1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 #include "tls.h"
48
49 struct tls_decrypt_arg {
50 struct_group(inargs,
51 bool zc;
52 bool async;
53 u8 tail;
54 );
55
56 struct sk_buff *skb;
57 };
58
59 struct tls_decrypt_ctx {
60 u8 iv[MAX_IV_SIZE];
61 u8 aad[TLS_MAX_AAD_SIZE];
62 u8 tail;
63 struct scatterlist sg[];
64 };
65
tls_err_abort(struct sock * sk,int err)66 noinline void tls_err_abort(struct sock *sk, int err)
67 {
68 WARN_ON_ONCE(err >= 0);
69 /* sk->sk_err should contain a positive error code. */
70 sk->sk_err = -err;
71 sk_error_report(sk);
72 }
73
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)74 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
75 unsigned int recursion_level)
76 {
77 int start = skb_headlen(skb);
78 int i, chunk = start - offset;
79 struct sk_buff *frag_iter;
80 int elt = 0;
81
82 if (unlikely(recursion_level >= 24))
83 return -EMSGSIZE;
84
85 if (chunk > 0) {
86 if (chunk > len)
87 chunk = len;
88 elt++;
89 len -= chunk;
90 if (len == 0)
91 return elt;
92 offset += chunk;
93 }
94
95 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
96 int end;
97
98 WARN_ON(start > offset + len);
99
100 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
101 chunk = end - offset;
102 if (chunk > 0) {
103 if (chunk > len)
104 chunk = len;
105 elt++;
106 len -= chunk;
107 if (len == 0)
108 return elt;
109 offset += chunk;
110 }
111 start = end;
112 }
113
114 if (unlikely(skb_has_frag_list(skb))) {
115 skb_walk_frags(skb, frag_iter) {
116 int end, ret;
117
118 WARN_ON(start > offset + len);
119
120 end = start + frag_iter->len;
121 chunk = end - offset;
122 if (chunk > 0) {
123 if (chunk > len)
124 chunk = len;
125 ret = __skb_nsg(frag_iter, offset - start, chunk,
126 recursion_level + 1);
127 if (unlikely(ret < 0))
128 return ret;
129 elt += ret;
130 len -= chunk;
131 if (len == 0)
132 return elt;
133 offset += chunk;
134 }
135 start = end;
136 }
137 }
138 BUG_ON(len);
139 return elt;
140 }
141
142 /* Return the number of scatterlist elements required to completely map the
143 * skb, or -EMSGSIZE if the recursion depth is exceeded.
144 */
skb_nsg(struct sk_buff * skb,int offset,int len)145 static int skb_nsg(struct sk_buff *skb, int offset, int len)
146 {
147 return __skb_nsg(skb, offset, len, 0);
148 }
149
tls_padding_length(struct tls_prot_info * prot,struct sk_buff * skb,struct tls_decrypt_arg * darg)150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
151 struct tls_decrypt_arg *darg)
152 {
153 struct strp_msg *rxm = strp_msg(skb);
154 struct tls_msg *tlm = tls_msg(skb);
155 int sub = 0;
156
157 /* Determine zero-padding length */
158 if (prot->version == TLS_1_3_VERSION) {
159 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
160 char content_type = darg->zc ? darg->tail : 0;
161 int err;
162
163 while (content_type == 0) {
164 if (offset < prot->prepend_size)
165 return -EBADMSG;
166 err = skb_copy_bits(skb, rxm->offset + offset,
167 &content_type, 1);
168 if (err)
169 return err;
170 if (content_type)
171 break;
172 sub++;
173 offset--;
174 }
175 tlm->control = content_type;
176 }
177 return sub;
178 }
179
tls_decrypt_done(struct crypto_async_request * req,int err)180 static void tls_decrypt_done(struct crypto_async_request *req, int err)
181 {
182 struct aead_request *aead_req = (struct aead_request *)req;
183 struct scatterlist *sgout = aead_req->dst;
184 struct scatterlist *sgin = aead_req->src;
185 struct tls_sw_context_rx *ctx;
186 struct tls_context *tls_ctx;
187 struct scatterlist *sg;
188 unsigned int pages;
189 struct sock *sk;
190
191 sk = (struct sock *)req->data;
192 tls_ctx = tls_get_ctx(sk);
193 ctx = tls_sw_ctx_rx(tls_ctx);
194
195 /* Propagate if there was an err */
196 if (err) {
197 if (err == -EBADMSG)
198 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
199 ctx->async_wait.err = err;
200 tls_err_abort(sk, err);
201 }
202
203 /* Free the destination pages if skb was not decrypted inplace */
204 if (sgout != sgin) {
205 /* Skip the first S/G entry as it points to AAD */
206 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
207 if (!sg)
208 break;
209 put_page(sg_page(sg));
210 }
211 }
212
213 kfree(aead_req);
214
215 spin_lock_bh(&ctx->decrypt_compl_lock);
216 if (!atomic_dec_return(&ctx->decrypt_pending))
217 complete(&ctx->async_wait.completion);
218 spin_unlock_bh(&ctx->decrypt_compl_lock);
219 }
220
tls_do_decryption(struct sock * sk,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,struct tls_decrypt_arg * darg)221 static int tls_do_decryption(struct sock *sk,
222 struct scatterlist *sgin,
223 struct scatterlist *sgout,
224 char *iv_recv,
225 size_t data_len,
226 struct aead_request *aead_req,
227 struct tls_decrypt_arg *darg)
228 {
229 struct tls_context *tls_ctx = tls_get_ctx(sk);
230 struct tls_prot_info *prot = &tls_ctx->prot_info;
231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
232 int ret;
233
234 aead_request_set_tfm(aead_req, ctx->aead_recv);
235 aead_request_set_ad(aead_req, prot->aad_size);
236 aead_request_set_crypt(aead_req, sgin, sgout,
237 data_len + prot->tag_size,
238 (u8 *)iv_recv);
239
240 if (darg->async) {
241 aead_request_set_callback(aead_req,
242 CRYPTO_TFM_REQ_MAY_BACKLOG,
243 tls_decrypt_done, sk);
244 atomic_inc(&ctx->decrypt_pending);
245 } else {
246 aead_request_set_callback(aead_req,
247 CRYPTO_TFM_REQ_MAY_BACKLOG,
248 crypto_req_done, &ctx->async_wait);
249 }
250
251 ret = crypto_aead_decrypt(aead_req);
252 if (ret == -EINPROGRESS) {
253 if (darg->async)
254 return 0;
255
256 ret = crypto_wait_req(ret, &ctx->async_wait);
257 }
258 darg->async = false;
259
260 return ret;
261 }
262
tls_trim_both_msgs(struct sock * sk,int target_size)263 static void tls_trim_both_msgs(struct sock *sk, int target_size)
264 {
265 struct tls_context *tls_ctx = tls_get_ctx(sk);
266 struct tls_prot_info *prot = &tls_ctx->prot_info;
267 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
268 struct tls_rec *rec = ctx->open_rec;
269
270 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
271 if (target_size > 0)
272 target_size += prot->overhead_size;
273 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
274 }
275
tls_alloc_encrypted_msg(struct sock * sk,int len)276 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
277 {
278 struct tls_context *tls_ctx = tls_get_ctx(sk);
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
281 struct sk_msg *msg_en = &rec->msg_encrypted;
282
283 return sk_msg_alloc(sk, msg_en, len, 0);
284 }
285
tls_clone_plaintext_msg(struct sock * sk,int required)286 static int tls_clone_plaintext_msg(struct sock *sk, int required)
287 {
288 struct tls_context *tls_ctx = tls_get_ctx(sk);
289 struct tls_prot_info *prot = &tls_ctx->prot_info;
290 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
291 struct tls_rec *rec = ctx->open_rec;
292 struct sk_msg *msg_pl = &rec->msg_plaintext;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
294 int skip, len;
295
296 /* We add page references worth len bytes from encrypted sg
297 * at the end of plaintext sg. It is guaranteed that msg_en
298 * has enough required room (ensured by caller).
299 */
300 len = required - msg_pl->sg.size;
301
302 /* Skip initial bytes in msg_en's data to be able to use
303 * same offset of both plain and encrypted data.
304 */
305 skip = prot->prepend_size + msg_pl->sg.size;
306
307 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
308 }
309
tls_get_rec(struct sock * sk)310 static struct tls_rec *tls_get_rec(struct sock *sk)
311 {
312 struct tls_context *tls_ctx = tls_get_ctx(sk);
313 struct tls_prot_info *prot = &tls_ctx->prot_info;
314 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
315 struct sk_msg *msg_pl, *msg_en;
316 struct tls_rec *rec;
317 int mem_size;
318
319 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
320
321 rec = kzalloc(mem_size, sk->sk_allocation);
322 if (!rec)
323 return NULL;
324
325 msg_pl = &rec->msg_plaintext;
326 msg_en = &rec->msg_encrypted;
327
328 sk_msg_init(msg_pl);
329 sk_msg_init(msg_en);
330
331 sg_init_table(rec->sg_aead_in, 2);
332 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
333 sg_unmark_end(&rec->sg_aead_in[1]);
334
335 sg_init_table(rec->sg_aead_out, 2);
336 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
337 sg_unmark_end(&rec->sg_aead_out[1]);
338
339 return rec;
340 }
341
tls_free_rec(struct sock * sk,struct tls_rec * rec)342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
343 {
344 sk_msg_free(sk, &rec->msg_encrypted);
345 sk_msg_free(sk, &rec->msg_plaintext);
346 kfree(rec);
347 }
348
tls_free_open_rec(struct sock * sk)349 static void tls_free_open_rec(struct sock *sk)
350 {
351 struct tls_context *tls_ctx = tls_get_ctx(sk);
352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353 struct tls_rec *rec = ctx->open_rec;
354
355 if (rec) {
356 tls_free_rec(sk, rec);
357 ctx->open_rec = NULL;
358 }
359 }
360
tls_tx_records(struct sock * sk,int flags)361 int tls_tx_records(struct sock *sk, int flags)
362 {
363 struct tls_context *tls_ctx = tls_get_ctx(sk);
364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365 struct tls_rec *rec, *tmp;
366 struct sk_msg *msg_en;
367 int tx_flags, rc = 0;
368
369 if (tls_is_partially_sent_record(tls_ctx)) {
370 rec = list_first_entry(&ctx->tx_list,
371 struct tls_rec, list);
372
373 if (flags == -1)
374 tx_flags = rec->tx_flags;
375 else
376 tx_flags = flags;
377
378 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
379 if (rc)
380 goto tx_err;
381
382 /* Full record has been transmitted.
383 * Remove the head of tx_list
384 */
385 list_del(&rec->list);
386 sk_msg_free(sk, &rec->msg_plaintext);
387 kfree(rec);
388 }
389
390 /* Tx all ready records */
391 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
392 if (READ_ONCE(rec->tx_ready)) {
393 if (flags == -1)
394 tx_flags = rec->tx_flags;
395 else
396 tx_flags = flags;
397
398 msg_en = &rec->msg_encrypted;
399 rc = tls_push_sg(sk, tls_ctx,
400 &msg_en->sg.data[msg_en->sg.curr],
401 0, tx_flags);
402 if (rc)
403 goto tx_err;
404
405 list_del(&rec->list);
406 sk_msg_free(sk, &rec->msg_plaintext);
407 kfree(rec);
408 } else {
409 break;
410 }
411 }
412
413 tx_err:
414 if (rc < 0 && rc != -EAGAIN)
415 tls_err_abort(sk, -EBADMSG);
416
417 return rc;
418 }
419
tls_encrypt_done(struct crypto_async_request * req,int err)420 static void tls_encrypt_done(struct crypto_async_request *req, int err)
421 {
422 struct aead_request *aead_req = (struct aead_request *)req;
423 struct sock *sk = req->data;
424 struct tls_context *tls_ctx = tls_get_ctx(sk);
425 struct tls_prot_info *prot = &tls_ctx->prot_info;
426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
427 struct scatterlist *sge;
428 struct sk_msg *msg_en;
429 struct tls_rec *rec;
430 bool ready = false;
431 int pending;
432
433 rec = container_of(aead_req, struct tls_rec, aead_req);
434 msg_en = &rec->msg_encrypted;
435
436 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
437 sge->offset -= prot->prepend_size;
438 sge->length += prot->prepend_size;
439
440 /* Check if error is previously set on socket */
441 if (err || sk->sk_err) {
442 rec = NULL;
443
444 /* If err is already set on socket, return the same code */
445 if (sk->sk_err) {
446 ctx->async_wait.err = -sk->sk_err;
447 } else {
448 ctx->async_wait.err = err;
449 tls_err_abort(sk, err);
450 }
451 }
452
453 if (rec) {
454 struct tls_rec *first_rec;
455
456 /* Mark the record as ready for transmission */
457 smp_store_mb(rec->tx_ready, true);
458
459 /* If received record is at head of tx_list, schedule tx */
460 first_rec = list_first_entry(&ctx->tx_list,
461 struct tls_rec, list);
462 if (rec == first_rec)
463 ready = true;
464 }
465
466 spin_lock_bh(&ctx->encrypt_compl_lock);
467 pending = atomic_dec_return(&ctx->encrypt_pending);
468
469 if (!pending && ctx->async_notify)
470 complete(&ctx->async_wait.completion);
471 spin_unlock_bh(&ctx->encrypt_compl_lock);
472
473 if (!ready)
474 return;
475
476 /* Schedule the transmission */
477 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
478 schedule_delayed_work(&ctx->tx_work.work, 1);
479 }
480
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)481 static int tls_do_encryption(struct sock *sk,
482 struct tls_context *tls_ctx,
483 struct tls_sw_context_tx *ctx,
484 struct aead_request *aead_req,
485 size_t data_len, u32 start)
486 {
487 struct tls_prot_info *prot = &tls_ctx->prot_info;
488 struct tls_rec *rec = ctx->open_rec;
489 struct sk_msg *msg_en = &rec->msg_encrypted;
490 struct scatterlist *sge = sk_msg_elem(msg_en, start);
491 int rc, iv_offset = 0;
492
493 /* For CCM based ciphers, first byte of IV is a constant */
494 switch (prot->cipher_type) {
495 case TLS_CIPHER_AES_CCM_128:
496 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
497 iv_offset = 1;
498 break;
499 case TLS_CIPHER_SM4_CCM:
500 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
501 iv_offset = 1;
502 break;
503 }
504
505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 prot->iv_size + prot->salt_size);
507
508 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
509 tls_ctx->tx.rec_seq);
510
511 sge->offset += prot->prepend_size;
512 sge->length -= prot->prepend_size;
513
514 msg_en->sg.curr = start;
515
516 aead_request_set_tfm(aead_req, ctx->aead_send);
517 aead_request_set_ad(aead_req, prot->aad_size);
518 aead_request_set_crypt(aead_req, rec->sg_aead_in,
519 rec->sg_aead_out,
520 data_len, rec->iv_data);
521
522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523 tls_encrypt_done, sk);
524
525 /* Add the record in tx_list */
526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527 atomic_inc(&ctx->encrypt_pending);
528
529 rc = crypto_aead_encrypt(aead_req);
530 if (!rc || rc != -EINPROGRESS) {
531 atomic_dec(&ctx->encrypt_pending);
532 sge->offset -= prot->prepend_size;
533 sge->length += prot->prepend_size;
534 }
535
536 if (!rc) {
537 WRITE_ONCE(rec->tx_ready, true);
538 } else if (rc != -EINPROGRESS) {
539 list_del(&rec->list);
540 return rc;
541 }
542
543 /* Unhook the record from context if encryption is not failure */
544 ctx->open_rec = NULL;
545 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546 return rc;
547 }
548
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550 struct tls_rec **to, struct sk_msg *msg_opl,
551 struct sk_msg *msg_oen, u32 split_point,
552 u32 tx_overhead_size, u32 *orig_end)
553 {
554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555 struct scatterlist *sge, *osge, *nsge;
556 u32 orig_size = msg_opl->sg.size;
557 struct scatterlist tmp = { };
558 struct sk_msg *msg_npl;
559 struct tls_rec *new;
560 int ret;
561
562 new = tls_get_rec(sk);
563 if (!new)
564 return -ENOMEM;
565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566 tx_overhead_size, 0);
567 if (ret < 0) {
568 tls_free_rec(sk, new);
569 return ret;
570 }
571
572 *orig_end = msg_opl->sg.end;
573 i = msg_opl->sg.start;
574 sge = sk_msg_elem(msg_opl, i);
575 while (apply && sge->length) {
576 if (sge->length > apply) {
577 u32 len = sge->length - apply;
578
579 get_page(sg_page(sge));
580 sg_set_page(&tmp, sg_page(sge), len,
581 sge->offset + apply);
582 sge->length = apply;
583 bytes += apply;
584 apply = 0;
585 } else {
586 apply -= sge->length;
587 bytes += sge->length;
588 }
589
590 sk_msg_iter_var_next(i);
591 if (i == msg_opl->sg.end)
592 break;
593 sge = sk_msg_elem(msg_opl, i);
594 }
595
596 msg_opl->sg.end = i;
597 msg_opl->sg.curr = i;
598 msg_opl->sg.copybreak = 0;
599 msg_opl->apply_bytes = 0;
600 msg_opl->sg.size = bytes;
601
602 msg_npl = &new->msg_plaintext;
603 msg_npl->apply_bytes = apply;
604 msg_npl->sg.size = orig_size - bytes;
605
606 j = msg_npl->sg.start;
607 nsge = sk_msg_elem(msg_npl, j);
608 if (tmp.length) {
609 memcpy(nsge, &tmp, sizeof(*nsge));
610 sk_msg_iter_var_next(j);
611 nsge = sk_msg_elem(msg_npl, j);
612 }
613
614 osge = sk_msg_elem(msg_opl, i);
615 while (osge->length) {
616 memcpy(nsge, osge, sizeof(*nsge));
617 sg_unmark_end(nsge);
618 sk_msg_iter_var_next(i);
619 sk_msg_iter_var_next(j);
620 if (i == *orig_end)
621 break;
622 osge = sk_msg_elem(msg_opl, i);
623 nsge = sk_msg_elem(msg_npl, j);
624 }
625
626 msg_npl->sg.end = j;
627 msg_npl->sg.curr = j;
628 msg_npl->sg.copybreak = 0;
629
630 *to = new;
631 return 0;
632 }
633
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635 struct tls_rec *from, u32 orig_end)
636 {
637 struct sk_msg *msg_npl = &from->msg_plaintext;
638 struct sk_msg *msg_opl = &to->msg_plaintext;
639 struct scatterlist *osge, *nsge;
640 u32 i, j;
641
642 i = msg_opl->sg.end;
643 sk_msg_iter_var_prev(i);
644 j = msg_npl->sg.start;
645
646 osge = sk_msg_elem(msg_opl, i);
647 nsge = sk_msg_elem(msg_npl, j);
648
649 if (sg_page(osge) == sg_page(nsge) &&
650 osge->offset + osge->length == nsge->offset) {
651 osge->length += nsge->length;
652 put_page(sg_page(nsge));
653 }
654
655 msg_opl->sg.end = orig_end;
656 msg_opl->sg.curr = orig_end;
657 msg_opl->sg.copybreak = 0;
658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659 msg_opl->sg.size += msg_npl->sg.size;
660
661 sk_msg_free(sk, &to->msg_encrypted);
662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663
664 kfree(from);
665 }
666
tls_push_record(struct sock * sk,int flags,unsigned char record_type)667 static int tls_push_record(struct sock *sk, int flags,
668 unsigned char record_type)
669 {
670 struct tls_context *tls_ctx = tls_get_ctx(sk);
671 struct tls_prot_info *prot = &tls_ctx->prot_info;
672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674 u32 i, split_point, orig_end;
675 struct sk_msg *msg_pl, *msg_en;
676 struct aead_request *req;
677 bool split;
678 int rc;
679
680 if (!rec)
681 return 0;
682
683 msg_pl = &rec->msg_plaintext;
684 msg_en = &rec->msg_encrypted;
685
686 split_point = msg_pl->apply_bytes;
687 split = split_point && split_point < msg_pl->sg.size;
688 if (unlikely((!split &&
689 msg_pl->sg.size +
690 prot->overhead_size > msg_en->sg.size) ||
691 (split &&
692 split_point +
693 prot->overhead_size > msg_en->sg.size))) {
694 split = true;
695 split_point = msg_en->sg.size;
696 }
697 if (split) {
698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699 split_point, prot->overhead_size,
700 &orig_end);
701 if (rc < 0)
702 return rc;
703 /* This can happen if above tls_split_open_record allocates
704 * a single large encryption buffer instead of two smaller
705 * ones. In this case adjust pointers and continue without
706 * split.
707 */
708 if (!msg_pl->sg.size) {
709 tls_merge_open_record(sk, rec, tmp, orig_end);
710 msg_pl = &rec->msg_plaintext;
711 msg_en = &rec->msg_encrypted;
712 split = false;
713 }
714 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715 prot->overhead_size);
716 }
717
718 rec->tx_flags = flags;
719 req = &rec->aead_req;
720
721 i = msg_pl->sg.end;
722 sk_msg_iter_var_prev(i);
723
724 rec->content_type = record_type;
725 if (prot->version == TLS_1_3_VERSION) {
726 /* Add content type to end of message. No padding added */
727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728 sg_mark_end(&rec->sg_content_type);
729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730 &rec->sg_content_type);
731 } else {
732 sg_mark_end(sk_msg_elem(msg_pl, i));
733 }
734
735 if (msg_pl->sg.end < msg_pl->sg.start) {
736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738 msg_pl->sg.data);
739 }
740
741 i = msg_pl->sg.start;
742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743
744 i = msg_en->sg.end;
745 sk_msg_iter_var_prev(i);
746 sg_mark_end(sk_msg_elem(msg_en, i));
747
748 i = msg_en->sg.start;
749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750
751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752 tls_ctx->tx.rec_seq, record_type, prot);
753
754 tls_fill_prepend(tls_ctx,
755 page_address(sg_page(&msg_en->sg.data[i])) +
756 msg_en->sg.data[i].offset,
757 msg_pl->sg.size + prot->tail_size,
758 record_type);
759
760 tls_ctx->pending_open_record_frags = false;
761
762 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 msg_pl->sg.size + prot->tail_size, i);
764 if (rc < 0) {
765 if (rc != -EINPROGRESS) {
766 tls_err_abort(sk, -EBADMSG);
767 if (split) {
768 tls_ctx->pending_open_record_frags = true;
769 tls_merge_open_record(sk, rec, tmp, orig_end);
770 }
771 }
772 ctx->async_capable = 1;
773 return rc;
774 } else if (split) {
775 msg_pl = &tmp->msg_plaintext;
776 msg_en = &tmp->msg_encrypted;
777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 tls_ctx->pending_open_record_frags = true;
779 ctx->open_rec = tmp;
780 }
781
782 return tls_tx_records(sk, flags);
783 }
784
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 bool full_record, u8 record_type,
787 ssize_t *copied, int flags)
788 {
789 struct tls_context *tls_ctx = tls_get_ctx(sk);
790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 struct sk_msg msg_redir = { };
792 struct sk_psock *psock;
793 struct sock *sk_redir;
794 struct tls_rec *rec;
795 bool enospc, policy;
796 int err = 0, send;
797 u32 delta = 0;
798
799 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 psock = sk_psock_get(sk);
801 if (!psock || !policy) {
802 err = tls_push_record(sk, flags, record_type);
803 if (err && sk->sk_err == EBADMSG) {
804 *copied -= sk_msg_free(sk, msg);
805 tls_free_open_rec(sk);
806 err = -sk->sk_err;
807 }
808 if (psock)
809 sk_psock_put(sk, psock);
810 return err;
811 }
812 more_data:
813 enospc = sk_msg_full(msg);
814 if (psock->eval == __SK_NONE) {
815 delta = msg->sg.size;
816 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 delta -= msg->sg.size;
818 }
819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 !enospc && !full_record) {
821 err = -ENOSPC;
822 goto out_err;
823 }
824 msg->cork_bytes = 0;
825 send = msg->sg.size;
826 if (msg->apply_bytes && msg->apply_bytes < send)
827 send = msg->apply_bytes;
828
829 switch (psock->eval) {
830 case __SK_PASS:
831 err = tls_push_record(sk, flags, record_type);
832 if (err && sk->sk_err == EBADMSG) {
833 *copied -= sk_msg_free(sk, msg);
834 tls_free_open_rec(sk);
835 err = -sk->sk_err;
836 goto out_err;
837 }
838 break;
839 case __SK_REDIRECT:
840 sk_redir = psock->sk_redir;
841 memcpy(&msg_redir, msg, sizeof(*msg));
842 if (msg->apply_bytes < send)
843 msg->apply_bytes = 0;
844 else
845 msg->apply_bytes -= send;
846 sk_msg_return_zero(sk, msg, send);
847 msg->sg.size -= send;
848 release_sock(sk);
849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850 lock_sock(sk);
851 if (err < 0) {
852 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
853 msg->sg.size = 0;
854 }
855 if (msg->sg.size == 0)
856 tls_free_open_rec(sk);
857 break;
858 case __SK_DROP:
859 default:
860 sk_msg_free_partial(sk, msg, send);
861 if (msg->apply_bytes < send)
862 msg->apply_bytes = 0;
863 else
864 msg->apply_bytes -= send;
865 if (msg->sg.size == 0)
866 tls_free_open_rec(sk);
867 *copied -= (send + delta);
868 err = -EACCES;
869 }
870
871 if (likely(!err)) {
872 bool reset_eval = !ctx->open_rec;
873
874 rec = ctx->open_rec;
875 if (rec) {
876 msg = &rec->msg_plaintext;
877 if (!msg->apply_bytes)
878 reset_eval = true;
879 }
880 if (reset_eval) {
881 psock->eval = __SK_NONE;
882 if (psock->sk_redir) {
883 sock_put(psock->sk_redir);
884 psock->sk_redir = NULL;
885 }
886 }
887 if (rec)
888 goto more_data;
889 }
890 out_err:
891 sk_psock_put(sk, psock);
892 return err;
893 }
894
tls_sw_push_pending_record(struct sock * sk,int flags)895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897 struct tls_context *tls_ctx = tls_get_ctx(sk);
898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899 struct tls_rec *rec = ctx->open_rec;
900 struct sk_msg *msg_pl;
901 size_t copied;
902
903 if (!rec)
904 return 0;
905
906 msg_pl = &rec->msg_plaintext;
907 copied = msg_pl->sg.size;
908 if (!copied)
909 return 0;
910
911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912 &copied, flags);
913 }
914
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918 struct tls_context *tls_ctx = tls_get_ctx(sk);
919 struct tls_prot_info *prot = &tls_ctx->prot_info;
920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921 bool async_capable = ctx->async_capable;
922 unsigned char record_type = TLS_RECORD_TYPE_DATA;
923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924 bool eor = !(msg->msg_flags & MSG_MORE);
925 size_t try_to_copy;
926 ssize_t copied = 0;
927 struct sk_msg *msg_pl, *msg_en;
928 struct tls_rec *rec;
929 int required_size;
930 int num_async = 0;
931 bool full_record;
932 int record_room;
933 int num_zc = 0;
934 int orig_size;
935 int ret = 0;
936 int pending;
937
938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939 MSG_CMSG_COMPAT))
940 return -EOPNOTSUPP;
941
942 mutex_lock(&tls_ctx->tx_lock);
943 lock_sock(sk);
944
945 if (unlikely(msg->msg_controllen)) {
946 ret = tls_process_cmsg(sk, msg, &record_type);
947 if (ret) {
948 if (ret == -EINPROGRESS)
949 num_async++;
950 else if (ret != -EAGAIN)
951 goto send_end;
952 }
953 }
954
955 while (msg_data_left(msg)) {
956 if (sk->sk_err) {
957 ret = -sk->sk_err;
958 goto send_end;
959 }
960
961 if (ctx->open_rec)
962 rec = ctx->open_rec;
963 else
964 rec = ctx->open_rec = tls_get_rec(sk);
965 if (!rec) {
966 ret = -ENOMEM;
967 goto send_end;
968 }
969
970 msg_pl = &rec->msg_plaintext;
971 msg_en = &rec->msg_encrypted;
972
973 orig_size = msg_pl->sg.size;
974 full_record = false;
975 try_to_copy = msg_data_left(msg);
976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977 if (try_to_copy >= record_room) {
978 try_to_copy = record_room;
979 full_record = true;
980 }
981
982 required_size = msg_pl->sg.size + try_to_copy +
983 prot->overhead_size;
984
985 if (!sk_stream_memory_free(sk))
986 goto wait_for_sndbuf;
987
988 alloc_encrypted:
989 ret = tls_alloc_encrypted_msg(sk, required_size);
990 if (ret) {
991 if (ret != -ENOSPC)
992 goto wait_for_memory;
993
994 /* Adjust try_to_copy according to the amount that was
995 * actually allocated. The difference is due
996 * to max sg elements limit
997 */
998 try_to_copy -= required_size - msg_en->sg.size;
999 full_record = true;
1000 }
1001
1002 if (!is_kvec && (full_record || eor) && !async_capable) {
1003 u32 first = msg_pl->sg.end;
1004
1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006 msg_pl, try_to_copy);
1007 if (ret)
1008 goto fallback_to_reg_send;
1009
1010 num_zc++;
1011 copied += try_to_copy;
1012
1013 sk_msg_sg_copy_set(msg_pl, first);
1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015 record_type, &copied,
1016 msg->msg_flags);
1017 if (ret) {
1018 if (ret == -EINPROGRESS)
1019 num_async++;
1020 else if (ret == -ENOMEM)
1021 goto wait_for_memory;
1022 else if (ctx->open_rec && ret == -ENOSPC)
1023 goto rollback_iter;
1024 else if (ret != -EAGAIN)
1025 goto send_end;
1026 }
1027 continue;
1028 rollback_iter:
1029 copied -= try_to_copy;
1030 sk_msg_sg_copy_clear(msg_pl, first);
1031 iov_iter_revert(&msg->msg_iter,
1032 msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034 sk_msg_trim(sk, msg_pl, orig_size);
1035 }
1036
1037 required_size = msg_pl->sg.size + try_to_copy;
1038
1039 ret = tls_clone_plaintext_msg(sk, required_size);
1040 if (ret) {
1041 if (ret != -ENOSPC)
1042 goto send_end;
1043
1044 /* Adjust try_to_copy according to the amount that was
1045 * actually allocated. The difference is due
1046 * to max sg elements limit
1047 */
1048 try_to_copy -= required_size - msg_pl->sg.size;
1049 full_record = true;
1050 sk_msg_trim(sk, msg_en,
1051 msg_pl->sg.size + prot->overhead_size);
1052 }
1053
1054 if (try_to_copy) {
1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056 msg_pl, try_to_copy);
1057 if (ret < 0)
1058 goto trim_sgl;
1059 }
1060
1061 /* Open records defined only if successfully copied, otherwise
1062 * we would trim the sg but not reset the open record frags.
1063 */
1064 tls_ctx->pending_open_record_frags = true;
1065 copied += try_to_copy;
1066 if (full_record || eor) {
1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068 record_type, &copied,
1069 msg->msg_flags);
1070 if (ret) {
1071 if (ret == -EINPROGRESS)
1072 num_async++;
1073 else if (ret == -ENOMEM)
1074 goto wait_for_memory;
1075 else if (ret != -EAGAIN) {
1076 if (ret == -ENOSPC)
1077 ret = 0;
1078 goto send_end;
1079 }
1080 }
1081 }
1082
1083 continue;
1084
1085 wait_for_sndbuf:
1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088 ret = sk_stream_wait_memory(sk, &timeo);
1089 if (ret) {
1090 trim_sgl:
1091 if (ctx->open_rec)
1092 tls_trim_both_msgs(sk, orig_size);
1093 goto send_end;
1094 }
1095
1096 if (ctx->open_rec && msg_en->sg.size < required_size)
1097 goto alloc_encrypted;
1098 }
1099
1100 if (!num_async) {
1101 goto send_end;
1102 } else if (num_zc) {
1103 /* Wait for pending encryptions to get completed */
1104 spin_lock_bh(&ctx->encrypt_compl_lock);
1105 ctx->async_notify = true;
1106
1107 pending = atomic_read(&ctx->encrypt_pending);
1108 spin_unlock_bh(&ctx->encrypt_compl_lock);
1109 if (pending)
1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111 else
1112 reinit_completion(&ctx->async_wait.completion);
1113
1114 /* There can be no concurrent accesses, since we have no
1115 * pending encrypt operations
1116 */
1117 WRITE_ONCE(ctx->async_notify, false);
1118
1119 if (ctx->async_wait.err) {
1120 ret = ctx->async_wait.err;
1121 copied = 0;
1122 }
1123 }
1124
1125 /* Transmit if any encryptions have completed */
1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127 cancel_delayed_work(&ctx->tx_work.work);
1128 tls_tx_records(sk, msg->msg_flags);
1129 }
1130
1131 send_end:
1132 ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134 release_sock(sk);
1135 mutex_unlock(&tls_ctx->tx_lock);
1136 return copied > 0 ? copied : ret;
1137 }
1138
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140 int offset, size_t size, int flags)
1141 {
1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143 struct tls_context *tls_ctx = tls_get_ctx(sk);
1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145 struct tls_prot_info *prot = &tls_ctx->prot_info;
1146 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147 struct sk_msg *msg_pl;
1148 struct tls_rec *rec;
1149 int num_async = 0;
1150 ssize_t copied = 0;
1151 bool full_record;
1152 int record_room;
1153 int ret = 0;
1154 bool eor;
1155
1156 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159 /* Call the sk_stream functions to manage the sndbuf mem. */
1160 while (size > 0) {
1161 size_t copy, required_size;
1162
1163 if (sk->sk_err) {
1164 ret = -sk->sk_err;
1165 goto sendpage_end;
1166 }
1167
1168 if (ctx->open_rec)
1169 rec = ctx->open_rec;
1170 else
1171 rec = ctx->open_rec = tls_get_rec(sk);
1172 if (!rec) {
1173 ret = -ENOMEM;
1174 goto sendpage_end;
1175 }
1176
1177 msg_pl = &rec->msg_plaintext;
1178
1179 full_record = false;
1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181 copy = size;
1182 if (copy >= record_room) {
1183 copy = record_room;
1184 full_record = true;
1185 }
1186
1187 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189 if (!sk_stream_memory_free(sk))
1190 goto wait_for_sndbuf;
1191 alloc_payload:
1192 ret = tls_alloc_encrypted_msg(sk, required_size);
1193 if (ret) {
1194 if (ret != -ENOSPC)
1195 goto wait_for_memory;
1196
1197 /* Adjust copy according to the amount that was
1198 * actually allocated. The difference is due
1199 * to max sg elements limit
1200 */
1201 copy -= required_size - msg_pl->sg.size;
1202 full_record = true;
1203 }
1204
1205 sk_msg_page_add(msg_pl, page, copy, offset);
1206 sk_mem_charge(sk, copy);
1207
1208 offset += copy;
1209 size -= copy;
1210 copied += copy;
1211
1212 tls_ctx->pending_open_record_frags = true;
1213 if (full_record || eor || sk_msg_full(msg_pl)) {
1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215 record_type, &copied, flags);
1216 if (ret) {
1217 if (ret == -EINPROGRESS)
1218 num_async++;
1219 else if (ret == -ENOMEM)
1220 goto wait_for_memory;
1221 else if (ret != -EAGAIN) {
1222 if (ret == -ENOSPC)
1223 ret = 0;
1224 goto sendpage_end;
1225 }
1226 }
1227 }
1228 continue;
1229 wait_for_sndbuf:
1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232 ret = sk_stream_wait_memory(sk, &timeo);
1233 if (ret) {
1234 if (ctx->open_rec)
1235 tls_trim_both_msgs(sk, msg_pl->sg.size);
1236 goto sendpage_end;
1237 }
1238
1239 if (ctx->open_rec)
1240 goto alloc_payload;
1241 }
1242
1243 if (num_async) {
1244 /* Transmit if any encryptions have completed */
1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246 cancel_delayed_work(&ctx->tx_work.work);
1247 tls_tx_records(sk, flags);
1248 }
1249 }
1250 sendpage_end:
1251 ret = sk_stream_error(sk, flags, ret);
1252 return copied > 0 ? copied : ret;
1253 }
1254
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256 int offset, size_t size, int flags)
1257 {
1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260 MSG_NO_SHARED_FRAGS))
1261 return -EOPNOTSUPP;
1262
1263 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267 int offset, size_t size, int flags)
1268 {
1269 struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 int ret;
1271
1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274 return -EOPNOTSUPP;
1275
1276 mutex_lock(&tls_ctx->tx_lock);
1277 lock_sock(sk);
1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279 release_sock(sk);
1280 mutex_unlock(&tls_ctx->tx_lock);
1281 return ret;
1282 }
1283
1284 static int
tls_rx_rec_wait(struct sock * sk,struct sk_psock * psock,bool nonblock,bool released)1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1286 bool released)
1287 {
1288 struct tls_context *tls_ctx = tls_get_ctx(sk);
1289 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1290 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291 long timeo;
1292
1293 timeo = sock_rcvtimeo(sk, nonblock);
1294
1295 while (!tls_strp_msg_ready(ctx)) {
1296 if (!sk_psock_queue_empty(psock))
1297 return 0;
1298
1299 if (sk->sk_err)
1300 return sock_error(sk);
1301
1302 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1303 tls_strp_check_rcv(&ctx->strp);
1304 if (tls_strp_msg_ready(ctx))
1305 break;
1306 }
1307
1308 if (sk->sk_shutdown & RCV_SHUTDOWN)
1309 return 0;
1310
1311 if (sock_flag(sk, SOCK_DONE))
1312 return 0;
1313
1314 if (!timeo)
1315 return -EAGAIN;
1316
1317 released = true;
1318 add_wait_queue(sk_sleep(sk), &wait);
1319 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1320 sk_wait_event(sk, &timeo,
1321 tls_strp_msg_ready(ctx) ||
1322 !sk_psock_queue_empty(psock),
1323 &wait);
1324 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1325 remove_wait_queue(sk_sleep(sk), &wait);
1326
1327 /* Handle signals */
1328 if (signal_pending(current))
1329 return sock_intr_errno(timeo);
1330 }
1331
1332 tls_strp_msg_load(&ctx->strp, released);
1333
1334 return 1;
1335 }
1336
tls_setup_from_iter(struct iov_iter * from,int length,int * pages_used,struct scatterlist * to,int to_max_pages)1337 static int tls_setup_from_iter(struct iov_iter *from,
1338 int length, int *pages_used,
1339 struct scatterlist *to,
1340 int to_max_pages)
1341 {
1342 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1343 struct page *pages[MAX_SKB_FRAGS];
1344 unsigned int size = 0;
1345 ssize_t copied, use;
1346 size_t offset;
1347
1348 while (length > 0) {
1349 i = 0;
1350 maxpages = to_max_pages - num_elem;
1351 if (maxpages == 0) {
1352 rc = -EFAULT;
1353 goto out;
1354 }
1355 copied = iov_iter_get_pages2(from, pages,
1356 length,
1357 maxpages, &offset);
1358 if (copied <= 0) {
1359 rc = -EFAULT;
1360 goto out;
1361 }
1362
1363 length -= copied;
1364 size += copied;
1365 while (copied) {
1366 use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368 sg_set_page(&to[num_elem],
1369 pages[i], use, offset);
1370 sg_unmark_end(&to[num_elem]);
1371 /* We do not uncharge memory from this API */
1372
1373 offset = 0;
1374 copied -= use;
1375
1376 i++;
1377 num_elem++;
1378 }
1379 }
1380 /* Mark the end in the last sg entry if newly added */
1381 if (num_elem > *pages_used)
1382 sg_mark_end(&to[num_elem - 1]);
1383 out:
1384 if (rc)
1385 iov_iter_revert(from, size);
1386 *pages_used = num_elem;
1387
1388 return rc;
1389 }
1390
1391 static struct sk_buff *
tls_alloc_clrtxt_skb(struct sock * sk,struct sk_buff * skb,unsigned int full_len)1392 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1393 unsigned int full_len)
1394 {
1395 struct strp_msg *clr_rxm;
1396 struct sk_buff *clr_skb;
1397 int err;
1398
1399 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1400 &err, sk->sk_allocation);
1401 if (!clr_skb)
1402 return NULL;
1403
1404 skb_copy_header(clr_skb, skb);
1405 clr_skb->len = full_len;
1406 clr_skb->data_len = full_len;
1407
1408 clr_rxm = strp_msg(clr_skb);
1409 clr_rxm->offset = 0;
1410
1411 return clr_skb;
1412 }
1413
1414 /* Decrypt handlers
1415 *
1416 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1417 * They must transform the darg in/out argument are as follows:
1418 * | Input | Output
1419 * -------------------------------------------------------------------
1420 * zc | Zero-copy decrypt allowed | Zero-copy performed
1421 * async | Async decrypt allowed | Async crypto used / in progress
1422 * skb | * | Output skb
1423 *
1424 * If ZC decryption was performed darg.skb will point to the input skb.
1425 */
1426
1427 /* This function decrypts the input skb into either out_iov or in out_sg
1428 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1429 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1430 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1431 * NULL, then the decryption happens inside skb buffers itself, i.e.
1432 * zero-copy gets disabled and 'darg->zc' is updated.
1433 */
tls_decrypt_sg(struct sock * sk,struct iov_iter * out_iov,struct scatterlist * out_sg,struct tls_decrypt_arg * darg)1434 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1435 struct scatterlist *out_sg,
1436 struct tls_decrypt_arg *darg)
1437 {
1438 struct tls_context *tls_ctx = tls_get_ctx(sk);
1439 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1440 struct tls_prot_info *prot = &tls_ctx->prot_info;
1441 int n_sgin, n_sgout, aead_size, err, pages = 0;
1442 struct sk_buff *skb = tls_strp_msg(ctx);
1443 const struct strp_msg *rxm = strp_msg(skb);
1444 const struct tls_msg *tlm = tls_msg(skb);
1445 struct aead_request *aead_req;
1446 struct scatterlist *sgin = NULL;
1447 struct scatterlist *sgout = NULL;
1448 const int data_len = rxm->full_len - prot->overhead_size;
1449 int tail_pages = !!prot->tail_size;
1450 struct tls_decrypt_ctx *dctx;
1451 struct sk_buff *clear_skb;
1452 int iv_offset = 0;
1453 u8 *mem;
1454
1455 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1456 rxm->full_len - prot->prepend_size);
1457 if (n_sgin < 1)
1458 return n_sgin ?: -EBADMSG;
1459
1460 if (darg->zc && (out_iov || out_sg)) {
1461 clear_skb = NULL;
1462
1463 if (out_iov)
1464 n_sgout = 1 + tail_pages +
1465 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1466 else
1467 n_sgout = sg_nents(out_sg);
1468 } else {
1469 darg->zc = false;
1470
1471 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1472 if (!clear_skb)
1473 return -ENOMEM;
1474
1475 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1476 }
1477
1478 /* Increment to accommodate AAD */
1479 n_sgin = n_sgin + 1;
1480
1481 /* Allocate a single block of memory which contains
1482 * aead_req || tls_decrypt_ctx.
1483 * Both structs are variable length.
1484 */
1485 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1486 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1487 sk->sk_allocation);
1488 if (!mem) {
1489 err = -ENOMEM;
1490 goto exit_free_skb;
1491 }
1492
1493 /* Segment the allocated memory */
1494 aead_req = (struct aead_request *)mem;
1495 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1496 sgin = &dctx->sg[0];
1497 sgout = &dctx->sg[n_sgin];
1498
1499 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1500 switch (prot->cipher_type) {
1501 case TLS_CIPHER_AES_CCM_128:
1502 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1503 iv_offset = 1;
1504 break;
1505 case TLS_CIPHER_SM4_CCM:
1506 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1507 iv_offset = 1;
1508 break;
1509 }
1510
1511 /* Prepare IV */
1512 if (prot->version == TLS_1_3_VERSION ||
1513 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1514 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1515 prot->iv_size + prot->salt_size);
1516 } else {
1517 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1518 &dctx->iv[iv_offset] + prot->salt_size,
1519 prot->iv_size);
1520 if (err < 0)
1521 goto exit_free;
1522 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1523 }
1524 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1525
1526 /* Prepare AAD */
1527 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1528 prot->tail_size,
1529 tls_ctx->rx.rec_seq, tlm->control, prot);
1530
1531 /* Prepare sgin */
1532 sg_init_table(sgin, n_sgin);
1533 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1534 err = skb_to_sgvec(skb, &sgin[1],
1535 rxm->offset + prot->prepend_size,
1536 rxm->full_len - prot->prepend_size);
1537 if (err < 0)
1538 goto exit_free;
1539
1540 if (clear_skb) {
1541 sg_init_table(sgout, n_sgout);
1542 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1543
1544 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1545 data_len + prot->tail_size);
1546 if (err < 0)
1547 goto exit_free;
1548 } else if (out_iov) {
1549 sg_init_table(sgout, n_sgout);
1550 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1551
1552 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1553 (n_sgout - 1 - tail_pages));
1554 if (err < 0)
1555 goto exit_free_pages;
1556
1557 if (prot->tail_size) {
1558 sg_unmark_end(&sgout[pages]);
1559 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1560 prot->tail_size);
1561 sg_mark_end(&sgout[pages + 1]);
1562 }
1563 } else if (out_sg) {
1564 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1565 }
1566
1567 /* Prepare and submit AEAD request */
1568 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1569 data_len + prot->tail_size, aead_req, darg);
1570 if (err)
1571 goto exit_free_pages;
1572
1573 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1574 clear_skb = NULL;
1575
1576 if (unlikely(darg->async)) {
1577 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1578 if (err)
1579 __skb_queue_tail(&ctx->async_hold, darg->skb);
1580 return err;
1581 }
1582
1583 if (prot->tail_size)
1584 darg->tail = dctx->tail;
1585
1586 exit_free_pages:
1587 /* Release the pages in case iov was mapped to pages */
1588 for (; pages > 0; pages--)
1589 put_page(sg_page(&sgout[pages]));
1590 exit_free:
1591 kfree(mem);
1592 exit_free_skb:
1593 consume_skb(clear_skb);
1594 return err;
1595 }
1596
1597 static int
tls_decrypt_sw(struct sock * sk,struct tls_context * tls_ctx,struct msghdr * msg,struct tls_decrypt_arg * darg)1598 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1599 struct msghdr *msg, struct tls_decrypt_arg *darg)
1600 {
1601 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602 struct tls_prot_info *prot = &tls_ctx->prot_info;
1603 struct strp_msg *rxm;
1604 int pad, err;
1605
1606 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1607 if (err < 0) {
1608 if (err == -EBADMSG)
1609 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1610 return err;
1611 }
1612 /* keep going even for ->async, the code below is TLS 1.3 */
1613
1614 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1615 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1616 darg->tail != TLS_RECORD_TYPE_DATA)) {
1617 darg->zc = false;
1618 if (!darg->tail)
1619 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1620 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1621 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1622 }
1623
1624 pad = tls_padding_length(prot, darg->skb, darg);
1625 if (pad < 0) {
1626 if (darg->skb != tls_strp_msg(ctx))
1627 consume_skb(darg->skb);
1628 return pad;
1629 }
1630
1631 rxm = strp_msg(darg->skb);
1632 rxm->full_len -= pad;
1633
1634 return 0;
1635 }
1636
1637 static int
tls_decrypt_device(struct sock * sk,struct msghdr * msg,struct tls_context * tls_ctx,struct tls_decrypt_arg * darg)1638 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1639 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1640 {
1641 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1642 struct tls_prot_info *prot = &tls_ctx->prot_info;
1643 struct strp_msg *rxm;
1644 int pad, err;
1645
1646 if (tls_ctx->rx_conf != TLS_HW)
1647 return 0;
1648
1649 err = tls_device_decrypted(sk, tls_ctx);
1650 if (err <= 0)
1651 return err;
1652
1653 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1654 if (pad < 0)
1655 return pad;
1656
1657 darg->async = false;
1658 darg->skb = tls_strp_msg(ctx);
1659 /* ->zc downgrade check, in case TLS 1.3 gets here */
1660 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1661 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1662
1663 rxm = strp_msg(darg->skb);
1664 rxm->full_len -= pad;
1665
1666 if (!darg->zc) {
1667 /* Non-ZC case needs a real skb */
1668 darg->skb = tls_strp_msg_detach(ctx);
1669 if (!darg->skb)
1670 return -ENOMEM;
1671 } else {
1672 unsigned int off, len;
1673
1674 /* In ZC case nobody cares about the output skb.
1675 * Just copy the data here. Note the skb is not fully trimmed.
1676 */
1677 off = rxm->offset + prot->prepend_size;
1678 len = rxm->full_len - prot->overhead_size;
1679
1680 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1681 if (err)
1682 return err;
1683 }
1684 return 1;
1685 }
1686
tls_rx_one_record(struct sock * sk,struct msghdr * msg,struct tls_decrypt_arg * darg)1687 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1688 struct tls_decrypt_arg *darg)
1689 {
1690 struct tls_context *tls_ctx = tls_get_ctx(sk);
1691 struct tls_prot_info *prot = &tls_ctx->prot_info;
1692 struct strp_msg *rxm;
1693 int err;
1694
1695 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1696 if (!err)
1697 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1698 if (err < 0)
1699 return err;
1700
1701 rxm = strp_msg(darg->skb);
1702 rxm->offset += prot->prepend_size;
1703 rxm->full_len -= prot->overhead_size;
1704 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1705
1706 return 0;
1707 }
1708
decrypt_skb(struct sock * sk,struct scatterlist * sgout)1709 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1710 {
1711 struct tls_decrypt_arg darg = { .zc = true, };
1712
1713 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1714 }
1715
tls_record_content_type(struct msghdr * msg,struct tls_msg * tlm,u8 * control)1716 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1717 u8 *control)
1718 {
1719 int err;
1720
1721 if (!*control) {
1722 *control = tlm->control;
1723 if (!*control)
1724 return -EBADMSG;
1725
1726 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1727 sizeof(*control), control);
1728 if (*control != TLS_RECORD_TYPE_DATA) {
1729 if (err || msg->msg_flags & MSG_CTRUNC)
1730 return -EIO;
1731 }
1732 } else if (*control != tlm->control) {
1733 return 0;
1734 }
1735
1736 return 1;
1737 }
1738
tls_rx_rec_done(struct tls_sw_context_rx * ctx)1739 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1740 {
1741 tls_strp_msg_done(&ctx->strp);
1742 }
1743
1744 /* This function traverses the rx_list in tls receive context to copies the
1745 * decrypted records into the buffer provided by caller zero copy is not
1746 * true. Further, the records are removed from the rx_list if it is not a peek
1747 * case and the record has been consumed completely.
1748 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,size_t skip,size_t len,bool is_peek)1749 static int process_rx_list(struct tls_sw_context_rx *ctx,
1750 struct msghdr *msg,
1751 u8 *control,
1752 size_t skip,
1753 size_t len,
1754 bool is_peek)
1755 {
1756 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1757 struct tls_msg *tlm;
1758 ssize_t copied = 0;
1759 int err;
1760
1761 while (skip && skb) {
1762 struct strp_msg *rxm = strp_msg(skb);
1763 tlm = tls_msg(skb);
1764
1765 err = tls_record_content_type(msg, tlm, control);
1766 if (err <= 0)
1767 goto out;
1768
1769 if (skip < rxm->full_len)
1770 break;
1771
1772 skip = skip - rxm->full_len;
1773 skb = skb_peek_next(skb, &ctx->rx_list);
1774 }
1775
1776 while (len && skb) {
1777 struct sk_buff *next_skb;
1778 struct strp_msg *rxm = strp_msg(skb);
1779 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1780
1781 tlm = tls_msg(skb);
1782
1783 err = tls_record_content_type(msg, tlm, control);
1784 if (err <= 0)
1785 goto out;
1786
1787 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1788 msg, chunk);
1789 if (err < 0)
1790 goto out;
1791
1792 len = len - chunk;
1793 copied = copied + chunk;
1794
1795 /* Consume the data from record if it is non-peek case*/
1796 if (!is_peek) {
1797 rxm->offset = rxm->offset + chunk;
1798 rxm->full_len = rxm->full_len - chunk;
1799
1800 /* Return if there is unconsumed data in the record */
1801 if (rxm->full_len - skip)
1802 break;
1803 }
1804
1805 /* The remaining skip-bytes must lie in 1st record in rx_list.
1806 * So from the 2nd record, 'skip' should be 0.
1807 */
1808 skip = 0;
1809
1810 if (msg)
1811 msg->msg_flags |= MSG_EOR;
1812
1813 next_skb = skb_peek_next(skb, &ctx->rx_list);
1814
1815 if (!is_peek) {
1816 __skb_unlink(skb, &ctx->rx_list);
1817 consume_skb(skb);
1818 }
1819
1820 skb = next_skb;
1821 }
1822 err = 0;
1823
1824 out:
1825 return copied ? : err;
1826 }
1827
1828 static bool
tls_read_flush_backlog(struct sock * sk,struct tls_prot_info * prot,size_t len_left,size_t decrypted,ssize_t done,size_t * flushed_at)1829 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1830 size_t len_left, size_t decrypted, ssize_t done,
1831 size_t *flushed_at)
1832 {
1833 size_t max_rec;
1834
1835 if (len_left <= decrypted)
1836 return false;
1837
1838 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1839 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1840 return false;
1841
1842 *flushed_at = done;
1843 return sk_flush_backlog(sk);
1844 }
1845
tls_rx_reader_lock(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1846 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1847 bool nonblock)
1848 {
1849 long timeo;
1850 int err;
1851
1852 lock_sock(sk);
1853
1854 timeo = sock_rcvtimeo(sk, nonblock);
1855
1856 while (unlikely(ctx->reader_present)) {
1857 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1858
1859 ctx->reader_contended = 1;
1860
1861 add_wait_queue(&ctx->wq, &wait);
1862 sk_wait_event(sk, &timeo,
1863 !READ_ONCE(ctx->reader_present), &wait);
1864 remove_wait_queue(&ctx->wq, &wait);
1865
1866 if (timeo <= 0) {
1867 err = -EAGAIN;
1868 goto err_unlock;
1869 }
1870 if (signal_pending(current)) {
1871 err = sock_intr_errno(timeo);
1872 goto err_unlock;
1873 }
1874 }
1875
1876 WRITE_ONCE(ctx->reader_present, 1);
1877
1878 return 0;
1879
1880 err_unlock:
1881 release_sock(sk);
1882 return err;
1883 }
1884
tls_rx_reader_unlock(struct sock * sk,struct tls_sw_context_rx * ctx)1885 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1886 {
1887 if (unlikely(ctx->reader_contended)) {
1888 if (wq_has_sleeper(&ctx->wq))
1889 wake_up(&ctx->wq);
1890 else
1891 ctx->reader_contended = 0;
1892
1893 WARN_ON_ONCE(!ctx->reader_present);
1894 }
1895
1896 WRITE_ONCE(ctx->reader_present, 0);
1897 release_sock(sk);
1898 }
1899
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1900 int tls_sw_recvmsg(struct sock *sk,
1901 struct msghdr *msg,
1902 size_t len,
1903 int flags,
1904 int *addr_len)
1905 {
1906 struct tls_context *tls_ctx = tls_get_ctx(sk);
1907 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1908 struct tls_prot_info *prot = &tls_ctx->prot_info;
1909 ssize_t decrypted = 0, async_copy_bytes = 0;
1910 struct sk_psock *psock;
1911 unsigned char control = 0;
1912 size_t flushed_at = 0;
1913 struct strp_msg *rxm;
1914 struct tls_msg *tlm;
1915 ssize_t copied = 0;
1916 bool async = false;
1917 int target, err;
1918 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1919 bool is_peek = flags & MSG_PEEK;
1920 bool released = true;
1921 bool bpf_strp_enabled;
1922 bool zc_capable;
1923
1924 if (unlikely(flags & MSG_ERRQUEUE))
1925 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1926
1927 psock = sk_psock_get(sk);
1928 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1929 if (err < 0)
1930 return err;
1931 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1932
1933 /* If crypto failed the connection is broken */
1934 err = ctx->async_wait.err;
1935 if (err)
1936 goto end;
1937
1938 /* Process pending decrypted records. It must be non-zero-copy */
1939 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1940 if (err < 0)
1941 goto end;
1942
1943 copied = err;
1944 if (len <= copied)
1945 goto end;
1946
1947 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1948 len = len - copied;
1949
1950 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1951 ctx->zc_capable;
1952 decrypted = 0;
1953 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1954 struct tls_decrypt_arg darg;
1955 int to_decrypt, chunk;
1956
1957 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1958 released);
1959 if (err <= 0) {
1960 if (psock) {
1961 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1962 flags);
1963 if (chunk > 0) {
1964 decrypted += chunk;
1965 len -= chunk;
1966 continue;
1967 }
1968 }
1969 goto recv_end;
1970 }
1971
1972 memset(&darg.inargs, 0, sizeof(darg.inargs));
1973
1974 rxm = strp_msg(tls_strp_msg(ctx));
1975 tlm = tls_msg(tls_strp_msg(ctx));
1976
1977 to_decrypt = rxm->full_len - prot->overhead_size;
1978
1979 if (zc_capable && to_decrypt <= len &&
1980 tlm->control == TLS_RECORD_TYPE_DATA)
1981 darg.zc = true;
1982
1983 /* Do not use async mode if record is non-data */
1984 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1985 darg.async = ctx->async_capable;
1986 else
1987 darg.async = false;
1988
1989 err = tls_rx_one_record(sk, msg, &darg);
1990 if (err < 0) {
1991 tls_err_abort(sk, -EBADMSG);
1992 goto recv_end;
1993 }
1994
1995 async |= darg.async;
1996
1997 /* If the type of records being processed is not known yet,
1998 * set it to record type just dequeued. If it is already known,
1999 * but does not match the record type just dequeued, go to end.
2000 * We always get record type here since for tls1.2, record type
2001 * is known just after record is dequeued from stream parser.
2002 * For tls1.3, we disable async.
2003 */
2004 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2005 if (err <= 0) {
2006 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2007 tls_rx_rec_done(ctx);
2008 put_on_rx_list_err:
2009 __skb_queue_tail(&ctx->rx_list, darg.skb);
2010 goto recv_end;
2011 }
2012
2013 /* periodically flush backlog, and feed strparser */
2014 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2015 decrypted + copied,
2016 &flushed_at);
2017
2018 /* TLS 1.3 may have updated the length by more than overhead */
2019 rxm = strp_msg(darg.skb);
2020 chunk = rxm->full_len;
2021 tls_rx_rec_done(ctx);
2022
2023 if (!darg.zc) {
2024 bool partially_consumed = chunk > len;
2025 struct sk_buff *skb = darg.skb;
2026
2027 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2028
2029 if (async) {
2030 /* TLS 1.2-only, to_decrypt must be text len */
2031 chunk = min_t(int, to_decrypt, len);
2032 async_copy_bytes += chunk;
2033 put_on_rx_list:
2034 decrypted += chunk;
2035 len -= chunk;
2036 __skb_queue_tail(&ctx->rx_list, skb);
2037 continue;
2038 }
2039
2040 if (bpf_strp_enabled) {
2041 released = true;
2042 err = sk_psock_tls_strp_read(psock, skb);
2043 if (err != __SK_PASS) {
2044 rxm->offset = rxm->offset + rxm->full_len;
2045 rxm->full_len = 0;
2046 if (err == __SK_DROP)
2047 consume_skb(skb);
2048 continue;
2049 }
2050 }
2051
2052 if (partially_consumed)
2053 chunk = len;
2054
2055 err = skb_copy_datagram_msg(skb, rxm->offset,
2056 msg, chunk);
2057 if (err < 0)
2058 goto put_on_rx_list_err;
2059
2060 if (is_peek)
2061 goto put_on_rx_list;
2062
2063 if (partially_consumed) {
2064 rxm->offset += chunk;
2065 rxm->full_len -= chunk;
2066 goto put_on_rx_list;
2067 }
2068
2069 consume_skb(skb);
2070 }
2071
2072 decrypted += chunk;
2073 len -= chunk;
2074
2075 /* Return full control message to userspace before trying
2076 * to parse another message type
2077 */
2078 msg->msg_flags |= MSG_EOR;
2079 if (control != TLS_RECORD_TYPE_DATA)
2080 break;
2081 }
2082
2083 recv_end:
2084 if (async) {
2085 int ret, pending;
2086
2087 /* Wait for all previously submitted records to be decrypted */
2088 spin_lock_bh(&ctx->decrypt_compl_lock);
2089 reinit_completion(&ctx->async_wait.completion);
2090 pending = atomic_read(&ctx->decrypt_pending);
2091 spin_unlock_bh(&ctx->decrypt_compl_lock);
2092 ret = 0;
2093 if (pending)
2094 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2095 __skb_queue_purge(&ctx->async_hold);
2096
2097 if (ret) {
2098 if (err >= 0 || err == -EINPROGRESS)
2099 err = ret;
2100 decrypted = 0;
2101 goto end;
2102 }
2103
2104 /* Drain records from the rx_list & copy if required */
2105 if (is_peek || is_kvec)
2106 err = process_rx_list(ctx, msg, &control, copied,
2107 decrypted, is_peek);
2108 else
2109 err = process_rx_list(ctx, msg, &control, 0,
2110 async_copy_bytes, is_peek);
2111 decrypted = max(err, 0);
2112 }
2113
2114 copied += decrypted;
2115
2116 end:
2117 tls_rx_reader_unlock(sk, ctx);
2118 if (psock)
2119 sk_psock_put(sk, psock);
2120 return copied ? : err;
2121 }
2122
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2123 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2124 struct pipe_inode_info *pipe,
2125 size_t len, unsigned int flags)
2126 {
2127 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2128 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2129 struct strp_msg *rxm = NULL;
2130 struct sock *sk = sock->sk;
2131 struct tls_msg *tlm;
2132 struct sk_buff *skb;
2133 ssize_t copied = 0;
2134 int chunk;
2135 int err;
2136
2137 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2138 if (err < 0)
2139 return err;
2140
2141 if (!skb_queue_empty(&ctx->rx_list)) {
2142 skb = __skb_dequeue(&ctx->rx_list);
2143 } else {
2144 struct tls_decrypt_arg darg;
2145
2146 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2147 true);
2148 if (err <= 0)
2149 goto splice_read_end;
2150
2151 memset(&darg.inargs, 0, sizeof(darg.inargs));
2152
2153 err = tls_rx_one_record(sk, NULL, &darg);
2154 if (err < 0) {
2155 tls_err_abort(sk, -EBADMSG);
2156 goto splice_read_end;
2157 }
2158
2159 tls_rx_rec_done(ctx);
2160 skb = darg.skb;
2161 }
2162
2163 rxm = strp_msg(skb);
2164 tlm = tls_msg(skb);
2165
2166 /* splice does not support reading control messages */
2167 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2168 err = -EINVAL;
2169 goto splice_requeue;
2170 }
2171
2172 chunk = min_t(unsigned int, rxm->full_len, len);
2173 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2174 if (copied < 0)
2175 goto splice_requeue;
2176
2177 if (chunk < rxm->full_len) {
2178 rxm->offset += len;
2179 rxm->full_len -= len;
2180 goto splice_requeue;
2181 }
2182
2183 consume_skb(skb);
2184
2185 splice_read_end:
2186 tls_rx_reader_unlock(sk, ctx);
2187 return copied ? : err;
2188
2189 splice_requeue:
2190 __skb_queue_head(&ctx->rx_list, skb);
2191 goto splice_read_end;
2192 }
2193
tls_sw_sock_is_readable(struct sock * sk)2194 bool tls_sw_sock_is_readable(struct sock *sk)
2195 {
2196 struct tls_context *tls_ctx = tls_get_ctx(sk);
2197 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2198 bool ingress_empty = true;
2199 struct sk_psock *psock;
2200
2201 rcu_read_lock();
2202 psock = sk_psock(sk);
2203 if (psock)
2204 ingress_empty = list_empty(&psock->ingress_msg);
2205 rcu_read_unlock();
2206
2207 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2208 !skb_queue_empty(&ctx->rx_list);
2209 }
2210
tls_rx_msg_size(struct tls_strparser * strp,struct sk_buff * skb)2211 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2212 {
2213 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2214 struct tls_prot_info *prot = &tls_ctx->prot_info;
2215 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2216 size_t cipher_overhead;
2217 size_t data_len = 0;
2218 int ret;
2219
2220 /* Verify that we have a full TLS header, or wait for more data */
2221 if (strp->stm.offset + prot->prepend_size > skb->len)
2222 return 0;
2223
2224 /* Sanity-check size of on-stack buffer. */
2225 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2226 ret = -EINVAL;
2227 goto read_failure;
2228 }
2229
2230 /* Linearize header to local buffer */
2231 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2232 if (ret < 0)
2233 goto read_failure;
2234
2235 strp->mark = header[0];
2236
2237 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2238
2239 cipher_overhead = prot->tag_size;
2240 if (prot->version != TLS_1_3_VERSION &&
2241 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2242 cipher_overhead += prot->iv_size;
2243
2244 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2245 prot->tail_size) {
2246 ret = -EMSGSIZE;
2247 goto read_failure;
2248 }
2249 if (data_len < cipher_overhead) {
2250 ret = -EBADMSG;
2251 goto read_failure;
2252 }
2253
2254 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2255 if (header[1] != TLS_1_2_VERSION_MINOR ||
2256 header[2] != TLS_1_2_VERSION_MAJOR) {
2257 ret = -EINVAL;
2258 goto read_failure;
2259 }
2260
2261 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2262 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2263 return data_len + TLS_HEADER_SIZE;
2264
2265 read_failure:
2266 tls_err_abort(strp->sk, ret);
2267
2268 return ret;
2269 }
2270
tls_rx_msg_ready(struct tls_strparser * strp)2271 void tls_rx_msg_ready(struct tls_strparser *strp)
2272 {
2273 struct tls_sw_context_rx *ctx;
2274
2275 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2276 ctx->saved_data_ready(strp->sk);
2277 }
2278
tls_data_ready(struct sock * sk)2279 static void tls_data_ready(struct sock *sk)
2280 {
2281 struct tls_context *tls_ctx = tls_get_ctx(sk);
2282 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2283 struct sk_psock *psock;
2284
2285 tls_strp_data_ready(&ctx->strp);
2286
2287 psock = sk_psock_get(sk);
2288 if (psock) {
2289 if (!list_empty(&psock->ingress_msg))
2290 ctx->saved_data_ready(sk);
2291 sk_psock_put(sk, psock);
2292 }
2293 }
2294
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2295 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2296 {
2297 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2298
2299 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2300 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2301 cancel_delayed_work_sync(&ctx->tx_work.work);
2302 }
2303
tls_sw_release_resources_tx(struct sock * sk)2304 void tls_sw_release_resources_tx(struct sock *sk)
2305 {
2306 struct tls_context *tls_ctx = tls_get_ctx(sk);
2307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2308 struct tls_rec *rec, *tmp;
2309 int pending;
2310
2311 /* Wait for any pending async encryptions to complete */
2312 spin_lock_bh(&ctx->encrypt_compl_lock);
2313 ctx->async_notify = true;
2314 pending = atomic_read(&ctx->encrypt_pending);
2315 spin_unlock_bh(&ctx->encrypt_compl_lock);
2316
2317 if (pending)
2318 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2319
2320 tls_tx_records(sk, -1);
2321
2322 /* Free up un-sent records in tx_list. First, free
2323 * the partially sent record if any at head of tx_list.
2324 */
2325 if (tls_ctx->partially_sent_record) {
2326 tls_free_partial_record(sk, tls_ctx);
2327 rec = list_first_entry(&ctx->tx_list,
2328 struct tls_rec, list);
2329 list_del(&rec->list);
2330 sk_msg_free(sk, &rec->msg_plaintext);
2331 kfree(rec);
2332 }
2333
2334 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2335 list_del(&rec->list);
2336 sk_msg_free(sk, &rec->msg_encrypted);
2337 sk_msg_free(sk, &rec->msg_plaintext);
2338 kfree(rec);
2339 }
2340
2341 crypto_free_aead(ctx->aead_send);
2342 tls_free_open_rec(sk);
2343 }
2344
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2345 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2346 {
2347 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2348
2349 kfree(ctx);
2350 }
2351
tls_sw_release_resources_rx(struct sock * sk)2352 void tls_sw_release_resources_rx(struct sock *sk)
2353 {
2354 struct tls_context *tls_ctx = tls_get_ctx(sk);
2355 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2356
2357 kfree(tls_ctx->rx.rec_seq);
2358 kfree(tls_ctx->rx.iv);
2359
2360 if (ctx->aead_recv) {
2361 __skb_queue_purge(&ctx->rx_list);
2362 crypto_free_aead(ctx->aead_recv);
2363 tls_strp_stop(&ctx->strp);
2364 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2365 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2366 * never swapped.
2367 */
2368 if (ctx->saved_data_ready) {
2369 write_lock_bh(&sk->sk_callback_lock);
2370 sk->sk_data_ready = ctx->saved_data_ready;
2371 write_unlock_bh(&sk->sk_callback_lock);
2372 }
2373 }
2374 }
2375
tls_sw_strparser_done(struct tls_context * tls_ctx)2376 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2377 {
2378 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2379
2380 tls_strp_done(&ctx->strp);
2381 }
2382
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2383 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2384 {
2385 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2386
2387 kfree(ctx);
2388 }
2389
tls_sw_free_resources_rx(struct sock * sk)2390 void tls_sw_free_resources_rx(struct sock *sk)
2391 {
2392 struct tls_context *tls_ctx = tls_get_ctx(sk);
2393
2394 tls_sw_release_resources_rx(sk);
2395 tls_sw_free_ctx_rx(tls_ctx);
2396 }
2397
2398 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2399 static void tx_work_handler(struct work_struct *work)
2400 {
2401 struct delayed_work *delayed_work = to_delayed_work(work);
2402 struct tx_work *tx_work = container_of(delayed_work,
2403 struct tx_work, work);
2404 struct sock *sk = tx_work->sk;
2405 struct tls_context *tls_ctx = tls_get_ctx(sk);
2406 struct tls_sw_context_tx *ctx;
2407
2408 if (unlikely(!tls_ctx))
2409 return;
2410
2411 ctx = tls_sw_ctx_tx(tls_ctx);
2412 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2413 return;
2414
2415 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2416 return;
2417 mutex_lock(&tls_ctx->tx_lock);
2418 lock_sock(sk);
2419 tls_tx_records(sk, -1);
2420 release_sock(sk);
2421 mutex_unlock(&tls_ctx->tx_lock);
2422 }
2423
tls_is_tx_ready(struct tls_sw_context_tx * ctx)2424 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2425 {
2426 struct tls_rec *rec;
2427
2428 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2429 if (!rec)
2430 return false;
2431
2432 return READ_ONCE(rec->tx_ready);
2433 }
2434
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2435 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2436 {
2437 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2438
2439 /* Schedule the transmission if tx list is ready */
2440 if (tls_is_tx_ready(tx_ctx) &&
2441 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2442 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2443 }
2444
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2445 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2446 {
2447 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2448
2449 write_lock_bh(&sk->sk_callback_lock);
2450 rx_ctx->saved_data_ready = sk->sk_data_ready;
2451 sk->sk_data_ready = tls_data_ready;
2452 write_unlock_bh(&sk->sk_callback_lock);
2453 }
2454
tls_update_rx_zc_capable(struct tls_context * tls_ctx)2455 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2456 {
2457 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2458
2459 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2460 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2461 }
2462
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2463 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2464 {
2465 struct tls_context *tls_ctx = tls_get_ctx(sk);
2466 struct tls_prot_info *prot = &tls_ctx->prot_info;
2467 struct tls_crypto_info *crypto_info;
2468 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2469 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2470 struct cipher_context *cctx;
2471 struct crypto_aead **aead;
2472 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2473 struct crypto_tfm *tfm;
2474 char *iv, *rec_seq, *key, *salt, *cipher_name;
2475 size_t keysize;
2476 int rc = 0;
2477
2478 if (!ctx) {
2479 rc = -EINVAL;
2480 goto out;
2481 }
2482
2483 if (tx) {
2484 if (!ctx->priv_ctx_tx) {
2485 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2486 if (!sw_ctx_tx) {
2487 rc = -ENOMEM;
2488 goto out;
2489 }
2490 ctx->priv_ctx_tx = sw_ctx_tx;
2491 } else {
2492 sw_ctx_tx =
2493 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2494 }
2495 } else {
2496 if (!ctx->priv_ctx_rx) {
2497 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2498 if (!sw_ctx_rx) {
2499 rc = -ENOMEM;
2500 goto out;
2501 }
2502 ctx->priv_ctx_rx = sw_ctx_rx;
2503 } else {
2504 sw_ctx_rx =
2505 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2506 }
2507 }
2508
2509 if (tx) {
2510 crypto_init_wait(&sw_ctx_tx->async_wait);
2511 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2512 crypto_info = &ctx->crypto_send.info;
2513 cctx = &ctx->tx;
2514 aead = &sw_ctx_tx->aead_send;
2515 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2516 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2517 sw_ctx_tx->tx_work.sk = sk;
2518 } else {
2519 crypto_init_wait(&sw_ctx_rx->async_wait);
2520 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2521 init_waitqueue_head(&sw_ctx_rx->wq);
2522 crypto_info = &ctx->crypto_recv.info;
2523 cctx = &ctx->rx;
2524 skb_queue_head_init(&sw_ctx_rx->rx_list);
2525 skb_queue_head_init(&sw_ctx_rx->async_hold);
2526 aead = &sw_ctx_rx->aead_recv;
2527 }
2528
2529 switch (crypto_info->cipher_type) {
2530 case TLS_CIPHER_AES_GCM_128: {
2531 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2532
2533 gcm_128_info = (void *)crypto_info;
2534 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2535 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2536 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2537 iv = gcm_128_info->iv;
2538 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2539 rec_seq = gcm_128_info->rec_seq;
2540 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2541 key = gcm_128_info->key;
2542 salt = gcm_128_info->salt;
2543 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2544 cipher_name = "gcm(aes)";
2545 break;
2546 }
2547 case TLS_CIPHER_AES_GCM_256: {
2548 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2549
2550 gcm_256_info = (void *)crypto_info;
2551 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2552 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2553 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2554 iv = gcm_256_info->iv;
2555 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2556 rec_seq = gcm_256_info->rec_seq;
2557 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2558 key = gcm_256_info->key;
2559 salt = gcm_256_info->salt;
2560 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2561 cipher_name = "gcm(aes)";
2562 break;
2563 }
2564 case TLS_CIPHER_AES_CCM_128: {
2565 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2566
2567 ccm_128_info = (void *)crypto_info;
2568 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2569 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2570 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2571 iv = ccm_128_info->iv;
2572 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2573 rec_seq = ccm_128_info->rec_seq;
2574 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2575 key = ccm_128_info->key;
2576 salt = ccm_128_info->salt;
2577 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2578 cipher_name = "ccm(aes)";
2579 break;
2580 }
2581 case TLS_CIPHER_CHACHA20_POLY1305: {
2582 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2583
2584 chacha20_poly1305_info = (void *)crypto_info;
2585 nonce_size = 0;
2586 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2587 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2588 iv = chacha20_poly1305_info->iv;
2589 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2590 rec_seq = chacha20_poly1305_info->rec_seq;
2591 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2592 key = chacha20_poly1305_info->key;
2593 salt = chacha20_poly1305_info->salt;
2594 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2595 cipher_name = "rfc7539(chacha20,poly1305)";
2596 break;
2597 }
2598 case TLS_CIPHER_SM4_GCM: {
2599 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2600
2601 sm4_gcm_info = (void *)crypto_info;
2602 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2603 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2604 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2605 iv = sm4_gcm_info->iv;
2606 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2607 rec_seq = sm4_gcm_info->rec_seq;
2608 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2609 key = sm4_gcm_info->key;
2610 salt = sm4_gcm_info->salt;
2611 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2612 cipher_name = "gcm(sm4)";
2613 break;
2614 }
2615 case TLS_CIPHER_SM4_CCM: {
2616 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2617
2618 sm4_ccm_info = (void *)crypto_info;
2619 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2620 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2621 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2622 iv = sm4_ccm_info->iv;
2623 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2624 rec_seq = sm4_ccm_info->rec_seq;
2625 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2626 key = sm4_ccm_info->key;
2627 salt = sm4_ccm_info->salt;
2628 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2629 cipher_name = "ccm(sm4)";
2630 break;
2631 }
2632 case TLS_CIPHER_ARIA_GCM_128: {
2633 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2634
2635 aria_gcm_128_info = (void *)crypto_info;
2636 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2637 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2638 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2639 iv = aria_gcm_128_info->iv;
2640 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2641 rec_seq = aria_gcm_128_info->rec_seq;
2642 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2643 key = aria_gcm_128_info->key;
2644 salt = aria_gcm_128_info->salt;
2645 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2646 cipher_name = "gcm(aria)";
2647 break;
2648 }
2649 case TLS_CIPHER_ARIA_GCM_256: {
2650 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2651
2652 gcm_256_info = (void *)crypto_info;
2653 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2654 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2655 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2656 iv = gcm_256_info->iv;
2657 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2658 rec_seq = gcm_256_info->rec_seq;
2659 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2660 key = gcm_256_info->key;
2661 salt = gcm_256_info->salt;
2662 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2663 cipher_name = "gcm(aria)";
2664 break;
2665 }
2666 default:
2667 rc = -EINVAL;
2668 goto free_priv;
2669 }
2670
2671 if (crypto_info->version == TLS_1_3_VERSION) {
2672 nonce_size = 0;
2673 prot->aad_size = TLS_HEADER_SIZE;
2674 prot->tail_size = 1;
2675 } else {
2676 prot->aad_size = TLS_AAD_SPACE_SIZE;
2677 prot->tail_size = 0;
2678 }
2679
2680 /* Sanity-check the sizes for stack allocations. */
2681 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2682 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2683 prot->aad_size > TLS_MAX_AAD_SIZE) {
2684 rc = -EINVAL;
2685 goto free_priv;
2686 }
2687
2688 prot->version = crypto_info->version;
2689 prot->cipher_type = crypto_info->cipher_type;
2690 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2691 prot->tag_size = tag_size;
2692 prot->overhead_size = prot->prepend_size +
2693 prot->tag_size + prot->tail_size;
2694 prot->iv_size = iv_size;
2695 prot->salt_size = salt_size;
2696 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2697 if (!cctx->iv) {
2698 rc = -ENOMEM;
2699 goto free_priv;
2700 }
2701 /* Note: 128 & 256 bit salt are the same size */
2702 prot->rec_seq_size = rec_seq_size;
2703 memcpy(cctx->iv, salt, salt_size);
2704 memcpy(cctx->iv + salt_size, iv, iv_size);
2705 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2706 if (!cctx->rec_seq) {
2707 rc = -ENOMEM;
2708 goto free_iv;
2709 }
2710
2711 if (!*aead) {
2712 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2713 if (IS_ERR(*aead)) {
2714 rc = PTR_ERR(*aead);
2715 *aead = NULL;
2716 goto free_rec_seq;
2717 }
2718 }
2719
2720 ctx->push_pending_record = tls_sw_push_pending_record;
2721
2722 rc = crypto_aead_setkey(*aead, key, keysize);
2723
2724 if (rc)
2725 goto free_aead;
2726
2727 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2728 if (rc)
2729 goto free_aead;
2730
2731 if (sw_ctx_rx) {
2732 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2733
2734 tls_update_rx_zc_capable(ctx);
2735 sw_ctx_rx->async_capable =
2736 crypto_info->version != TLS_1_3_VERSION &&
2737 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2738
2739 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2740 if (rc)
2741 goto free_aead;
2742 }
2743
2744 goto out;
2745
2746 free_aead:
2747 crypto_free_aead(*aead);
2748 *aead = NULL;
2749 free_rec_seq:
2750 kfree(cctx->rec_seq);
2751 cctx->rec_seq = NULL;
2752 free_iv:
2753 kfree(cctx->iv);
2754 cctx->iv = NULL;
2755 free_priv:
2756 if (tx) {
2757 kfree(ctx->priv_ctx_tx);
2758 ctx->priv_ctx_tx = NULL;
2759 } else {
2760 kfree(ctx->priv_ctx_rx);
2761 ctx->priv_ctx_rx = NULL;
2762 }
2763 out:
2764 return rc;
2765 }
2766