1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implementation of the SID table type.
4 *
5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7 *
8 * Copyright (C) 2018 Red Hat, Inc.
9 */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/rcupdate.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <asm/barrier.h>
18 #include "flask.h"
19 #include "security.h"
20 #include "sidtab.h"
21
22 struct sidtab_str_cache {
23 struct rcu_head rcu_member;
24 struct list_head lru_member;
25 struct sidtab_entry *parent;
26 u32 len;
27 char str[];
28 };
29
30 #define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
31 #define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
32
sidtab_init(struct sidtab * s)33 int sidtab_init(struct sidtab *s)
34 {
35 u32 i;
36
37 memset(s->roots, 0, sizeof(s->roots));
38
39 for (i = 0; i < SECINITSID_NUM; i++)
40 s->isids[i].set = 0;
41
42 s->frozen = false;
43 s->count = 0;
44 s->convert = NULL;
45 hash_init(s->context_to_sid);
46
47 spin_lock_init(&s->lock);
48
49 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
50 s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
51 INIT_LIST_HEAD(&s->cache_lru_list);
52 spin_lock_init(&s->cache_lock);
53 #endif
54
55 return 0;
56 }
57
context_to_sid(struct sidtab * s,struct context * context,u32 hash)58 static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
59 {
60 struct sidtab_entry *entry;
61 u32 sid = 0;
62
63 rcu_read_lock();
64 hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
65 if (entry->hash != hash)
66 continue;
67 if (context_cmp(&entry->context, context)) {
68 sid = entry->sid;
69 break;
70 }
71 }
72 rcu_read_unlock();
73 return sid;
74 }
75
sidtab_set_initial(struct sidtab * s,u32 sid,struct context * context)76 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
77 {
78 struct sidtab_isid_entry *isid;
79 u32 hash;
80 int rc;
81
82 if (sid == 0 || sid > SECINITSID_NUM)
83 return -EINVAL;
84
85 isid = &s->isids[sid - 1];
86
87 rc = context_cpy(&isid->entry.context, context);
88 if (rc)
89 return rc;
90
91 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
92 isid->entry.cache = NULL;
93 #endif
94 isid->set = 1;
95
96 hash = context_compute_hash(context);
97
98 /*
99 * Multiple initial sids may map to the same context. Check that this
100 * context is not already represented in the context_to_sid hashtable
101 * to avoid duplicate entries and long linked lists upon hash
102 * collision.
103 */
104 if (!context_to_sid(s, context, hash)) {
105 isid->entry.sid = sid;
106 isid->entry.hash = hash;
107 hash_add(s->context_to_sid, &isid->entry.list, hash);
108 }
109
110 return 0;
111 }
112
sidtab_hash_stats(struct sidtab * sidtab,char * page)113 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
114 {
115 int i;
116 int chain_len = 0;
117 int slots_used = 0;
118 int entries = 0;
119 int max_chain_len = 0;
120 int cur_bucket = 0;
121 struct sidtab_entry *entry;
122
123 rcu_read_lock();
124 hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
125 entries++;
126 if (i == cur_bucket) {
127 chain_len++;
128 if (chain_len == 1)
129 slots_used++;
130 } else {
131 cur_bucket = i;
132 if (chain_len > max_chain_len)
133 max_chain_len = chain_len;
134 chain_len = 0;
135 }
136 }
137 rcu_read_unlock();
138
139 if (chain_len > max_chain_len)
140 max_chain_len = chain_len;
141
142 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
143 "longest chain: %d\n", entries,
144 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
145 }
146
sidtab_level_from_count(u32 count)147 static u32 sidtab_level_from_count(u32 count)
148 {
149 u32 capacity = SIDTAB_LEAF_ENTRIES;
150 u32 level = 0;
151
152 while (count > capacity) {
153 capacity <<= SIDTAB_INNER_SHIFT;
154 ++level;
155 }
156 return level;
157 }
158
sidtab_alloc_roots(struct sidtab * s,u32 level)159 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
160 {
161 u32 l;
162
163 if (!s->roots[0].ptr_leaf) {
164 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
165 GFP_ATOMIC);
166 if (!s->roots[0].ptr_leaf)
167 return -ENOMEM;
168 }
169 for (l = 1; l <= level; ++l)
170 if (!s->roots[l].ptr_inner) {
171 s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
172 GFP_ATOMIC);
173 if (!s->roots[l].ptr_inner)
174 return -ENOMEM;
175 s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
176 }
177 return 0;
178 }
179
sidtab_do_lookup(struct sidtab * s,u32 index,int alloc)180 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
181 int alloc)
182 {
183 union sidtab_entry_inner *entry;
184 u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
185
186 /* find the level of the subtree we need */
187 level = sidtab_level_from_count(index + 1);
188 capacity_shift = level * SIDTAB_INNER_SHIFT;
189
190 /* allocate roots if needed */
191 if (alloc && sidtab_alloc_roots(s, level) != 0)
192 return NULL;
193
194 /* lookup inside the subtree */
195 entry = &s->roots[level];
196 while (level != 0) {
197 capacity_shift -= SIDTAB_INNER_SHIFT;
198 --level;
199
200 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
201 leaf_index &= ((u32)1 << capacity_shift) - 1;
202
203 if (!entry->ptr_inner) {
204 if (alloc)
205 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
206 GFP_ATOMIC);
207 if (!entry->ptr_inner)
208 return NULL;
209 }
210 }
211 if (!entry->ptr_leaf) {
212 if (alloc)
213 entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
214 GFP_ATOMIC);
215 if (!entry->ptr_leaf)
216 return NULL;
217 }
218 return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
219 }
220
sidtab_lookup(struct sidtab * s,u32 index)221 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
222 {
223 /* read entries only after reading count */
224 u32 count = smp_load_acquire(&s->count);
225
226 if (index >= count)
227 return NULL;
228
229 return sidtab_do_lookup(s, index, 0);
230 }
231
sidtab_lookup_initial(struct sidtab * s,u32 sid)232 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
233 {
234 return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
235 }
236
sidtab_search_core(struct sidtab * s,u32 sid,int force)237 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
238 int force)
239 {
240 if (sid != 0) {
241 struct sidtab_entry *entry;
242
243 if (sid > SECINITSID_NUM)
244 entry = sidtab_lookup(s, sid_to_index(sid));
245 else
246 entry = sidtab_lookup_initial(s, sid);
247 if (entry && (!entry->context.len || force))
248 return entry;
249 }
250
251 return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
252 }
253
sidtab_search_entry(struct sidtab * s,u32 sid)254 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
255 {
256 return sidtab_search_core(s, sid, 0);
257 }
258
sidtab_search_entry_force(struct sidtab * s,u32 sid)259 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
260 {
261 return sidtab_search_core(s, sid, 1);
262 }
263
sidtab_context_to_sid(struct sidtab * s,struct context * context,u32 * sid)264 int sidtab_context_to_sid(struct sidtab *s, struct context *context,
265 u32 *sid)
266 {
267 unsigned long flags;
268 u32 count, hash = context_compute_hash(context);
269 struct sidtab_convert_params *convert;
270 struct sidtab_entry *dst, *dst_convert;
271 int rc;
272
273 *sid = context_to_sid(s, context, hash);
274 if (*sid)
275 return 0;
276
277 /* lock-free search failed: lock, re-search, and insert if not found */
278 spin_lock_irqsave(&s->lock, flags);
279
280 rc = 0;
281 *sid = context_to_sid(s, context, hash);
282 if (*sid)
283 goto out_unlock;
284
285 if (unlikely(s->frozen)) {
286 /*
287 * This sidtab is now frozen - tell the caller to abort and
288 * get the new one.
289 */
290 rc = -ESTALE;
291 goto out_unlock;
292 }
293
294 count = s->count;
295 convert = s->convert;
296
297 /* bail out if we already reached max entries */
298 rc = -EOVERFLOW;
299 if (count >= SIDTAB_MAX)
300 goto out_unlock;
301
302 /* insert context into new entry */
303 rc = -ENOMEM;
304 dst = sidtab_do_lookup(s, count, 1);
305 if (!dst)
306 goto out_unlock;
307
308 dst->sid = index_to_sid(count);
309 dst->hash = hash;
310
311 rc = context_cpy(&dst->context, context);
312 if (rc)
313 goto out_unlock;
314
315 /*
316 * if we are building a new sidtab, we need to convert the context
317 * and insert it there as well
318 */
319 if (convert) {
320 rc = -ENOMEM;
321 dst_convert = sidtab_do_lookup(convert->target, count, 1);
322 if (!dst_convert) {
323 context_destroy(&dst->context);
324 goto out_unlock;
325 }
326
327 rc = convert->func(context, &dst_convert->context,
328 convert->args, GFP_ATOMIC);
329 if (rc) {
330 context_destroy(&dst->context);
331 goto out_unlock;
332 }
333 dst_convert->sid = index_to_sid(count);
334 dst_convert->hash = context_compute_hash(&dst_convert->context);
335 convert->target->count = count + 1;
336
337 hash_add_rcu(convert->target->context_to_sid,
338 &dst_convert->list, dst_convert->hash);
339 }
340
341 if (context->len)
342 pr_info("SELinux: Context %s is not valid (left unmapped).\n",
343 context->str);
344
345 *sid = index_to_sid(count);
346
347 /* write entries before updating count */
348 smp_store_release(&s->count, count + 1);
349 hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
350
351 rc = 0;
352 out_unlock:
353 spin_unlock_irqrestore(&s->lock, flags);
354 return rc;
355 }
356
sidtab_convert_hashtable(struct sidtab * s,u32 count)357 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
358 {
359 struct sidtab_entry *entry;
360 u32 i;
361
362 for (i = 0; i < count; i++) {
363 entry = sidtab_do_lookup(s, i, 0);
364 entry->sid = index_to_sid(i);
365 entry->hash = context_compute_hash(&entry->context);
366
367 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
368 }
369 }
370
sidtab_convert_tree(union sidtab_entry_inner * edst,union sidtab_entry_inner * esrc,u32 * pos,u32 count,u32 level,struct sidtab_convert_params * convert)371 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
372 union sidtab_entry_inner *esrc,
373 u32 *pos, u32 count, u32 level,
374 struct sidtab_convert_params *convert)
375 {
376 int rc;
377 u32 i;
378
379 if (level != 0) {
380 if (!edst->ptr_inner) {
381 edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
382 GFP_KERNEL);
383 if (!edst->ptr_inner)
384 return -ENOMEM;
385 }
386 i = 0;
387 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
388 rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
389 &esrc->ptr_inner->entries[i],
390 pos, count, level - 1,
391 convert);
392 if (rc)
393 return rc;
394 i++;
395 }
396 } else {
397 if (!edst->ptr_leaf) {
398 edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
399 GFP_KERNEL);
400 if (!edst->ptr_leaf)
401 return -ENOMEM;
402 }
403 i = 0;
404 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
405 rc = convert->func(&esrc->ptr_leaf->entries[i].context,
406 &edst->ptr_leaf->entries[i].context,
407 convert->args, GFP_KERNEL);
408 if (rc)
409 return rc;
410 (*pos)++;
411 i++;
412 }
413 cond_resched();
414 }
415 return 0;
416 }
417
sidtab_convert(struct sidtab * s,struct sidtab_convert_params * params)418 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
419 {
420 unsigned long flags;
421 u32 count, level, pos;
422 int rc;
423
424 spin_lock_irqsave(&s->lock, flags);
425
426 /* concurrent policy loads are not allowed */
427 if (s->convert) {
428 spin_unlock_irqrestore(&s->lock, flags);
429 return -EBUSY;
430 }
431
432 count = s->count;
433 level = sidtab_level_from_count(count);
434
435 /* allocate last leaf in the new sidtab (to avoid race with
436 * live convert)
437 */
438 rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
439 if (rc) {
440 spin_unlock_irqrestore(&s->lock, flags);
441 return rc;
442 }
443
444 /* set count in case no new entries are added during conversion */
445 params->target->count = count;
446
447 /* enable live convert of new entries */
448 s->convert = params;
449
450 /* we can safely convert the tree outside the lock */
451 spin_unlock_irqrestore(&s->lock, flags);
452
453 pr_info("SELinux: Converting %u SID table entries...\n", count);
454
455 /* convert all entries not covered by live convert */
456 pos = 0;
457 rc = sidtab_convert_tree(¶ms->target->roots[level],
458 &s->roots[level], &pos, count, level, params);
459 if (rc) {
460 /* we need to keep the old table - disable live convert */
461 spin_lock_irqsave(&s->lock, flags);
462 s->convert = NULL;
463 spin_unlock_irqrestore(&s->lock, flags);
464 return rc;
465 }
466 /*
467 * The hashtable can also be modified in sidtab_context_to_sid()
468 * so we must re-acquire the lock here.
469 */
470 spin_lock_irqsave(&s->lock, flags);
471 sidtab_convert_hashtable(params->target, count);
472 spin_unlock_irqrestore(&s->lock, flags);
473
474 return 0;
475 }
476
sidtab_cancel_convert(struct sidtab * s)477 void sidtab_cancel_convert(struct sidtab *s)
478 {
479 unsigned long flags;
480
481 /* cancelling policy load - disable live convert of sidtab */
482 spin_lock_irqsave(&s->lock, flags);
483 s->convert = NULL;
484 spin_unlock_irqrestore(&s->lock, flags);
485 }
486
sidtab_freeze_begin(struct sidtab * s,unsigned long * flags)487 void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
488 {
489 spin_lock_irqsave(&s->lock, *flags);
490 s->frozen = true;
491 s->convert = NULL;
492 }
sidtab_freeze_end(struct sidtab * s,unsigned long * flags)493 void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
494 {
495 spin_unlock_irqrestore(&s->lock, *flags);
496 }
497
sidtab_destroy_entry(struct sidtab_entry * entry)498 static void sidtab_destroy_entry(struct sidtab_entry *entry)
499 {
500 context_destroy(&entry->context);
501 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
502 kfree(rcu_dereference_raw(entry->cache));
503 #endif
504 }
505
sidtab_destroy_tree(union sidtab_entry_inner entry,u32 level)506 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
507 {
508 u32 i;
509
510 if (level != 0) {
511 struct sidtab_node_inner *node = entry.ptr_inner;
512
513 if (!node)
514 return;
515
516 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
517 sidtab_destroy_tree(node->entries[i], level - 1);
518 kfree(node);
519 } else {
520 struct sidtab_node_leaf *node = entry.ptr_leaf;
521
522 if (!node)
523 return;
524
525 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
526 sidtab_destroy_entry(&node->entries[i]);
527 kfree(node);
528 }
529 }
530
sidtab_destroy(struct sidtab * s)531 void sidtab_destroy(struct sidtab *s)
532 {
533 u32 i, level;
534
535 for (i = 0; i < SECINITSID_NUM; i++)
536 if (s->isids[i].set)
537 sidtab_destroy_entry(&s->isids[i].entry);
538
539 level = SIDTAB_MAX_LEVEL;
540 while (level && !s->roots[level].ptr_inner)
541 --level;
542
543 sidtab_destroy_tree(s->roots[level], level);
544 /*
545 * The context_to_sid hashtable's objects are all shared
546 * with the isids array and context tree, and so don't need
547 * to be cleaned up here.
548 */
549 }
550
551 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
552
sidtab_sid2str_put(struct sidtab * s,struct sidtab_entry * entry,const char * str,u32 str_len)553 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
554 const char *str, u32 str_len)
555 {
556 struct sidtab_str_cache *cache, *victim = NULL;
557 unsigned long flags;
558
559 /* do not cache invalid contexts */
560 if (entry->context.len)
561 return;
562
563 spin_lock_irqsave(&s->cache_lock, flags);
564
565 cache = rcu_dereference_protected(entry->cache,
566 lockdep_is_held(&s->cache_lock));
567 if (cache) {
568 /* entry in cache - just bump to the head of LRU list */
569 list_move(&cache->lru_member, &s->cache_lru_list);
570 goto out_unlock;
571 }
572
573 cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
574 if (!cache)
575 goto out_unlock;
576
577 if (s->cache_free_slots == 0) {
578 /* pop a cache entry from the tail and free it */
579 victim = container_of(s->cache_lru_list.prev,
580 struct sidtab_str_cache, lru_member);
581 list_del(&victim->lru_member);
582 rcu_assign_pointer(victim->parent->cache, NULL);
583 } else {
584 s->cache_free_slots--;
585 }
586 cache->parent = entry;
587 cache->len = str_len;
588 memcpy(cache->str, str, str_len);
589 list_add(&cache->lru_member, &s->cache_lru_list);
590
591 rcu_assign_pointer(entry->cache, cache);
592
593 out_unlock:
594 spin_unlock_irqrestore(&s->cache_lock, flags);
595 kfree_rcu(victim, rcu_member);
596 }
597
sidtab_sid2str_get(struct sidtab * s,struct sidtab_entry * entry,char ** out,u32 * out_len)598 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
599 char **out, u32 *out_len)
600 {
601 struct sidtab_str_cache *cache;
602 int rc = 0;
603
604 if (entry->context.len)
605 return -ENOENT; /* do not cache invalid contexts */
606
607 rcu_read_lock();
608
609 cache = rcu_dereference(entry->cache);
610 if (!cache) {
611 rc = -ENOENT;
612 } else {
613 *out_len = cache->len;
614 if (out) {
615 *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
616 if (!*out)
617 rc = -ENOMEM;
618 }
619 }
620
621 rcu_read_unlock();
622
623 if (!rc && out)
624 sidtab_sid2str_put(s, entry, *out, *out_len);
625 return rc;
626 }
627
628 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
629