1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4 *
5 * Copyright: 2014 Raumfeld GmbH
6 * Author: Sven Brandau <info@brandau.biz>
7 *
8 * based on code from:
9 * Raumfeld GmbH
10 * Johannes Stezenbach <js@sig21.net>
11 * Wolfson Microelectronics PLC.
12 * Mark Brown <broonie@opensource.wolfsonmicro.com>
13 * Freescale Semiconductor, Inc.
14 * Timur Tabi <timur@freescale.com>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/pm.h>
24 #include <linux/i2c.h>
25 #include <linux/of_device.h>
26 #include <linux/of_gpio.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/slab.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38
39 #include <sound/sta350.h>
40 #include "sta350.h"
41
42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43 SNDRV_PCM_RATE_44100 | \
44 SNDRV_PCM_RATE_48000 | \
45 SNDRV_PCM_RATE_88200 | \
46 SNDRV_PCM_RATE_96000 | \
47 SNDRV_PCM_RATE_176400 | \
48 SNDRV_PCM_RATE_192000)
49
50 #define STA350_FORMATS \
51 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \
52 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
53 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
54
55 /* Power-up register defaults */
56 static const struct reg_default sta350_regs[] = {
57 { 0x0, 0x63 },
58 { 0x1, 0x80 },
59 { 0x2, 0xdf },
60 { 0x3, 0x40 },
61 { 0x4, 0xc2 },
62 { 0x5, 0x5c },
63 { 0x6, 0x00 },
64 { 0x7, 0xff },
65 { 0x8, 0x60 },
66 { 0x9, 0x60 },
67 { 0xa, 0x60 },
68 { 0xb, 0x00 },
69 { 0xc, 0x00 },
70 { 0xd, 0x00 },
71 { 0xe, 0x00 },
72 { 0xf, 0x40 },
73 { 0x10, 0x80 },
74 { 0x11, 0x77 },
75 { 0x12, 0x6a },
76 { 0x13, 0x69 },
77 { 0x14, 0x6a },
78 { 0x15, 0x69 },
79 { 0x16, 0x00 },
80 { 0x17, 0x00 },
81 { 0x18, 0x00 },
82 { 0x19, 0x00 },
83 { 0x1a, 0x00 },
84 { 0x1b, 0x00 },
85 { 0x1c, 0x00 },
86 { 0x1d, 0x00 },
87 { 0x1e, 0x00 },
88 { 0x1f, 0x00 },
89 { 0x20, 0x00 },
90 { 0x21, 0x00 },
91 { 0x22, 0x00 },
92 { 0x23, 0x00 },
93 { 0x24, 0x00 },
94 { 0x25, 0x00 },
95 { 0x26, 0x00 },
96 { 0x27, 0x2a },
97 { 0x28, 0xc0 },
98 { 0x29, 0xf3 },
99 { 0x2a, 0x33 },
100 { 0x2b, 0x00 },
101 { 0x2c, 0x0c },
102 { 0x31, 0x00 },
103 { 0x36, 0x00 },
104 { 0x37, 0x00 },
105 { 0x38, 0x00 },
106 { 0x39, 0x01 },
107 { 0x3a, 0xee },
108 { 0x3b, 0xff },
109 { 0x3c, 0x7e },
110 { 0x3d, 0xc0 },
111 { 0x3e, 0x26 },
112 { 0x3f, 0x00 },
113 { 0x48, 0x00 },
114 { 0x49, 0x00 },
115 { 0x4a, 0x00 },
116 { 0x4b, 0x04 },
117 { 0x4c, 0x00 },
118 };
119
120 static const struct regmap_range sta350_write_regs_range[] = {
121 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
122 regmap_reg_range(STA350_C1CFG, STA350_FDRC2),
123 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
124 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
125 };
126
127 static const struct regmap_range sta350_read_regs_range[] = {
128 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
129 regmap_reg_range(STA350_C1CFG, STA350_STATUS),
130 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
131 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132 };
133
134 static const struct regmap_range sta350_volatile_regs_range[] = {
135 regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
136 regmap_reg_range(STA350_STATUS, STA350_STATUS),
137 };
138
139 static const struct regmap_access_table sta350_write_regs = {
140 .yes_ranges = sta350_write_regs_range,
141 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
142 };
143
144 static const struct regmap_access_table sta350_read_regs = {
145 .yes_ranges = sta350_read_regs_range,
146 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
147 };
148
149 static const struct regmap_access_table sta350_volatile_regs = {
150 .yes_ranges = sta350_volatile_regs_range,
151 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
152 };
153
154 /* regulator power supply names */
155 static const char * const sta350_supply_names[] = {
156 "vdd-dig", /* digital supply, 3.3V */
157 "vdd-pll", /* pll supply, 3.3V */
158 "vcc" /* power amp supply, 5V - 26V */
159 };
160
161 /* codec private data */
162 struct sta350_priv {
163 struct regmap *regmap;
164 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
165 struct sta350_platform_data *pdata;
166
167 unsigned int mclk;
168 unsigned int format;
169
170 u32 coef_shadow[STA350_COEF_COUNT];
171 int shutdown;
172
173 struct gpio_desc *gpiod_nreset;
174 struct gpio_desc *gpiod_power_down;
175
176 struct mutex coeff_lock;
177 };
178
179 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
180 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
181 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
182
183 static const char * const sta350_drc_ac[] = {
184 "Anti-Clipping", "Dynamic Range Compression"
185 };
186 static const char * const sta350_auto_gc_mode[] = {
187 "User", "AC no clipping", "AC limited clipping (10%)",
188 "DRC nighttime listening mode"
189 };
190 static const char * const sta350_auto_xo_mode[] = {
191 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
192 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
193 "340Hz", "360Hz"
194 };
195 static const char * const sta350_binary_output[] = {
196 "FFX 3-state output - normal operation", "Binary output"
197 };
198 static const char * const sta350_limiter_select[] = {
199 "Limiter Disabled", "Limiter #1", "Limiter #2"
200 };
201 static const char * const sta350_limiter_attack_rate[] = {
202 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
203 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
204 "0.0645", "0.0564", "0.0501", "0.0451"
205 };
206 static const char * const sta350_limiter_release_rate[] = {
207 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
208 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
209 "0.0134", "0.0117", "0.0110", "0.0104"
210 };
211 static const char * const sta350_noise_shaper_type[] = {
212 "Third order", "Fourth order"
213 };
214
215 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
216 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
217 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
218 );
219
220 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
221 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
222 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
223 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
224 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
225 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
226 );
227
228 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
229 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
230 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
231 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
232 );
233
234 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
235 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
236 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
237 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
238 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
239 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
240 );
241
242 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
243 STA350_CONFD, STA350_CONFD_DRC_SHIFT,
244 sta350_drc_ac);
245 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
246 STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
247 sta350_noise_shaper_type);
248 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
249 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
250 sta350_auto_gc_mode);
251 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
252 STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
253 sta350_auto_xo_mode);
254 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
255 STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
256 sta350_binary_output);
257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
258 STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
259 sta350_binary_output);
260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
261 STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
262 sta350_binary_output);
263 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
264 STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
265 sta350_limiter_select);
266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
267 STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
268 sta350_limiter_select);
269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
270 STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
271 sta350_limiter_select);
272 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
273 STA350_L1AR, STA350_LxA_SHIFT,
274 sta350_limiter_attack_rate);
275 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
276 STA350_L2AR, STA350_LxA_SHIFT,
277 sta350_limiter_attack_rate);
278 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
279 STA350_L1AR, STA350_LxR_SHIFT,
280 sta350_limiter_release_rate);
281 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
282 STA350_L2AR, STA350_LxR_SHIFT,
283 sta350_limiter_release_rate);
284
285 /*
286 * byte array controls for setting biquad, mixer, scaling coefficients;
287 * for biquads all five coefficients need to be set in one go,
288 * mixer and pre/postscale coefs can be set individually;
289 * each coef is 24bit, the bytes are ordered in the same way
290 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
291 */
292
sta350_coefficient_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)293 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
294 struct snd_ctl_elem_info *uinfo)
295 {
296 int numcoef = kcontrol->private_value >> 16;
297 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
298 uinfo->count = 3 * numcoef;
299 return 0;
300 }
301
sta350_coefficient_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)302 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
303 struct snd_ctl_elem_value *ucontrol)
304 {
305 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
306 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
307 int numcoef = kcontrol->private_value >> 16;
308 int index = kcontrol->private_value & 0xffff;
309 unsigned int cfud, val;
310 int i, ret = 0;
311
312 mutex_lock(&sta350->coeff_lock);
313
314 /* preserve reserved bits in STA350_CFUD */
315 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
316 cfud &= 0xf0;
317 /*
318 * chip documentation does not say if the bits are self clearing,
319 * so do it explicitly
320 */
321 regmap_write(sta350->regmap, STA350_CFUD, cfud);
322
323 regmap_write(sta350->regmap, STA350_CFADDR2, index);
324 if (numcoef == 1) {
325 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
326 } else if (numcoef == 5) {
327 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
328 } else {
329 ret = -EINVAL;
330 goto exit_unlock;
331 }
332
333 for (i = 0; i < 3 * numcoef; i++) {
334 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
335 ucontrol->value.bytes.data[i] = val;
336 }
337
338 exit_unlock:
339 mutex_unlock(&sta350->coeff_lock);
340
341 return ret;
342 }
343
sta350_coefficient_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)344 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
345 struct snd_ctl_elem_value *ucontrol)
346 {
347 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
348 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
349 int numcoef = kcontrol->private_value >> 16;
350 int index = kcontrol->private_value & 0xffff;
351 unsigned int cfud;
352 int i;
353
354 /* preserve reserved bits in STA350_CFUD */
355 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
356 cfud &= 0xf0;
357 /*
358 * chip documentation does not say if the bits are self clearing,
359 * so do it explicitly
360 */
361 regmap_write(sta350->regmap, STA350_CFUD, cfud);
362
363 regmap_write(sta350->regmap, STA350_CFADDR2, index);
364 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
365 sta350->coef_shadow[index + i] =
366 (ucontrol->value.bytes.data[3 * i] << 16)
367 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
368 | (ucontrol->value.bytes.data[3 * i + 2]);
369 for (i = 0; i < 3 * numcoef; i++)
370 regmap_write(sta350->regmap, STA350_B1CF1 + i,
371 ucontrol->value.bytes.data[i]);
372 if (numcoef == 1)
373 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
374 else if (numcoef == 5)
375 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
376 else
377 return -EINVAL;
378
379 return 0;
380 }
381
sta350_sync_coef_shadow(struct snd_soc_component * component)382 static int sta350_sync_coef_shadow(struct snd_soc_component *component)
383 {
384 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
385 unsigned int cfud;
386 int i;
387
388 /* preserve reserved bits in STA350_CFUD */
389 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
390 cfud &= 0xf0;
391
392 for (i = 0; i < STA350_COEF_COUNT; i++) {
393 regmap_write(sta350->regmap, STA350_CFADDR2, i);
394 regmap_write(sta350->regmap, STA350_B1CF1,
395 (sta350->coef_shadow[i] >> 16) & 0xff);
396 regmap_write(sta350->regmap, STA350_B1CF2,
397 (sta350->coef_shadow[i] >> 8) & 0xff);
398 regmap_write(sta350->regmap, STA350_B1CF3,
399 (sta350->coef_shadow[i]) & 0xff);
400 /*
401 * chip documentation does not say if the bits are
402 * self-clearing, so do it explicitly
403 */
404 regmap_write(sta350->regmap, STA350_CFUD, cfud);
405 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
406 }
407 return 0;
408 }
409
sta350_cache_sync(struct snd_soc_component * component)410 static int sta350_cache_sync(struct snd_soc_component *component)
411 {
412 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
413 unsigned int mute;
414 int rc;
415
416 /* mute during register sync */
417 regmap_read(sta350->regmap, STA350_CFUD, &mute);
418 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
419 sta350_sync_coef_shadow(component);
420 rc = regcache_sync(sta350->regmap);
421 regmap_write(sta350->regmap, STA350_MMUTE, mute);
422 return rc;
423 }
424
425 #define SINGLE_COEF(xname, index) \
426 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
427 .info = sta350_coefficient_info, \
428 .get = sta350_coefficient_get,\
429 .put = sta350_coefficient_put, \
430 .private_value = index | (1 << 16) }
431
432 #define BIQUAD_COEFS(xname, index) \
433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434 .info = sta350_coefficient_info, \
435 .get = sta350_coefficient_get,\
436 .put = sta350_coefficient_put, \
437 .private_value = index | (5 << 16) }
438
439 static const struct snd_kcontrol_new sta350_snd_controls[] = {
440 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
441 /* VOL */
442 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
443 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
444 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
445 /* CONFD */
446 SOC_SINGLE("High Pass Filter Bypass Switch",
447 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
448 SOC_SINGLE("De-emphasis Filter Switch",
449 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
450 SOC_SINGLE("DSP Bypass Switch",
451 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
452 SOC_SINGLE("Post-scale Link Switch",
453 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
454 SOC_SINGLE("Biquad Coefficient Link Switch",
455 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
456 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
457 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
458 SOC_SINGLE("Zero-detect Mute Enable Switch",
459 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
460 SOC_SINGLE("Submix Mode Switch",
461 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
462 /* CONFE */
463 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
464 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
465 /* MUTE */
466 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
467 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
468 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
469 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
470 /* AUTOx */
471 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
472 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
473 /* CxCFG */
474 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
475 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
476 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
477 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
478 SOC_SINGLE("Ch1 EQ Bypass Switch",
479 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
480 SOC_SINGLE("Ch2 EQ Bypass Switch",
481 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
482 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
483 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
484 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
485 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
486 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
487 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
488 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
489 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
490 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
491 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
492 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
493 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
494 /* TONE */
495 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
496 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
497 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
498 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
499 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
500 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
501 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
502 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
503
504 /*
505 * depending on mode, the attack/release thresholds have
506 * two different enum definitions; provide both
507 */
508 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
509 STA350_L1ATRT, STA350_LxA_SHIFT,
510 16, 0, sta350_limiter_ac_attack_tlv),
511 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
512 STA350_L2ATRT, STA350_LxA_SHIFT,
513 16, 0, sta350_limiter_ac_attack_tlv),
514 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
515 STA350_L1ATRT, STA350_LxR_SHIFT,
516 16, 0, sta350_limiter_ac_release_tlv),
517 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
518 STA350_L2ATRT, STA350_LxR_SHIFT,
519 16, 0, sta350_limiter_ac_release_tlv),
520 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
521 STA350_L1ATRT, STA350_LxA_SHIFT,
522 16, 0, sta350_limiter_drc_attack_tlv),
523 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
524 STA350_L2ATRT, STA350_LxA_SHIFT,
525 16, 0, sta350_limiter_drc_attack_tlv),
526 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
527 STA350_L1ATRT, STA350_LxR_SHIFT,
528 16, 0, sta350_limiter_drc_release_tlv),
529 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
530 STA350_L2ATRT, STA350_LxR_SHIFT,
531 16, 0, sta350_limiter_drc_release_tlv),
532
533 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
534 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
535 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
536 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
537 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
538 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
539 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
540 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
541 BIQUAD_COEFS("High-pass", 40),
542 BIQUAD_COEFS("Low-pass", 45),
543 SINGLE_COEF("Ch1 - Prescale", 50),
544 SINGLE_COEF("Ch2 - Prescale", 51),
545 SINGLE_COEF("Ch1 - Postscale", 52),
546 SINGLE_COEF("Ch2 - Postscale", 53),
547 SINGLE_COEF("Ch3 - Postscale", 54),
548 SINGLE_COEF("Thermal warning - Postscale", 55),
549 SINGLE_COEF("Ch1 - Mix 1", 56),
550 SINGLE_COEF("Ch1 - Mix 2", 57),
551 SINGLE_COEF("Ch2 - Mix 1", 58),
552 SINGLE_COEF("Ch2 - Mix 2", 59),
553 SINGLE_COEF("Ch3 - Mix 1", 60),
554 SINGLE_COEF("Ch3 - Mix 2", 61),
555 };
556
557 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
558 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
559 SND_SOC_DAPM_OUTPUT("LEFT"),
560 SND_SOC_DAPM_OUTPUT("RIGHT"),
561 SND_SOC_DAPM_OUTPUT("SUB"),
562 };
563
564 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
565 { "LEFT", NULL, "DAC" },
566 { "RIGHT", NULL, "DAC" },
567 { "SUB", NULL, "DAC" },
568 { "DAC", NULL, "Playback" },
569 };
570
571 /* MCLK interpolation ratio per fs */
572 static struct {
573 int fs;
574 int ir;
575 } interpolation_ratios[] = {
576 { 32000, 0 },
577 { 44100, 0 },
578 { 48000, 0 },
579 { 88200, 1 },
580 { 96000, 1 },
581 { 176400, 2 },
582 { 192000, 2 },
583 };
584
585 /* MCLK to fs clock ratios */
586 static int mcs_ratio_table[3][6] = {
587 { 768, 512, 384, 256, 128, 576 },
588 { 384, 256, 192, 128, 64, 0 },
589 { 192, 128, 96, 64, 32, 0 },
590 };
591
592 /**
593 * sta350_set_dai_sysclk - configure MCLK
594 * @codec_dai: the codec DAI
595 * @clk_id: the clock ID (ignored)
596 * @freq: the MCLK input frequency
597 * @dir: the clock direction (ignored)
598 *
599 * The value of MCLK is used to determine which sample rates are supported
600 * by the STA350, based on the mcs_ratio_table.
601 *
602 * This function must be called by the machine driver's 'startup' function,
603 * otherwise the list of supported sample rates will not be available in
604 * time for ALSA.
605 */
sta350_set_dai_sysclk(struct snd_soc_dai * codec_dai,int clk_id,unsigned int freq,int dir)606 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
607 int clk_id, unsigned int freq, int dir)
608 {
609 struct snd_soc_component *component = codec_dai->component;
610 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
611
612 dev_dbg(component->dev, "mclk=%u\n", freq);
613 sta350->mclk = freq;
614
615 return 0;
616 }
617
618 /**
619 * sta350_set_dai_fmt - configure the codec for the selected audio format
620 * @codec_dai: the codec DAI
621 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
622 *
623 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
624 * codec accordingly.
625 */
sta350_set_dai_fmt(struct snd_soc_dai * codec_dai,unsigned int fmt)626 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
627 unsigned int fmt)
628 {
629 struct snd_soc_component *component = codec_dai->component;
630 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
631 unsigned int confb = 0;
632
633 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
634 case SND_SOC_DAIFMT_CBC_CFC:
635 break;
636 default:
637 return -EINVAL;
638 }
639
640 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
641 case SND_SOC_DAIFMT_I2S:
642 case SND_SOC_DAIFMT_RIGHT_J:
643 case SND_SOC_DAIFMT_LEFT_J:
644 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
645 break;
646 default:
647 return -EINVAL;
648 }
649
650 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
651 case SND_SOC_DAIFMT_NB_NF:
652 confb |= STA350_CONFB_C2IM;
653 break;
654 case SND_SOC_DAIFMT_NB_IF:
655 confb |= STA350_CONFB_C1IM;
656 break;
657 default:
658 return -EINVAL;
659 }
660
661 return regmap_update_bits(sta350->regmap, STA350_CONFB,
662 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
663 }
664
665 /**
666 * sta350_hw_params - program the STA350 with the given hardware parameters.
667 * @substream: the audio stream
668 * @params: the hardware parameters to set
669 * @dai: the SOC DAI (ignored)
670 *
671 * This function programs the hardware with the values provided.
672 * Specifically, the sample rate and the data format.
673 */
sta350_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)674 static int sta350_hw_params(struct snd_pcm_substream *substream,
675 struct snd_pcm_hw_params *params,
676 struct snd_soc_dai *dai)
677 {
678 struct snd_soc_component *component = dai->component;
679 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
680 int i, mcs = -EINVAL, ir = -EINVAL;
681 unsigned int confa, confb;
682 unsigned int rate, ratio;
683 int ret;
684
685 if (!sta350->mclk) {
686 dev_err(component->dev,
687 "sta350->mclk is unset. Unable to determine ratio\n");
688 return -EIO;
689 }
690
691 rate = params_rate(params);
692 ratio = sta350->mclk / rate;
693 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
694
695 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
696 if (interpolation_ratios[i].fs == rate) {
697 ir = interpolation_ratios[i].ir;
698 break;
699 }
700 }
701
702 if (ir < 0) {
703 dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
704 return -EINVAL;
705 }
706
707 for (i = 0; i < 6; i++) {
708 if (mcs_ratio_table[ir][i] == ratio) {
709 mcs = i;
710 break;
711 }
712 }
713
714 if (mcs < 0) {
715 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
716 return -EINVAL;
717 }
718
719 confa = (ir << STA350_CONFA_IR_SHIFT) |
720 (mcs << STA350_CONFA_MCS_SHIFT);
721 confb = 0;
722
723 switch (params_width(params)) {
724 case 24:
725 dev_dbg(component->dev, "24bit\n");
726 fallthrough;
727 case 32:
728 dev_dbg(component->dev, "24bit or 32bit\n");
729 switch (sta350->format) {
730 case SND_SOC_DAIFMT_I2S:
731 confb |= 0x0;
732 break;
733 case SND_SOC_DAIFMT_LEFT_J:
734 confb |= 0x1;
735 break;
736 case SND_SOC_DAIFMT_RIGHT_J:
737 confb |= 0x2;
738 break;
739 }
740
741 break;
742 case 20:
743 dev_dbg(component->dev, "20bit\n");
744 switch (sta350->format) {
745 case SND_SOC_DAIFMT_I2S:
746 confb |= 0x4;
747 break;
748 case SND_SOC_DAIFMT_LEFT_J:
749 confb |= 0x5;
750 break;
751 case SND_SOC_DAIFMT_RIGHT_J:
752 confb |= 0x6;
753 break;
754 }
755
756 break;
757 case 18:
758 dev_dbg(component->dev, "18bit\n");
759 switch (sta350->format) {
760 case SND_SOC_DAIFMT_I2S:
761 confb |= 0x8;
762 break;
763 case SND_SOC_DAIFMT_LEFT_J:
764 confb |= 0x9;
765 break;
766 case SND_SOC_DAIFMT_RIGHT_J:
767 confb |= 0xa;
768 break;
769 }
770
771 break;
772 case 16:
773 dev_dbg(component->dev, "16bit\n");
774 switch (sta350->format) {
775 case SND_SOC_DAIFMT_I2S:
776 confb |= 0x0;
777 break;
778 case SND_SOC_DAIFMT_LEFT_J:
779 confb |= 0xd;
780 break;
781 case SND_SOC_DAIFMT_RIGHT_J:
782 confb |= 0xe;
783 break;
784 }
785
786 break;
787 default:
788 return -EINVAL;
789 }
790
791 ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
792 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
793 confa);
794 if (ret < 0)
795 return ret;
796
797 ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
798 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
799 confb);
800 if (ret < 0)
801 return ret;
802
803 return 0;
804 }
805
sta350_startup_sequence(struct sta350_priv * sta350)806 static int sta350_startup_sequence(struct sta350_priv *sta350)
807 {
808 if (sta350->gpiod_power_down)
809 gpiod_set_value(sta350->gpiod_power_down, 1);
810
811 if (sta350->gpiod_nreset) {
812 gpiod_set_value(sta350->gpiod_nreset, 0);
813 mdelay(1);
814 gpiod_set_value(sta350->gpiod_nreset, 1);
815 mdelay(1);
816 }
817
818 return 0;
819 }
820
821 /**
822 * sta350_set_bias_level - DAPM callback
823 * @component: the component device
824 * @level: DAPM power level
825 *
826 * This is called by ALSA to put the component into low power mode
827 * or to wake it up. If the component is powered off completely
828 * all registers must be restored after power on.
829 */
sta350_set_bias_level(struct snd_soc_component * component,enum snd_soc_bias_level level)830 static int sta350_set_bias_level(struct snd_soc_component *component,
831 enum snd_soc_bias_level level)
832 {
833 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
834 int ret;
835
836 dev_dbg(component->dev, "level = %d\n", level);
837 switch (level) {
838 case SND_SOC_BIAS_ON:
839 break;
840
841 case SND_SOC_BIAS_PREPARE:
842 /* Full power on */
843 regmap_update_bits(sta350->regmap, STA350_CONFF,
844 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
845 STA350_CONFF_PWDN | STA350_CONFF_EAPD);
846 break;
847
848 case SND_SOC_BIAS_STANDBY:
849 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
850 ret = regulator_bulk_enable(
851 ARRAY_SIZE(sta350->supplies),
852 sta350->supplies);
853 if (ret < 0) {
854 dev_err(component->dev,
855 "Failed to enable supplies: %d\n",
856 ret);
857 return ret;
858 }
859 sta350_startup_sequence(sta350);
860 sta350_cache_sync(component);
861 }
862
863 /* Power down */
864 regmap_update_bits(sta350->regmap, STA350_CONFF,
865 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
866 0);
867
868 break;
869
870 case SND_SOC_BIAS_OFF:
871 /* The chip runs through the power down sequence for us */
872 regmap_update_bits(sta350->regmap, STA350_CONFF,
873 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
874
875 /* power down: low */
876 if (sta350->gpiod_power_down)
877 gpiod_set_value(sta350->gpiod_power_down, 0);
878
879 if (sta350->gpiod_nreset)
880 gpiod_set_value(sta350->gpiod_nreset, 0);
881
882 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
883 sta350->supplies);
884 break;
885 }
886 return 0;
887 }
888
889 static const struct snd_soc_dai_ops sta350_dai_ops = {
890 .hw_params = sta350_hw_params,
891 .set_sysclk = sta350_set_dai_sysclk,
892 .set_fmt = sta350_set_dai_fmt,
893 };
894
895 static struct snd_soc_dai_driver sta350_dai = {
896 .name = "sta350-hifi",
897 .playback = {
898 .stream_name = "Playback",
899 .channels_min = 2,
900 .channels_max = 2,
901 .rates = STA350_RATES,
902 .formats = STA350_FORMATS,
903 },
904 .ops = &sta350_dai_ops,
905 };
906
sta350_probe(struct snd_soc_component * component)907 static int sta350_probe(struct snd_soc_component *component)
908 {
909 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
910 struct sta350_platform_data *pdata = sta350->pdata;
911 int i, ret = 0, thermal = 0;
912
913 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
914 sta350->supplies);
915 if (ret < 0) {
916 dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
917 return ret;
918 }
919
920 ret = sta350_startup_sequence(sta350);
921 if (ret < 0) {
922 dev_err(component->dev, "Failed to startup device\n");
923 return ret;
924 }
925
926 /* CONFA */
927 if (!pdata->thermal_warning_recovery)
928 thermal |= STA350_CONFA_TWAB;
929 if (!pdata->thermal_warning_adjustment)
930 thermal |= STA350_CONFA_TWRB;
931 if (!pdata->fault_detect_recovery)
932 thermal |= STA350_CONFA_FDRB;
933 regmap_update_bits(sta350->regmap, STA350_CONFA,
934 STA350_CONFA_TWAB | STA350_CONFA_TWRB |
935 STA350_CONFA_FDRB,
936 thermal);
937
938 /* CONFC */
939 regmap_update_bits(sta350->regmap, STA350_CONFC,
940 STA350_CONFC_OM_MASK,
941 pdata->ffx_power_output_mode
942 << STA350_CONFC_OM_SHIFT);
943 regmap_update_bits(sta350->regmap, STA350_CONFC,
944 STA350_CONFC_CSZ_MASK,
945 pdata->drop_compensation_ns
946 << STA350_CONFC_CSZ_SHIFT);
947 regmap_update_bits(sta350->regmap,
948 STA350_CONFC,
949 STA350_CONFC_OCRB,
950 pdata->oc_warning_adjustment ?
951 STA350_CONFC_OCRB : 0);
952
953 /* CONFE */
954 regmap_update_bits(sta350->regmap, STA350_CONFE,
955 STA350_CONFE_MPCV,
956 pdata->max_power_use_mpcc ?
957 STA350_CONFE_MPCV : 0);
958 regmap_update_bits(sta350->regmap, STA350_CONFE,
959 STA350_CONFE_MPC,
960 pdata->max_power_correction ?
961 STA350_CONFE_MPC : 0);
962 regmap_update_bits(sta350->regmap, STA350_CONFE,
963 STA350_CONFE_AME,
964 pdata->am_reduction_mode ?
965 STA350_CONFE_AME : 0);
966 regmap_update_bits(sta350->regmap, STA350_CONFE,
967 STA350_CONFE_PWMS,
968 pdata->odd_pwm_speed_mode ?
969 STA350_CONFE_PWMS : 0);
970 regmap_update_bits(sta350->regmap, STA350_CONFE,
971 STA350_CONFE_DCCV,
972 pdata->distortion_compensation ?
973 STA350_CONFE_DCCV : 0);
974 /* CONFF */
975 regmap_update_bits(sta350->regmap, STA350_CONFF,
976 STA350_CONFF_IDE,
977 pdata->invalid_input_detect_mute ?
978 STA350_CONFF_IDE : 0);
979 regmap_update_bits(sta350->regmap, STA350_CONFF,
980 STA350_CONFF_OCFG_MASK,
981 pdata->output_conf
982 << STA350_CONFF_OCFG_SHIFT);
983
984 /* channel to output mapping */
985 regmap_update_bits(sta350->regmap, STA350_C1CFG,
986 STA350_CxCFG_OM_MASK,
987 pdata->ch1_output_mapping
988 << STA350_CxCFG_OM_SHIFT);
989 regmap_update_bits(sta350->regmap, STA350_C2CFG,
990 STA350_CxCFG_OM_MASK,
991 pdata->ch2_output_mapping
992 << STA350_CxCFG_OM_SHIFT);
993 regmap_update_bits(sta350->regmap, STA350_C3CFG,
994 STA350_CxCFG_OM_MASK,
995 pdata->ch3_output_mapping
996 << STA350_CxCFG_OM_SHIFT);
997
998 /* miscellaneous registers */
999 regmap_update_bits(sta350->regmap, STA350_MISC1,
1000 STA350_MISC1_CPWMEN,
1001 pdata->activate_mute_output ?
1002 STA350_MISC1_CPWMEN : 0);
1003 regmap_update_bits(sta350->regmap, STA350_MISC1,
1004 STA350_MISC1_BRIDGOFF,
1005 pdata->bridge_immediate_off ?
1006 STA350_MISC1_BRIDGOFF : 0);
1007 regmap_update_bits(sta350->regmap, STA350_MISC1,
1008 STA350_MISC1_NSHHPEN,
1009 pdata->noise_shape_dc_cut ?
1010 STA350_MISC1_NSHHPEN : 0);
1011 regmap_update_bits(sta350->regmap, STA350_MISC1,
1012 STA350_MISC1_RPDNEN,
1013 pdata->powerdown_master_vol ?
1014 STA350_MISC1_RPDNEN: 0);
1015
1016 regmap_update_bits(sta350->regmap, STA350_MISC2,
1017 STA350_MISC2_PNDLSL_MASK,
1018 pdata->powerdown_delay_divider
1019 << STA350_MISC2_PNDLSL_SHIFT);
1020
1021 /* initialize coefficient shadow RAM with reset values */
1022 for (i = 4; i <= 49; i += 5)
1023 sta350->coef_shadow[i] = 0x400000;
1024 for (i = 50; i <= 54; i++)
1025 sta350->coef_shadow[i] = 0x7fffff;
1026 sta350->coef_shadow[55] = 0x5a9df7;
1027 sta350->coef_shadow[56] = 0x7fffff;
1028 sta350->coef_shadow[59] = 0x7fffff;
1029 sta350->coef_shadow[60] = 0x400000;
1030 sta350->coef_shadow[61] = 0x400000;
1031
1032 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1033 /* Bias level configuration will have done an extra enable */
1034 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1035
1036 return 0;
1037 }
1038
sta350_remove(struct snd_soc_component * component)1039 static void sta350_remove(struct snd_soc_component *component)
1040 {
1041 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1042
1043 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1044 }
1045
1046 static const struct snd_soc_component_driver sta350_component = {
1047 .probe = sta350_probe,
1048 .remove = sta350_remove,
1049 .set_bias_level = sta350_set_bias_level,
1050 .controls = sta350_snd_controls,
1051 .num_controls = ARRAY_SIZE(sta350_snd_controls),
1052 .dapm_widgets = sta350_dapm_widgets,
1053 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets),
1054 .dapm_routes = sta350_dapm_routes,
1055 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes),
1056 .suspend_bias_off = 1,
1057 .idle_bias_on = 1,
1058 .use_pmdown_time = 1,
1059 .endianness = 1,
1060 };
1061
1062 static const struct regmap_config sta350_regmap = {
1063 .reg_bits = 8,
1064 .val_bits = 8,
1065 .max_register = STA350_MISC2,
1066 .reg_defaults = sta350_regs,
1067 .num_reg_defaults = ARRAY_SIZE(sta350_regs),
1068 .cache_type = REGCACHE_RBTREE,
1069 .wr_table = &sta350_write_regs,
1070 .rd_table = &sta350_read_regs,
1071 .volatile_table = &sta350_volatile_regs,
1072 };
1073
1074 #ifdef CONFIG_OF
1075 static const struct of_device_id st350_dt_ids[] = {
1076 { .compatible = "st,sta350", },
1077 { }
1078 };
1079 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1080
1081 static const char * const sta350_ffx_modes[] = {
1082 [STA350_FFX_PM_DROP_COMP] = "drop-compensation",
1083 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation",
1084 [STA350_FFX_PM_FULL_POWER] = "full-power-mode",
1085 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation",
1086 };
1087
sta350_probe_dt(struct device * dev,struct sta350_priv * sta350)1088 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1089 {
1090 struct device_node *np = dev->of_node;
1091 struct sta350_platform_data *pdata;
1092 const char *ffx_power_mode;
1093 u16 tmp;
1094 u8 tmp8;
1095
1096 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1097 if (!pdata)
1098 return -ENOMEM;
1099
1100 of_property_read_u8(np, "st,output-conf",
1101 &pdata->output_conf);
1102 of_property_read_u8(np, "st,ch1-output-mapping",
1103 &pdata->ch1_output_mapping);
1104 of_property_read_u8(np, "st,ch2-output-mapping",
1105 &pdata->ch2_output_mapping);
1106 of_property_read_u8(np, "st,ch3-output-mapping",
1107 &pdata->ch3_output_mapping);
1108
1109 if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1110 pdata->thermal_warning_recovery = 1;
1111 if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1112 pdata->thermal_warning_adjustment = 1;
1113 if (of_get_property(np, "st,fault-detect-recovery", NULL))
1114 pdata->fault_detect_recovery = 1;
1115
1116 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1117 if (!of_property_read_string(np, "st,ffx-power-output-mode",
1118 &ffx_power_mode)) {
1119 int i, mode = -EINVAL;
1120
1121 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1122 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1123 mode = i;
1124
1125 if (mode < 0)
1126 dev_warn(dev, "Unsupported ffx output mode: %s\n",
1127 ffx_power_mode);
1128 else
1129 pdata->ffx_power_output_mode = mode;
1130 }
1131
1132 tmp = 140;
1133 of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1134 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1135
1136 if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1137 pdata->oc_warning_adjustment = 1;
1138
1139 /* CONFE */
1140 if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1141 pdata->max_power_use_mpcc = 1;
1142
1143 if (of_get_property(np, "st,max-power-correction", NULL))
1144 pdata->max_power_correction = 1;
1145
1146 if (of_get_property(np, "st,am-reduction-mode", NULL))
1147 pdata->am_reduction_mode = 1;
1148
1149 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1150 pdata->odd_pwm_speed_mode = 1;
1151
1152 if (of_get_property(np, "st,distortion-compensation", NULL))
1153 pdata->distortion_compensation = 1;
1154
1155 /* CONFF */
1156 if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1157 pdata->invalid_input_detect_mute = 1;
1158
1159 /* MISC */
1160 if (of_get_property(np, "st,activate-mute-output", NULL))
1161 pdata->activate_mute_output = 1;
1162
1163 if (of_get_property(np, "st,bridge-immediate-off", NULL))
1164 pdata->bridge_immediate_off = 1;
1165
1166 if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1167 pdata->noise_shape_dc_cut = 1;
1168
1169 if (of_get_property(np, "st,powerdown-master-volume", NULL))
1170 pdata->powerdown_master_vol = 1;
1171
1172 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1173 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1174 pdata->powerdown_delay_divider = ilog2(tmp8);
1175 else
1176 dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1177 tmp8);
1178 }
1179
1180 sta350->pdata = pdata;
1181
1182 return 0;
1183 }
1184 #endif
1185
sta350_i2c_probe(struct i2c_client * i2c)1186 static int sta350_i2c_probe(struct i2c_client *i2c)
1187 {
1188 struct device *dev = &i2c->dev;
1189 struct sta350_priv *sta350;
1190 int ret, i;
1191
1192 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1193 if (!sta350)
1194 return -ENOMEM;
1195
1196 mutex_init(&sta350->coeff_lock);
1197 sta350->pdata = dev_get_platdata(dev);
1198
1199 #ifdef CONFIG_OF
1200 if (dev->of_node) {
1201 ret = sta350_probe_dt(dev, sta350);
1202 if (ret < 0)
1203 return ret;
1204 }
1205 #endif
1206
1207 /* GPIOs */
1208 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1209 GPIOD_OUT_LOW);
1210 if (IS_ERR(sta350->gpiod_nreset))
1211 return PTR_ERR(sta350->gpiod_nreset);
1212
1213 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1214 GPIOD_OUT_LOW);
1215 if (IS_ERR(sta350->gpiod_power_down))
1216 return PTR_ERR(sta350->gpiod_power_down);
1217
1218 /* regulators */
1219 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1220 sta350->supplies[i].supply = sta350_supply_names[i];
1221
1222 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1223 sta350->supplies);
1224 if (ret < 0) {
1225 dev_err(dev, "Failed to request supplies: %d\n", ret);
1226 return ret;
1227 }
1228
1229 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1230 if (IS_ERR(sta350->regmap)) {
1231 ret = PTR_ERR(sta350->regmap);
1232 dev_err(dev, "Failed to init regmap: %d\n", ret);
1233 return ret;
1234 }
1235
1236 i2c_set_clientdata(i2c, sta350);
1237
1238 ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1239 if (ret < 0)
1240 dev_err(dev, "Failed to register component (%d)\n", ret);
1241
1242 return ret;
1243 }
1244
sta350_i2c_remove(struct i2c_client * client)1245 static void sta350_i2c_remove(struct i2c_client *client)
1246 {}
1247
1248 static const struct i2c_device_id sta350_i2c_id[] = {
1249 { "sta350", 0 },
1250 { }
1251 };
1252 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1253
1254 static struct i2c_driver sta350_i2c_driver = {
1255 .driver = {
1256 .name = "sta350",
1257 .of_match_table = of_match_ptr(st350_dt_ids),
1258 },
1259 .probe_new = sta350_i2c_probe,
1260 .remove = sta350_i2c_remove,
1261 .id_table = sta350_i2c_id,
1262 };
1263
1264 module_i2c_driver(sta350_i2c_driver);
1265
1266 MODULE_DESCRIPTION("ASoC STA350 driver");
1267 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1268 MODULE_LICENSE("GPL");
1269