1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bit sliced AES using NEON instructions
4 *
5 * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 int rounds, int blocks);
32
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 int rounds, int blocks, u8 iv[]);
35
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 int rounds, int blocks, u8 iv[]);
38
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 int rounds, int blocks, u8 iv[]);
43
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 int rounds, int blocks, u8 iv[]);
49 asmlinkage void neon_aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
50 int rounds, int bytes, u8 ctr[]);
51 asmlinkage void neon_aes_xts_encrypt(u8 out[], u8 const in[],
52 u32 const rk1[], int rounds, int bytes,
53 u32 const rk2[], u8 iv[], int first);
54 asmlinkage void neon_aes_xts_decrypt(u8 out[], u8 const in[],
55 u32 const rk1[], int rounds, int bytes,
56 u32 const rk2[], u8 iv[], int first);
57
58 struct aesbs_ctx {
59 u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32];
60 int rounds;
61 } __aligned(AES_BLOCK_SIZE);
62
63 struct aesbs_cbc_ctr_ctx {
64 struct aesbs_ctx key;
65 u32 enc[AES_MAX_KEYLENGTH_U32];
66 };
67
68 struct aesbs_xts_ctx {
69 struct aesbs_ctx key;
70 u32 twkey[AES_MAX_KEYLENGTH_U32];
71 struct crypto_aes_ctx cts;
72 };
73
aesbs_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)74 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
75 unsigned int key_len)
76 {
77 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
78 struct crypto_aes_ctx rk;
79 int err;
80
81 err = aes_expandkey(&rk, in_key, key_len);
82 if (err)
83 return err;
84
85 ctx->rounds = 6 + key_len / 4;
86
87 kernel_neon_begin();
88 aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
89 kernel_neon_end();
90
91 return 0;
92 }
93
__ecb_crypt(struct skcipher_request * req,void (* fn)(u8 out[],u8 const in[],u8 const rk[],int rounds,int blocks))94 static int __ecb_crypt(struct skcipher_request *req,
95 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
96 int rounds, int blocks))
97 {
98 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
99 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
100 struct skcipher_walk walk;
101 int err;
102
103 err = skcipher_walk_virt(&walk, req, false);
104
105 while (walk.nbytes >= AES_BLOCK_SIZE) {
106 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
107
108 if (walk.nbytes < walk.total)
109 blocks = round_down(blocks,
110 walk.stride / AES_BLOCK_SIZE);
111
112 kernel_neon_begin();
113 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
114 ctx->rounds, blocks);
115 kernel_neon_end();
116 err = skcipher_walk_done(&walk,
117 walk.nbytes - blocks * AES_BLOCK_SIZE);
118 }
119
120 return err;
121 }
122
ecb_encrypt(struct skcipher_request * req)123 static int ecb_encrypt(struct skcipher_request *req)
124 {
125 return __ecb_crypt(req, aesbs_ecb_encrypt);
126 }
127
ecb_decrypt(struct skcipher_request * req)128 static int ecb_decrypt(struct skcipher_request *req)
129 {
130 return __ecb_crypt(req, aesbs_ecb_decrypt);
131 }
132
aesbs_cbc_ctr_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)133 static int aesbs_cbc_ctr_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
134 unsigned int key_len)
135 {
136 struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
137 struct crypto_aes_ctx rk;
138 int err;
139
140 err = aes_expandkey(&rk, in_key, key_len);
141 if (err)
142 return err;
143
144 ctx->key.rounds = 6 + key_len / 4;
145
146 memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
147
148 kernel_neon_begin();
149 aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
150 kernel_neon_end();
151 memzero_explicit(&rk, sizeof(rk));
152
153 return 0;
154 }
155
cbc_encrypt(struct skcipher_request * req)156 static int cbc_encrypt(struct skcipher_request *req)
157 {
158 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
159 struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
160 struct skcipher_walk walk;
161 int err;
162
163 err = skcipher_walk_virt(&walk, req, false);
164
165 while (walk.nbytes >= AES_BLOCK_SIZE) {
166 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
167
168 /* fall back to the non-bitsliced NEON implementation */
169 kernel_neon_begin();
170 neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
171 ctx->enc, ctx->key.rounds, blocks,
172 walk.iv);
173 kernel_neon_end();
174 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
175 }
176 return err;
177 }
178
cbc_decrypt(struct skcipher_request * req)179 static int cbc_decrypt(struct skcipher_request *req)
180 {
181 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
182 struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
183 struct skcipher_walk walk;
184 int err;
185
186 err = skcipher_walk_virt(&walk, req, false);
187
188 while (walk.nbytes >= AES_BLOCK_SIZE) {
189 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
190
191 if (walk.nbytes < walk.total)
192 blocks = round_down(blocks,
193 walk.stride / AES_BLOCK_SIZE);
194
195 kernel_neon_begin();
196 aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
197 ctx->key.rk, ctx->key.rounds, blocks,
198 walk.iv);
199 kernel_neon_end();
200 err = skcipher_walk_done(&walk,
201 walk.nbytes - blocks * AES_BLOCK_SIZE);
202 }
203
204 return err;
205 }
206
ctr_encrypt(struct skcipher_request * req)207 static int ctr_encrypt(struct skcipher_request *req)
208 {
209 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
210 struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
211 struct skcipher_walk walk;
212 int err;
213
214 err = skcipher_walk_virt(&walk, req, false);
215
216 while (walk.nbytes > 0) {
217 int blocks = (walk.nbytes / AES_BLOCK_SIZE) & ~7;
218 int nbytes = walk.nbytes % (8 * AES_BLOCK_SIZE);
219 const u8 *src = walk.src.virt.addr;
220 u8 *dst = walk.dst.virt.addr;
221
222 kernel_neon_begin();
223 if (blocks >= 8) {
224 aesbs_ctr_encrypt(dst, src, ctx->key.rk, ctx->key.rounds,
225 blocks, walk.iv);
226 dst += blocks * AES_BLOCK_SIZE;
227 src += blocks * AES_BLOCK_SIZE;
228 }
229 if (nbytes && walk.nbytes == walk.total) {
230 neon_aes_ctr_encrypt(dst, src, ctx->enc, ctx->key.rounds,
231 nbytes, walk.iv);
232 nbytes = 0;
233 }
234 kernel_neon_end();
235 err = skcipher_walk_done(&walk, nbytes);
236 }
237 return err;
238 }
239
aesbs_xts_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)240 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
241 unsigned int key_len)
242 {
243 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
244 struct crypto_aes_ctx rk;
245 int err;
246
247 err = xts_verify_key(tfm, in_key, key_len);
248 if (err)
249 return err;
250
251 key_len /= 2;
252 err = aes_expandkey(&ctx->cts, in_key, key_len);
253 if (err)
254 return err;
255
256 err = aes_expandkey(&rk, in_key + key_len, key_len);
257 if (err)
258 return err;
259
260 memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
261
262 return aesbs_setkey(tfm, in_key, key_len);
263 }
264
__xts_crypt(struct skcipher_request * req,bool encrypt,void (* fn)(u8 out[],u8 const in[],u8 const rk[],int rounds,int blocks,u8 iv[]))265 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
266 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
267 int rounds, int blocks, u8 iv[]))
268 {
269 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
270 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
271 int tail = req->cryptlen % (8 * AES_BLOCK_SIZE);
272 struct scatterlist sg_src[2], sg_dst[2];
273 struct skcipher_request subreq;
274 struct scatterlist *src, *dst;
275 struct skcipher_walk walk;
276 int nbytes, err;
277 int first = 1;
278 u8 *out, *in;
279
280 if (req->cryptlen < AES_BLOCK_SIZE)
281 return -EINVAL;
282
283 /* ensure that the cts tail is covered by a single step */
284 if (unlikely(tail > 0 && tail < AES_BLOCK_SIZE)) {
285 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
286 AES_BLOCK_SIZE) - 2;
287
288 skcipher_request_set_tfm(&subreq, tfm);
289 skcipher_request_set_callback(&subreq,
290 skcipher_request_flags(req),
291 NULL, NULL);
292 skcipher_request_set_crypt(&subreq, req->src, req->dst,
293 xts_blocks * AES_BLOCK_SIZE,
294 req->iv);
295 req = &subreq;
296 } else {
297 tail = 0;
298 }
299
300 err = skcipher_walk_virt(&walk, req, false);
301 if (err)
302 return err;
303
304 while (walk.nbytes >= AES_BLOCK_SIZE) {
305 int blocks = (walk.nbytes / AES_BLOCK_SIZE) & ~7;
306 out = walk.dst.virt.addr;
307 in = walk.src.virt.addr;
308 nbytes = walk.nbytes;
309
310 kernel_neon_begin();
311 if (blocks >= 8) {
312 if (first == 1)
313 neon_aes_ecb_encrypt(walk.iv, walk.iv,
314 ctx->twkey,
315 ctx->key.rounds, 1);
316 first = 2;
317
318 fn(out, in, ctx->key.rk, ctx->key.rounds, blocks,
319 walk.iv);
320
321 out += blocks * AES_BLOCK_SIZE;
322 in += blocks * AES_BLOCK_SIZE;
323 nbytes -= blocks * AES_BLOCK_SIZE;
324 }
325 if (walk.nbytes == walk.total && nbytes > 0) {
326 if (encrypt)
327 neon_aes_xts_encrypt(out, in, ctx->cts.key_enc,
328 ctx->key.rounds, nbytes,
329 ctx->twkey, walk.iv, first);
330 else
331 neon_aes_xts_decrypt(out, in, ctx->cts.key_dec,
332 ctx->key.rounds, nbytes,
333 ctx->twkey, walk.iv, first);
334 nbytes = first = 0;
335 }
336 kernel_neon_end();
337 err = skcipher_walk_done(&walk, nbytes);
338 }
339
340 if (err || likely(!tail))
341 return err;
342
343 /* handle ciphertext stealing */
344 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
345 if (req->dst != req->src)
346 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
347
348 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
349 req->iv);
350
351 err = skcipher_walk_virt(&walk, req, false);
352 if (err)
353 return err;
354
355 out = walk.dst.virt.addr;
356 in = walk.src.virt.addr;
357 nbytes = walk.nbytes;
358
359 kernel_neon_begin();
360 if (encrypt)
361 neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds,
362 nbytes, ctx->twkey, walk.iv, first);
363 else
364 neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds,
365 nbytes, ctx->twkey, walk.iv, first);
366 kernel_neon_end();
367
368 return skcipher_walk_done(&walk, 0);
369 }
370
xts_encrypt(struct skcipher_request * req)371 static int xts_encrypt(struct skcipher_request *req)
372 {
373 return __xts_crypt(req, true, aesbs_xts_encrypt);
374 }
375
xts_decrypt(struct skcipher_request * req)376 static int xts_decrypt(struct skcipher_request *req)
377 {
378 return __xts_crypt(req, false, aesbs_xts_decrypt);
379 }
380
381 static struct skcipher_alg aes_algs[] = { {
382 .base.cra_name = "ecb(aes)",
383 .base.cra_driver_name = "ecb-aes-neonbs",
384 .base.cra_priority = 250,
385 .base.cra_blocksize = AES_BLOCK_SIZE,
386 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
387 .base.cra_module = THIS_MODULE,
388
389 .min_keysize = AES_MIN_KEY_SIZE,
390 .max_keysize = AES_MAX_KEY_SIZE,
391 .walksize = 8 * AES_BLOCK_SIZE,
392 .setkey = aesbs_setkey,
393 .encrypt = ecb_encrypt,
394 .decrypt = ecb_decrypt,
395 }, {
396 .base.cra_name = "cbc(aes)",
397 .base.cra_driver_name = "cbc-aes-neonbs",
398 .base.cra_priority = 250,
399 .base.cra_blocksize = AES_BLOCK_SIZE,
400 .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctr_ctx),
401 .base.cra_module = THIS_MODULE,
402
403 .min_keysize = AES_MIN_KEY_SIZE,
404 .max_keysize = AES_MAX_KEY_SIZE,
405 .walksize = 8 * AES_BLOCK_SIZE,
406 .ivsize = AES_BLOCK_SIZE,
407 .setkey = aesbs_cbc_ctr_setkey,
408 .encrypt = cbc_encrypt,
409 .decrypt = cbc_decrypt,
410 }, {
411 .base.cra_name = "ctr(aes)",
412 .base.cra_driver_name = "ctr-aes-neonbs",
413 .base.cra_priority = 250,
414 .base.cra_blocksize = 1,
415 .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctr_ctx),
416 .base.cra_module = THIS_MODULE,
417
418 .min_keysize = AES_MIN_KEY_SIZE,
419 .max_keysize = AES_MAX_KEY_SIZE,
420 .chunksize = AES_BLOCK_SIZE,
421 .walksize = 8 * AES_BLOCK_SIZE,
422 .ivsize = AES_BLOCK_SIZE,
423 .setkey = aesbs_cbc_ctr_setkey,
424 .encrypt = ctr_encrypt,
425 .decrypt = ctr_encrypt,
426 }, {
427 .base.cra_name = "xts(aes)",
428 .base.cra_driver_name = "xts-aes-neonbs",
429 .base.cra_priority = 250,
430 .base.cra_blocksize = AES_BLOCK_SIZE,
431 .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx),
432 .base.cra_module = THIS_MODULE,
433
434 .min_keysize = 2 * AES_MIN_KEY_SIZE,
435 .max_keysize = 2 * AES_MAX_KEY_SIZE,
436 .walksize = 8 * AES_BLOCK_SIZE,
437 .ivsize = AES_BLOCK_SIZE,
438 .setkey = aesbs_xts_setkey,
439 .encrypt = xts_encrypt,
440 .decrypt = xts_decrypt,
441 } };
442
aes_exit(void)443 static void aes_exit(void)
444 {
445 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
446 }
447
aes_init(void)448 static int __init aes_init(void)
449 {
450 if (!cpu_have_named_feature(ASIMD))
451 return -ENODEV;
452
453 return crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
454 }
455
456 module_init(aes_init);
457 module_exit(aes_exit);
458