1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tas5720.c - ALSA SoC Texas Instruments TAS5720 Mono Audio Amplifier
4 *
5 * Copyright (C)2015-2016 Texas Instruments Incorporated - https://www.ti.com
6 *
7 * Author: Andreas Dannenberg <dannenberg@ti.com>
8 */
9
10 #include <linux/module.h>
11 #include <linux/errno.h>
12 #include <linux/device.h>
13 #include <linux/i2c.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/delay.h>
19
20 #include <sound/pcm.h>
21 #include <sound/pcm_params.h>
22 #include <sound/soc.h>
23 #include <sound/soc-dapm.h>
24 #include <sound/tlv.h>
25
26 #include "tas5720.h"
27
28 /* Define how often to check (and clear) the fault status register (in ms) */
29 #define TAS5720_FAULT_CHECK_INTERVAL 200
30
31 enum tas572x_type {
32 TAS5720,
33 TAS5722,
34 };
35
36 static const char * const tas5720_supply_names[] = {
37 "dvdd", /* Digital power supply. Connect to 3.3-V supply. */
38 "pvdd", /* Class-D amp and analog power supply (connected). */
39 };
40
41 #define TAS5720_NUM_SUPPLIES ARRAY_SIZE(tas5720_supply_names)
42
43 struct tas5720_data {
44 struct snd_soc_component *component;
45 struct regmap *regmap;
46 struct i2c_client *tas5720_client;
47 enum tas572x_type devtype;
48 struct regulator_bulk_data supplies[TAS5720_NUM_SUPPLIES];
49 struct delayed_work fault_check_work;
50 unsigned int last_fault;
51 };
52
tas5720_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)53 static int tas5720_hw_params(struct snd_pcm_substream *substream,
54 struct snd_pcm_hw_params *params,
55 struct snd_soc_dai *dai)
56 {
57 struct snd_soc_component *component = dai->component;
58 unsigned int rate = params_rate(params);
59 bool ssz_ds;
60 int ret;
61
62 switch (rate) {
63 case 44100:
64 case 48000:
65 ssz_ds = false;
66 break;
67 case 88200:
68 case 96000:
69 ssz_ds = true;
70 break;
71 default:
72 dev_err(component->dev, "unsupported sample rate: %u\n", rate);
73 return -EINVAL;
74 }
75
76 ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
77 TAS5720_SSZ_DS, ssz_ds);
78 if (ret < 0) {
79 dev_err(component->dev, "error setting sample rate: %d\n", ret);
80 return ret;
81 }
82
83 return 0;
84 }
85
tas5720_set_dai_fmt(struct snd_soc_dai * dai,unsigned int fmt)86 static int tas5720_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
87 {
88 struct snd_soc_component *component = dai->component;
89 u8 serial_format;
90 int ret;
91
92 if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_CBC_CFC) {
93 dev_vdbg(component->dev, "DAI clocking invalid\n");
94 return -EINVAL;
95 }
96
97 switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
98 SND_SOC_DAIFMT_INV_MASK)) {
99 case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
100 /* 1st data bit occur one BCLK cycle after the frame sync */
101 serial_format = TAS5720_SAIF_I2S;
102 break;
103 case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF):
104 /*
105 * Note that although the TAS5720 does not have a dedicated DSP
106 * mode it doesn't care about the LRCLK duty cycle during TDM
107 * operation. Therefore we can use the device's I2S mode with
108 * its delaying of the 1st data bit to receive DSP_A formatted
109 * data. See device datasheet for additional details.
110 */
111 serial_format = TAS5720_SAIF_I2S;
112 break;
113 case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF):
114 /*
115 * Similar to DSP_A, we can use the fact that the TAS5720 does
116 * not care about the LRCLK duty cycle during TDM to receive
117 * DSP_B formatted data in LEFTJ mode (no delaying of the 1st
118 * data bit).
119 */
120 serial_format = TAS5720_SAIF_LEFTJ;
121 break;
122 case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
123 /* No delay after the frame sync */
124 serial_format = TAS5720_SAIF_LEFTJ;
125 break;
126 default:
127 dev_vdbg(component->dev, "DAI Format is not found\n");
128 return -EINVAL;
129 }
130
131 ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
132 TAS5720_SAIF_FORMAT_MASK,
133 serial_format);
134 if (ret < 0) {
135 dev_err(component->dev, "error setting SAIF format: %d\n", ret);
136 return ret;
137 }
138
139 return 0;
140 }
141
tas5720_set_dai_tdm_slot(struct snd_soc_dai * dai,unsigned int tx_mask,unsigned int rx_mask,int slots,int slot_width)142 static int tas5720_set_dai_tdm_slot(struct snd_soc_dai *dai,
143 unsigned int tx_mask, unsigned int rx_mask,
144 int slots, int slot_width)
145 {
146 struct snd_soc_component *component = dai->component;
147 struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
148 unsigned int first_slot;
149 int ret;
150
151 if (!tx_mask) {
152 dev_err(component->dev, "tx masks must not be 0\n");
153 return -EINVAL;
154 }
155
156 /*
157 * Determine the first slot that is being requested. We will only
158 * use the first slot that is found since the TAS5720 is a mono
159 * amplifier.
160 */
161 first_slot = __ffs(tx_mask);
162
163 if (first_slot > 7) {
164 dev_err(component->dev, "slot selection out of bounds (%u)\n",
165 first_slot);
166 return -EINVAL;
167 }
168
169 /* Enable manual TDM slot selection (instead of I2C ID based) */
170 ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
171 TAS5720_TDM_CFG_SRC, TAS5720_TDM_CFG_SRC);
172 if (ret < 0)
173 goto error_snd_soc_component_update_bits;
174
175 /* Configure the TDM slot to process audio from */
176 ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
177 TAS5720_TDM_SLOT_SEL_MASK, first_slot);
178 if (ret < 0)
179 goto error_snd_soc_component_update_bits;
180
181 /* Configure TDM slot width. This is only applicable to TAS5722. */
182 switch (tas5720->devtype) {
183 case TAS5722:
184 ret = snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
185 TAS5722_TDM_SLOT_16B,
186 slot_width == 16 ?
187 TAS5722_TDM_SLOT_16B : 0);
188 if (ret < 0)
189 goto error_snd_soc_component_update_bits;
190 break;
191 default:
192 break;
193 }
194
195 return 0;
196
197 error_snd_soc_component_update_bits:
198 dev_err(component->dev, "error configuring TDM mode: %d\n", ret);
199 return ret;
200 }
201
tas5720_mute(struct snd_soc_dai * dai,int mute,int direction)202 static int tas5720_mute(struct snd_soc_dai *dai, int mute, int direction)
203 {
204 struct snd_soc_component *component = dai->component;
205 int ret;
206
207 ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
208 TAS5720_MUTE, mute ? TAS5720_MUTE : 0);
209 if (ret < 0) {
210 dev_err(component->dev, "error (un-)muting device: %d\n", ret);
211 return ret;
212 }
213
214 return 0;
215 }
216
tas5720_fault_check_work(struct work_struct * work)217 static void tas5720_fault_check_work(struct work_struct *work)
218 {
219 struct tas5720_data *tas5720 = container_of(work, struct tas5720_data,
220 fault_check_work.work);
221 struct device *dev = tas5720->component->dev;
222 unsigned int curr_fault;
223 int ret;
224
225 ret = regmap_read(tas5720->regmap, TAS5720_FAULT_REG, &curr_fault);
226 if (ret < 0) {
227 dev_err(dev, "failed to read FAULT register: %d\n", ret);
228 goto out;
229 }
230
231 /* Check/handle all errors except SAIF clock errors */
232 curr_fault &= TAS5720_OCE | TAS5720_DCE | TAS5720_OTE;
233
234 /*
235 * Only flag errors once for a given occurrence. This is needed as
236 * the TAS5720 will take time clearing the fault condition internally
237 * during which we don't want to bombard the system with the same
238 * error message over and over.
239 */
240 if ((curr_fault & TAS5720_OCE) && !(tas5720->last_fault & TAS5720_OCE))
241 dev_crit(dev, "experienced an over current hardware fault\n");
242
243 if ((curr_fault & TAS5720_DCE) && !(tas5720->last_fault & TAS5720_DCE))
244 dev_crit(dev, "experienced a DC detection fault\n");
245
246 if ((curr_fault & TAS5720_OTE) && !(tas5720->last_fault & TAS5720_OTE))
247 dev_crit(dev, "experienced an over temperature fault\n");
248
249 /* Store current fault value so we can detect any changes next time */
250 tas5720->last_fault = curr_fault;
251
252 if (!curr_fault)
253 goto out;
254
255 /*
256 * Periodically toggle SDZ (shutdown bit) H->L->H to clear any latching
257 * faults as long as a fault condition persists. Always going through
258 * the full sequence no matter the first return value to minimizes
259 * chances for the device to end up in shutdown mode.
260 */
261 ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
262 TAS5720_SDZ, 0);
263 if (ret < 0)
264 dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
265
266 ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
267 TAS5720_SDZ, TAS5720_SDZ);
268 if (ret < 0)
269 dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
270
271 out:
272 /* Schedule the next fault check at the specified interval */
273 schedule_delayed_work(&tas5720->fault_check_work,
274 msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
275 }
276
tas5720_codec_probe(struct snd_soc_component * component)277 static int tas5720_codec_probe(struct snd_soc_component *component)
278 {
279 struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
280 unsigned int device_id, expected_device_id;
281 int ret;
282
283 tas5720->component = component;
284
285 ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
286 tas5720->supplies);
287 if (ret != 0) {
288 dev_err(component->dev, "failed to enable supplies: %d\n", ret);
289 return ret;
290 }
291
292 /*
293 * Take a liberal approach to checking the device ID to allow the
294 * driver to be used even if the device ID does not match, however
295 * issue a warning if there is a mismatch.
296 */
297 ret = regmap_read(tas5720->regmap, TAS5720_DEVICE_ID_REG, &device_id);
298 if (ret < 0) {
299 dev_err(component->dev, "failed to read device ID register: %d\n",
300 ret);
301 goto probe_fail;
302 }
303
304 switch (tas5720->devtype) {
305 case TAS5720:
306 expected_device_id = TAS5720_DEVICE_ID;
307 break;
308 case TAS5722:
309 expected_device_id = TAS5722_DEVICE_ID;
310 break;
311 default:
312 dev_err(component->dev, "unexpected private driver data\n");
313 return -EINVAL;
314 }
315
316 if (device_id != expected_device_id)
317 dev_warn(component->dev, "wrong device ID. expected: %u read: %u\n",
318 expected_device_id, device_id);
319
320 /* Set device to mute */
321 ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
322 TAS5720_MUTE, TAS5720_MUTE);
323 if (ret < 0)
324 goto error_snd_soc_component_update_bits;
325
326 /*
327 * Enter shutdown mode - our default when not playing audio - to
328 * minimize current consumption. On the TAS5720 there is no real down
329 * side doing so as all device registers are preserved and the wakeup
330 * of the codec is rather quick which we do using a dapm widget.
331 */
332 ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
333 TAS5720_SDZ, 0);
334 if (ret < 0)
335 goto error_snd_soc_component_update_bits;
336
337 INIT_DELAYED_WORK(&tas5720->fault_check_work, tas5720_fault_check_work);
338
339 return 0;
340
341 error_snd_soc_component_update_bits:
342 dev_err(component->dev, "error configuring device registers: %d\n", ret);
343
344 probe_fail:
345 regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
346 tas5720->supplies);
347 return ret;
348 }
349
tas5720_codec_remove(struct snd_soc_component * component)350 static void tas5720_codec_remove(struct snd_soc_component *component)
351 {
352 struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
353 int ret;
354
355 cancel_delayed_work_sync(&tas5720->fault_check_work);
356
357 ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
358 tas5720->supplies);
359 if (ret < 0)
360 dev_err(component->dev, "failed to disable supplies: %d\n", ret);
361 };
362
tas5720_dac_event(struct snd_soc_dapm_widget * w,struct snd_kcontrol * kcontrol,int event)363 static int tas5720_dac_event(struct snd_soc_dapm_widget *w,
364 struct snd_kcontrol *kcontrol, int event)
365 {
366 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
367 struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
368 int ret;
369
370 if (event & SND_SOC_DAPM_POST_PMU) {
371 /* Take TAS5720 out of shutdown mode */
372 ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
373 TAS5720_SDZ, TAS5720_SDZ);
374 if (ret < 0) {
375 dev_err(component->dev, "error waking component: %d\n", ret);
376 return ret;
377 }
378
379 /*
380 * Observe codec shutdown-to-active time. The datasheet only
381 * lists a nominal value however just use-it as-is without
382 * additional padding to minimize the delay introduced in
383 * starting to play audio (actually there is other setup done
384 * by the ASoC framework that will provide additional delays,
385 * so we should always be safe).
386 */
387 msleep(25);
388
389 /* Turn on TAS5720 periodic fault checking/handling */
390 tas5720->last_fault = 0;
391 schedule_delayed_work(&tas5720->fault_check_work,
392 msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
393 } else if (event & SND_SOC_DAPM_PRE_PMD) {
394 /* Disable TAS5720 periodic fault checking/handling */
395 cancel_delayed_work_sync(&tas5720->fault_check_work);
396
397 /* Place TAS5720 in shutdown mode to minimize current draw */
398 ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
399 TAS5720_SDZ, 0);
400 if (ret < 0) {
401 dev_err(component->dev, "error shutting down component: %d\n",
402 ret);
403 return ret;
404 }
405 }
406
407 return 0;
408 }
409
410 #ifdef CONFIG_PM
tas5720_suspend(struct snd_soc_component * component)411 static int tas5720_suspend(struct snd_soc_component *component)
412 {
413 struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
414 int ret;
415
416 regcache_cache_only(tas5720->regmap, true);
417 regcache_mark_dirty(tas5720->regmap);
418
419 ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
420 tas5720->supplies);
421 if (ret < 0)
422 dev_err(component->dev, "failed to disable supplies: %d\n", ret);
423
424 return ret;
425 }
426
tas5720_resume(struct snd_soc_component * component)427 static int tas5720_resume(struct snd_soc_component *component)
428 {
429 struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
430 int ret;
431
432 ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
433 tas5720->supplies);
434 if (ret < 0) {
435 dev_err(component->dev, "failed to enable supplies: %d\n", ret);
436 return ret;
437 }
438
439 regcache_cache_only(tas5720->regmap, false);
440
441 ret = regcache_sync(tas5720->regmap);
442 if (ret < 0) {
443 dev_err(component->dev, "failed to sync regcache: %d\n", ret);
444 return ret;
445 }
446
447 return 0;
448 }
449 #else
450 #define tas5720_suspend NULL
451 #define tas5720_resume NULL
452 #endif
453
tas5720_is_volatile_reg(struct device * dev,unsigned int reg)454 static bool tas5720_is_volatile_reg(struct device *dev, unsigned int reg)
455 {
456 switch (reg) {
457 case TAS5720_DEVICE_ID_REG:
458 case TAS5720_FAULT_REG:
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 static const struct regmap_config tas5720_regmap_config = {
466 .reg_bits = 8,
467 .val_bits = 8,
468
469 .max_register = TAS5720_MAX_REG,
470 .cache_type = REGCACHE_RBTREE,
471 .volatile_reg = tas5720_is_volatile_reg,
472 };
473
474 static const struct regmap_config tas5722_regmap_config = {
475 .reg_bits = 8,
476 .val_bits = 8,
477
478 .max_register = TAS5722_MAX_REG,
479 .cache_type = REGCACHE_RBTREE,
480 .volatile_reg = tas5720_is_volatile_reg,
481 };
482
483 /*
484 * DAC analog gain. There are four discrete values to select from, ranging
485 * from 19.2 dB to 26.3dB.
486 */
487 static const DECLARE_TLV_DB_RANGE(dac_analog_tlv,
488 0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0),
489 0x1, 0x1, TLV_DB_SCALE_ITEM(2070, 0, 0),
490 0x2, 0x2, TLV_DB_SCALE_ITEM(2350, 0, 0),
491 0x3, 0x3, TLV_DB_SCALE_ITEM(2630, 0, 0),
492 );
493
494 /*
495 * DAC digital volumes. From -103.5 to 24 dB in 0.5 dB or 0.25 dB steps
496 * depending on the device. Note that setting the gain below -100 dB
497 * (register value <0x7) is effectively a MUTE as per device datasheet.
498 *
499 * Note that for the TAS5722 the digital volume controls are actually split
500 * over two registers, so we need custom getters/setters for access.
501 */
502 static DECLARE_TLV_DB_SCALE(tas5720_dac_tlv, -10350, 50, 0);
503 static DECLARE_TLV_DB_SCALE(tas5722_dac_tlv, -10350, 25, 0);
504
tas5722_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)505 static int tas5722_volume_get(struct snd_kcontrol *kcontrol,
506 struct snd_ctl_elem_value *ucontrol)
507 {
508 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
509 unsigned int val;
510
511 val = snd_soc_component_read(component, TAS5720_VOLUME_CTRL_REG);
512 ucontrol->value.integer.value[0] = val << 1;
513
514 val = snd_soc_component_read(component, TAS5722_DIGITAL_CTRL2_REG);
515 ucontrol->value.integer.value[0] |= val & TAS5722_VOL_CONTROL_LSB;
516
517 return 0;
518 }
519
tas5722_volume_set(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)520 static int tas5722_volume_set(struct snd_kcontrol *kcontrol,
521 struct snd_ctl_elem_value *ucontrol)
522 {
523 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
524 unsigned int sel = ucontrol->value.integer.value[0];
525
526 snd_soc_component_write(component, TAS5720_VOLUME_CTRL_REG, sel >> 1);
527 snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
528 TAS5722_VOL_CONTROL_LSB, sel);
529
530 return 0;
531 }
532
533 static const struct snd_kcontrol_new tas5720_snd_controls[] = {
534 SOC_SINGLE_TLV("Speaker Driver Playback Volume",
535 TAS5720_VOLUME_CTRL_REG, 0, 0xff, 0, tas5720_dac_tlv),
536 SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
537 TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
538 };
539
540 static const struct snd_kcontrol_new tas5722_snd_controls[] = {
541 SOC_SINGLE_EXT_TLV("Speaker Driver Playback Volume",
542 0, 0, 511, 0,
543 tas5722_volume_get, tas5722_volume_set,
544 tas5722_dac_tlv),
545 SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
546 TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
547 };
548
549 static const struct snd_soc_dapm_widget tas5720_dapm_widgets[] = {
550 SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0),
551 SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas5720_dac_event,
552 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
553 SND_SOC_DAPM_OUTPUT("OUT")
554 };
555
556 static const struct snd_soc_dapm_route tas5720_audio_map[] = {
557 { "DAC", NULL, "DAC IN" },
558 { "OUT", NULL, "DAC" },
559 };
560
561 static const struct snd_soc_component_driver soc_component_dev_tas5720 = {
562 .probe = tas5720_codec_probe,
563 .remove = tas5720_codec_remove,
564 .suspend = tas5720_suspend,
565 .resume = tas5720_resume,
566 .controls = tas5720_snd_controls,
567 .num_controls = ARRAY_SIZE(tas5720_snd_controls),
568 .dapm_widgets = tas5720_dapm_widgets,
569 .num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets),
570 .dapm_routes = tas5720_audio_map,
571 .num_dapm_routes = ARRAY_SIZE(tas5720_audio_map),
572 .idle_bias_on = 1,
573 .use_pmdown_time = 1,
574 .endianness = 1,
575 };
576
577 static const struct snd_soc_component_driver soc_component_dev_tas5722 = {
578 .probe = tas5720_codec_probe,
579 .remove = tas5720_codec_remove,
580 .suspend = tas5720_suspend,
581 .resume = tas5720_resume,
582 .controls = tas5722_snd_controls,
583 .num_controls = ARRAY_SIZE(tas5722_snd_controls),
584 .dapm_widgets = tas5720_dapm_widgets,
585 .num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets),
586 .dapm_routes = tas5720_audio_map,
587 .num_dapm_routes = ARRAY_SIZE(tas5720_audio_map),
588 .idle_bias_on = 1,
589 .use_pmdown_time = 1,
590 .endianness = 1,
591 };
592
593 /* PCM rates supported by the TAS5720 driver */
594 #define TAS5720_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |\
595 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
596
597 /* Formats supported by TAS5720 driver */
598 #define TAS5720_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE |\
599 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE)
600
601 static const struct snd_soc_dai_ops tas5720_speaker_dai_ops = {
602 .hw_params = tas5720_hw_params,
603 .set_fmt = tas5720_set_dai_fmt,
604 .set_tdm_slot = tas5720_set_dai_tdm_slot,
605 .mute_stream = tas5720_mute,
606 .no_capture_mute = 1,
607 };
608
609 /*
610 * TAS5720 DAI structure
611 *
612 * Note that were are advertising .playback.channels_max = 2 despite this being
613 * a mono amplifier. The reason for that is that some serial ports such as TI's
614 * McASP module have a minimum number of channels (2) that they can output.
615 * Advertising more channels than we have will allow us to interface with such
616 * a serial port without really any negative side effects as the TAS5720 will
617 * simply ignore any extra channel(s) asides from the one channel that is
618 * configured to be played back.
619 */
620 static struct snd_soc_dai_driver tas5720_dai[] = {
621 {
622 .name = "tas5720-amplifier",
623 .playback = {
624 .stream_name = "Playback",
625 .channels_min = 1,
626 .channels_max = 2,
627 .rates = TAS5720_RATES,
628 .formats = TAS5720_FORMATS,
629 },
630 .ops = &tas5720_speaker_dai_ops,
631 },
632 };
633
634 static const struct i2c_device_id tas5720_id[] = {
635 { "tas5720", TAS5720 },
636 { "tas5722", TAS5722 },
637 { }
638 };
639 MODULE_DEVICE_TABLE(i2c, tas5720_id);
640
tas5720_probe(struct i2c_client * client)641 static int tas5720_probe(struct i2c_client *client)
642 {
643 struct device *dev = &client->dev;
644 struct tas5720_data *data;
645 const struct regmap_config *regmap_config;
646 const struct i2c_device_id *id;
647 int ret;
648 int i;
649
650 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
651 if (!data)
652 return -ENOMEM;
653
654 id = i2c_match_id(tas5720_id, client);
655 data->tas5720_client = client;
656 data->devtype = id->driver_data;
657
658 switch (id->driver_data) {
659 case TAS5720:
660 regmap_config = &tas5720_regmap_config;
661 break;
662 case TAS5722:
663 regmap_config = &tas5722_regmap_config;
664 break;
665 default:
666 dev_err(dev, "unexpected private driver data\n");
667 return -EINVAL;
668 }
669 data->regmap = devm_regmap_init_i2c(client, regmap_config);
670 if (IS_ERR(data->regmap)) {
671 ret = PTR_ERR(data->regmap);
672 dev_err(dev, "failed to allocate register map: %d\n", ret);
673 return ret;
674 }
675
676 for (i = 0; i < ARRAY_SIZE(data->supplies); i++)
677 data->supplies[i].supply = tas5720_supply_names[i];
678
679 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies),
680 data->supplies);
681 if (ret != 0) {
682 dev_err(dev, "failed to request supplies: %d\n", ret);
683 return ret;
684 }
685
686 dev_set_drvdata(dev, data);
687
688 switch (id->driver_data) {
689 case TAS5720:
690 ret = devm_snd_soc_register_component(&client->dev,
691 &soc_component_dev_tas5720,
692 tas5720_dai,
693 ARRAY_SIZE(tas5720_dai));
694 break;
695 case TAS5722:
696 ret = devm_snd_soc_register_component(&client->dev,
697 &soc_component_dev_tas5722,
698 tas5720_dai,
699 ARRAY_SIZE(tas5720_dai));
700 break;
701 default:
702 dev_err(dev, "unexpected private driver data\n");
703 return -EINVAL;
704 }
705 if (ret < 0) {
706 dev_err(dev, "failed to register component: %d\n", ret);
707 return ret;
708 }
709
710 return 0;
711 }
712
713 #if IS_ENABLED(CONFIG_OF)
714 static const struct of_device_id tas5720_of_match[] = {
715 { .compatible = "ti,tas5720", },
716 { .compatible = "ti,tas5722", },
717 { },
718 };
719 MODULE_DEVICE_TABLE(of, tas5720_of_match);
720 #endif
721
722 static struct i2c_driver tas5720_i2c_driver = {
723 .driver = {
724 .name = "tas5720",
725 .of_match_table = of_match_ptr(tas5720_of_match),
726 },
727 .probe_new = tas5720_probe,
728 .id_table = tas5720_id,
729 };
730
731 module_i2c_driver(tas5720_i2c_driver);
732
733 MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>");
734 MODULE_DESCRIPTION("TAS5720 Audio amplifier driver");
735 MODULE_LICENSE("GPL");
736