1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLOB Allocator: Simple List Of Blocks
4  *
5  * Matt Mackall <mpm@selenic.com> 12/30/03
6  *
7  * NUMA support by Paul Mundt, 2007.
8  *
9  * How SLOB works:
10  *
11  * The core of SLOB is a traditional K&R style heap allocator, with
12  * support for returning aligned objects. The granularity of this
13  * allocator is as little as 2 bytes, however typically most architectures
14  * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15  *
16  * The slob heap is a set of linked list of pages from alloc_pages(),
17  * and within each page, there is a singly-linked list of free blocks
18  * (slob_t). The heap is grown on demand. To reduce fragmentation,
19  * heap pages are segregated into three lists, with objects less than
20  * 256 bytes, objects less than 1024 bytes, and all other objects.
21  *
22  * Allocation from heap involves first searching for a page with
23  * sufficient free blocks (using a next-fit-like approach) followed by
24  * a first-fit scan of the page. Deallocation inserts objects back
25  * into the free list in address order, so this is effectively an
26  * address-ordered first fit.
27  *
28  * Above this is an implementation of kmalloc/kfree. Blocks returned
29  * from kmalloc are prepended with a 4-byte header with the kmalloc size.
30  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
31  * alloc_pages() directly, allocating compound pages so the page order
32  * does not have to be separately tracked.
33  * These objects are detected in kfree() because folio_test_slab()
34  * is false for them.
35  *
36  * SLAB is emulated on top of SLOB by simply calling constructors and
37  * destructors for every SLAB allocation. Objects are returned with the
38  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39  * case the low-level allocator will fragment blocks to create the proper
40  * alignment. Again, objects of page-size or greater are allocated by
41  * calling alloc_pages(). As SLAB objects know their size, no separate
42  * size bookkeeping is necessary and there is essentially no allocation
43  * space overhead, and compound pages aren't needed for multi-page
44  * allocations.
45  *
46  * NUMA support in SLOB is fairly simplistic, pushing most of the real
47  * logic down to the page allocator, and simply doing the node accounting
48  * on the upper levels. In the event that a node id is explicitly
49  * provided, __alloc_pages_node() with the specified node id is used
50  * instead. The common case (or when the node id isn't explicitly provided)
51  * will default to the current node, as per numa_node_id().
52  *
53  * Node aware pages are still inserted in to the global freelist, and
54  * these are scanned for by matching against the node id encoded in the
55  * page flags. As a result, block allocations that can be satisfied from
56  * the freelist will only be done so on pages residing on the same node,
57  * in order to prevent random node placement.
58  */
59 
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 
63 #include <linux/mm.h>
64 #include <linux/swap.h> /* struct reclaim_state */
65 #include <linux/cache.h>
66 #include <linux/init.h>
67 #include <linux/export.h>
68 #include <linux/rcupdate.h>
69 #include <linux/list.h>
70 #include <linux/kmemleak.h>
71 
72 #include <trace/events/kmem.h>
73 
74 #include <linux/atomic.h>
75 
76 #include "slab.h"
77 /*
78  * slob_block has a field 'units', which indicates size of block if +ve,
79  * or offset of next block if -ve (in SLOB_UNITs).
80  *
81  * Free blocks of size 1 unit simply contain the offset of the next block.
82  * Those with larger size contain their size in the first SLOB_UNIT of
83  * memory, and the offset of the next free block in the second SLOB_UNIT.
84  */
85 #if PAGE_SIZE <= (32767 * 2)
86 typedef s16 slobidx_t;
87 #else
88 typedef s32 slobidx_t;
89 #endif
90 
91 struct slob_block {
92 	slobidx_t units;
93 };
94 typedef struct slob_block slob_t;
95 
96 /*
97  * All partially free slob pages go on these lists.
98  */
99 #define SLOB_BREAK1 256
100 #define SLOB_BREAK2 1024
101 static LIST_HEAD(free_slob_small);
102 static LIST_HEAD(free_slob_medium);
103 static LIST_HEAD(free_slob_large);
104 
105 /*
106  * slob_page_free: true for pages on free_slob_pages list.
107  */
slob_page_free(struct slab * slab)108 static inline int slob_page_free(struct slab *slab)
109 {
110 	return PageSlobFree(slab_page(slab));
111 }
112 
set_slob_page_free(struct slab * slab,struct list_head * list)113 static void set_slob_page_free(struct slab *slab, struct list_head *list)
114 {
115 	list_add(&slab->slab_list, list);
116 	__SetPageSlobFree(slab_page(slab));
117 }
118 
clear_slob_page_free(struct slab * slab)119 static inline void clear_slob_page_free(struct slab *slab)
120 {
121 	list_del(&slab->slab_list);
122 	__ClearPageSlobFree(slab_page(slab));
123 }
124 
125 #define SLOB_UNIT sizeof(slob_t)
126 #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
127 
128 /*
129  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
130  * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
131  * the block using call_rcu.
132  */
133 struct slob_rcu {
134 	struct rcu_head head;
135 	int size;
136 };
137 
138 /*
139  * slob_lock protects all slob allocator structures.
140  */
141 static DEFINE_SPINLOCK(slob_lock);
142 
143 /*
144  * Encode the given size and next info into a free slob block s.
145  */
set_slob(slob_t * s,slobidx_t size,slob_t * next)146 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
147 {
148 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
149 	slobidx_t offset = next - base;
150 
151 	if (size > 1) {
152 		s[0].units = size;
153 		s[1].units = offset;
154 	} else
155 		s[0].units = -offset;
156 }
157 
158 /*
159  * Return the size of a slob block.
160  */
slob_units(slob_t * s)161 static slobidx_t slob_units(slob_t *s)
162 {
163 	if (s->units > 0)
164 		return s->units;
165 	return 1;
166 }
167 
168 /*
169  * Return the next free slob block pointer after this one.
170  */
slob_next(slob_t * s)171 static slob_t *slob_next(slob_t *s)
172 {
173 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
174 	slobidx_t next;
175 
176 	if (s[0].units < 0)
177 		next = -s[0].units;
178 	else
179 		next = s[1].units;
180 	return base+next;
181 }
182 
183 /*
184  * Returns true if s is the last free block in its page.
185  */
slob_last(slob_t * s)186 static int slob_last(slob_t *s)
187 {
188 	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
189 }
190 
slob_new_pages(gfp_t gfp,int order,int node)191 static void *slob_new_pages(gfp_t gfp, int order, int node)
192 {
193 	struct page *page;
194 
195 #ifdef CONFIG_NUMA
196 	if (node != NUMA_NO_NODE)
197 		page = __alloc_pages_node(node, gfp, order);
198 	else
199 #endif
200 		page = alloc_pages(gfp, order);
201 
202 	if (!page)
203 		return NULL;
204 
205 	mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
206 			    PAGE_SIZE << order);
207 	return page_address(page);
208 }
209 
slob_free_pages(void * b,int order)210 static void slob_free_pages(void *b, int order)
211 {
212 	struct page *sp = virt_to_page(b);
213 
214 	if (current->reclaim_state)
215 		current->reclaim_state->reclaimed_slab += 1 << order;
216 
217 	mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
218 			    -(PAGE_SIZE << order));
219 	__free_pages(sp, order);
220 }
221 
222 /*
223  * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
224  * @sp: Page to look in.
225  * @size: Size of the allocation.
226  * @align: Allocation alignment.
227  * @align_offset: Offset in the allocated block that will be aligned.
228  * @page_removed_from_list: Return parameter.
229  *
230  * Tries to find a chunk of memory at least @size bytes big within @page.
231  *
232  * Return: Pointer to memory if allocated, %NULL otherwise.  If the
233  *         allocation fills up @page then the page is removed from the
234  *         freelist, in this case @page_removed_from_list will be set to
235  *         true (set to false otherwise).
236  */
slob_page_alloc(struct slab * sp,size_t size,int align,int align_offset,bool * page_removed_from_list)237 static void *slob_page_alloc(struct slab *sp, size_t size, int align,
238 			      int align_offset, bool *page_removed_from_list)
239 {
240 	slob_t *prev, *cur, *aligned = NULL;
241 	int delta = 0, units = SLOB_UNITS(size);
242 
243 	*page_removed_from_list = false;
244 	for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
245 		slobidx_t avail = slob_units(cur);
246 
247 		/*
248 		 * 'aligned' will hold the address of the slob block so that the
249 		 * address 'aligned'+'align_offset' is aligned according to the
250 		 * 'align' parameter. This is for kmalloc() which prepends the
251 		 * allocated block with its size, so that the block itself is
252 		 * aligned when needed.
253 		 */
254 		if (align) {
255 			aligned = (slob_t *)
256 				(ALIGN((unsigned long)cur + align_offset, align)
257 				 - align_offset);
258 			delta = aligned - cur;
259 		}
260 		if (avail >= units + delta) { /* room enough? */
261 			slob_t *next;
262 
263 			if (delta) { /* need to fragment head to align? */
264 				next = slob_next(cur);
265 				set_slob(aligned, avail - delta, next);
266 				set_slob(cur, delta, aligned);
267 				prev = cur;
268 				cur = aligned;
269 				avail = slob_units(cur);
270 			}
271 
272 			next = slob_next(cur);
273 			if (avail == units) { /* exact fit? unlink. */
274 				if (prev)
275 					set_slob(prev, slob_units(prev), next);
276 				else
277 					sp->freelist = next;
278 			} else { /* fragment */
279 				if (prev)
280 					set_slob(prev, slob_units(prev), cur + units);
281 				else
282 					sp->freelist = cur + units;
283 				set_slob(cur + units, avail - units, next);
284 			}
285 
286 			sp->units -= units;
287 			if (!sp->units) {
288 				clear_slob_page_free(sp);
289 				*page_removed_from_list = true;
290 			}
291 			return cur;
292 		}
293 		if (slob_last(cur))
294 			return NULL;
295 	}
296 }
297 
298 /*
299  * slob_alloc: entry point into the slob allocator.
300  */
slob_alloc(size_t size,gfp_t gfp,int align,int node,int align_offset)301 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
302 							int align_offset)
303 {
304 	struct folio *folio;
305 	struct slab *sp;
306 	struct list_head *slob_list;
307 	slob_t *b = NULL;
308 	unsigned long flags;
309 	bool _unused;
310 
311 	if (size < SLOB_BREAK1)
312 		slob_list = &free_slob_small;
313 	else if (size < SLOB_BREAK2)
314 		slob_list = &free_slob_medium;
315 	else
316 		slob_list = &free_slob_large;
317 
318 	spin_lock_irqsave(&slob_lock, flags);
319 	/* Iterate through each partially free page, try to find room */
320 	list_for_each_entry(sp, slob_list, slab_list) {
321 		bool page_removed_from_list = false;
322 #ifdef CONFIG_NUMA
323 		/*
324 		 * If there's a node specification, search for a partial
325 		 * page with a matching node id in the freelist.
326 		 */
327 		if (node != NUMA_NO_NODE && slab_nid(sp) != node)
328 			continue;
329 #endif
330 		/* Enough room on this page? */
331 		if (sp->units < SLOB_UNITS(size))
332 			continue;
333 
334 		b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
335 		if (!b)
336 			continue;
337 
338 		/*
339 		 * If slob_page_alloc() removed sp from the list then we
340 		 * cannot call list functions on sp.  If so allocation
341 		 * did not fragment the page anyway so optimisation is
342 		 * unnecessary.
343 		 */
344 		if (!page_removed_from_list) {
345 			/*
346 			 * Improve fragment distribution and reduce our average
347 			 * search time by starting our next search here. (see
348 			 * Knuth vol 1, sec 2.5, pg 449)
349 			 */
350 			if (!list_is_first(&sp->slab_list, slob_list))
351 				list_rotate_to_front(&sp->slab_list, slob_list);
352 		}
353 		break;
354 	}
355 	spin_unlock_irqrestore(&slob_lock, flags);
356 
357 	/* Not enough space: must allocate a new page */
358 	if (!b) {
359 		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
360 		if (!b)
361 			return NULL;
362 		folio = virt_to_folio(b);
363 		__folio_set_slab(folio);
364 		sp = folio_slab(folio);
365 
366 		spin_lock_irqsave(&slob_lock, flags);
367 		sp->units = SLOB_UNITS(PAGE_SIZE);
368 		sp->freelist = b;
369 		INIT_LIST_HEAD(&sp->slab_list);
370 		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
371 		set_slob_page_free(sp, slob_list);
372 		b = slob_page_alloc(sp, size, align, align_offset, &_unused);
373 		BUG_ON(!b);
374 		spin_unlock_irqrestore(&slob_lock, flags);
375 	}
376 	if (unlikely(gfp & __GFP_ZERO))
377 		memset(b, 0, size);
378 	return b;
379 }
380 
381 /*
382  * slob_free: entry point into the slob allocator.
383  */
slob_free(void * block,int size)384 static void slob_free(void *block, int size)
385 {
386 	struct slab *sp;
387 	slob_t *prev, *next, *b = (slob_t *)block;
388 	slobidx_t units;
389 	unsigned long flags;
390 	struct list_head *slob_list;
391 
392 	if (unlikely(ZERO_OR_NULL_PTR(block)))
393 		return;
394 	BUG_ON(!size);
395 
396 	sp = virt_to_slab(block);
397 	units = SLOB_UNITS(size);
398 
399 	spin_lock_irqsave(&slob_lock, flags);
400 
401 	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
402 		/* Go directly to page allocator. Do not pass slob allocator */
403 		if (slob_page_free(sp))
404 			clear_slob_page_free(sp);
405 		spin_unlock_irqrestore(&slob_lock, flags);
406 		__folio_clear_slab(slab_folio(sp));
407 		slob_free_pages(b, 0);
408 		return;
409 	}
410 
411 	if (!slob_page_free(sp)) {
412 		/* This slob page is about to become partially free. Easy! */
413 		sp->units = units;
414 		sp->freelist = b;
415 		set_slob(b, units,
416 			(void *)((unsigned long)(b +
417 					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
418 		if (size < SLOB_BREAK1)
419 			slob_list = &free_slob_small;
420 		else if (size < SLOB_BREAK2)
421 			slob_list = &free_slob_medium;
422 		else
423 			slob_list = &free_slob_large;
424 		set_slob_page_free(sp, slob_list);
425 		goto out;
426 	}
427 
428 	/*
429 	 * Otherwise the page is already partially free, so find reinsertion
430 	 * point.
431 	 */
432 	sp->units += units;
433 
434 	if (b < (slob_t *)sp->freelist) {
435 		if (b + units == sp->freelist) {
436 			units += slob_units(sp->freelist);
437 			sp->freelist = slob_next(sp->freelist);
438 		}
439 		set_slob(b, units, sp->freelist);
440 		sp->freelist = b;
441 	} else {
442 		prev = sp->freelist;
443 		next = slob_next(prev);
444 		while (b > next) {
445 			prev = next;
446 			next = slob_next(prev);
447 		}
448 
449 		if (!slob_last(prev) && b + units == next) {
450 			units += slob_units(next);
451 			set_slob(b, units, slob_next(next));
452 		} else
453 			set_slob(b, units, next);
454 
455 		if (prev + slob_units(prev) == b) {
456 			units = slob_units(b) + slob_units(prev);
457 			set_slob(prev, units, slob_next(b));
458 		} else
459 			set_slob(prev, slob_units(prev), b);
460 	}
461 out:
462 	spin_unlock_irqrestore(&slob_lock, flags);
463 }
464 
465 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)466 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
467 {
468 	kpp->kp_ptr = object;
469 	kpp->kp_slab = slab;
470 }
471 #endif
472 
473 /*
474  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
475  */
476 
477 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t gfp,int node,unsigned long caller)478 __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
479 {
480 	unsigned int *m;
481 	unsigned int minalign;
482 	void *ret;
483 
484 	minalign = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
485 			 arch_slab_minalign());
486 	gfp &= gfp_allowed_mask;
487 
488 	might_alloc(gfp);
489 
490 	if (size < PAGE_SIZE - minalign) {
491 		int align = minalign;
492 
493 		/*
494 		 * For power of two sizes, guarantee natural alignment for
495 		 * kmalloc()'d objects.
496 		 */
497 		if (is_power_of_2(size))
498 			align = max_t(unsigned int, minalign, size);
499 
500 		if (!size)
501 			return ZERO_SIZE_PTR;
502 
503 		m = slob_alloc(size + minalign, gfp, align, node, minalign);
504 
505 		if (!m)
506 			return NULL;
507 		*m = size;
508 		ret = (void *)m + minalign;
509 
510 		trace_kmalloc(caller, ret, size, size + minalign, gfp, node);
511 	} else {
512 		unsigned int order = get_order(size);
513 
514 		if (likely(order))
515 			gfp |= __GFP_COMP;
516 		ret = slob_new_pages(gfp, order, node);
517 
518 		trace_kmalloc(caller, ret, size, PAGE_SIZE << order, gfp, node);
519 	}
520 
521 	kmemleak_alloc(ret, size, 1, gfp);
522 	return ret;
523 }
524 
__kmalloc(size_t size,gfp_t gfp)525 void *__kmalloc(size_t size, gfp_t gfp)
526 {
527 	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
528 }
529 EXPORT_SYMBOL(__kmalloc);
530 
__kmalloc_node_track_caller(size_t size,gfp_t gfp,int node,unsigned long caller)531 void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
532 					int node, unsigned long caller)
533 {
534 	return __do_kmalloc_node(size, gfp, node, caller);
535 }
536 EXPORT_SYMBOL(__kmalloc_node_track_caller);
537 
kfree(const void * block)538 void kfree(const void *block)
539 {
540 	struct folio *sp;
541 
542 	trace_kfree(_RET_IP_, block);
543 
544 	if (unlikely(ZERO_OR_NULL_PTR(block)))
545 		return;
546 	kmemleak_free(block);
547 
548 	sp = virt_to_folio(block);
549 	if (folio_test_slab(sp)) {
550 		unsigned int align = max_t(unsigned int,
551 					   ARCH_KMALLOC_MINALIGN,
552 					   arch_slab_minalign());
553 		unsigned int *m = (unsigned int *)(block - align);
554 
555 		slob_free(m, *m + align);
556 	} else {
557 		unsigned int order = folio_order(sp);
558 
559 		mod_node_page_state(folio_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
560 				    -(PAGE_SIZE << order));
561 		__free_pages(folio_page(sp, 0), order);
562 
563 	}
564 }
565 EXPORT_SYMBOL(kfree);
566 
kmalloc_size_roundup(size_t size)567 size_t kmalloc_size_roundup(size_t size)
568 {
569 	/* Short-circuit the 0 size case. */
570 	if (unlikely(size == 0))
571 		return 0;
572 	/* Short-circuit saturated "too-large" case. */
573 	if (unlikely(size == SIZE_MAX))
574 		return SIZE_MAX;
575 
576 	return ALIGN(size, ARCH_KMALLOC_MINALIGN);
577 }
578 
579 EXPORT_SYMBOL(kmalloc_size_roundup);
580 
581 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
__ksize(const void * block)582 size_t __ksize(const void *block)
583 {
584 	struct folio *folio;
585 	unsigned int align;
586 	unsigned int *m;
587 
588 	BUG_ON(!block);
589 	if (unlikely(block == ZERO_SIZE_PTR))
590 		return 0;
591 
592 	folio = virt_to_folio(block);
593 	if (unlikely(!folio_test_slab(folio)))
594 		return folio_size(folio);
595 
596 	align = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
597 		      arch_slab_minalign());
598 	m = (unsigned int *)(block - align);
599 	return SLOB_UNITS(*m) * SLOB_UNIT;
600 }
601 
__kmem_cache_create(struct kmem_cache * c,slab_flags_t flags)602 int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
603 {
604 	if (flags & SLAB_TYPESAFE_BY_RCU) {
605 		/* leave room for rcu footer at the end of object */
606 		c->size += sizeof(struct slob_rcu);
607 	}
608 
609 	/* Actual size allocated */
610 	c->size = SLOB_UNITS(c->size) * SLOB_UNIT;
611 	c->flags = flags;
612 	return 0;
613 }
614 
slob_alloc_node(struct kmem_cache * c,gfp_t flags,int node)615 static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
616 {
617 	void *b;
618 
619 	flags &= gfp_allowed_mask;
620 
621 	might_alloc(flags);
622 
623 	if (c->size < PAGE_SIZE) {
624 		b = slob_alloc(c->size, flags, c->align, node, 0);
625 		trace_kmem_cache_alloc(_RET_IP_, b, c, flags, node);
626 	} else {
627 		b = slob_new_pages(flags, get_order(c->size), node);
628 		trace_kmem_cache_alloc(_RET_IP_, b, c, flags, node);
629 	}
630 
631 	if (b && c->ctor) {
632 		WARN_ON_ONCE(flags & __GFP_ZERO);
633 		c->ctor(b);
634 	}
635 
636 	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
637 	return b;
638 }
639 
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)640 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
641 {
642 	return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
643 }
644 EXPORT_SYMBOL(kmem_cache_alloc);
645 
646 
kmem_cache_alloc_lru(struct kmem_cache * cachep,struct list_lru * lru,gfp_t flags)647 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags)
648 {
649 	return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
650 }
651 EXPORT_SYMBOL(kmem_cache_alloc_lru);
652 
__kmalloc_node(size_t size,gfp_t gfp,int node)653 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
654 {
655 	return __do_kmalloc_node(size, gfp, node, _RET_IP_);
656 }
657 EXPORT_SYMBOL(__kmalloc_node);
658 
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t gfp,int node)659 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
660 {
661 	return slob_alloc_node(cachep, gfp, node);
662 }
663 EXPORT_SYMBOL(kmem_cache_alloc_node);
664 
__kmem_cache_free(void * b,int size)665 static void __kmem_cache_free(void *b, int size)
666 {
667 	if (size < PAGE_SIZE)
668 		slob_free(b, size);
669 	else
670 		slob_free_pages(b, get_order(size));
671 }
672 
kmem_rcu_free(struct rcu_head * head)673 static void kmem_rcu_free(struct rcu_head *head)
674 {
675 	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
676 	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
677 
678 	__kmem_cache_free(b, slob_rcu->size);
679 }
680 
kmem_cache_free(struct kmem_cache * c,void * b)681 void kmem_cache_free(struct kmem_cache *c, void *b)
682 {
683 	kmemleak_free_recursive(b, c->flags);
684 	trace_kmem_cache_free(_RET_IP_, b, c);
685 	if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
686 		struct slob_rcu *slob_rcu;
687 		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
688 		slob_rcu->size = c->size;
689 		call_rcu(&slob_rcu->head, kmem_rcu_free);
690 	} else {
691 		__kmem_cache_free(b, c->size);
692 	}
693 }
694 EXPORT_SYMBOL(kmem_cache_free);
695 
kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)696 void kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
697 {
698 	size_t i;
699 
700 	for (i = 0; i < nr; i++) {
701 		if (s)
702 			kmem_cache_free(s, p[i]);
703 		else
704 			kfree(p[i]);
705 	}
706 }
707 EXPORT_SYMBOL(kmem_cache_free_bulk);
708 
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)709 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
710 								void **p)
711 {
712 	size_t i;
713 
714 	for (i = 0; i < nr; i++) {
715 		void *x = p[i] = kmem_cache_alloc(s, flags);
716 
717 		if (!x) {
718 			kmem_cache_free_bulk(s, i, p);
719 			return 0;
720 		}
721 	}
722 	return i;
723 }
724 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
725 
__kmem_cache_shutdown(struct kmem_cache * c)726 int __kmem_cache_shutdown(struct kmem_cache *c)
727 {
728 	/* No way to check for remaining objects */
729 	return 0;
730 }
731 
__kmem_cache_release(struct kmem_cache * c)732 void __kmem_cache_release(struct kmem_cache *c)
733 {
734 }
735 
__kmem_cache_shrink(struct kmem_cache * d)736 int __kmem_cache_shrink(struct kmem_cache *d)
737 {
738 	return 0;
739 }
740 
741 static struct kmem_cache kmem_cache_boot = {
742 	.name = "kmem_cache",
743 	.size = sizeof(struct kmem_cache),
744 	.flags = SLAB_PANIC,
745 	.align = ARCH_KMALLOC_MINALIGN,
746 };
747 
kmem_cache_init(void)748 void __init kmem_cache_init(void)
749 {
750 	kmem_cache = &kmem_cache_boot;
751 	slab_state = UP;
752 }
753 
kmem_cache_init_late(void)754 void __init kmem_cache_init_late(void)
755 {
756 	slab_state = FULL;
757 }
758