1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52
53 atomic_long_t mmap_pages_allocated;
54
55 EXPORT_SYMBOL(mem_map);
56
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64
65 /*
66 * Return the total memory allocated for this pointer, not
67 * just what the caller asked for.
68 *
69 * Doesn't have to be accurate, i.e. may have races.
70 */
kobjsize(const void * objp)71 unsigned int kobjsize(const void *objp)
72 {
73 struct page *page;
74
75 /*
76 * If the object we have should not have ksize performed on it,
77 * return size of 0
78 */
79 if (!objp || !virt_addr_valid(objp))
80 return 0;
81
82 page = virt_to_head_page(objp);
83
84 /*
85 * If the allocator sets PageSlab, we know the pointer came from
86 * kmalloc().
87 */
88 if (PageSlab(page))
89 return ksize(objp);
90
91 /*
92 * If it's not a compound page, see if we have a matching VMA
93 * region. This test is intentionally done in reverse order,
94 * so if there's no VMA, we still fall through and hand back
95 * PAGE_SIZE for 0-order pages.
96 */
97 if (!PageCompound(page)) {
98 struct vm_area_struct *vma;
99
100 vma = find_vma(current->mm, (unsigned long)objp);
101 if (vma)
102 return vma->vm_end - vma->vm_start;
103 }
104
105 /*
106 * The ksize() function is only guaranteed to work for pointers
107 * returned by kmalloc(). So handle arbitrary pointers here.
108 */
109 return page_size(page);
110 }
111
112 /**
113 * follow_pfn - look up PFN at a user virtual address
114 * @vma: memory mapping
115 * @address: user virtual address
116 * @pfn: location to store found PFN
117 *
118 * Only IO mappings and raw PFN mappings are allowed.
119 *
120 * Returns zero and the pfn at @pfn on success, -ve otherwise.
121 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)122 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
123 unsigned long *pfn)
124 {
125 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
126 return -EINVAL;
127
128 *pfn = address >> PAGE_SHIFT;
129 return 0;
130 }
131 EXPORT_SYMBOL(follow_pfn);
132
133 LIST_HEAD(vmap_area_list);
134
vfree(const void * addr)135 void vfree(const void *addr)
136 {
137 kfree(addr);
138 }
139 EXPORT_SYMBOL(vfree);
140
__vmalloc(unsigned long size,gfp_t gfp_mask)141 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
142 {
143 /*
144 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
145 * returns only a logical address.
146 */
147 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
148 }
149 EXPORT_SYMBOL(__vmalloc);
150
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)151 void *__vmalloc_node_range(unsigned long size, unsigned long align,
152 unsigned long start, unsigned long end, gfp_t gfp_mask,
153 pgprot_t prot, unsigned long vm_flags, int node,
154 const void *caller)
155 {
156 return __vmalloc(size, gfp_mask);
157 }
158
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)159 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
160 int node, const void *caller)
161 {
162 return __vmalloc(size, gfp_mask);
163 }
164
__vmalloc_user_flags(unsigned long size,gfp_t flags)165 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
166 {
167 void *ret;
168
169 ret = __vmalloc(size, flags);
170 if (ret) {
171 struct vm_area_struct *vma;
172
173 mmap_write_lock(current->mm);
174 vma = find_vma(current->mm, (unsigned long)ret);
175 if (vma)
176 vma->vm_flags |= VM_USERMAP;
177 mmap_write_unlock(current->mm);
178 }
179
180 return ret;
181 }
182
vmalloc_user(unsigned long size)183 void *vmalloc_user(unsigned long size)
184 {
185 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
186 }
187 EXPORT_SYMBOL(vmalloc_user);
188
vmalloc_to_page(const void * addr)189 struct page *vmalloc_to_page(const void *addr)
190 {
191 return virt_to_page(addr);
192 }
193 EXPORT_SYMBOL(vmalloc_to_page);
194
vmalloc_to_pfn(const void * addr)195 unsigned long vmalloc_to_pfn(const void *addr)
196 {
197 return page_to_pfn(virt_to_page(addr));
198 }
199 EXPORT_SYMBOL(vmalloc_to_pfn);
200
vread(char * buf,char * addr,unsigned long count)201 long vread(char *buf, char *addr, unsigned long count)
202 {
203 /* Don't allow overflow */
204 if ((unsigned long) buf + count < count)
205 count = -(unsigned long) buf;
206
207 memcpy(buf, addr, count);
208 return count;
209 }
210
211 /*
212 * vmalloc - allocate virtually contiguous memory
213 *
214 * @size: allocation size
215 *
216 * Allocate enough pages to cover @size from the page level
217 * allocator and map them into contiguous kernel virtual space.
218 *
219 * For tight control over page level allocator and protection flags
220 * use __vmalloc() instead.
221 */
vmalloc(unsigned long size)222 void *vmalloc(unsigned long size)
223 {
224 return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230 /*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
vzalloc(unsigned long size)242 void *vzalloc(unsigned long size)
243 {
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
vmalloc_node(unsigned long size,int node)259 void *vmalloc_node(unsigned long size, int node)
260 {
261 return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
vzalloc_node(unsigned long size,int node)277 void *vzalloc_node(unsigned long size, int node)
278 {
279 return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
vmalloc_32(unsigned long size)290 void *vmalloc_32(unsigned long size)
291 {
292 return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
vmalloc_32_user(unsigned long size)306 void *vmalloc_32_user(unsigned long size)
307 {
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 BUG();
319 return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
vunmap(const void * addr)323 void vunmap(const void *addr)
324 {
325 BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
vm_map_ram(struct page ** pages,unsigned int count,int node)329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 BUG();
332 return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
vm_unmap_ram(const void * mem,unsigned int count)336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
vm_unmap_aliases(void)342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
free_vm_area(struct vm_struct * area)347 void free_vm_area(struct vm_struct *area)
348 {
349 BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355 {
356 return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362 {
363 return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369 {
370 return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
SYSCALL_DEFINE1(brk,unsigned long,brk)381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404 }
405
406 /*
407 * initialise the percpu counter for VM and region record slabs
408 */
mmap_init(void)409 void __init mmap_init(void)
410 {
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)423 static noinline void validate_nommu_regions(void)
424 {
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446 }
447 #else
validate_nommu_regions(void)448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454 * add a region into the global tree
455 */
add_nommu_region(struct vm_region * region)456 static void add_nommu_region(struct vm_region *region)
457 {
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482 }
483
484 /*
485 * delete a region from the global tree
486 */
delete_nommu_region(struct vm_region * region)487 static void delete_nommu_region(struct vm_region *region)
488 {
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494 }
495
496 /*
497 * free a contiguous series of pages
498 */
free_page_series(unsigned long from,unsigned long to)499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page((void *)from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507 }
508
509 /*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
__put_nommu_region(struct vm_region * region)515 static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517 {
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536 }
537
538 /*
539 * release a reference to a region
540 */
put_nommu_region(struct vm_region * region)541 static void put_nommu_region(struct vm_region *region)
542 {
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545 }
546
vma_mas_store(struct vm_area_struct * vma,struct ma_state * mas)547 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
548 {
549 mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
550 mas_store_prealloc(mas, vma);
551 }
552
vma_mas_remove(struct vm_area_struct * vma,struct ma_state * mas)553 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
554 {
555 mas->index = vma->vm_start;
556 mas->last = vma->vm_end - 1;
557 mas_store_prealloc(mas, NULL);
558 }
559
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)560 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
561 {
562 mm->map_count++;
563 vma->vm_mm = mm;
564
565 /* add the VMA to the mapping */
566 if (vma->vm_file) {
567 struct address_space *mapping = vma->vm_file->f_mapping;
568
569 i_mmap_lock_write(mapping);
570 flush_dcache_mmap_lock(mapping);
571 vma_interval_tree_insert(vma, &mapping->i_mmap);
572 flush_dcache_mmap_unlock(mapping);
573 i_mmap_unlock_write(mapping);
574 }
575 }
576
577 /*
578 * mas_add_vma_to_mm() - Maple state variant of add_mas_to_mm().
579 * @mas: The maple state with preallocations.
580 * @mm: The mm_struct
581 * @vma: The vma to add
582 *
583 */
mas_add_vma_to_mm(struct ma_state * mas,struct mm_struct * mm,struct vm_area_struct * vma)584 static void mas_add_vma_to_mm(struct ma_state *mas, struct mm_struct *mm,
585 struct vm_area_struct *vma)
586 {
587 BUG_ON(!vma->vm_region);
588
589 setup_vma_to_mm(vma, mm);
590
591 /* add the VMA to the tree */
592 vma_mas_store(vma, mas);
593 }
594
595 /*
596 * add a VMA into a process's mm_struct in the appropriate place in the list
597 * and tree and add to the address space's page tree also if not an anonymous
598 * page
599 * - should be called with mm->mmap_lock held writelocked
600 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)601 static int add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
602 {
603 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end);
604
605 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
606 pr_warn("Allocation of vma tree for process %d failed\n",
607 current->pid);
608 return -ENOMEM;
609 }
610 mas_add_vma_to_mm(&mas, mm, vma);
611 return 0;
612 }
613
cleanup_vma_from_mm(struct vm_area_struct * vma)614 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
615 {
616 vma->vm_mm->map_count--;
617 /* remove the VMA from the mapping */
618 if (vma->vm_file) {
619 struct address_space *mapping;
620 mapping = vma->vm_file->f_mapping;
621
622 i_mmap_lock_write(mapping);
623 flush_dcache_mmap_lock(mapping);
624 vma_interval_tree_remove(vma, &mapping->i_mmap);
625 flush_dcache_mmap_unlock(mapping);
626 i_mmap_unlock_write(mapping);
627 }
628 }
629 /*
630 * delete a VMA from its owning mm_struct and address space
631 */
delete_vma_from_mm(struct vm_area_struct * vma)632 static int delete_vma_from_mm(struct vm_area_struct *vma)
633 {
634 MA_STATE(mas, &vma->vm_mm->mm_mt, 0, 0);
635
636 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
637 pr_warn("Allocation of vma tree for process %d failed\n",
638 current->pid);
639 return -ENOMEM;
640 }
641 cleanup_vma_from_mm(vma);
642
643 /* remove from the MM's tree and list */
644 vma_mas_remove(vma, &mas);
645 return 0;
646 }
647
648 /*
649 * destroy a VMA record
650 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)651 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
652 {
653 if (vma->vm_ops && vma->vm_ops->close)
654 vma->vm_ops->close(vma);
655 if (vma->vm_file)
656 fput(vma->vm_file);
657 put_nommu_region(vma->vm_region);
658 vm_area_free(vma);
659 }
660
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)661 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
662 unsigned long start_addr,
663 unsigned long end_addr)
664 {
665 unsigned long index = start_addr;
666
667 mmap_assert_locked(mm);
668 return mt_find(&mm->mm_mt, &index, end_addr - 1);
669 }
670 EXPORT_SYMBOL(find_vma_intersection);
671
672 /*
673 * look up the first VMA in which addr resides, NULL if none
674 * - should be called with mm->mmap_lock at least held readlocked
675 */
find_vma(struct mm_struct * mm,unsigned long addr)676 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
677 {
678 MA_STATE(mas, &mm->mm_mt, addr, addr);
679
680 return mas_walk(&mas);
681 }
682 EXPORT_SYMBOL(find_vma);
683
684 /*
685 * find a VMA
686 * - we don't extend stack VMAs under NOMMU conditions
687 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)688 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
689 {
690 return find_vma(mm, addr);
691 }
692
693 /*
694 * expand a stack to a given address
695 * - not supported under NOMMU conditions
696 */
expand_stack(struct vm_area_struct * vma,unsigned long address)697 int expand_stack(struct vm_area_struct *vma, unsigned long address)
698 {
699 return -ENOMEM;
700 }
701
702 /*
703 * look up the first VMA exactly that exactly matches addr
704 * - should be called with mm->mmap_lock at least held readlocked
705 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)706 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
707 unsigned long addr,
708 unsigned long len)
709 {
710 struct vm_area_struct *vma;
711 unsigned long end = addr + len;
712 MA_STATE(mas, &mm->mm_mt, addr, addr);
713
714 vma = mas_walk(&mas);
715 if (!vma)
716 return NULL;
717 if (vma->vm_start != addr)
718 return NULL;
719 if (vma->vm_end != end)
720 return NULL;
721
722 return vma;
723 }
724
725 /*
726 * determine whether a mapping should be permitted and, if so, what sort of
727 * mapping we're capable of supporting
728 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)729 static int validate_mmap_request(struct file *file,
730 unsigned long addr,
731 unsigned long len,
732 unsigned long prot,
733 unsigned long flags,
734 unsigned long pgoff,
735 unsigned long *_capabilities)
736 {
737 unsigned long capabilities, rlen;
738 int ret;
739
740 /* do the simple checks first */
741 if (flags & MAP_FIXED)
742 return -EINVAL;
743
744 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
745 (flags & MAP_TYPE) != MAP_SHARED)
746 return -EINVAL;
747
748 if (!len)
749 return -EINVAL;
750
751 /* Careful about overflows.. */
752 rlen = PAGE_ALIGN(len);
753 if (!rlen || rlen > TASK_SIZE)
754 return -ENOMEM;
755
756 /* offset overflow? */
757 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
758 return -EOVERFLOW;
759
760 if (file) {
761 /* files must support mmap */
762 if (!file->f_op->mmap)
763 return -ENODEV;
764
765 /* work out if what we've got could possibly be shared
766 * - we support chardevs that provide their own "memory"
767 * - we support files/blockdevs that are memory backed
768 */
769 if (file->f_op->mmap_capabilities) {
770 capabilities = file->f_op->mmap_capabilities(file);
771 } else {
772 /* no explicit capabilities set, so assume some
773 * defaults */
774 switch (file_inode(file)->i_mode & S_IFMT) {
775 case S_IFREG:
776 case S_IFBLK:
777 capabilities = NOMMU_MAP_COPY;
778 break;
779
780 case S_IFCHR:
781 capabilities =
782 NOMMU_MAP_DIRECT |
783 NOMMU_MAP_READ |
784 NOMMU_MAP_WRITE;
785 break;
786
787 default:
788 return -EINVAL;
789 }
790 }
791
792 /* eliminate any capabilities that we can't support on this
793 * device */
794 if (!file->f_op->get_unmapped_area)
795 capabilities &= ~NOMMU_MAP_DIRECT;
796 if (!(file->f_mode & FMODE_CAN_READ))
797 capabilities &= ~NOMMU_MAP_COPY;
798
799 /* The file shall have been opened with read permission. */
800 if (!(file->f_mode & FMODE_READ))
801 return -EACCES;
802
803 if (flags & MAP_SHARED) {
804 /* do checks for writing, appending and locking */
805 if ((prot & PROT_WRITE) &&
806 !(file->f_mode & FMODE_WRITE))
807 return -EACCES;
808
809 if (IS_APPEND(file_inode(file)) &&
810 (file->f_mode & FMODE_WRITE))
811 return -EACCES;
812
813 if (!(capabilities & NOMMU_MAP_DIRECT))
814 return -ENODEV;
815
816 /* we mustn't privatise shared mappings */
817 capabilities &= ~NOMMU_MAP_COPY;
818 } else {
819 /* we're going to read the file into private memory we
820 * allocate */
821 if (!(capabilities & NOMMU_MAP_COPY))
822 return -ENODEV;
823
824 /* we don't permit a private writable mapping to be
825 * shared with the backing device */
826 if (prot & PROT_WRITE)
827 capabilities &= ~NOMMU_MAP_DIRECT;
828 }
829
830 if (capabilities & NOMMU_MAP_DIRECT) {
831 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
832 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
833 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
834 ) {
835 capabilities &= ~NOMMU_MAP_DIRECT;
836 if (flags & MAP_SHARED) {
837 pr_warn("MAP_SHARED not completely supported on !MMU\n");
838 return -EINVAL;
839 }
840 }
841 }
842
843 /* handle executable mappings and implied executable
844 * mappings */
845 if (path_noexec(&file->f_path)) {
846 if (prot & PROT_EXEC)
847 return -EPERM;
848 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
849 /* handle implication of PROT_EXEC by PROT_READ */
850 if (current->personality & READ_IMPLIES_EXEC) {
851 if (capabilities & NOMMU_MAP_EXEC)
852 prot |= PROT_EXEC;
853 }
854 } else if ((prot & PROT_READ) &&
855 (prot & PROT_EXEC) &&
856 !(capabilities & NOMMU_MAP_EXEC)
857 ) {
858 /* backing file is not executable, try to copy */
859 capabilities &= ~NOMMU_MAP_DIRECT;
860 }
861 } else {
862 /* anonymous mappings are always memory backed and can be
863 * privately mapped
864 */
865 capabilities = NOMMU_MAP_COPY;
866
867 /* handle PROT_EXEC implication by PROT_READ */
868 if ((prot & PROT_READ) &&
869 (current->personality & READ_IMPLIES_EXEC))
870 prot |= PROT_EXEC;
871 }
872
873 /* allow the security API to have its say */
874 ret = security_mmap_addr(addr);
875 if (ret < 0)
876 return ret;
877
878 /* looks okay */
879 *_capabilities = capabilities;
880 return 0;
881 }
882
883 /*
884 * we've determined that we can make the mapping, now translate what we
885 * now know into VMA flags
886 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)887 static unsigned long determine_vm_flags(struct file *file,
888 unsigned long prot,
889 unsigned long flags,
890 unsigned long capabilities)
891 {
892 unsigned long vm_flags;
893
894 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
895 /* vm_flags |= mm->def_flags; */
896
897 if (!(capabilities & NOMMU_MAP_DIRECT)) {
898 /* attempt to share read-only copies of mapped file chunks */
899 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
900 if (file && !(prot & PROT_WRITE))
901 vm_flags |= VM_MAYSHARE;
902 } else {
903 /* overlay a shareable mapping on the backing device or inode
904 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
905 * romfs/cramfs */
906 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
907 if (flags & MAP_SHARED)
908 vm_flags |= VM_SHARED;
909 }
910
911 /* refuse to let anyone share private mappings with this process if
912 * it's being traced - otherwise breakpoints set in it may interfere
913 * with another untraced process
914 */
915 if ((flags & MAP_PRIVATE) && current->ptrace)
916 vm_flags &= ~VM_MAYSHARE;
917
918 return vm_flags;
919 }
920
921 /*
922 * set up a shared mapping on a file (the driver or filesystem provides and
923 * pins the storage)
924 */
do_mmap_shared_file(struct vm_area_struct * vma)925 static int do_mmap_shared_file(struct vm_area_struct *vma)
926 {
927 int ret;
928
929 ret = call_mmap(vma->vm_file, vma);
930 if (ret == 0) {
931 vma->vm_region->vm_top = vma->vm_region->vm_end;
932 return 0;
933 }
934 if (ret != -ENOSYS)
935 return ret;
936
937 /* getting -ENOSYS indicates that direct mmap isn't possible (as
938 * opposed to tried but failed) so we can only give a suitable error as
939 * it's not possible to make a private copy if MAP_SHARED was given */
940 return -ENODEV;
941 }
942
943 /*
944 * set up a private mapping or an anonymous shared mapping
945 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)946 static int do_mmap_private(struct vm_area_struct *vma,
947 struct vm_region *region,
948 unsigned long len,
949 unsigned long capabilities)
950 {
951 unsigned long total, point;
952 void *base;
953 int ret, order;
954
955 /* invoke the file's mapping function so that it can keep track of
956 * shared mappings on devices or memory
957 * - VM_MAYSHARE will be set if it may attempt to share
958 */
959 if (capabilities & NOMMU_MAP_DIRECT) {
960 ret = call_mmap(vma->vm_file, vma);
961 if (ret == 0) {
962 /* shouldn't return success if we're not sharing */
963 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
964 vma->vm_region->vm_top = vma->vm_region->vm_end;
965 return 0;
966 }
967 if (ret != -ENOSYS)
968 return ret;
969
970 /* getting an ENOSYS error indicates that direct mmap isn't
971 * possible (as opposed to tried but failed) so we'll try to
972 * make a private copy of the data and map that instead */
973 }
974
975
976 /* allocate some memory to hold the mapping
977 * - note that this may not return a page-aligned address if the object
978 * we're allocating is smaller than a page
979 */
980 order = get_order(len);
981 total = 1 << order;
982 point = len >> PAGE_SHIFT;
983
984 /* we don't want to allocate a power-of-2 sized page set */
985 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
986 total = point;
987
988 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
989 if (!base)
990 goto enomem;
991
992 atomic_long_add(total, &mmap_pages_allocated);
993
994 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
995 region->vm_start = (unsigned long) base;
996 region->vm_end = region->vm_start + len;
997 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
998
999 vma->vm_start = region->vm_start;
1000 vma->vm_end = region->vm_start + len;
1001
1002 if (vma->vm_file) {
1003 /* read the contents of a file into the copy */
1004 loff_t fpos;
1005
1006 fpos = vma->vm_pgoff;
1007 fpos <<= PAGE_SHIFT;
1008
1009 ret = kernel_read(vma->vm_file, base, len, &fpos);
1010 if (ret < 0)
1011 goto error_free;
1012
1013 /* clear the last little bit */
1014 if (ret < len)
1015 memset(base + ret, 0, len - ret);
1016
1017 } else {
1018 vma_set_anonymous(vma);
1019 }
1020
1021 return 0;
1022
1023 error_free:
1024 free_page_series(region->vm_start, region->vm_top);
1025 region->vm_start = vma->vm_start = 0;
1026 region->vm_end = vma->vm_end = 0;
1027 region->vm_top = 0;
1028 return ret;
1029
1030 enomem:
1031 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1032 len, current->pid, current->comm);
1033 show_free_areas(0, NULL);
1034 return -ENOMEM;
1035 }
1036
1037 /*
1038 * handle mapping creation for uClinux
1039 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1040 unsigned long do_mmap(struct file *file,
1041 unsigned long addr,
1042 unsigned long len,
1043 unsigned long prot,
1044 unsigned long flags,
1045 unsigned long pgoff,
1046 unsigned long *populate,
1047 struct list_head *uf)
1048 {
1049 struct vm_area_struct *vma;
1050 struct vm_region *region;
1051 struct rb_node *rb;
1052 vm_flags_t vm_flags;
1053 unsigned long capabilities, result;
1054 int ret;
1055 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1056
1057 *populate = 0;
1058
1059 /* decide whether we should attempt the mapping, and if so what sort of
1060 * mapping */
1061 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1062 &capabilities);
1063 if (ret < 0)
1064 return ret;
1065
1066 /* we ignore the address hint */
1067 addr = 0;
1068 len = PAGE_ALIGN(len);
1069
1070 /* we've determined that we can make the mapping, now translate what we
1071 * now know into VMA flags */
1072 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1073
1074
1075 /* we're going to need to record the mapping */
1076 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1077 if (!region)
1078 goto error_getting_region;
1079
1080 vma = vm_area_alloc(current->mm);
1081 if (!vma)
1082 goto error_getting_vma;
1083
1084 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1085 goto error_maple_preallocate;
1086
1087 region->vm_usage = 1;
1088 region->vm_flags = vm_flags;
1089 region->vm_pgoff = pgoff;
1090
1091 vma->vm_flags = vm_flags;
1092 vma->vm_pgoff = pgoff;
1093
1094 if (file) {
1095 region->vm_file = get_file(file);
1096 vma->vm_file = get_file(file);
1097 }
1098
1099 down_write(&nommu_region_sem);
1100
1101 /* if we want to share, we need to check for regions created by other
1102 * mmap() calls that overlap with our proposed mapping
1103 * - we can only share with a superset match on most regular files
1104 * - shared mappings on character devices and memory backed files are
1105 * permitted to overlap inexactly as far as we are concerned for in
1106 * these cases, sharing is handled in the driver or filesystem rather
1107 * than here
1108 */
1109 if (vm_flags & VM_MAYSHARE) {
1110 struct vm_region *pregion;
1111 unsigned long pglen, rpglen, pgend, rpgend, start;
1112
1113 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 pgend = pgoff + pglen;
1115
1116 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1117 pregion = rb_entry(rb, struct vm_region, vm_rb);
1118
1119 if (!(pregion->vm_flags & VM_MAYSHARE))
1120 continue;
1121
1122 /* search for overlapping mappings on the same file */
1123 if (file_inode(pregion->vm_file) !=
1124 file_inode(file))
1125 continue;
1126
1127 if (pregion->vm_pgoff >= pgend)
1128 continue;
1129
1130 rpglen = pregion->vm_end - pregion->vm_start;
1131 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1132 rpgend = pregion->vm_pgoff + rpglen;
1133 if (pgoff >= rpgend)
1134 continue;
1135
1136 /* handle inexactly overlapping matches between
1137 * mappings */
1138 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1139 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1140 /* new mapping is not a subset of the region */
1141 if (!(capabilities & NOMMU_MAP_DIRECT))
1142 goto sharing_violation;
1143 continue;
1144 }
1145
1146 /* we've found a region we can share */
1147 pregion->vm_usage++;
1148 vma->vm_region = pregion;
1149 start = pregion->vm_start;
1150 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1151 vma->vm_start = start;
1152 vma->vm_end = start + len;
1153
1154 if (pregion->vm_flags & VM_MAPPED_COPY)
1155 vma->vm_flags |= VM_MAPPED_COPY;
1156 else {
1157 ret = do_mmap_shared_file(vma);
1158 if (ret < 0) {
1159 vma->vm_region = NULL;
1160 vma->vm_start = 0;
1161 vma->vm_end = 0;
1162 pregion->vm_usage--;
1163 pregion = NULL;
1164 goto error_just_free;
1165 }
1166 }
1167 fput(region->vm_file);
1168 kmem_cache_free(vm_region_jar, region);
1169 region = pregion;
1170 result = start;
1171 goto share;
1172 }
1173
1174 /* obtain the address at which to make a shared mapping
1175 * - this is the hook for quasi-memory character devices to
1176 * tell us the location of a shared mapping
1177 */
1178 if (capabilities & NOMMU_MAP_DIRECT) {
1179 addr = file->f_op->get_unmapped_area(file, addr, len,
1180 pgoff, flags);
1181 if (IS_ERR_VALUE(addr)) {
1182 ret = addr;
1183 if (ret != -ENOSYS)
1184 goto error_just_free;
1185
1186 /* the driver refused to tell us where to site
1187 * the mapping so we'll have to attempt to copy
1188 * it */
1189 ret = -ENODEV;
1190 if (!(capabilities & NOMMU_MAP_COPY))
1191 goto error_just_free;
1192
1193 capabilities &= ~NOMMU_MAP_DIRECT;
1194 } else {
1195 vma->vm_start = region->vm_start = addr;
1196 vma->vm_end = region->vm_end = addr + len;
1197 }
1198 }
1199 }
1200
1201 vma->vm_region = region;
1202
1203 /* set up the mapping
1204 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1205 */
1206 if (file && vma->vm_flags & VM_SHARED)
1207 ret = do_mmap_shared_file(vma);
1208 else
1209 ret = do_mmap_private(vma, region, len, capabilities);
1210 if (ret < 0)
1211 goto error_just_free;
1212 add_nommu_region(region);
1213
1214 /* clear anonymous mappings that don't ask for uninitialized data */
1215 if (!vma->vm_file &&
1216 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1217 !(flags & MAP_UNINITIALIZED)))
1218 memset((void *)region->vm_start, 0,
1219 region->vm_end - region->vm_start);
1220
1221 /* okay... we have a mapping; now we have to register it */
1222 result = vma->vm_start;
1223
1224 current->mm->total_vm += len >> PAGE_SHIFT;
1225
1226 share:
1227 mas_add_vma_to_mm(&mas, current->mm, vma);
1228
1229 /* we flush the region from the icache only when the first executable
1230 * mapping of it is made */
1231 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1232 flush_icache_user_range(region->vm_start, region->vm_end);
1233 region->vm_icache_flushed = true;
1234 }
1235
1236 up_write(&nommu_region_sem);
1237
1238 return result;
1239
1240 error_just_free:
1241 up_write(&nommu_region_sem);
1242 error:
1243 if (region->vm_file)
1244 fput(region->vm_file);
1245 kmem_cache_free(vm_region_jar, region);
1246 if (vma->vm_file)
1247 fput(vma->vm_file);
1248 vm_area_free(vma);
1249 return ret;
1250
1251 sharing_violation:
1252 up_write(&nommu_region_sem);
1253 mas_destroy(&mas);
1254 pr_warn("Attempt to share mismatched mappings\n");
1255 ret = -EINVAL;
1256 goto error;
1257
1258 error_getting_vma:
1259 kmem_cache_free(vm_region_jar, region);
1260 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1261 len, current->pid);
1262 show_free_areas(0, NULL);
1263 return -ENOMEM;
1264
1265 error_getting_region:
1266 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1267 len, current->pid);
1268 show_free_areas(0, NULL);
1269 return -ENOMEM;
1270
1271 error_maple_preallocate:
1272 kmem_cache_free(vm_region_jar, region);
1273 vm_area_free(vma);
1274 pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
1275 show_free_areas(0, NULL);
1276 return -ENOMEM;
1277
1278 }
1279
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1280 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1281 unsigned long prot, unsigned long flags,
1282 unsigned long fd, unsigned long pgoff)
1283 {
1284 struct file *file = NULL;
1285 unsigned long retval = -EBADF;
1286
1287 audit_mmap_fd(fd, flags);
1288 if (!(flags & MAP_ANONYMOUS)) {
1289 file = fget(fd);
1290 if (!file)
1291 goto out;
1292 }
1293
1294 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1295
1296 if (file)
1297 fput(file);
1298 out:
1299 return retval;
1300 }
1301
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1302 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1303 unsigned long, prot, unsigned long, flags,
1304 unsigned long, fd, unsigned long, pgoff)
1305 {
1306 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1307 }
1308
1309 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1310 struct mmap_arg_struct {
1311 unsigned long addr;
1312 unsigned long len;
1313 unsigned long prot;
1314 unsigned long flags;
1315 unsigned long fd;
1316 unsigned long offset;
1317 };
1318
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1319 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1320 {
1321 struct mmap_arg_struct a;
1322
1323 if (copy_from_user(&a, arg, sizeof(a)))
1324 return -EFAULT;
1325 if (offset_in_page(a.offset))
1326 return -EINVAL;
1327
1328 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1329 a.offset >> PAGE_SHIFT);
1330 }
1331 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1332
1333 /*
1334 * split a vma into two pieces at address 'addr', a new vma is allocated either
1335 * for the first part or the tail.
1336 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1337 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1338 unsigned long addr, int new_below)
1339 {
1340 struct vm_area_struct *new;
1341 struct vm_region *region;
1342 unsigned long npages;
1343 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end);
1344
1345 /* we're only permitted to split anonymous regions (these should have
1346 * only a single usage on the region) */
1347 if (vma->vm_file)
1348 return -ENOMEM;
1349
1350 if (mm->map_count >= sysctl_max_map_count)
1351 return -ENOMEM;
1352
1353 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1354 if (!region)
1355 return -ENOMEM;
1356
1357 new = vm_area_dup(vma);
1358 if (!new)
1359 goto err_vma_dup;
1360
1361 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
1362 pr_warn("Allocation of vma tree for process %d failed\n",
1363 current->pid);
1364 goto err_mas_preallocate;
1365 }
1366
1367 /* most fields are the same, copy all, and then fixup */
1368 *region = *vma->vm_region;
1369 new->vm_region = region;
1370
1371 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1372
1373 if (new_below) {
1374 region->vm_top = region->vm_end = new->vm_end = addr;
1375 } else {
1376 region->vm_start = new->vm_start = addr;
1377 region->vm_pgoff = new->vm_pgoff += npages;
1378 }
1379
1380 if (new->vm_ops && new->vm_ops->open)
1381 new->vm_ops->open(new);
1382
1383 down_write(&nommu_region_sem);
1384 delete_nommu_region(vma->vm_region);
1385 if (new_below) {
1386 vma->vm_region->vm_start = vma->vm_start = addr;
1387 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1388 } else {
1389 vma->vm_region->vm_end = vma->vm_end = addr;
1390 vma->vm_region->vm_top = addr;
1391 }
1392 add_nommu_region(vma->vm_region);
1393 add_nommu_region(new->vm_region);
1394 up_write(&nommu_region_sem);
1395
1396 setup_vma_to_mm(vma, mm);
1397 setup_vma_to_mm(new, mm);
1398 mas_set_range(&mas, vma->vm_start, vma->vm_end - 1);
1399 mas_store(&mas, vma);
1400 vma_mas_store(new, &mas);
1401 return 0;
1402
1403 err_mas_preallocate:
1404 vm_area_free(new);
1405 err_vma_dup:
1406 kmem_cache_free(vm_region_jar, region);
1407 return -ENOMEM;
1408 }
1409
1410 /*
1411 * shrink a VMA by removing the specified chunk from either the beginning or
1412 * the end
1413 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1414 static int shrink_vma(struct mm_struct *mm,
1415 struct vm_area_struct *vma,
1416 unsigned long from, unsigned long to)
1417 {
1418 struct vm_region *region;
1419
1420 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1421 * and list */
1422 if (delete_vma_from_mm(vma))
1423 return -ENOMEM;
1424 if (from > vma->vm_start)
1425 vma->vm_end = from;
1426 else
1427 vma->vm_start = to;
1428 if (add_vma_to_mm(mm, vma))
1429 return -ENOMEM;
1430
1431 /* cut the backing region down to size */
1432 region = vma->vm_region;
1433 BUG_ON(region->vm_usage != 1);
1434
1435 down_write(&nommu_region_sem);
1436 delete_nommu_region(region);
1437 if (from > region->vm_start) {
1438 to = region->vm_top;
1439 region->vm_top = region->vm_end = from;
1440 } else {
1441 region->vm_start = to;
1442 }
1443 add_nommu_region(region);
1444 up_write(&nommu_region_sem);
1445
1446 free_page_series(from, to);
1447 return 0;
1448 }
1449
1450 /*
1451 * release a mapping
1452 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1453 * VMA, though it need not cover the whole VMA
1454 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1455 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1456 {
1457 MA_STATE(mas, &mm->mm_mt, start, start);
1458 struct vm_area_struct *vma;
1459 unsigned long end;
1460 int ret = 0;
1461
1462 len = PAGE_ALIGN(len);
1463 if (len == 0)
1464 return -EINVAL;
1465
1466 end = start + len;
1467
1468 /* find the first potentially overlapping VMA */
1469 vma = mas_find(&mas, end - 1);
1470 if (!vma) {
1471 static int limit;
1472 if (limit < 5) {
1473 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1474 current->pid, current->comm,
1475 start, start + len - 1);
1476 limit++;
1477 }
1478 return -EINVAL;
1479 }
1480
1481 /* we're allowed to split an anonymous VMA but not a file-backed one */
1482 if (vma->vm_file) {
1483 do {
1484 if (start > vma->vm_start)
1485 return -EINVAL;
1486 if (end == vma->vm_end)
1487 goto erase_whole_vma;
1488 vma = mas_next(&mas, end - 1);
1489 } while (vma);
1490 return -EINVAL;
1491 } else {
1492 /* the chunk must be a subset of the VMA found */
1493 if (start == vma->vm_start && end == vma->vm_end)
1494 goto erase_whole_vma;
1495 if (start < vma->vm_start || end > vma->vm_end)
1496 return -EINVAL;
1497 if (offset_in_page(start))
1498 return -EINVAL;
1499 if (end != vma->vm_end && offset_in_page(end))
1500 return -EINVAL;
1501 if (start != vma->vm_start && end != vma->vm_end) {
1502 ret = split_vma(mm, vma, start, 1);
1503 if (ret < 0)
1504 return ret;
1505 }
1506 return shrink_vma(mm, vma, start, end);
1507 }
1508
1509 erase_whole_vma:
1510 if (delete_vma_from_mm(vma))
1511 ret = -ENOMEM;
1512 delete_vma(mm, vma);
1513 return ret;
1514 }
1515
vm_munmap(unsigned long addr,size_t len)1516 int vm_munmap(unsigned long addr, size_t len)
1517 {
1518 struct mm_struct *mm = current->mm;
1519 int ret;
1520
1521 mmap_write_lock(mm);
1522 ret = do_munmap(mm, addr, len, NULL);
1523 mmap_write_unlock(mm);
1524 return ret;
1525 }
1526 EXPORT_SYMBOL(vm_munmap);
1527
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1529 {
1530 return vm_munmap(addr, len);
1531 }
1532
1533 /*
1534 * release all the mappings made in a process's VM space
1535 */
exit_mmap(struct mm_struct * mm)1536 void exit_mmap(struct mm_struct *mm)
1537 {
1538 VMA_ITERATOR(vmi, mm, 0);
1539 struct vm_area_struct *vma;
1540
1541 if (!mm)
1542 return;
1543
1544 mm->total_vm = 0;
1545
1546 /*
1547 * Lock the mm to avoid assert complaining even though this is the only
1548 * user of the mm
1549 */
1550 mmap_write_lock(mm);
1551 for_each_vma(vmi, vma) {
1552 cleanup_vma_from_mm(vma);
1553 delete_vma(mm, vma);
1554 cond_resched();
1555 }
1556 __mt_destroy(&mm->mm_mt);
1557 mmap_write_unlock(mm);
1558 }
1559
vm_brk(unsigned long addr,unsigned long len)1560 int vm_brk(unsigned long addr, unsigned long len)
1561 {
1562 return -ENOMEM;
1563 }
1564
1565 /*
1566 * expand (or shrink) an existing mapping, potentially moving it at the same
1567 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1568 *
1569 * under NOMMU conditions, we only permit changing a mapping's size, and only
1570 * as long as it stays within the region allocated by do_mmap_private() and the
1571 * block is not shareable
1572 *
1573 * MREMAP_FIXED is not supported under NOMMU conditions
1574 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1575 static unsigned long do_mremap(unsigned long addr,
1576 unsigned long old_len, unsigned long new_len,
1577 unsigned long flags, unsigned long new_addr)
1578 {
1579 struct vm_area_struct *vma;
1580
1581 /* insanity checks first */
1582 old_len = PAGE_ALIGN(old_len);
1583 new_len = PAGE_ALIGN(new_len);
1584 if (old_len == 0 || new_len == 0)
1585 return (unsigned long) -EINVAL;
1586
1587 if (offset_in_page(addr))
1588 return -EINVAL;
1589
1590 if (flags & MREMAP_FIXED && new_addr != addr)
1591 return (unsigned long) -EINVAL;
1592
1593 vma = find_vma_exact(current->mm, addr, old_len);
1594 if (!vma)
1595 return (unsigned long) -EINVAL;
1596
1597 if (vma->vm_end != vma->vm_start + old_len)
1598 return (unsigned long) -EFAULT;
1599
1600 if (vma->vm_flags & VM_MAYSHARE)
1601 return (unsigned long) -EPERM;
1602
1603 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1604 return (unsigned long) -ENOMEM;
1605
1606 /* all checks complete - do it */
1607 vma->vm_end = vma->vm_start + new_len;
1608 return vma->vm_start;
1609 }
1610
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1611 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1612 unsigned long, new_len, unsigned long, flags,
1613 unsigned long, new_addr)
1614 {
1615 unsigned long ret;
1616
1617 mmap_write_lock(current->mm);
1618 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1619 mmap_write_unlock(current->mm);
1620 return ret;
1621 }
1622
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1623 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1624 unsigned int foll_flags)
1625 {
1626 return NULL;
1627 }
1628
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1629 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1630 unsigned long pfn, unsigned long size, pgprot_t prot)
1631 {
1632 if (addr != (pfn << PAGE_SHIFT))
1633 return -EINVAL;
1634
1635 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(remap_pfn_range);
1639
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1641 {
1642 unsigned long pfn = start >> PAGE_SHIFT;
1643 unsigned long vm_len = vma->vm_end - vma->vm_start;
1644
1645 pfn += vma->vm_pgoff;
1646 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1647 }
1648 EXPORT_SYMBOL(vm_iomap_memory);
1649
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1650 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1651 unsigned long pgoff)
1652 {
1653 unsigned int size = vma->vm_end - vma->vm_start;
1654
1655 if (!(vma->vm_flags & VM_USERMAP))
1656 return -EINVAL;
1657
1658 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1659 vma->vm_end = vma->vm_start + size;
1660
1661 return 0;
1662 }
1663 EXPORT_SYMBOL(remap_vmalloc_range);
1664
filemap_fault(struct vm_fault * vmf)1665 vm_fault_t filemap_fault(struct vm_fault *vmf)
1666 {
1667 BUG();
1668 return 0;
1669 }
1670 EXPORT_SYMBOL(filemap_fault);
1671
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1672 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1673 pgoff_t start_pgoff, pgoff_t end_pgoff)
1674 {
1675 BUG();
1676 return 0;
1677 }
1678 EXPORT_SYMBOL(filemap_map_pages);
1679
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1680 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1681 int len, unsigned int gup_flags)
1682 {
1683 struct vm_area_struct *vma;
1684 int write = gup_flags & FOLL_WRITE;
1685
1686 if (mmap_read_lock_killable(mm))
1687 return 0;
1688
1689 /* the access must start within one of the target process's mappings */
1690 vma = find_vma(mm, addr);
1691 if (vma) {
1692 /* don't overrun this mapping */
1693 if (addr + len >= vma->vm_end)
1694 len = vma->vm_end - addr;
1695
1696 /* only read or write mappings where it is permitted */
1697 if (write && vma->vm_flags & VM_MAYWRITE)
1698 copy_to_user_page(vma, NULL, addr,
1699 (void *) addr, buf, len);
1700 else if (!write && vma->vm_flags & VM_MAYREAD)
1701 copy_from_user_page(vma, NULL, addr,
1702 buf, (void *) addr, len);
1703 else
1704 len = 0;
1705 } else {
1706 len = 0;
1707 }
1708
1709 mmap_read_unlock(mm);
1710
1711 return len;
1712 }
1713
1714 /**
1715 * access_remote_vm - access another process' address space
1716 * @mm: the mm_struct of the target address space
1717 * @addr: start address to access
1718 * @buf: source or destination buffer
1719 * @len: number of bytes to transfer
1720 * @gup_flags: flags modifying lookup behaviour
1721 *
1722 * The caller must hold a reference on @mm.
1723 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1724 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1725 void *buf, int len, unsigned int gup_flags)
1726 {
1727 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1728 }
1729
1730 /*
1731 * Access another process' address space.
1732 * - source/target buffer must be kernel space
1733 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1734 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1735 unsigned int gup_flags)
1736 {
1737 struct mm_struct *mm;
1738
1739 if (addr + len < addr)
1740 return 0;
1741
1742 mm = get_task_mm(tsk);
1743 if (!mm)
1744 return 0;
1745
1746 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1747
1748 mmput(mm);
1749 return len;
1750 }
1751 EXPORT_SYMBOL_GPL(access_process_vm);
1752
1753 /**
1754 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1755 * @inode: The inode to check
1756 * @size: The current filesize of the inode
1757 * @newsize: The proposed filesize of the inode
1758 *
1759 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1760 * make sure that any outstanding VMAs aren't broken and then shrink the
1761 * vm_regions that extend beyond so that do_mmap() doesn't
1762 * automatically grant mappings that are too large.
1763 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1764 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1765 size_t newsize)
1766 {
1767 struct vm_area_struct *vma;
1768 struct vm_region *region;
1769 pgoff_t low, high;
1770 size_t r_size, r_top;
1771
1772 low = newsize >> PAGE_SHIFT;
1773 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1774
1775 down_write(&nommu_region_sem);
1776 i_mmap_lock_read(inode->i_mapping);
1777
1778 /* search for VMAs that fall within the dead zone */
1779 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1780 /* found one - only interested if it's shared out of the page
1781 * cache */
1782 if (vma->vm_flags & VM_SHARED) {
1783 i_mmap_unlock_read(inode->i_mapping);
1784 up_write(&nommu_region_sem);
1785 return -ETXTBSY; /* not quite true, but near enough */
1786 }
1787 }
1788
1789 /* reduce any regions that overlap the dead zone - if in existence,
1790 * these will be pointed to by VMAs that don't overlap the dead zone
1791 *
1792 * we don't check for any regions that start beyond the EOF as there
1793 * shouldn't be any
1794 */
1795 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1796 if (!(vma->vm_flags & VM_SHARED))
1797 continue;
1798
1799 region = vma->vm_region;
1800 r_size = region->vm_top - region->vm_start;
1801 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1802
1803 if (r_top > newsize) {
1804 region->vm_top -= r_top - newsize;
1805 if (region->vm_end > region->vm_top)
1806 region->vm_end = region->vm_top;
1807 }
1808 }
1809
1810 i_mmap_unlock_read(inode->i_mapping);
1811 up_write(&nommu_region_sem);
1812 return 0;
1813 }
1814
1815 /*
1816 * Initialise sysctl_user_reserve_kbytes.
1817 *
1818 * This is intended to prevent a user from starting a single memory hogging
1819 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1820 * mode.
1821 *
1822 * The default value is min(3% of free memory, 128MB)
1823 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1824 */
init_user_reserve(void)1825 static int __meminit init_user_reserve(void)
1826 {
1827 unsigned long free_kbytes;
1828
1829 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1830
1831 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1832 return 0;
1833 }
1834 subsys_initcall(init_user_reserve);
1835
1836 /*
1837 * Initialise sysctl_admin_reserve_kbytes.
1838 *
1839 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1840 * to log in and kill a memory hogging process.
1841 *
1842 * Systems with more than 256MB will reserve 8MB, enough to recover
1843 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1844 * only reserve 3% of free pages by default.
1845 */
init_admin_reserve(void)1846 static int __meminit init_admin_reserve(void)
1847 {
1848 unsigned long free_kbytes;
1849
1850 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1851
1852 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1853 return 0;
1854 }
1855 subsys_initcall(init_admin_reserve);
1856