
974 /**
975 * hl_mmu_hr_clear_pte() - clear HR PTE
976 * @ctx: pointer to the context structure
977 * @pgt_info: HOP's page table info structure
978 * @phys_pte_addr: phys PTE address
979 * @hop_table_size: HOP table size
980 */
hl_mmu_hr_clear_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u32 hop_table_size)981 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
982 u32 hop_table_size)
983 {
984 /* no need to transform the value to physical address */
985 hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
986 }
987
988 /**
989 * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
990 * @ctx: pointer to the context structure
991 * @pgt_info: HOP's page table info structure
992 * @hr_priv: HR MMU private info
993 * @hop_table_size: HOP table size
994 *
995 * @return number of PTEs still in the HOP
996 */
hl_mmu_hr_put_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)997 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
998 struct hl_mmu_hr_priv *hr_priv,
999 u32 hop_table_size)
1000 {
1001 int num_of_ptes_left;
1002
1003 pgt_info->num_of_ptes--;
1004
1005 /*
1006 * Need to save the number of ptes left because free_hop might free
1007 * the pgt_info
1008 */
1009 num_of_ptes_left = pgt_info->num_of_ptes;
1010 if (!num_of_ptes_left)
1011 hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1012
1013 return num_of_ptes_left;
1014 }
1015
1016 /**
1017 * hl_mmu_hr_get_pte() - increase PGT PTE count
1018 * @ctx: pointer to the context structure
1019 * @hr_func: host resident functions
1020 * @phys_hop_addr: HOP phys address
1021 */
hl_mmu_hr_get_pte(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 phys_hop_addr)1022 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1023 {
1024 hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1025 }
1026
1027 /**
1028 * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1029 * @ctx: pointer to the context structure.
1030 * @hr_func: host resident functions.
1031 * @curr_pte: current PTE value.
1032 *
1033 * @return pgt_info structure on success, otherwise NULL.
1034 */
hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 curr_pte)1035 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1036 struct hl_hr_mmu_funcs *hr_func,
1037 u64 curr_pte)
1038 {
1039 u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1040
1041 if (next_hop_phys_addr == ULLONG_MAX)
1042 return NULL;
1043
1044 return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1045 }
1046
1047 /**
1048 * hl_mmu_hr_alloc_hop() - allocate HOP
1049 * @ctx: pointer to the context structure.
1050 * @hr_priv: host resident private info structure.
1051 * @hr_func: host resident functions.
1052 * @mmu_prop: MMU properties.
1053 *
1054 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1055 */
hl_mmu_hr_alloc_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop)1056 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1057 struct hl_hr_mmu_funcs *hr_func,
1058 struct hl_mmu_properties *mmu_prop)
1059 {
1060 struct hl_device *hdev = ctx->hdev;
1061 struct pgt_info *pgt_info;
1062 dma_addr_t phys_addr;
1063 void *virt_addr;
1064 int i, retry = 1;
1065
1066 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1067 if (!pgt_info)
1068 return NULL;
1069
1070 for (i = 0; i <= retry; i++) {
1071 virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1072 mmu_prop->hop_table_size,
1073 &phys_addr,
1074 mmu_prop->hop_table_size);
1075 if (virt_addr)
1076 break;
1077
1078 /* No memory in pool - get some and try again */
1079 virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1080 GFP_KERNEL | __GFP_ZERO);
1081 if (ZERO_OR_NULL_PTR(virt_addr))
1082 break;
1083
1084 if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1085 phys_addr, SZ_2M, -1)) {
1086 hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1087 virt_addr = NULL;
1088 break;
1089 }
1090 }
1091
1092 if (ZERO_OR_NULL_PTR(virt_addr)) {
1093 dev_err(hdev->dev, "failed to allocate page\n");
1094 goto pool_alloc_err;
1095 }
1096
1097 pgt_info->phys_addr = phys_addr;
1098 pgt_info->shadow_addr = (unsigned long) NULL;
1099 pgt_info->virt_addr = (unsigned long)virt_addr;
1100 pgt_info->ctx = ctx;
1101 pgt_info->num_of_ptes = 0;
1102 hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1103
1104 return pgt_info;
1105
1106 pool_alloc_err:
1107 kfree(pgt_info);
1108
1109 return NULL;
1110 }
1111
1112 /**
1113 * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1114 * @ctx: pointer to the context structure.
1115 * @hr_priv: host resident private info structure.
1116 * @hr_func: host resident functions.
1117 * @mmu_prop: MMU properties.
1118 * @curr_pte: current PTE value.
1119 * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1120 *
1121 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1122 */
hl_mmu_hr_get_alloc_next_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop,u64 curr_pte,bool * is_new_hop)1123 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1124 struct hl_mmu_hr_priv *hr_priv,
1125 struct hl_hr_mmu_funcs *hr_func,
1126 struct hl_mmu_properties *mmu_prop,
1127 u64 curr_pte, bool *is_new_hop)
1128 {
1129 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1130
1131 if (hop_addr != ULLONG_MAX)
1132 return hr_func->get_pgt_info(ctx, hop_addr);
1133
1134 *is_new_hop = true;
1135 return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1136 }
1137
1138 /**
1139 * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1140 * @ctx: pointer to the context structure.
1141 * @virt_addr: the virt address for which to get info.
1142 * @hops: HOPs info structure.
1143 * @hr_func: host resident functions.
1144 *
1145 * @return 0 on success, otherwise non 0 error code..
1146 */
hl_mmu_hr_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,struct hl_hr_mmu_funcs * hr_func)1147 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1148 struct hl_hr_mmu_funcs *hr_func)
1149 {
1150 /* using 6 HOPs as this is the maximum number of HOPs */
1151 struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1152 struct hl_device *hdev = ctx->hdev;
1153 struct hl_mmu_properties *mmu_prop;
1154 int rc, i, used_hops;
1155 bool is_huge;
1156
1157 rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1158 if (rc)
1159 return rc;
1160
1161 used_hops = mmu_prop->num_hops;
1162
1163 /* huge pages use one less hop */
1164 if (is_huge)
1165 used_hops--;
1166
1167 hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1168
1169 for (i = 0 ; i < used_hops ; i++) {
1170 if (i == 0)
1171 hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1172 else
1173 hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1174 hops->hop_info[i - 1].hop_pte_val);
1175
1176 if (!hops_pgt_info[i])
1177 return -EFAULT;
1178
1179 hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1180 hops->hop_info[i].hop_pte_addr =
1181 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1182 hops->hop_info[i].hop_addr,
1183 hops->scrambled_vaddr);
1184 hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1185 hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1186 hops->hop_info[i].hop_pte_addr,
1187 mmu_prop->hop_table_size);
1188
1189 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1190 return -EFAULT;
1191
1192 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1193 break;
1194 }
1195
1196 /* if passed over all hops then no last hop was found */
1197 if (i == mmu_prop->num_hops)
1198 return -EFAULT;
1199
1200 if (hops->scrambled_vaddr != virt_addr)
1201 hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1202 (hdev, hops->hop_info[i].hop_pte_val);
1203 else
1204 hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1205
1206 hops->used_hops = i + 1;
1207
1208 return 0;
1209 }
1210
1211