1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57
58 #include "internal.h"
59
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags) (0)
62 #endif
63
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 struct vm_area_struct *vma, struct vm_area_struct *prev,
80 struct vm_area_struct *next, unsigned long start,
81 unsigned long end);
82
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91 unsigned long vm_flags = vma->vm_flags;
92 pgprot_t vm_page_prot;
93
94 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 if (vma_wants_writenotify(vma, vm_page_prot)) {
96 vm_flags &= ~VM_SHARED;
97 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98 }
99 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102
103 /*
104 * Requires inode->i_mapping->i_mmap_rwsem
105 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 struct file *file, struct address_space *mapping)
108 {
109 if (vma->vm_flags & VM_SHARED)
110 mapping_unmap_writable(mapping);
111
112 flush_dcache_mmap_lock(mapping);
113 vma_interval_tree_remove(vma, &mapping->i_mmap);
114 flush_dcache_mmap_unlock(mapping);
115 }
116
117 /*
118 * Unlink a file-based vm structure from its interval tree, to hide
119 * vma from rmap and vmtruncate before freeing its page tables.
120 */
unlink_file_vma(struct vm_area_struct * vma)121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123 struct file *file = vma->vm_file;
124
125 if (file) {
126 struct address_space *mapping = file->f_mapping;
127 i_mmap_lock_write(mapping);
128 __remove_shared_vm_struct(vma, file, mapping);
129 i_mmap_unlock_write(mapping);
130 }
131 }
132
133 /*
134 * Close a vm structure and free it.
135 */
remove_vma(struct vm_area_struct * vma)136 static void remove_vma(struct vm_area_struct *vma)
137 {
138 might_sleep();
139 if (vma->vm_ops && vma->vm_ops->close)
140 vma->vm_ops->close(vma);
141 if (vma->vm_file)
142 fput(vma->vm_file);
143 mpol_put(vma_policy(vma));
144 vm_area_free(vma);
145 }
146
147 /*
148 * check_brk_limits() - Use platform specific check of range & verify mlock
149 * limits.
150 * @addr: The address to check
151 * @len: The size of increase.
152 *
153 * Return: 0 on success.
154 */
check_brk_limits(unsigned long addr,unsigned long len)155 static int check_brk_limits(unsigned long addr, unsigned long len)
156 {
157 unsigned long mapped_addr;
158
159 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
160 if (IS_ERR_VALUE(mapped_addr))
161 return mapped_addr;
162
163 return mlock_future_check(current->mm, current->mm->def_flags, len);
164 }
165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
166 unsigned long newbrk, unsigned long oldbrk,
167 struct list_head *uf);
168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
169 unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk,unsigned long,brk)170 SYSCALL_DEFINE1(brk, unsigned long, brk)
171 {
172 unsigned long newbrk, oldbrk, origbrk;
173 struct mm_struct *mm = current->mm;
174 struct vm_area_struct *brkvma, *next = NULL;
175 unsigned long min_brk;
176 bool populate;
177 bool downgraded = false;
178 LIST_HEAD(uf);
179 MA_STATE(mas, &mm->mm_mt, 0, 0);
180
181 if (mmap_write_lock_killable(mm))
182 return -EINTR;
183
184 origbrk = mm->brk;
185
186 #ifdef CONFIG_COMPAT_BRK
187 /*
188 * CONFIG_COMPAT_BRK can still be overridden by setting
189 * randomize_va_space to 2, which will still cause mm->start_brk
190 * to be arbitrarily shifted
191 */
192 if (current->brk_randomized)
193 min_brk = mm->start_brk;
194 else
195 min_brk = mm->end_data;
196 #else
197 min_brk = mm->start_brk;
198 #endif
199 if (brk < min_brk)
200 goto out;
201
202 /*
203 * Check against rlimit here. If this check is done later after the test
204 * of oldbrk with newbrk then it can escape the test and let the data
205 * segment grow beyond its set limit the in case where the limit is
206 * not page aligned -Ram Gupta
207 */
208 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209 mm->end_data, mm->start_data))
210 goto out;
211
212 newbrk = PAGE_ALIGN(brk);
213 oldbrk = PAGE_ALIGN(mm->brk);
214 if (oldbrk == newbrk) {
215 mm->brk = brk;
216 goto success;
217 }
218
219 /*
220 * Always allow shrinking brk.
221 * do_brk_munmap() may downgrade mmap_lock to read.
222 */
223 if (brk <= mm->brk) {
224 int ret;
225
226 /* Search one past newbrk */
227 mas_set(&mas, newbrk);
228 brkvma = mas_find(&mas, oldbrk);
229 if (!brkvma || brkvma->vm_start >= oldbrk)
230 goto out; /* mapping intersects with an existing non-brk vma. */
231 /*
232 * mm->brk must be protected by write mmap_lock.
233 * do_brk_munmap() may downgrade the lock, so update it
234 * before calling do_brk_munmap().
235 */
236 mm->brk = brk;
237 ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
238 if (ret == 1) {
239 downgraded = true;
240 goto success;
241 } else if (!ret)
242 goto success;
243
244 mm->brk = origbrk;
245 goto out;
246 }
247
248 if (check_brk_limits(oldbrk, newbrk - oldbrk))
249 goto out;
250
251 /*
252 * Only check if the next VMA is within the stack_guard_gap of the
253 * expansion area
254 */
255 mas_set(&mas, oldbrk);
256 next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
257 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
258 goto out;
259
260 brkvma = mas_prev(&mas, mm->start_brk);
261 /* Ok, looks good - let it rip. */
262 if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
263 goto out;
264
265 mm->brk = brk;
266
267 success:
268 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
269 if (downgraded)
270 mmap_read_unlock(mm);
271 else
272 mmap_write_unlock(mm);
273 userfaultfd_unmap_complete(mm, &uf);
274 if (populate)
275 mm_populate(oldbrk, newbrk - oldbrk);
276 return brk;
277
278 out:
279 mmap_write_unlock(mm);
280 return origbrk;
281 }
282
283 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
284 extern void mt_validate(struct maple_tree *mt);
285 extern void mt_dump(const struct maple_tree *mt);
286
287 /* Validate the maple tree */
validate_mm_mt(struct mm_struct * mm)288 static void validate_mm_mt(struct mm_struct *mm)
289 {
290 struct maple_tree *mt = &mm->mm_mt;
291 struct vm_area_struct *vma_mt;
292
293 MA_STATE(mas, mt, 0, 0);
294
295 mt_validate(&mm->mm_mt);
296 mas_for_each(&mas, vma_mt, ULONG_MAX) {
297 if ((vma_mt->vm_start != mas.index) ||
298 (vma_mt->vm_end - 1 != mas.last)) {
299 pr_emerg("issue in %s\n", current->comm);
300 dump_stack();
301 dump_vma(vma_mt);
302 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
303 mas.index, mas.last);
304 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
305 vma_mt->vm_start, vma_mt->vm_end);
306
307 mt_dump(mas.tree);
308 if (vma_mt->vm_end != mas.last + 1) {
309 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
310 mm, vma_mt->vm_start, vma_mt->vm_end,
311 mas.index, mas.last);
312 mt_dump(mas.tree);
313 }
314 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
315 if (vma_mt->vm_start != mas.index) {
316 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
317 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
318 mt_dump(mas.tree);
319 }
320 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
321 }
322 }
323 }
324
validate_mm(struct mm_struct * mm)325 static void validate_mm(struct mm_struct *mm)
326 {
327 int bug = 0;
328 int i = 0;
329 struct vm_area_struct *vma;
330 MA_STATE(mas, &mm->mm_mt, 0, 0);
331
332 validate_mm_mt(mm);
333
334 mas_for_each(&mas, vma, ULONG_MAX) {
335 #ifdef CONFIG_DEBUG_VM_RB
336 struct anon_vma *anon_vma = vma->anon_vma;
337 struct anon_vma_chain *avc;
338
339 if (anon_vma) {
340 anon_vma_lock_read(anon_vma);
341 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
342 anon_vma_interval_tree_verify(avc);
343 anon_vma_unlock_read(anon_vma);
344 }
345 #endif
346 i++;
347 }
348 if (i != mm->map_count) {
349 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
350 bug = 1;
351 }
352 VM_BUG_ON_MM(bug, mm);
353 }
354
355 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
356 #define validate_mm_mt(root) do { } while (0)
357 #define validate_mm(mm) do { } while (0)
358 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
359
360 /*
361 * vma has some anon_vma assigned, and is already inserted on that
362 * anon_vma's interval trees.
363 *
364 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
365 * vma must be removed from the anon_vma's interval trees using
366 * anon_vma_interval_tree_pre_update_vma().
367 *
368 * After the update, the vma will be reinserted using
369 * anon_vma_interval_tree_post_update_vma().
370 *
371 * The entire update must be protected by exclusive mmap_lock and by
372 * the root anon_vma's mutex.
373 */
374 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)375 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
376 {
377 struct anon_vma_chain *avc;
378
379 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
380 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
381 }
382
383 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)384 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
385 {
386 struct anon_vma_chain *avc;
387
388 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
389 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
390 }
391
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)392 static unsigned long count_vma_pages_range(struct mm_struct *mm,
393 unsigned long addr, unsigned long end)
394 {
395 VMA_ITERATOR(vmi, mm, addr);
396 struct vm_area_struct *vma;
397 unsigned long nr_pages = 0;
398
399 for_each_vma_range(vmi, vma, end) {
400 unsigned long vm_start = max(addr, vma->vm_start);
401 unsigned long vm_end = min(end, vma->vm_end);
402
403 nr_pages += PHYS_PFN(vm_end - vm_start);
404 }
405
406 return nr_pages;
407 }
408
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)409 static void __vma_link_file(struct vm_area_struct *vma,
410 struct address_space *mapping)
411 {
412 if (vma->vm_flags & VM_SHARED)
413 mapping_allow_writable(mapping);
414
415 flush_dcache_mmap_lock(mapping);
416 vma_interval_tree_insert(vma, &mapping->i_mmap);
417 flush_dcache_mmap_unlock(mapping);
418 }
419
420 /*
421 * vma_mas_store() - Store a VMA in the maple tree.
422 * @vma: The vm_area_struct
423 * @mas: The maple state
424 *
425 * Efficient way to store a VMA in the maple tree when the @mas has already
426 * walked to the correct location.
427 *
428 * Note: the end address is inclusive in the maple tree.
429 */
vma_mas_store(struct vm_area_struct * vma,struct ma_state * mas)430 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
431 {
432 trace_vma_store(mas->tree, vma);
433 mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
434 mas_store_prealloc(mas, vma);
435 }
436
437 /*
438 * vma_mas_remove() - Remove a VMA from the maple tree.
439 * @vma: The vm_area_struct
440 * @mas: The maple state
441 *
442 * Efficient way to remove a VMA from the maple tree when the @mas has already
443 * been established and points to the correct location.
444 * Note: the end address is inclusive in the maple tree.
445 */
vma_mas_remove(struct vm_area_struct * vma,struct ma_state * mas)446 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
447 {
448 trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
449 mas->index = vma->vm_start;
450 mas->last = vma->vm_end - 1;
451 mas_store_prealloc(mas, NULL);
452 }
453
454 /*
455 * vma_mas_szero() - Set a given range to zero. Used when modifying a
456 * vm_area_struct start or end.
457 *
458 * @mas: The maple tree ma_state
459 * @start: The start address to zero
460 * @end: The end address to zero.
461 */
vma_mas_szero(struct ma_state * mas,unsigned long start,unsigned long end)462 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
463 unsigned long end)
464 {
465 trace_vma_mas_szero(mas->tree, start, end - 1);
466 mas_set_range(mas, start, end - 1);
467 mas_store_prealloc(mas, NULL);
468 }
469
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)470 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
471 {
472 MA_STATE(mas, &mm->mm_mt, 0, 0);
473 struct address_space *mapping = NULL;
474
475 if (mas_preallocate(&mas, vma, GFP_KERNEL))
476 return -ENOMEM;
477
478 if (vma->vm_file) {
479 mapping = vma->vm_file->f_mapping;
480 i_mmap_lock_write(mapping);
481 }
482
483 vma_mas_store(vma, &mas);
484
485 if (mapping) {
486 __vma_link_file(vma, mapping);
487 i_mmap_unlock_write(mapping);
488 }
489
490 mm->map_count++;
491 validate_mm(mm);
492 return 0;
493 }
494
495 /*
496 * vma_expand - Expand an existing VMA
497 *
498 * @mas: The maple state
499 * @vma: The vma to expand
500 * @start: The start of the vma
501 * @end: The exclusive end of the vma
502 * @pgoff: The page offset of vma
503 * @next: The current of next vma.
504 *
505 * Expand @vma to @start and @end. Can expand off the start and end. Will
506 * expand over @next if it's different from @vma and @end == @next->vm_end.
507 * Checking if the @vma can expand and merge with @next needs to be handled by
508 * the caller.
509 *
510 * Returns: 0 on success
511 */
vma_expand(struct ma_state * mas,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * next)512 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma,
513 unsigned long start, unsigned long end, pgoff_t pgoff,
514 struct vm_area_struct *next)
515 {
516 struct mm_struct *mm = vma->vm_mm;
517 struct address_space *mapping = NULL;
518 struct rb_root_cached *root = NULL;
519 struct anon_vma *anon_vma = vma->anon_vma;
520 struct file *file = vma->vm_file;
521 bool remove_next = false;
522
523 if (next && (vma != next) && (end == next->vm_end)) {
524 remove_next = true;
525 if (next->anon_vma && !vma->anon_vma) {
526 int error;
527
528 anon_vma = next->anon_vma;
529 vma->anon_vma = anon_vma;
530 error = anon_vma_clone(vma, next);
531 if (error)
532 return error;
533 }
534 }
535
536 /* Not merging but overwriting any part of next is not handled. */
537 VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start);
538 /* Only handles expanding */
539 VM_BUG_ON(vma->vm_start < start || vma->vm_end > end);
540
541 if (mas_preallocate(mas, vma, GFP_KERNEL))
542 goto nomem;
543
544 vma_adjust_trans_huge(vma, start, end, 0);
545
546 if (file) {
547 mapping = file->f_mapping;
548 root = &mapping->i_mmap;
549 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
550 i_mmap_lock_write(mapping);
551 }
552
553 if (anon_vma) {
554 anon_vma_lock_write(anon_vma);
555 anon_vma_interval_tree_pre_update_vma(vma);
556 }
557
558 if (file) {
559 flush_dcache_mmap_lock(mapping);
560 vma_interval_tree_remove(vma, root);
561 }
562
563 vma->vm_start = start;
564 vma->vm_end = end;
565 vma->vm_pgoff = pgoff;
566 /* Note: mas must be pointing to the expanding VMA */
567 vma_mas_store(vma, mas);
568
569 if (file) {
570 vma_interval_tree_insert(vma, root);
571 flush_dcache_mmap_unlock(mapping);
572 }
573
574 /* Expanding over the next vma */
575 if (remove_next && file) {
576 __remove_shared_vm_struct(next, file, mapping);
577 }
578
579 if (anon_vma) {
580 anon_vma_interval_tree_post_update_vma(vma);
581 anon_vma_unlock_write(anon_vma);
582 }
583
584 if (file) {
585 i_mmap_unlock_write(mapping);
586 uprobe_mmap(vma);
587 }
588
589 if (remove_next) {
590 if (file) {
591 uprobe_munmap(next, next->vm_start, next->vm_end);
592 fput(file);
593 }
594 if (next->anon_vma)
595 anon_vma_merge(vma, next);
596 mm->map_count--;
597 mpol_put(vma_policy(next));
598 vm_area_free(next);
599 }
600
601 validate_mm(mm);
602 return 0;
603
604 nomem:
605 return -ENOMEM;
606 }
607
608 /*
609 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
610 * is already present in an i_mmap tree without adjusting the tree.
611 * The following helper function should be used when such adjustments
612 * are necessary. The "insert" vma (if any) is to be inserted
613 * before we drop the necessary locks.
614 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)615 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
616 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
617 struct vm_area_struct *expand)
618 {
619 struct mm_struct *mm = vma->vm_mm;
620 struct vm_area_struct *next_next = NULL; /* uninit var warning */
621 struct vm_area_struct *next = find_vma(mm, vma->vm_end);
622 struct vm_area_struct *orig_vma = vma;
623 struct address_space *mapping = NULL;
624 struct rb_root_cached *root = NULL;
625 struct anon_vma *anon_vma = NULL;
626 struct file *file = vma->vm_file;
627 bool vma_changed = false;
628 long adjust_next = 0;
629 int remove_next = 0;
630 MA_STATE(mas, &mm->mm_mt, 0, 0);
631 struct vm_area_struct *exporter = NULL, *importer = NULL;
632
633 if (next && !insert) {
634 if (end >= next->vm_end) {
635 /*
636 * vma expands, overlapping all the next, and
637 * perhaps the one after too (mprotect case 6).
638 * The only other cases that gets here are
639 * case 1, case 7 and case 8.
640 */
641 if (next == expand) {
642 /*
643 * The only case where we don't expand "vma"
644 * and we expand "next" instead is case 8.
645 */
646 VM_WARN_ON(end != next->vm_end);
647 /*
648 * remove_next == 3 means we're
649 * removing "vma" and that to do so we
650 * swapped "vma" and "next".
651 */
652 remove_next = 3;
653 VM_WARN_ON(file != next->vm_file);
654 swap(vma, next);
655 } else {
656 VM_WARN_ON(expand != vma);
657 /*
658 * case 1, 6, 7, remove_next == 2 is case 6,
659 * remove_next == 1 is case 1 or 7.
660 */
661 remove_next = 1 + (end > next->vm_end);
662 if (remove_next == 2)
663 next_next = find_vma(mm, next->vm_end);
664
665 VM_WARN_ON(remove_next == 2 &&
666 end != next_next->vm_end);
667 }
668
669 exporter = next;
670 importer = vma;
671
672 /*
673 * If next doesn't have anon_vma, import from vma after
674 * next, if the vma overlaps with it.
675 */
676 if (remove_next == 2 && !next->anon_vma)
677 exporter = next_next;
678
679 } else if (end > next->vm_start) {
680 /*
681 * vma expands, overlapping part of the next:
682 * mprotect case 5 shifting the boundary up.
683 */
684 adjust_next = (end - next->vm_start);
685 exporter = next;
686 importer = vma;
687 VM_WARN_ON(expand != importer);
688 } else if (end < vma->vm_end) {
689 /*
690 * vma shrinks, and !insert tells it's not
691 * split_vma inserting another: so it must be
692 * mprotect case 4 shifting the boundary down.
693 */
694 adjust_next = -(vma->vm_end - end);
695 exporter = vma;
696 importer = next;
697 VM_WARN_ON(expand != importer);
698 }
699
700 /*
701 * Easily overlooked: when mprotect shifts the boundary,
702 * make sure the expanding vma has anon_vma set if the
703 * shrinking vma had, to cover any anon pages imported.
704 */
705 if (exporter && exporter->anon_vma && !importer->anon_vma) {
706 int error;
707
708 importer->anon_vma = exporter->anon_vma;
709 error = anon_vma_clone(importer, exporter);
710 if (error)
711 return error;
712 }
713 }
714
715 if (mas_preallocate(&mas, vma, GFP_KERNEL))
716 return -ENOMEM;
717
718 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
719 if (file) {
720 mapping = file->f_mapping;
721 root = &mapping->i_mmap;
722 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
723
724 if (adjust_next)
725 uprobe_munmap(next, next->vm_start, next->vm_end);
726
727 i_mmap_lock_write(mapping);
728 if (insert && insert->vm_file) {
729 /*
730 * Put into interval tree now, so instantiated pages
731 * are visible to arm/parisc __flush_dcache_page
732 * throughout; but we cannot insert into address
733 * space until vma start or end is updated.
734 */
735 __vma_link_file(insert, insert->vm_file->f_mapping);
736 }
737 }
738
739 anon_vma = vma->anon_vma;
740 if (!anon_vma && adjust_next)
741 anon_vma = next->anon_vma;
742 if (anon_vma) {
743 VM_WARN_ON(adjust_next && next->anon_vma &&
744 anon_vma != next->anon_vma);
745 anon_vma_lock_write(anon_vma);
746 anon_vma_interval_tree_pre_update_vma(vma);
747 if (adjust_next)
748 anon_vma_interval_tree_pre_update_vma(next);
749 }
750
751 if (file) {
752 flush_dcache_mmap_lock(mapping);
753 vma_interval_tree_remove(vma, root);
754 if (adjust_next)
755 vma_interval_tree_remove(next, root);
756 }
757
758 if (start != vma->vm_start) {
759 if ((vma->vm_start < start) &&
760 (!insert || (insert->vm_end != start))) {
761 vma_mas_szero(&mas, vma->vm_start, start);
762 VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
763 } else {
764 vma_changed = true;
765 }
766 vma->vm_start = start;
767 }
768 if (end != vma->vm_end) {
769 if (vma->vm_end > end) {
770 if (!insert || (insert->vm_start != end)) {
771 vma_mas_szero(&mas, end, vma->vm_end);
772 mas_reset(&mas);
773 VM_WARN_ON(insert &&
774 insert->vm_end < vma->vm_end);
775 }
776 } else {
777 vma_changed = true;
778 }
779 vma->vm_end = end;
780 }
781
782 if (vma_changed)
783 vma_mas_store(vma, &mas);
784
785 vma->vm_pgoff = pgoff;
786 if (adjust_next) {
787 next->vm_start += adjust_next;
788 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
789 vma_mas_store(next, &mas);
790 }
791
792 if (file) {
793 if (adjust_next)
794 vma_interval_tree_insert(next, root);
795 vma_interval_tree_insert(vma, root);
796 flush_dcache_mmap_unlock(mapping);
797 }
798
799 if (remove_next && file) {
800 __remove_shared_vm_struct(next, file, mapping);
801 if (remove_next == 2)
802 __remove_shared_vm_struct(next_next, file, mapping);
803 } else if (insert) {
804 /*
805 * split_vma has split insert from vma, and needs
806 * us to insert it before dropping the locks
807 * (it may either follow vma or precede it).
808 */
809 mas_reset(&mas);
810 vma_mas_store(insert, &mas);
811 mm->map_count++;
812 }
813
814 if (anon_vma) {
815 anon_vma_interval_tree_post_update_vma(vma);
816 if (adjust_next)
817 anon_vma_interval_tree_post_update_vma(next);
818 anon_vma_unlock_write(anon_vma);
819 }
820
821 if (file) {
822 i_mmap_unlock_write(mapping);
823 uprobe_mmap(vma);
824
825 if (adjust_next)
826 uprobe_mmap(next);
827 }
828
829 if (remove_next) {
830 again:
831 if (file) {
832 uprobe_munmap(next, next->vm_start, next->vm_end);
833 fput(file);
834 }
835 if (next->anon_vma)
836 anon_vma_merge(vma, next);
837 mm->map_count--;
838 mpol_put(vma_policy(next));
839 if (remove_next != 2)
840 BUG_ON(vma->vm_end < next->vm_end);
841 vm_area_free(next);
842
843 /*
844 * In mprotect's case 6 (see comments on vma_merge),
845 * we must remove next_next too.
846 */
847 if (remove_next == 2) {
848 remove_next = 1;
849 next = next_next;
850 goto again;
851 }
852 }
853 if (insert && file)
854 uprobe_mmap(insert);
855
856 mas_destroy(&mas);
857 validate_mm(mm);
858
859 return 0;
860 }
861
862 /*
863 * If the vma has a ->close operation then the driver probably needs to release
864 * per-vma resources, so we don't attempt to merge those.
865 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)866 static inline int is_mergeable_vma(struct vm_area_struct *vma,
867 struct file *file, unsigned long vm_flags,
868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 struct anon_vma_name *anon_name)
870 {
871 /*
872 * VM_SOFTDIRTY should not prevent from VMA merging, if we
873 * match the flags but dirty bit -- the caller should mark
874 * merged VMA as dirty. If dirty bit won't be excluded from
875 * comparison, we increase pressure on the memory system forcing
876 * the kernel to generate new VMAs when old one could be
877 * extended instead.
878 */
879 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
880 return 0;
881 if (vma->vm_file != file)
882 return 0;
883 if (vma->vm_ops && vma->vm_ops->close)
884 return 0;
885 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
886 return 0;
887 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
888 return 0;
889 return 1;
890 }
891
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)892 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
893 struct anon_vma *anon_vma2,
894 struct vm_area_struct *vma)
895 {
896 /*
897 * The list_is_singular() test is to avoid merging VMA cloned from
898 * parents. This can improve scalability caused by anon_vma lock.
899 */
900 if ((!anon_vma1 || !anon_vma2) && (!vma ||
901 list_is_singular(&vma->anon_vma_chain)))
902 return 1;
903 return anon_vma1 == anon_vma2;
904 }
905
906 /*
907 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
908 * in front of (at a lower virtual address and file offset than) the vma.
909 *
910 * We cannot merge two vmas if they have differently assigned (non-NULL)
911 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
912 *
913 * We don't check here for the merged mmap wrapping around the end of pagecache
914 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
915 * wrap, nor mmaps which cover the final page at index -1UL.
916 */
917 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)918 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
919 struct anon_vma *anon_vma, struct file *file,
920 pgoff_t vm_pgoff,
921 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
922 struct anon_vma_name *anon_name)
923 {
924 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
925 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
926 if (vma->vm_pgoff == vm_pgoff)
927 return 1;
928 }
929 return 0;
930 }
931
932 /*
933 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934 * beyond (at a higher virtual address and file offset than) the vma.
935 *
936 * We cannot merge two vmas if they have differently assigned (non-NULL)
937 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
938 */
939 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)940 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
941 struct anon_vma *anon_vma, struct file *file,
942 pgoff_t vm_pgoff,
943 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
944 struct anon_vma_name *anon_name)
945 {
946 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
947 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
948 pgoff_t vm_pglen;
949 vm_pglen = vma_pages(vma);
950 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
951 return 1;
952 }
953 return 0;
954 }
955
956 /*
957 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
958 * figure out whether that can be merged with its predecessor or its
959 * successor. Or both (it neatly fills a hole).
960 *
961 * In most cases - when called for mmap, brk or mremap - [addr,end) is
962 * certain not to be mapped by the time vma_merge is called; but when
963 * called for mprotect, it is certain to be already mapped (either at
964 * an offset within prev, or at the start of next), and the flags of
965 * this area are about to be changed to vm_flags - and the no-change
966 * case has already been eliminated.
967 *
968 * The following mprotect cases have to be considered, where AAAA is
969 * the area passed down from mprotect_fixup, never extending beyond one
970 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
971 *
972 * AAAA AAAA AAAA
973 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
974 * cannot merge might become might become
975 * PPNNNNNNNNNN PPPPPPPPPPNN
976 * mmap, brk or case 4 below case 5 below
977 * mremap move:
978 * AAAA AAAA
979 * PPPP NNNN PPPPNNNNXXXX
980 * might become might become
981 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
982 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
983 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
984 *
985 * It is important for case 8 that the vma NNNN overlapping the
986 * region AAAA is never going to extended over XXXX. Instead XXXX must
987 * be extended in region AAAA and NNNN must be removed. This way in
988 * all cases where vma_merge succeeds, the moment vma_adjust drops the
989 * rmap_locks, the properties of the merged vma will be already
990 * correct for the whole merged range. Some of those properties like
991 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
992 * be correct for the whole merged range immediately after the
993 * rmap_locks are released. Otherwise if XXXX would be removed and
994 * NNNN would be extended over the XXXX range, remove_migration_ptes
995 * or other rmap walkers (if working on addresses beyond the "end"
996 * parameter) may establish ptes with the wrong permissions of NNNN
997 * instead of the right permissions of XXXX.
998 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)999 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1000 struct vm_area_struct *prev, unsigned long addr,
1001 unsigned long end, unsigned long vm_flags,
1002 struct anon_vma *anon_vma, struct file *file,
1003 pgoff_t pgoff, struct mempolicy *policy,
1004 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1005 struct anon_vma_name *anon_name)
1006 {
1007 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1008 struct vm_area_struct *mid, *next, *res;
1009 int err = -1;
1010 bool merge_prev = false;
1011 bool merge_next = false;
1012
1013 /*
1014 * We later require that vma->vm_flags == vm_flags,
1015 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016 */
1017 if (vm_flags & VM_SPECIAL)
1018 return NULL;
1019
1020 next = find_vma(mm, prev ? prev->vm_end : 0);
1021 mid = next;
1022 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1023 next = find_vma(mm, next->vm_end);
1024
1025 /* verify some invariant that must be enforced by the caller */
1026 VM_WARN_ON(prev && addr <= prev->vm_start);
1027 VM_WARN_ON(mid && end > mid->vm_end);
1028 VM_WARN_ON(addr >= end);
1029
1030 /* Can we merge the predecessor? */
1031 if (prev && prev->vm_end == addr &&
1032 mpol_equal(vma_policy(prev), policy) &&
1033 can_vma_merge_after(prev, vm_flags,
1034 anon_vma, file, pgoff,
1035 vm_userfaultfd_ctx, anon_name)) {
1036 merge_prev = true;
1037 }
1038 /* Can we merge the successor? */
1039 if (next && end == next->vm_start &&
1040 mpol_equal(policy, vma_policy(next)) &&
1041 can_vma_merge_before(next, vm_flags,
1042 anon_vma, file, pgoff+pglen,
1043 vm_userfaultfd_ctx, anon_name)) {
1044 merge_next = true;
1045 }
1046 /* Can we merge both the predecessor and the successor? */
1047 if (merge_prev && merge_next &&
1048 is_mergeable_anon_vma(prev->anon_vma,
1049 next->anon_vma, NULL)) { /* cases 1, 6 */
1050 err = __vma_adjust(prev, prev->vm_start,
1051 next->vm_end, prev->vm_pgoff, NULL,
1052 prev);
1053 res = prev;
1054 } else if (merge_prev) { /* cases 2, 5, 7 */
1055 err = __vma_adjust(prev, prev->vm_start,
1056 end, prev->vm_pgoff, NULL, prev);
1057 res = prev;
1058 } else if (merge_next) {
1059 if (prev && addr < prev->vm_end) /* case 4 */
1060 err = __vma_adjust(prev, prev->vm_start,
1061 addr, prev->vm_pgoff, NULL, next);
1062 else /* cases 3, 8 */
1063 err = __vma_adjust(mid, addr, next->vm_end,
1064 next->vm_pgoff - pglen, NULL, next);
1065 res = next;
1066 }
1067
1068 /*
1069 * Cannot merge with predecessor or successor or error in __vma_adjust?
1070 */
1071 if (err)
1072 return NULL;
1073 khugepaged_enter_vma(res, vm_flags);
1074 return res;
1075 }
1076
1077 /*
1078 * Rough compatibility check to quickly see if it's even worth looking
1079 * at sharing an anon_vma.
1080 *
1081 * They need to have the same vm_file, and the flags can only differ
1082 * in things that mprotect may change.
1083 *
1084 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1085 * we can merge the two vma's. For example, we refuse to merge a vma if
1086 * there is a vm_ops->close() function, because that indicates that the
1087 * driver is doing some kind of reference counting. But that doesn't
1088 * really matter for the anon_vma sharing case.
1089 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1090 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1091 {
1092 return a->vm_end == b->vm_start &&
1093 mpol_equal(vma_policy(a), vma_policy(b)) &&
1094 a->vm_file == b->vm_file &&
1095 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1096 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1097 }
1098
1099 /*
1100 * Do some basic sanity checking to see if we can re-use the anon_vma
1101 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1102 * the same as 'old', the other will be the new one that is trying
1103 * to share the anon_vma.
1104 *
1105 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1106 * the anon_vma of 'old' is concurrently in the process of being set up
1107 * by another page fault trying to merge _that_. But that's ok: if it
1108 * is being set up, that automatically means that it will be a singleton
1109 * acceptable for merging, so we can do all of this optimistically. But
1110 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1111 *
1112 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1113 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1114 * is to return an anon_vma that is "complex" due to having gone through
1115 * a fork).
1116 *
1117 * We also make sure that the two vma's are compatible (adjacent,
1118 * and with the same memory policies). That's all stable, even with just
1119 * a read lock on the mmap_lock.
1120 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1121 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1122 {
1123 if (anon_vma_compatible(a, b)) {
1124 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1125
1126 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1127 return anon_vma;
1128 }
1129 return NULL;
1130 }
1131
1132 /*
1133 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1134 * neighbouring vmas for a suitable anon_vma, before it goes off
1135 * to allocate a new anon_vma. It checks because a repetitive
1136 * sequence of mprotects and faults may otherwise lead to distinct
1137 * anon_vmas being allocated, preventing vma merge in subsequent
1138 * mprotect.
1139 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1140 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1141 {
1142 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1143 struct anon_vma *anon_vma = NULL;
1144 struct vm_area_struct *prev, *next;
1145
1146 /* Try next first. */
1147 next = mas_walk(&mas);
1148 if (next) {
1149 anon_vma = reusable_anon_vma(next, vma, next);
1150 if (anon_vma)
1151 return anon_vma;
1152 }
1153
1154 prev = mas_prev(&mas, 0);
1155 VM_BUG_ON_VMA(prev != vma, vma);
1156 prev = mas_prev(&mas, 0);
1157 /* Try prev next. */
1158 if (prev)
1159 anon_vma = reusable_anon_vma(prev, prev, vma);
1160
1161 /*
1162 * We might reach here with anon_vma == NULL if we can't find
1163 * any reusable anon_vma.
1164 * There's no absolute need to look only at touching neighbours:
1165 * we could search further afield for "compatible" anon_vmas.
1166 * But it would probably just be a waste of time searching,
1167 * or lead to too many vmas hanging off the same anon_vma.
1168 * We're trying to allow mprotect remerging later on,
1169 * not trying to minimize memory used for anon_vmas.
1170 */
1171 return anon_vma;
1172 }
1173
1174 /*
1175 * If a hint addr is less than mmap_min_addr change hint to be as
1176 * low as possible but still greater than mmap_min_addr
1177 */
round_hint_to_min(unsigned long hint)1178 static inline unsigned long round_hint_to_min(unsigned long hint)
1179 {
1180 hint &= PAGE_MASK;
1181 if (((void *)hint != NULL) &&
1182 (hint < mmap_min_addr))
1183 return PAGE_ALIGN(mmap_min_addr);
1184 return hint;
1185 }
1186
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1187 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1188 unsigned long len)
1189 {
1190 unsigned long locked, lock_limit;
1191
1192 /* mlock MCL_FUTURE? */
1193 if (flags & VM_LOCKED) {
1194 locked = len >> PAGE_SHIFT;
1195 locked += mm->locked_vm;
1196 lock_limit = rlimit(RLIMIT_MEMLOCK);
1197 lock_limit >>= PAGE_SHIFT;
1198 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1199 return -EAGAIN;
1200 }
1201 return 0;
1202 }
1203
file_mmap_size_max(struct file * file,struct inode * inode)1204 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1205 {
1206 if (S_ISREG(inode->i_mode))
1207 return MAX_LFS_FILESIZE;
1208
1209 if (S_ISBLK(inode->i_mode))
1210 return MAX_LFS_FILESIZE;
1211
1212 if (S_ISSOCK(inode->i_mode))
1213 return MAX_LFS_FILESIZE;
1214
1215 /* Special "we do even unsigned file positions" case */
1216 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1217 return 0;
1218
1219 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1220 return ULONG_MAX;
1221 }
1222
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1223 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1224 unsigned long pgoff, unsigned long len)
1225 {
1226 u64 maxsize = file_mmap_size_max(file, inode);
1227
1228 if (maxsize && len > maxsize)
1229 return false;
1230 maxsize -= len;
1231 if (pgoff > maxsize >> PAGE_SHIFT)
1232 return false;
1233 return true;
1234 }
1235
1236 /*
1237 * The caller must write-lock current->mm->mmap_lock.
1238 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1239 unsigned long do_mmap(struct file *file, unsigned long addr,
1240 unsigned long len, unsigned long prot,
1241 unsigned long flags, unsigned long pgoff,
1242 unsigned long *populate, struct list_head *uf)
1243 {
1244 struct mm_struct *mm = current->mm;
1245 vm_flags_t vm_flags;
1246 int pkey = 0;
1247
1248 validate_mm(mm);
1249 *populate = 0;
1250
1251 if (!len)
1252 return -EINVAL;
1253
1254 /*
1255 * Does the application expect PROT_READ to imply PROT_EXEC?
1256 *
1257 * (the exception is when the underlying filesystem is noexec
1258 * mounted, in which case we dont add PROT_EXEC.)
1259 */
1260 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1261 if (!(file && path_noexec(&file->f_path)))
1262 prot |= PROT_EXEC;
1263
1264 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1265 if (flags & MAP_FIXED_NOREPLACE)
1266 flags |= MAP_FIXED;
1267
1268 if (!(flags & MAP_FIXED))
1269 addr = round_hint_to_min(addr);
1270
1271 /* Careful about overflows.. */
1272 len = PAGE_ALIGN(len);
1273 if (!len)
1274 return -ENOMEM;
1275
1276 /* offset overflow? */
1277 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1278 return -EOVERFLOW;
1279
1280 /* Too many mappings? */
1281 if (mm->map_count > sysctl_max_map_count)
1282 return -ENOMEM;
1283
1284 /* Obtain the address to map to. we verify (or select) it and ensure
1285 * that it represents a valid section of the address space.
1286 */
1287 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1288 if (IS_ERR_VALUE(addr))
1289 return addr;
1290
1291 if (flags & MAP_FIXED_NOREPLACE) {
1292 if (find_vma_intersection(mm, addr, addr + len))
1293 return -EEXIST;
1294 }
1295
1296 if (prot == PROT_EXEC) {
1297 pkey = execute_only_pkey(mm);
1298 if (pkey < 0)
1299 pkey = 0;
1300 }
1301
1302 /* Do simple checking here so the lower-level routines won't have
1303 * to. we assume access permissions have been handled by the open
1304 * of the memory object, so we don't do any here.
1305 */
1306 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1307 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1308
1309 if (flags & MAP_LOCKED)
1310 if (!can_do_mlock())
1311 return -EPERM;
1312
1313 if (mlock_future_check(mm, vm_flags, len))
1314 return -EAGAIN;
1315
1316 if (file) {
1317 struct inode *inode = file_inode(file);
1318 unsigned long flags_mask;
1319
1320 if (!file_mmap_ok(file, inode, pgoff, len))
1321 return -EOVERFLOW;
1322
1323 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1324
1325 switch (flags & MAP_TYPE) {
1326 case MAP_SHARED:
1327 /*
1328 * Force use of MAP_SHARED_VALIDATE with non-legacy
1329 * flags. E.g. MAP_SYNC is dangerous to use with
1330 * MAP_SHARED as you don't know which consistency model
1331 * you will get. We silently ignore unsupported flags
1332 * with MAP_SHARED to preserve backward compatibility.
1333 */
1334 flags &= LEGACY_MAP_MASK;
1335 fallthrough;
1336 case MAP_SHARED_VALIDATE:
1337 if (flags & ~flags_mask)
1338 return -EOPNOTSUPP;
1339 if (prot & PROT_WRITE) {
1340 if (!(file->f_mode & FMODE_WRITE))
1341 return -EACCES;
1342 if (IS_SWAPFILE(file->f_mapping->host))
1343 return -ETXTBSY;
1344 }
1345
1346 /*
1347 * Make sure we don't allow writing to an append-only
1348 * file..
1349 */
1350 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1351 return -EACCES;
1352
1353 vm_flags |= VM_SHARED | VM_MAYSHARE;
1354 if (!(file->f_mode & FMODE_WRITE))
1355 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1356 fallthrough;
1357 case MAP_PRIVATE:
1358 if (!(file->f_mode & FMODE_READ))
1359 return -EACCES;
1360 if (path_noexec(&file->f_path)) {
1361 if (vm_flags & VM_EXEC)
1362 return -EPERM;
1363 vm_flags &= ~VM_MAYEXEC;
1364 }
1365
1366 if (!file->f_op->mmap)
1367 return -ENODEV;
1368 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1369 return -EINVAL;
1370 break;
1371
1372 default:
1373 return -EINVAL;
1374 }
1375 } else {
1376 switch (flags & MAP_TYPE) {
1377 case MAP_SHARED:
1378 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1379 return -EINVAL;
1380 /*
1381 * Ignore pgoff.
1382 */
1383 pgoff = 0;
1384 vm_flags |= VM_SHARED | VM_MAYSHARE;
1385 break;
1386 case MAP_PRIVATE:
1387 /*
1388 * Set pgoff according to addr for anon_vma.
1389 */
1390 pgoff = addr >> PAGE_SHIFT;
1391 break;
1392 default:
1393 return -EINVAL;
1394 }
1395 }
1396
1397 /*
1398 * Set 'VM_NORESERVE' if we should not account for the
1399 * memory use of this mapping.
1400 */
1401 if (flags & MAP_NORESERVE) {
1402 /* We honor MAP_NORESERVE if allowed to overcommit */
1403 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1404 vm_flags |= VM_NORESERVE;
1405
1406 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1407 if (file && is_file_hugepages(file))
1408 vm_flags |= VM_NORESERVE;
1409 }
1410
1411 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1412 if (!IS_ERR_VALUE(addr) &&
1413 ((vm_flags & VM_LOCKED) ||
1414 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1415 *populate = len;
1416 return addr;
1417 }
1418
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1419 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1420 unsigned long prot, unsigned long flags,
1421 unsigned long fd, unsigned long pgoff)
1422 {
1423 struct file *file = NULL;
1424 unsigned long retval;
1425
1426 if (!(flags & MAP_ANONYMOUS)) {
1427 audit_mmap_fd(fd, flags);
1428 file = fget(fd);
1429 if (!file)
1430 return -EBADF;
1431 if (is_file_hugepages(file)) {
1432 len = ALIGN(len, huge_page_size(hstate_file(file)));
1433 } else if (unlikely(flags & MAP_HUGETLB)) {
1434 retval = -EINVAL;
1435 goto out_fput;
1436 }
1437 } else if (flags & MAP_HUGETLB) {
1438 struct hstate *hs;
1439
1440 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1441 if (!hs)
1442 return -EINVAL;
1443
1444 len = ALIGN(len, huge_page_size(hs));
1445 /*
1446 * VM_NORESERVE is used because the reservations will be
1447 * taken when vm_ops->mmap() is called
1448 */
1449 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1450 VM_NORESERVE,
1451 HUGETLB_ANONHUGE_INODE,
1452 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1453 if (IS_ERR(file))
1454 return PTR_ERR(file);
1455 }
1456
1457 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1458 out_fput:
1459 if (file)
1460 fput(file);
1461 return retval;
1462 }
1463
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1464 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1465 unsigned long, prot, unsigned long, flags,
1466 unsigned long, fd, unsigned long, pgoff)
1467 {
1468 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1469 }
1470
1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1472 struct mmap_arg_struct {
1473 unsigned long addr;
1474 unsigned long len;
1475 unsigned long prot;
1476 unsigned long flags;
1477 unsigned long fd;
1478 unsigned long offset;
1479 };
1480
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1482 {
1483 struct mmap_arg_struct a;
1484
1485 if (copy_from_user(&a, arg, sizeof(a)))
1486 return -EFAULT;
1487 if (offset_in_page(a.offset))
1488 return -EINVAL;
1489
1490 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1491 a.offset >> PAGE_SHIFT);
1492 }
1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1494
1495 /*
1496 * Some shared mappings will want the pages marked read-only
1497 * to track write events. If so, we'll downgrade vm_page_prot
1498 * to the private version (using protection_map[] without the
1499 * VM_SHARED bit).
1500 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1501 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1502 {
1503 vm_flags_t vm_flags = vma->vm_flags;
1504 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1505
1506 /* If it was private or non-writable, the write bit is already clear */
1507 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1508 return 0;
1509
1510 /* The backer wishes to know when pages are first written to? */
1511 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1512 return 1;
1513
1514 /* The open routine did something to the protections that pgprot_modify
1515 * won't preserve? */
1516 if (pgprot_val(vm_page_prot) !=
1517 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1518 return 0;
1519
1520 /*
1521 * Do we need to track softdirty? hugetlb does not support softdirty
1522 * tracking yet.
1523 */
1524 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1525 return 1;
1526
1527 /* Specialty mapping? */
1528 if (vm_flags & VM_PFNMAP)
1529 return 0;
1530
1531 /* Can the mapping track the dirty pages? */
1532 return vma->vm_file && vma->vm_file->f_mapping &&
1533 mapping_can_writeback(vma->vm_file->f_mapping);
1534 }
1535
1536 /*
1537 * We account for memory if it's a private writeable mapping,
1538 * not hugepages and VM_NORESERVE wasn't set.
1539 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1541 {
1542 /*
1543 * hugetlb has its own accounting separate from the core VM
1544 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1545 */
1546 if (file && is_file_hugepages(file))
1547 return 0;
1548
1549 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1550 }
1551
1552 /**
1553 * unmapped_area() - Find an area between the low_limit and the high_limit with
1554 * the correct alignment and offset, all from @info. Note: current->mm is used
1555 * for the search.
1556 *
1557 * @info: The unmapped area information including the range (low_limit -
1558 * hight_limit), the alignment offset and mask.
1559 *
1560 * Return: A memory address or -ENOMEM.
1561 */
unmapped_area(struct vm_unmapped_area_info * info)1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1563 {
1564 unsigned long length, gap;
1565
1566 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1567
1568 /* Adjust search length to account for worst case alignment overhead */
1569 length = info->length + info->align_mask;
1570 if (length < info->length)
1571 return -ENOMEM;
1572
1573 if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1574 length))
1575 return -ENOMEM;
1576
1577 gap = mas.index;
1578 gap += (info->align_offset - gap) & info->align_mask;
1579 return gap;
1580 }
1581
1582 /**
1583 * unmapped_area_topdown() - Find an area between the low_limit and the
1584 * high_limit with * the correct alignment and offset at the highest available
1585 * address, all from @info. Note: current->mm is used for the search.
1586 *
1587 * @info: The unmapped area information including the range (low_limit -
1588 * hight_limit), the alignment offset and mask.
1589 *
1590 * Return: A memory address or -ENOMEM.
1591 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)1592 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1593 {
1594 unsigned long length, gap;
1595
1596 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1597 /* Adjust search length to account for worst case alignment overhead */
1598 length = info->length + info->align_mask;
1599 if (length < info->length)
1600 return -ENOMEM;
1601
1602 if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1603 length))
1604 return -ENOMEM;
1605
1606 gap = mas.last + 1 - info->length;
1607 gap -= (gap - info->align_offset) & info->align_mask;
1608 return gap;
1609 }
1610
1611 /*
1612 * Search for an unmapped address range.
1613 *
1614 * We are looking for a range that:
1615 * - does not intersect with any VMA;
1616 * - is contained within the [low_limit, high_limit) interval;
1617 * - is at least the desired size.
1618 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1619 */
vm_unmapped_area(struct vm_unmapped_area_info * info)1620 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1621 {
1622 unsigned long addr;
1623
1624 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1625 addr = unmapped_area_topdown(info);
1626 else
1627 addr = unmapped_area(info);
1628
1629 trace_vm_unmapped_area(addr, info);
1630 return addr;
1631 }
1632
1633 /* Get an address range which is currently unmapped.
1634 * For shmat() with addr=0.
1635 *
1636 * Ugly calling convention alert:
1637 * Return value with the low bits set means error value,
1638 * ie
1639 * if (ret & ~PAGE_MASK)
1640 * error = ret;
1641 *
1642 * This function "knows" that -ENOMEM has the bits set.
1643 */
1644 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1645 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1646 unsigned long len, unsigned long pgoff,
1647 unsigned long flags)
1648 {
1649 struct mm_struct *mm = current->mm;
1650 struct vm_area_struct *vma, *prev;
1651 struct vm_unmapped_area_info info;
1652 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1653
1654 if (len > mmap_end - mmap_min_addr)
1655 return -ENOMEM;
1656
1657 if (flags & MAP_FIXED)
1658 return addr;
1659
1660 if (addr) {
1661 addr = PAGE_ALIGN(addr);
1662 vma = find_vma_prev(mm, addr, &prev);
1663 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1664 (!vma || addr + len <= vm_start_gap(vma)) &&
1665 (!prev || addr >= vm_end_gap(prev)))
1666 return addr;
1667 }
1668
1669 info.flags = 0;
1670 info.length = len;
1671 info.low_limit = mm->mmap_base;
1672 info.high_limit = mmap_end;
1673 info.align_mask = 0;
1674 info.align_offset = 0;
1675 return vm_unmapped_area(&info);
1676 }
1677
1678 #ifndef HAVE_ARCH_UNMAPPED_AREA
1679 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1680 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1681 unsigned long len, unsigned long pgoff,
1682 unsigned long flags)
1683 {
1684 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1685 }
1686 #endif
1687
1688 /*
1689 * This mmap-allocator allocates new areas top-down from below the
1690 * stack's low limit (the base):
1691 */
1692 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1693 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1694 unsigned long len, unsigned long pgoff,
1695 unsigned long flags)
1696 {
1697 struct vm_area_struct *vma, *prev;
1698 struct mm_struct *mm = current->mm;
1699 struct vm_unmapped_area_info info;
1700 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1701
1702 /* requested length too big for entire address space */
1703 if (len > mmap_end - mmap_min_addr)
1704 return -ENOMEM;
1705
1706 if (flags & MAP_FIXED)
1707 return addr;
1708
1709 /* requesting a specific address */
1710 if (addr) {
1711 addr = PAGE_ALIGN(addr);
1712 vma = find_vma_prev(mm, addr, &prev);
1713 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1714 (!vma || addr + len <= vm_start_gap(vma)) &&
1715 (!prev || addr >= vm_end_gap(prev)))
1716 return addr;
1717 }
1718
1719 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1720 info.length = len;
1721 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1722 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1723 info.align_mask = 0;
1724 info.align_offset = 0;
1725 addr = vm_unmapped_area(&info);
1726
1727 /*
1728 * A failed mmap() very likely causes application failure,
1729 * so fall back to the bottom-up function here. This scenario
1730 * can happen with large stack limits and large mmap()
1731 * allocations.
1732 */
1733 if (offset_in_page(addr)) {
1734 VM_BUG_ON(addr != -ENOMEM);
1735 info.flags = 0;
1736 info.low_limit = TASK_UNMAPPED_BASE;
1737 info.high_limit = mmap_end;
1738 addr = vm_unmapped_area(&info);
1739 }
1740
1741 return addr;
1742 }
1743
1744 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1745 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1746 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1747 unsigned long len, unsigned long pgoff,
1748 unsigned long flags)
1749 {
1750 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1751 }
1752 #endif
1753
1754 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1755 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1756 unsigned long pgoff, unsigned long flags)
1757 {
1758 unsigned long (*get_area)(struct file *, unsigned long,
1759 unsigned long, unsigned long, unsigned long);
1760
1761 unsigned long error = arch_mmap_check(addr, len, flags);
1762 if (error)
1763 return error;
1764
1765 /* Careful about overflows.. */
1766 if (len > TASK_SIZE)
1767 return -ENOMEM;
1768
1769 get_area = current->mm->get_unmapped_area;
1770 if (file) {
1771 if (file->f_op->get_unmapped_area)
1772 get_area = file->f_op->get_unmapped_area;
1773 } else if (flags & MAP_SHARED) {
1774 /*
1775 * mmap_region() will call shmem_zero_setup() to create a file,
1776 * so use shmem's get_unmapped_area in case it can be huge.
1777 * do_mmap() will clear pgoff, so match alignment.
1778 */
1779 pgoff = 0;
1780 get_area = shmem_get_unmapped_area;
1781 }
1782
1783 addr = get_area(file, addr, len, pgoff, flags);
1784 if (IS_ERR_VALUE(addr))
1785 return addr;
1786
1787 if (addr > TASK_SIZE - len)
1788 return -ENOMEM;
1789 if (offset_in_page(addr))
1790 return -EINVAL;
1791
1792 error = security_mmap_addr(addr);
1793 return error ? error : addr;
1794 }
1795
1796 EXPORT_SYMBOL(get_unmapped_area);
1797
1798 /**
1799 * find_vma_intersection() - Look up the first VMA which intersects the interval
1800 * @mm: The process address space.
1801 * @start_addr: The inclusive start user address.
1802 * @end_addr: The exclusive end user address.
1803 *
1804 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1805 * start_addr < end_addr.
1806 */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1807 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1808 unsigned long start_addr,
1809 unsigned long end_addr)
1810 {
1811 unsigned long index = start_addr;
1812
1813 mmap_assert_locked(mm);
1814 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1815 }
1816 EXPORT_SYMBOL(find_vma_intersection);
1817
1818 /**
1819 * find_vma() - Find the VMA for a given address, or the next VMA.
1820 * @mm: The mm_struct to check
1821 * @addr: The address
1822 *
1823 * Returns: The VMA associated with addr, or the next VMA.
1824 * May return %NULL in the case of no VMA at addr or above.
1825 */
find_vma(struct mm_struct * mm,unsigned long addr)1826 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1827 {
1828 unsigned long index = addr;
1829
1830 mmap_assert_locked(mm);
1831 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1832 }
1833 EXPORT_SYMBOL(find_vma);
1834
1835 /**
1836 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1837 * set %pprev to the previous VMA, if any.
1838 * @mm: The mm_struct to check
1839 * @addr: The address
1840 * @pprev: The pointer to set to the previous VMA
1841 *
1842 * Note that RCU lock is missing here since the external mmap_lock() is used
1843 * instead.
1844 *
1845 * Returns: The VMA associated with @addr, or the next vma.
1846 * May return %NULL in the case of no vma at addr or above.
1847 */
1848 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1849 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1850 struct vm_area_struct **pprev)
1851 {
1852 struct vm_area_struct *vma;
1853 MA_STATE(mas, &mm->mm_mt, addr, addr);
1854
1855 vma = mas_walk(&mas);
1856 *pprev = mas_prev(&mas, 0);
1857 if (!vma)
1858 vma = mas_next(&mas, ULONG_MAX);
1859 return vma;
1860 }
1861
1862 /*
1863 * Verify that the stack growth is acceptable and
1864 * update accounting. This is shared with both the
1865 * grow-up and grow-down cases.
1866 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1867 static int acct_stack_growth(struct vm_area_struct *vma,
1868 unsigned long size, unsigned long grow)
1869 {
1870 struct mm_struct *mm = vma->vm_mm;
1871 unsigned long new_start;
1872
1873 /* address space limit tests */
1874 if (!may_expand_vm(mm, vma->vm_flags, grow))
1875 return -ENOMEM;
1876
1877 /* Stack limit test */
1878 if (size > rlimit(RLIMIT_STACK))
1879 return -ENOMEM;
1880
1881 /* mlock limit tests */
1882 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1883 return -ENOMEM;
1884
1885 /* Check to ensure the stack will not grow into a hugetlb-only region */
1886 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1887 vma->vm_end - size;
1888 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1889 return -EFAULT;
1890
1891 /*
1892 * Overcommit.. This must be the final test, as it will
1893 * update security statistics.
1894 */
1895 if (security_vm_enough_memory_mm(mm, grow))
1896 return -ENOMEM;
1897
1898 return 0;
1899 }
1900
1901 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1902 /*
1903 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1904 * vma is the last one with address > vma->vm_end. Have to extend vma.
1905 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1906 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1907 {
1908 struct mm_struct *mm = vma->vm_mm;
1909 struct vm_area_struct *next;
1910 unsigned long gap_addr;
1911 int error = 0;
1912 MA_STATE(mas, &mm->mm_mt, 0, 0);
1913
1914 if (!(vma->vm_flags & VM_GROWSUP))
1915 return -EFAULT;
1916
1917 /* Guard against exceeding limits of the address space. */
1918 address &= PAGE_MASK;
1919 if (address >= (TASK_SIZE & PAGE_MASK))
1920 return -ENOMEM;
1921 address += PAGE_SIZE;
1922
1923 /* Enforce stack_guard_gap */
1924 gap_addr = address + stack_guard_gap;
1925
1926 /* Guard against overflow */
1927 if (gap_addr < address || gap_addr > TASK_SIZE)
1928 gap_addr = TASK_SIZE;
1929
1930 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1931 if (next && vma_is_accessible(next)) {
1932 if (!(next->vm_flags & VM_GROWSUP))
1933 return -ENOMEM;
1934 /* Check that both stack segments have the same anon_vma? */
1935 }
1936
1937 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1938 return -ENOMEM;
1939
1940 /* We must make sure the anon_vma is allocated. */
1941 if (unlikely(anon_vma_prepare(vma))) {
1942 mas_destroy(&mas);
1943 return -ENOMEM;
1944 }
1945
1946 /*
1947 * vma->vm_start/vm_end cannot change under us because the caller
1948 * is required to hold the mmap_lock in read mode. We need the
1949 * anon_vma lock to serialize against concurrent expand_stacks.
1950 */
1951 anon_vma_lock_write(vma->anon_vma);
1952
1953 /* Somebody else might have raced and expanded it already */
1954 if (address > vma->vm_end) {
1955 unsigned long size, grow;
1956
1957 size = address - vma->vm_start;
1958 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1959
1960 error = -ENOMEM;
1961 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1962 error = acct_stack_growth(vma, size, grow);
1963 if (!error) {
1964 /*
1965 * We only hold a shared mmap_lock lock here, so
1966 * we need to protect against concurrent vma
1967 * expansions. anon_vma_lock_write() doesn't
1968 * help here, as we don't guarantee that all
1969 * growable vmas in a mm share the same root
1970 * anon vma. So, we reuse mm->page_table_lock
1971 * to guard against concurrent vma expansions.
1972 */
1973 spin_lock(&mm->page_table_lock);
1974 if (vma->vm_flags & VM_LOCKED)
1975 mm->locked_vm += grow;
1976 vm_stat_account(mm, vma->vm_flags, grow);
1977 anon_vma_interval_tree_pre_update_vma(vma);
1978 vma->vm_end = address;
1979 /* Overwrite old entry in mtree. */
1980 vma_mas_store(vma, &mas);
1981 anon_vma_interval_tree_post_update_vma(vma);
1982 spin_unlock(&mm->page_table_lock);
1983
1984 perf_event_mmap(vma);
1985 }
1986 }
1987 }
1988 anon_vma_unlock_write(vma->anon_vma);
1989 khugepaged_enter_vma(vma, vma->vm_flags);
1990 mas_destroy(&mas);
1991 return error;
1992 }
1993 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1994
1995 /*
1996 * vma is the first one with address < vma->vm_start. Have to extend vma.
1997 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)1998 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1999 {
2000 struct mm_struct *mm = vma->vm_mm;
2001 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2002 struct vm_area_struct *prev;
2003 int error = 0;
2004
2005 address &= PAGE_MASK;
2006 if (address < mmap_min_addr)
2007 return -EPERM;
2008
2009 /* Enforce stack_guard_gap */
2010 prev = mas_prev(&mas, 0);
2011 /* Check that both stack segments have the same anon_vma? */
2012 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2013 vma_is_accessible(prev)) {
2014 if (address - prev->vm_end < stack_guard_gap)
2015 return -ENOMEM;
2016 }
2017
2018 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2019 return -ENOMEM;
2020
2021 /* We must make sure the anon_vma is allocated. */
2022 if (unlikely(anon_vma_prepare(vma))) {
2023 mas_destroy(&mas);
2024 return -ENOMEM;
2025 }
2026
2027 /*
2028 * vma->vm_start/vm_end cannot change under us because the caller
2029 * is required to hold the mmap_lock in read mode. We need the
2030 * anon_vma lock to serialize against concurrent expand_stacks.
2031 */
2032 anon_vma_lock_write(vma->anon_vma);
2033
2034 /* Somebody else might have raced and expanded it already */
2035 if (address < vma->vm_start) {
2036 unsigned long size, grow;
2037
2038 size = vma->vm_end - address;
2039 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2040
2041 error = -ENOMEM;
2042 if (grow <= vma->vm_pgoff) {
2043 error = acct_stack_growth(vma, size, grow);
2044 if (!error) {
2045 /*
2046 * We only hold a shared mmap_lock lock here, so
2047 * we need to protect against concurrent vma
2048 * expansions. anon_vma_lock_write() doesn't
2049 * help here, as we don't guarantee that all
2050 * growable vmas in a mm share the same root
2051 * anon vma. So, we reuse mm->page_table_lock
2052 * to guard against concurrent vma expansions.
2053 */
2054 spin_lock(&mm->page_table_lock);
2055 if (vma->vm_flags & VM_LOCKED)
2056 mm->locked_vm += grow;
2057 vm_stat_account(mm, vma->vm_flags, grow);
2058 anon_vma_interval_tree_pre_update_vma(vma);
2059 vma->vm_start = address;
2060 vma->vm_pgoff -= grow;
2061 /* Overwrite old entry in mtree. */
2062 vma_mas_store(vma, &mas);
2063 anon_vma_interval_tree_post_update_vma(vma);
2064 spin_unlock(&mm->page_table_lock);
2065
2066 perf_event_mmap(vma);
2067 }
2068 }
2069 }
2070 anon_vma_unlock_write(vma->anon_vma);
2071 khugepaged_enter_vma(vma, vma->vm_flags);
2072 mas_destroy(&mas);
2073 return error;
2074 }
2075
2076 /* enforced gap between the expanding stack and other mappings. */
2077 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2078
cmdline_parse_stack_guard_gap(char * p)2079 static int __init cmdline_parse_stack_guard_gap(char *p)
2080 {
2081 unsigned long val;
2082 char *endptr;
2083
2084 val = simple_strtoul(p, &endptr, 10);
2085 if (!*endptr)
2086 stack_guard_gap = val << PAGE_SHIFT;
2087
2088 return 1;
2089 }
2090 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2091
2092 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2093 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2094 {
2095 return expand_upwards(vma, address);
2096 }
2097
2098 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2099 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2100 {
2101 struct vm_area_struct *vma, *prev;
2102
2103 addr &= PAGE_MASK;
2104 vma = find_vma_prev(mm, addr, &prev);
2105 if (vma && (vma->vm_start <= addr))
2106 return vma;
2107 if (!prev || expand_stack(prev, addr))
2108 return NULL;
2109 if (prev->vm_flags & VM_LOCKED)
2110 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2111 return prev;
2112 }
2113 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2114 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2115 {
2116 return expand_downwards(vma, address);
2117 }
2118
2119 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2120 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2121 {
2122 struct vm_area_struct *vma;
2123 unsigned long start;
2124
2125 addr &= PAGE_MASK;
2126 vma = find_vma(mm, addr);
2127 if (!vma)
2128 return NULL;
2129 if (vma->vm_start <= addr)
2130 return vma;
2131 if (!(vma->vm_flags & VM_GROWSDOWN))
2132 return NULL;
2133 start = vma->vm_start;
2134 if (expand_stack(vma, addr))
2135 return NULL;
2136 if (vma->vm_flags & VM_LOCKED)
2137 populate_vma_page_range(vma, addr, start, NULL);
2138 return vma;
2139 }
2140 #endif
2141
2142 EXPORT_SYMBOL_GPL(find_extend_vma);
2143
2144 /*
2145 * Ok - we have the memory areas we should free on a maple tree so release them,
2146 * and do the vma updates.
2147 *
2148 * Called with the mm semaphore held.
2149 */
remove_mt(struct mm_struct * mm,struct ma_state * mas)2150 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2151 {
2152 unsigned long nr_accounted = 0;
2153 struct vm_area_struct *vma;
2154
2155 /* Update high watermark before we lower total_vm */
2156 update_hiwater_vm(mm);
2157 mas_for_each(mas, vma, ULONG_MAX) {
2158 long nrpages = vma_pages(vma);
2159
2160 if (vma->vm_flags & VM_ACCOUNT)
2161 nr_accounted += nrpages;
2162 vm_stat_account(mm, vma->vm_flags, -nrpages);
2163 remove_vma(vma);
2164 }
2165 vm_unacct_memory(nr_accounted);
2166 validate_mm(mm);
2167 }
2168
2169 /*
2170 * Get rid of page table information in the indicated region.
2171 *
2172 * Called with the mm semaphore held.
2173 */
unmap_region(struct mm_struct * mm,struct maple_tree * mt,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next,unsigned long start,unsigned long end)2174 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2175 struct vm_area_struct *vma, struct vm_area_struct *prev,
2176 struct vm_area_struct *next,
2177 unsigned long start, unsigned long end)
2178 {
2179 struct mmu_gather tlb;
2180
2181 lru_add_drain();
2182 tlb_gather_mmu(&tlb, mm);
2183 update_hiwater_rss(mm);
2184 unmap_vmas(&tlb, mt, vma, start, end);
2185 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2186 next ? next->vm_start : USER_PGTABLES_CEILING);
2187 tlb_finish_mmu(&tlb);
2188 }
2189
2190 /*
2191 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2192 * has already been checked or doesn't make sense to fail.
2193 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2194 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2195 unsigned long addr, int new_below)
2196 {
2197 struct vm_area_struct *new;
2198 int err;
2199 validate_mm_mt(mm);
2200
2201 if (vma->vm_ops && vma->vm_ops->may_split) {
2202 err = vma->vm_ops->may_split(vma, addr);
2203 if (err)
2204 return err;
2205 }
2206
2207 new = vm_area_dup(vma);
2208 if (!new)
2209 return -ENOMEM;
2210
2211 if (new_below)
2212 new->vm_end = addr;
2213 else {
2214 new->vm_start = addr;
2215 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2216 }
2217
2218 err = vma_dup_policy(vma, new);
2219 if (err)
2220 goto out_free_vma;
2221
2222 err = anon_vma_clone(new, vma);
2223 if (err)
2224 goto out_free_mpol;
2225
2226 if (new->vm_file)
2227 get_file(new->vm_file);
2228
2229 if (new->vm_ops && new->vm_ops->open)
2230 new->vm_ops->open(new);
2231
2232 if (new_below)
2233 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2234 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2235 else
2236 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2237
2238 /* Success. */
2239 if (!err)
2240 return 0;
2241
2242 /* Avoid vm accounting in close() operation */
2243 new->vm_start = new->vm_end;
2244 new->vm_pgoff = 0;
2245 /* Clean everything up if vma_adjust failed. */
2246 if (new->vm_ops && new->vm_ops->close)
2247 new->vm_ops->close(new);
2248 if (new->vm_file)
2249 fput(new->vm_file);
2250 unlink_anon_vmas(new);
2251 out_free_mpol:
2252 mpol_put(vma_policy(new));
2253 out_free_vma:
2254 vm_area_free(new);
2255 validate_mm_mt(mm);
2256 return err;
2257 }
2258
2259 /*
2260 * Split a vma into two pieces at address 'addr', a new vma is allocated
2261 * either for the first part or the tail.
2262 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2263 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2264 unsigned long addr, int new_below)
2265 {
2266 if (mm->map_count >= sysctl_max_map_count)
2267 return -ENOMEM;
2268
2269 return __split_vma(mm, vma, addr, new_below);
2270 }
2271
munmap_sidetree(struct vm_area_struct * vma,struct ma_state * mas_detach)2272 static inline int munmap_sidetree(struct vm_area_struct *vma,
2273 struct ma_state *mas_detach)
2274 {
2275 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2276 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2277 return -ENOMEM;
2278
2279 if (vma->vm_flags & VM_LOCKED)
2280 vma->vm_mm->locked_vm -= vma_pages(vma);
2281
2282 return 0;
2283 }
2284
2285 /*
2286 * do_mas_align_munmap() - munmap the aligned region from @start to @end.
2287 * @mas: The maple_state, ideally set up to alter the correct tree location.
2288 * @vma: The starting vm_area_struct
2289 * @mm: The mm_struct
2290 * @start: The aligned start address to munmap.
2291 * @end: The aligned end address to munmap.
2292 * @uf: The userfaultfd list_head
2293 * @downgrade: Set to true to attempt a write downgrade of the mmap_sem
2294 *
2295 * If @downgrade is true, check return code for potential release of the lock.
2296 */
2297 static int
do_mas_align_munmap(struct ma_state * mas,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool downgrade)2298 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2299 struct mm_struct *mm, unsigned long start,
2300 unsigned long end, struct list_head *uf, bool downgrade)
2301 {
2302 struct vm_area_struct *prev, *next = NULL;
2303 struct maple_tree mt_detach;
2304 int count = 0;
2305 int error = -ENOMEM;
2306 MA_STATE(mas_detach, &mt_detach, 0, 0);
2307 mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2308 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2309
2310 if (mas_preallocate(mas, vma, GFP_KERNEL))
2311 return -ENOMEM;
2312
2313 mas->last = end - 1;
2314 /*
2315 * If we need to split any vma, do it now to save pain later.
2316 *
2317 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2318 * unmapped vm_area_struct will remain in use: so lower split_vma
2319 * places tmp vma above, and higher split_vma places tmp vma below.
2320 */
2321
2322 /* Does it split the first one? */
2323 if (start > vma->vm_start) {
2324
2325 /*
2326 * Make sure that map_count on return from munmap() will
2327 * not exceed its limit; but let map_count go just above
2328 * its limit temporarily, to help free resources as expected.
2329 */
2330 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2331 goto map_count_exceeded;
2332
2333 /*
2334 * mas_pause() is not needed since mas->index needs to be set
2335 * differently than vma->vm_end anyways.
2336 */
2337 error = __split_vma(mm, vma, start, 0);
2338 if (error)
2339 goto start_split_failed;
2340
2341 mas_set(mas, start);
2342 vma = mas_walk(mas);
2343 }
2344
2345 prev = mas_prev(mas, 0);
2346 if (unlikely((!prev)))
2347 mas_set(mas, start);
2348
2349 /*
2350 * Detach a range of VMAs from the mm. Using next as a temp variable as
2351 * it is always overwritten.
2352 */
2353 mas_for_each(mas, next, end - 1) {
2354 /* Does it split the end? */
2355 if (next->vm_end > end) {
2356 struct vm_area_struct *split;
2357
2358 error = __split_vma(mm, next, end, 1);
2359 if (error)
2360 goto end_split_failed;
2361
2362 mas_set(mas, end);
2363 split = mas_prev(mas, 0);
2364 error = munmap_sidetree(split, &mas_detach);
2365 if (error)
2366 goto munmap_sidetree_failed;
2367
2368 count++;
2369 if (vma == next)
2370 vma = split;
2371 break;
2372 }
2373 error = munmap_sidetree(next, &mas_detach);
2374 if (error)
2375 goto munmap_sidetree_failed;
2376
2377 count++;
2378 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2379 BUG_ON(next->vm_start < start);
2380 BUG_ON(next->vm_start > end);
2381 #endif
2382 }
2383
2384 if (!next)
2385 next = mas_next(mas, ULONG_MAX);
2386
2387 if (unlikely(uf)) {
2388 /*
2389 * If userfaultfd_unmap_prep returns an error the vmas
2390 * will remain split, but userland will get a
2391 * highly unexpected error anyway. This is no
2392 * different than the case where the first of the two
2393 * __split_vma fails, but we don't undo the first
2394 * split, despite we could. This is unlikely enough
2395 * failure that it's not worth optimizing it for.
2396 */
2397 error = userfaultfd_unmap_prep(mm, start, end, uf);
2398
2399 if (error)
2400 goto userfaultfd_error;
2401 }
2402
2403 /* Point of no return */
2404 mas_set_range(mas, start, end - 1);
2405 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2406 /* Make sure no VMAs are about to be lost. */
2407 {
2408 MA_STATE(test, &mt_detach, start, end - 1);
2409 struct vm_area_struct *vma_mas, *vma_test;
2410 int test_count = 0;
2411
2412 rcu_read_lock();
2413 vma_test = mas_find(&test, end - 1);
2414 mas_for_each(mas, vma_mas, end - 1) {
2415 BUG_ON(vma_mas != vma_test);
2416 test_count++;
2417 vma_test = mas_next(&test, end - 1);
2418 }
2419 rcu_read_unlock();
2420 BUG_ON(count != test_count);
2421 mas_set_range(mas, start, end - 1);
2422 }
2423 #endif
2424 mas_store_prealloc(mas, NULL);
2425 mm->map_count -= count;
2426 /*
2427 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2428 * VM_GROWSUP VMA. Such VMAs can change their size under
2429 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2430 */
2431 if (downgrade) {
2432 if (next && (next->vm_flags & VM_GROWSDOWN))
2433 downgrade = false;
2434 else if (prev && (prev->vm_flags & VM_GROWSUP))
2435 downgrade = false;
2436 else
2437 mmap_write_downgrade(mm);
2438 }
2439
2440 unmap_region(mm, &mt_detach, vma, prev, next, start, end);
2441 /* Statistics and freeing VMAs */
2442 mas_set(&mas_detach, start);
2443 remove_mt(mm, &mas_detach);
2444 __mt_destroy(&mt_detach);
2445
2446
2447 validate_mm(mm);
2448 return downgrade ? 1 : 0;
2449
2450 userfaultfd_error:
2451 munmap_sidetree_failed:
2452 end_split_failed:
2453 __mt_destroy(&mt_detach);
2454 start_split_failed:
2455 map_count_exceeded:
2456 mas_destroy(mas);
2457 return error;
2458 }
2459
2460 /*
2461 * do_mas_munmap() - munmap a given range.
2462 * @mas: The maple state
2463 * @mm: The mm_struct
2464 * @start: The start address to munmap
2465 * @len: The length of the range to munmap
2466 * @uf: The userfaultfd list_head
2467 * @downgrade: set to true if the user wants to attempt to write_downgrade the
2468 * mmap_sem
2469 *
2470 * This function takes a @mas that is either pointing to the previous VMA or set
2471 * to MA_START and sets it up to remove the mapping(s). The @len will be
2472 * aligned and any arch_unmap work will be preformed.
2473 *
2474 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2475 */
do_mas_munmap(struct ma_state * mas,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2476 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2477 unsigned long start, size_t len, struct list_head *uf,
2478 bool downgrade)
2479 {
2480 unsigned long end;
2481 struct vm_area_struct *vma;
2482
2483 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2484 return -EINVAL;
2485
2486 end = start + PAGE_ALIGN(len);
2487 if (end == start)
2488 return -EINVAL;
2489
2490 /* arch_unmap() might do unmaps itself. */
2491 arch_unmap(mm, start, end);
2492
2493 /* Find the first overlapping VMA */
2494 vma = mas_find(mas, end - 1);
2495 if (!vma)
2496 return 0;
2497
2498 return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade);
2499 }
2500
2501 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2502 * @mm: The mm_struct
2503 * @start: The start address to munmap
2504 * @len: The length to be munmapped.
2505 * @uf: The userfaultfd list_head
2506 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2507 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2508 struct list_head *uf)
2509 {
2510 MA_STATE(mas, &mm->mm_mt, start, start);
2511
2512 return do_mas_munmap(&mas, mm, start, len, uf, false);
2513 }
2514
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2515 unsigned long mmap_region(struct file *file, unsigned long addr,
2516 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2517 struct list_head *uf)
2518 {
2519 struct mm_struct *mm = current->mm;
2520 struct vm_area_struct *vma = NULL;
2521 struct vm_area_struct *next, *prev, *merge;
2522 pgoff_t pglen = len >> PAGE_SHIFT;
2523 unsigned long charged = 0;
2524 unsigned long end = addr + len;
2525 unsigned long merge_start = addr, merge_end = end;
2526 pgoff_t vm_pgoff;
2527 int error;
2528 MA_STATE(mas, &mm->mm_mt, addr, end - 1);
2529
2530 /* Check against address space limit. */
2531 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2532 unsigned long nr_pages;
2533
2534 /*
2535 * MAP_FIXED may remove pages of mappings that intersects with
2536 * requested mapping. Account for the pages it would unmap.
2537 */
2538 nr_pages = count_vma_pages_range(mm, addr, end);
2539
2540 if (!may_expand_vm(mm, vm_flags,
2541 (len >> PAGE_SHIFT) - nr_pages))
2542 return -ENOMEM;
2543 }
2544
2545 /* Unmap any existing mapping in the area */
2546 if (do_mas_munmap(&mas, mm, addr, len, uf, false))
2547 return -ENOMEM;
2548
2549 /*
2550 * Private writable mapping: check memory availability
2551 */
2552 if (accountable_mapping(file, vm_flags)) {
2553 charged = len >> PAGE_SHIFT;
2554 if (security_vm_enough_memory_mm(mm, charged))
2555 return -ENOMEM;
2556 vm_flags |= VM_ACCOUNT;
2557 }
2558
2559 next = mas_next(&mas, ULONG_MAX);
2560 prev = mas_prev(&mas, 0);
2561 if (vm_flags & VM_SPECIAL)
2562 goto cannot_expand;
2563
2564 /* Attempt to expand an old mapping */
2565 /* Check next */
2566 if (next && next->vm_start == end && !vma_policy(next) &&
2567 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2568 NULL_VM_UFFD_CTX, NULL)) {
2569 merge_end = next->vm_end;
2570 vma = next;
2571 vm_pgoff = next->vm_pgoff - pglen;
2572 }
2573
2574 /* Check prev */
2575 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2576 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2577 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2578 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2579 NULL_VM_UFFD_CTX, NULL))) {
2580 merge_start = prev->vm_start;
2581 vma = prev;
2582 vm_pgoff = prev->vm_pgoff;
2583 }
2584
2585
2586 /* Actually expand, if possible */
2587 if (vma &&
2588 !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) {
2589 khugepaged_enter_vma(vma, vm_flags);
2590 goto expanded;
2591 }
2592
2593 mas.index = addr;
2594 mas.last = end - 1;
2595 cannot_expand:
2596 /*
2597 * Determine the object being mapped and call the appropriate
2598 * specific mapper. the address has already been validated, but
2599 * not unmapped, but the maps are removed from the list.
2600 */
2601 vma = vm_area_alloc(mm);
2602 if (!vma) {
2603 error = -ENOMEM;
2604 goto unacct_error;
2605 }
2606
2607 vma->vm_start = addr;
2608 vma->vm_end = end;
2609 vma->vm_flags = vm_flags;
2610 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2611 vma->vm_pgoff = pgoff;
2612
2613 if (file) {
2614 if (vm_flags & VM_SHARED) {
2615 error = mapping_map_writable(file->f_mapping);
2616 if (error)
2617 goto free_vma;
2618 }
2619
2620 vma->vm_file = get_file(file);
2621 error = call_mmap(file, vma);
2622 if (error)
2623 goto unmap_and_free_vma;
2624
2625 /*
2626 * Expansion is handled above, merging is handled below.
2627 * Drivers should not alter the address of the VMA.
2628 */
2629 if (WARN_ON((addr != vma->vm_start))) {
2630 error = -EINVAL;
2631 goto close_and_free_vma;
2632 }
2633 mas_reset(&mas);
2634
2635 /*
2636 * If vm_flags changed after call_mmap(), we should try merge
2637 * vma again as we may succeed this time.
2638 */
2639 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2640 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
2641 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2642 if (merge) {
2643 /*
2644 * ->mmap() can change vma->vm_file and fput
2645 * the original file. So fput the vma->vm_file
2646 * here or we would add an extra fput for file
2647 * and cause general protection fault
2648 * ultimately.
2649 */
2650 fput(vma->vm_file);
2651 vm_area_free(vma);
2652 vma = merge;
2653 /* Update vm_flags to pick up the change. */
2654 vm_flags = vma->vm_flags;
2655 goto unmap_writable;
2656 }
2657 }
2658
2659 vm_flags = vma->vm_flags;
2660 } else if (vm_flags & VM_SHARED) {
2661 error = shmem_zero_setup(vma);
2662 if (error)
2663 goto free_vma;
2664 } else {
2665 vma_set_anonymous(vma);
2666 }
2667
2668 /* Allow architectures to sanity-check the vm_flags */
2669 if (!arch_validate_flags(vma->vm_flags)) {
2670 error = -EINVAL;
2671 if (file)
2672 goto close_and_free_vma;
2673 else if (vma->vm_file)
2674 goto unmap_and_free_vma;
2675 else
2676 goto free_vma;
2677 }
2678
2679 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
2680 error = -ENOMEM;
2681 if (file)
2682 goto close_and_free_vma;
2683 else if (vma->vm_file)
2684 goto unmap_and_free_vma;
2685 else
2686 goto free_vma;
2687 }
2688
2689 if (vma->vm_file)
2690 i_mmap_lock_write(vma->vm_file->f_mapping);
2691
2692 vma_mas_store(vma, &mas);
2693 mm->map_count++;
2694 if (vma->vm_file) {
2695 if (vma->vm_flags & VM_SHARED)
2696 mapping_allow_writable(vma->vm_file->f_mapping);
2697
2698 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2699 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2700 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2701 i_mmap_unlock_write(vma->vm_file->f_mapping);
2702 }
2703
2704 /*
2705 * vma_merge() calls khugepaged_enter_vma() either, the below
2706 * call covers the non-merge case.
2707 */
2708 khugepaged_enter_vma(vma, vma->vm_flags);
2709
2710 /* Once vma denies write, undo our temporary denial count */
2711 unmap_writable:
2712 if (file && vm_flags & VM_SHARED)
2713 mapping_unmap_writable(file->f_mapping);
2714 file = vma->vm_file;
2715 expanded:
2716 perf_event_mmap(vma);
2717
2718 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2719 if (vm_flags & VM_LOCKED) {
2720 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2721 is_vm_hugetlb_page(vma) ||
2722 vma == get_gate_vma(current->mm))
2723 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
2724 else
2725 mm->locked_vm += (len >> PAGE_SHIFT);
2726 }
2727
2728 if (file)
2729 uprobe_mmap(vma);
2730
2731 /*
2732 * New (or expanded) vma always get soft dirty status.
2733 * Otherwise user-space soft-dirty page tracker won't
2734 * be able to distinguish situation when vma area unmapped,
2735 * then new mapped in-place (which must be aimed as
2736 * a completely new data area).
2737 */
2738 vma->vm_flags |= VM_SOFTDIRTY;
2739
2740 vma_set_page_prot(vma);
2741
2742 validate_mm(mm);
2743 return addr;
2744
2745 close_and_free_vma:
2746 if (vma->vm_ops && vma->vm_ops->close)
2747 vma->vm_ops->close(vma);
2748 unmap_and_free_vma:
2749 fput(vma->vm_file);
2750 vma->vm_file = NULL;
2751
2752 /* Undo any partial mapping done by a device driver. */
2753 unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end);
2754 if (file && (vm_flags & VM_SHARED))
2755 mapping_unmap_writable(file->f_mapping);
2756 free_vma:
2757 vm_area_free(vma);
2758 unacct_error:
2759 if (charged)
2760 vm_unacct_memory(charged);
2761 validate_mm(mm);
2762 return error;
2763 }
2764
__vm_munmap(unsigned long start,size_t len,bool downgrade)2765 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2766 {
2767 int ret;
2768 struct mm_struct *mm = current->mm;
2769 LIST_HEAD(uf);
2770 MA_STATE(mas, &mm->mm_mt, start, start);
2771
2772 if (mmap_write_lock_killable(mm))
2773 return -EINTR;
2774
2775 ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade);
2776 /*
2777 * Returning 1 indicates mmap_lock is downgraded.
2778 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2779 * it to 0 before return.
2780 */
2781 if (ret == 1) {
2782 mmap_read_unlock(mm);
2783 ret = 0;
2784 } else
2785 mmap_write_unlock(mm);
2786
2787 userfaultfd_unmap_complete(mm, &uf);
2788 return ret;
2789 }
2790
vm_munmap(unsigned long start,size_t len)2791 int vm_munmap(unsigned long start, size_t len)
2792 {
2793 return __vm_munmap(start, len, false);
2794 }
2795 EXPORT_SYMBOL(vm_munmap);
2796
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2797 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2798 {
2799 addr = untagged_addr(addr);
2800 return __vm_munmap(addr, len, true);
2801 }
2802
2803
2804 /*
2805 * Emulation of deprecated remap_file_pages() syscall.
2806 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2807 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2808 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2809 {
2810
2811 struct mm_struct *mm = current->mm;
2812 struct vm_area_struct *vma;
2813 unsigned long populate = 0;
2814 unsigned long ret = -EINVAL;
2815 struct file *file;
2816
2817 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2818 current->comm, current->pid);
2819
2820 if (prot)
2821 return ret;
2822 start = start & PAGE_MASK;
2823 size = size & PAGE_MASK;
2824
2825 if (start + size <= start)
2826 return ret;
2827
2828 /* Does pgoff wrap? */
2829 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2830 return ret;
2831
2832 if (mmap_write_lock_killable(mm))
2833 return -EINTR;
2834
2835 vma = vma_lookup(mm, start);
2836
2837 if (!vma || !(vma->vm_flags & VM_SHARED))
2838 goto out;
2839
2840 if (start + size > vma->vm_end) {
2841 VMA_ITERATOR(vmi, mm, vma->vm_end);
2842 struct vm_area_struct *next, *prev = vma;
2843
2844 for_each_vma_range(vmi, next, start + size) {
2845 /* hole between vmas ? */
2846 if (next->vm_start != prev->vm_end)
2847 goto out;
2848
2849 if (next->vm_file != vma->vm_file)
2850 goto out;
2851
2852 if (next->vm_flags != vma->vm_flags)
2853 goto out;
2854
2855 if (start + size <= next->vm_end)
2856 break;
2857
2858 prev = next;
2859 }
2860
2861 if (!next)
2862 goto out;
2863 }
2864
2865 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2866 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2867 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2868
2869 flags &= MAP_NONBLOCK;
2870 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2871 if (vma->vm_flags & VM_LOCKED)
2872 flags |= MAP_LOCKED;
2873
2874 file = get_file(vma->vm_file);
2875 ret = do_mmap(vma->vm_file, start, size,
2876 prot, flags, pgoff, &populate, NULL);
2877 fput(file);
2878 out:
2879 mmap_write_unlock(mm);
2880 if (populate)
2881 mm_populate(ret, populate);
2882 if (!IS_ERR_VALUE(ret))
2883 ret = 0;
2884 return ret;
2885 }
2886
2887 /*
2888 * brk_munmap() - Unmap a parital vma.
2889 * @mas: The maple tree state.
2890 * @vma: The vma to be modified
2891 * @newbrk: the start of the address to unmap
2892 * @oldbrk: The end of the address to unmap
2893 * @uf: The userfaultfd list_head
2894 *
2895 * Returns: 1 on success.
2896 * unmaps a partial VMA mapping. Does not handle alignment, downgrades lock if
2897 * possible.
2898 */
do_brk_munmap(struct ma_state * mas,struct vm_area_struct * vma,unsigned long newbrk,unsigned long oldbrk,struct list_head * uf)2899 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2900 unsigned long newbrk, unsigned long oldbrk,
2901 struct list_head *uf)
2902 {
2903 struct mm_struct *mm = vma->vm_mm;
2904 int ret;
2905
2906 arch_unmap(mm, newbrk, oldbrk);
2907 ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true);
2908 validate_mm_mt(mm);
2909 return ret;
2910 }
2911
2912 /*
2913 * do_brk_flags() - Increase the brk vma if the flags match.
2914 * @mas: The maple tree state.
2915 * @addr: The start address
2916 * @len: The length of the increase
2917 * @vma: The vma,
2918 * @flags: The VMA Flags
2919 *
2920 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2921 * do not match then create a new anonymous VMA. Eventually we may be able to
2922 * do some brk-specific accounting here.
2923 */
do_brk_flags(struct ma_state * mas,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)2924 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
2925 unsigned long addr, unsigned long len, unsigned long flags)
2926 {
2927 struct mm_struct *mm = current->mm;
2928
2929 validate_mm_mt(mm);
2930 /*
2931 * Check against address space limits by the changed size
2932 * Note: This happens *after* clearing old mappings in some code paths.
2933 */
2934 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2935 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2936 return -ENOMEM;
2937
2938 if (mm->map_count > sysctl_max_map_count)
2939 return -ENOMEM;
2940
2941 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2942 return -ENOMEM;
2943
2944 /*
2945 * Expand the existing vma if possible; Note that singular lists do not
2946 * occur after forking, so the expand will only happen on new VMAs.
2947 */
2948 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2949 can_vma_merge_after(vma, flags, NULL, NULL,
2950 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2951 mas_set_range(mas, vma->vm_start, addr + len - 1);
2952 if (mas_preallocate(mas, vma, GFP_KERNEL))
2953 return -ENOMEM;
2954
2955 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2956 if (vma->anon_vma) {
2957 anon_vma_lock_write(vma->anon_vma);
2958 anon_vma_interval_tree_pre_update_vma(vma);
2959 }
2960 vma->vm_end = addr + len;
2961 vma->vm_flags |= VM_SOFTDIRTY;
2962 mas_store_prealloc(mas, vma);
2963
2964 if (vma->anon_vma) {
2965 anon_vma_interval_tree_post_update_vma(vma);
2966 anon_vma_unlock_write(vma->anon_vma);
2967 }
2968 khugepaged_enter_vma(vma, flags);
2969 goto out;
2970 }
2971
2972 /* create a vma struct for an anonymous mapping */
2973 vma = vm_area_alloc(mm);
2974 if (!vma)
2975 goto vma_alloc_fail;
2976
2977 vma_set_anonymous(vma);
2978 vma->vm_start = addr;
2979 vma->vm_end = addr + len;
2980 vma->vm_pgoff = addr >> PAGE_SHIFT;
2981 vma->vm_flags = flags;
2982 vma->vm_page_prot = vm_get_page_prot(flags);
2983 mas_set_range(mas, vma->vm_start, addr + len - 1);
2984 if (mas_store_gfp(mas, vma, GFP_KERNEL))
2985 goto mas_store_fail;
2986
2987 mm->map_count++;
2988 out:
2989 perf_event_mmap(vma);
2990 mm->total_vm += len >> PAGE_SHIFT;
2991 mm->data_vm += len >> PAGE_SHIFT;
2992 if (flags & VM_LOCKED)
2993 mm->locked_vm += (len >> PAGE_SHIFT);
2994 vma->vm_flags |= VM_SOFTDIRTY;
2995 validate_mm(mm);
2996 return 0;
2997
2998 mas_store_fail:
2999 vm_area_free(vma);
3000 vma_alloc_fail:
3001 vm_unacct_memory(len >> PAGE_SHIFT);
3002 return -ENOMEM;
3003 }
3004
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3005 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3006 {
3007 struct mm_struct *mm = current->mm;
3008 struct vm_area_struct *vma = NULL;
3009 unsigned long len;
3010 int ret;
3011 bool populate;
3012 LIST_HEAD(uf);
3013 MA_STATE(mas, &mm->mm_mt, addr, addr);
3014
3015 len = PAGE_ALIGN(request);
3016 if (len < request)
3017 return -ENOMEM;
3018 if (!len)
3019 return 0;
3020
3021 if (mmap_write_lock_killable(mm))
3022 return -EINTR;
3023
3024 /* Until we need other flags, refuse anything except VM_EXEC. */
3025 if ((flags & (~VM_EXEC)) != 0)
3026 return -EINVAL;
3027
3028 ret = check_brk_limits(addr, len);
3029 if (ret)
3030 goto limits_failed;
3031
3032 ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0);
3033 if (ret)
3034 goto munmap_failed;
3035
3036 vma = mas_prev(&mas, 0);
3037 ret = do_brk_flags(&mas, vma, addr, len, flags);
3038 populate = ((mm->def_flags & VM_LOCKED) != 0);
3039 mmap_write_unlock(mm);
3040 userfaultfd_unmap_complete(mm, &uf);
3041 if (populate && !ret)
3042 mm_populate(addr, len);
3043 return ret;
3044
3045 munmap_failed:
3046 limits_failed:
3047 mmap_write_unlock(mm);
3048 return ret;
3049 }
3050 EXPORT_SYMBOL(vm_brk_flags);
3051
vm_brk(unsigned long addr,unsigned long len)3052 int vm_brk(unsigned long addr, unsigned long len)
3053 {
3054 return vm_brk_flags(addr, len, 0);
3055 }
3056 EXPORT_SYMBOL(vm_brk);
3057
3058 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3059 void exit_mmap(struct mm_struct *mm)
3060 {
3061 struct mmu_gather tlb;
3062 struct vm_area_struct *vma;
3063 unsigned long nr_accounted = 0;
3064 MA_STATE(mas, &mm->mm_mt, 0, 0);
3065 int count = 0;
3066
3067 /* mm's last user has gone, and its about to be pulled down */
3068 mmu_notifier_release(mm);
3069
3070 mmap_read_lock(mm);
3071 arch_exit_mmap(mm);
3072
3073 vma = mas_find(&mas, ULONG_MAX);
3074 if (!vma) {
3075 /* Can happen if dup_mmap() received an OOM */
3076 mmap_read_unlock(mm);
3077 return;
3078 }
3079
3080 lru_add_drain();
3081 flush_cache_mm(mm);
3082 tlb_gather_mmu_fullmm(&tlb, mm);
3083 /* update_hiwater_rss(mm) here? but nobody should be looking */
3084 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3085 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);
3086 mmap_read_unlock(mm);
3087
3088 /*
3089 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3090 * because the memory has been already freed.
3091 */
3092 set_bit(MMF_OOM_SKIP, &mm->flags);
3093 mmap_write_lock(mm);
3094 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3095 USER_PGTABLES_CEILING);
3096 tlb_finish_mmu(&tlb);
3097
3098 /*
3099 * Walk the list again, actually closing and freeing it, with preemption
3100 * enabled, without holding any MM locks besides the unreachable
3101 * mmap_write_lock.
3102 */
3103 do {
3104 if (vma->vm_flags & VM_ACCOUNT)
3105 nr_accounted += vma_pages(vma);
3106 remove_vma(vma);
3107 count++;
3108 cond_resched();
3109 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3110
3111 BUG_ON(count != mm->map_count);
3112
3113 trace_exit_mmap(mm);
3114 __mt_destroy(&mm->mm_mt);
3115 mmap_write_unlock(mm);
3116 vm_unacct_memory(nr_accounted);
3117 }
3118
3119 /* Insert vm structure into process list sorted by address
3120 * and into the inode's i_mmap tree. If vm_file is non-NULL
3121 * then i_mmap_rwsem is taken here.
3122 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3123 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3124 {
3125 unsigned long charged = vma_pages(vma);
3126
3127
3128 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3129 return -ENOMEM;
3130
3131 if ((vma->vm_flags & VM_ACCOUNT) &&
3132 security_vm_enough_memory_mm(mm, charged))
3133 return -ENOMEM;
3134
3135 /*
3136 * The vm_pgoff of a purely anonymous vma should be irrelevant
3137 * until its first write fault, when page's anon_vma and index
3138 * are set. But now set the vm_pgoff it will almost certainly
3139 * end up with (unless mremap moves it elsewhere before that
3140 * first wfault), so /proc/pid/maps tells a consistent story.
3141 *
3142 * By setting it to reflect the virtual start address of the
3143 * vma, merges and splits can happen in a seamless way, just
3144 * using the existing file pgoff checks and manipulations.
3145 * Similarly in do_mmap and in do_brk_flags.
3146 */
3147 if (vma_is_anonymous(vma)) {
3148 BUG_ON(vma->anon_vma);
3149 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3150 }
3151
3152 if (vma_link(mm, vma)) {
3153 vm_unacct_memory(charged);
3154 return -ENOMEM;
3155 }
3156
3157 return 0;
3158 }
3159
3160 /*
3161 * Copy the vma structure to a new location in the same mm,
3162 * prior to moving page table entries, to effect an mremap move.
3163 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3164 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3165 unsigned long addr, unsigned long len, pgoff_t pgoff,
3166 bool *need_rmap_locks)
3167 {
3168 struct vm_area_struct *vma = *vmap;
3169 unsigned long vma_start = vma->vm_start;
3170 struct mm_struct *mm = vma->vm_mm;
3171 struct vm_area_struct *new_vma, *prev;
3172 bool faulted_in_anon_vma = true;
3173
3174 validate_mm_mt(mm);
3175 /*
3176 * If anonymous vma has not yet been faulted, update new pgoff
3177 * to match new location, to increase its chance of merging.
3178 */
3179 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3180 pgoff = addr >> PAGE_SHIFT;
3181 faulted_in_anon_vma = false;
3182 }
3183
3184 new_vma = find_vma_prev(mm, addr, &prev);
3185 if (new_vma && new_vma->vm_start < addr + len)
3186 return NULL; /* should never get here */
3187
3188 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3189 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3190 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3191 if (new_vma) {
3192 /*
3193 * Source vma may have been merged into new_vma
3194 */
3195 if (unlikely(vma_start >= new_vma->vm_start &&
3196 vma_start < new_vma->vm_end)) {
3197 /*
3198 * The only way we can get a vma_merge with
3199 * self during an mremap is if the vma hasn't
3200 * been faulted in yet and we were allowed to
3201 * reset the dst vma->vm_pgoff to the
3202 * destination address of the mremap to allow
3203 * the merge to happen. mremap must change the
3204 * vm_pgoff linearity between src and dst vmas
3205 * (in turn preventing a vma_merge) to be
3206 * safe. It is only safe to keep the vm_pgoff
3207 * linear if there are no pages mapped yet.
3208 */
3209 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3210 *vmap = vma = new_vma;
3211 }
3212 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3213 } else {
3214 new_vma = vm_area_dup(vma);
3215 if (!new_vma)
3216 goto out;
3217 new_vma->vm_start = addr;
3218 new_vma->vm_end = addr + len;
3219 new_vma->vm_pgoff = pgoff;
3220 if (vma_dup_policy(vma, new_vma))
3221 goto out_free_vma;
3222 if (anon_vma_clone(new_vma, vma))
3223 goto out_free_mempol;
3224 if (new_vma->vm_file)
3225 get_file(new_vma->vm_file);
3226 if (new_vma->vm_ops && new_vma->vm_ops->open)
3227 new_vma->vm_ops->open(new_vma);
3228 if (vma_link(mm, new_vma))
3229 goto out_vma_link;
3230 *need_rmap_locks = false;
3231 }
3232 validate_mm_mt(mm);
3233 return new_vma;
3234
3235 out_vma_link:
3236 if (new_vma->vm_ops && new_vma->vm_ops->close)
3237 new_vma->vm_ops->close(new_vma);
3238
3239 if (new_vma->vm_file)
3240 fput(new_vma->vm_file);
3241
3242 unlink_anon_vmas(new_vma);
3243 out_free_mempol:
3244 mpol_put(vma_policy(new_vma));
3245 out_free_vma:
3246 vm_area_free(new_vma);
3247 out:
3248 validate_mm_mt(mm);
3249 return NULL;
3250 }
3251
3252 /*
3253 * Return true if the calling process may expand its vm space by the passed
3254 * number of pages
3255 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3256 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3257 {
3258 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3259 return false;
3260
3261 if (is_data_mapping(flags) &&
3262 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3263 /* Workaround for Valgrind */
3264 if (rlimit(RLIMIT_DATA) == 0 &&
3265 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3266 return true;
3267
3268 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3269 current->comm, current->pid,
3270 (mm->data_vm + npages) << PAGE_SHIFT,
3271 rlimit(RLIMIT_DATA),
3272 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3273
3274 if (!ignore_rlimit_data)
3275 return false;
3276 }
3277
3278 return true;
3279 }
3280
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3281 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3282 {
3283 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3284
3285 if (is_exec_mapping(flags))
3286 mm->exec_vm += npages;
3287 else if (is_stack_mapping(flags))
3288 mm->stack_vm += npages;
3289 else if (is_data_mapping(flags))
3290 mm->data_vm += npages;
3291 }
3292
3293 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3294
3295 /*
3296 * Having a close hook prevents vma merging regardless of flags.
3297 */
special_mapping_close(struct vm_area_struct * vma)3298 static void special_mapping_close(struct vm_area_struct *vma)
3299 {
3300 }
3301
special_mapping_name(struct vm_area_struct * vma)3302 static const char *special_mapping_name(struct vm_area_struct *vma)
3303 {
3304 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3305 }
3306
special_mapping_mremap(struct vm_area_struct * new_vma)3307 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3308 {
3309 struct vm_special_mapping *sm = new_vma->vm_private_data;
3310
3311 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3312 return -EFAULT;
3313
3314 if (sm->mremap)
3315 return sm->mremap(sm, new_vma);
3316
3317 return 0;
3318 }
3319
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3320 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3321 {
3322 /*
3323 * Forbid splitting special mappings - kernel has expectations over
3324 * the number of pages in mapping. Together with VM_DONTEXPAND
3325 * the size of vma should stay the same over the special mapping's
3326 * lifetime.
3327 */
3328 return -EINVAL;
3329 }
3330
3331 static const struct vm_operations_struct special_mapping_vmops = {
3332 .close = special_mapping_close,
3333 .fault = special_mapping_fault,
3334 .mremap = special_mapping_mremap,
3335 .name = special_mapping_name,
3336 /* vDSO code relies that VVAR can't be accessed remotely */
3337 .access = NULL,
3338 .may_split = special_mapping_split,
3339 };
3340
3341 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3342 .close = special_mapping_close,
3343 .fault = special_mapping_fault,
3344 };
3345
special_mapping_fault(struct vm_fault * vmf)3346 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3347 {
3348 struct vm_area_struct *vma = vmf->vma;
3349 pgoff_t pgoff;
3350 struct page **pages;
3351
3352 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3353 pages = vma->vm_private_data;
3354 } else {
3355 struct vm_special_mapping *sm = vma->vm_private_data;
3356
3357 if (sm->fault)
3358 return sm->fault(sm, vmf->vma, vmf);
3359
3360 pages = sm->pages;
3361 }
3362
3363 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3364 pgoff--;
3365
3366 if (*pages) {
3367 struct page *page = *pages;
3368 get_page(page);
3369 vmf->page = page;
3370 return 0;
3371 }
3372
3373 return VM_FAULT_SIGBUS;
3374 }
3375
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3376 static struct vm_area_struct *__install_special_mapping(
3377 struct mm_struct *mm,
3378 unsigned long addr, unsigned long len,
3379 unsigned long vm_flags, void *priv,
3380 const struct vm_operations_struct *ops)
3381 {
3382 int ret;
3383 struct vm_area_struct *vma;
3384
3385 validate_mm_mt(mm);
3386 vma = vm_area_alloc(mm);
3387 if (unlikely(vma == NULL))
3388 return ERR_PTR(-ENOMEM);
3389
3390 vma->vm_start = addr;
3391 vma->vm_end = addr + len;
3392
3393 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3394 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3395 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3396
3397 vma->vm_ops = ops;
3398 vma->vm_private_data = priv;
3399
3400 ret = insert_vm_struct(mm, vma);
3401 if (ret)
3402 goto out;
3403
3404 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3405
3406 perf_event_mmap(vma);
3407
3408 validate_mm_mt(mm);
3409 return vma;
3410
3411 out:
3412 vm_area_free(vma);
3413 validate_mm_mt(mm);
3414 return ERR_PTR(ret);
3415 }
3416
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3417 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3418 const struct vm_special_mapping *sm)
3419 {
3420 return vma->vm_private_data == sm &&
3421 (vma->vm_ops == &special_mapping_vmops ||
3422 vma->vm_ops == &legacy_special_mapping_vmops);
3423 }
3424
3425 /*
3426 * Called with mm->mmap_lock held for writing.
3427 * Insert a new vma covering the given region, with the given flags.
3428 * Its pages are supplied by the given array of struct page *.
3429 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3430 * The region past the last page supplied will always produce SIGBUS.
3431 * The array pointer and the pages it points to are assumed to stay alive
3432 * for as long as this mapping might exist.
3433 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3434 struct vm_area_struct *_install_special_mapping(
3435 struct mm_struct *mm,
3436 unsigned long addr, unsigned long len,
3437 unsigned long vm_flags, const struct vm_special_mapping *spec)
3438 {
3439 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3440 &special_mapping_vmops);
3441 }
3442
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3443 int install_special_mapping(struct mm_struct *mm,
3444 unsigned long addr, unsigned long len,
3445 unsigned long vm_flags, struct page **pages)
3446 {
3447 struct vm_area_struct *vma = __install_special_mapping(
3448 mm, addr, len, vm_flags, (void *)pages,
3449 &legacy_special_mapping_vmops);
3450
3451 return PTR_ERR_OR_ZERO(vma);
3452 }
3453
3454 static DEFINE_MUTEX(mm_all_locks_mutex);
3455
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3456 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3457 {
3458 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3459 /*
3460 * The LSB of head.next can't change from under us
3461 * because we hold the mm_all_locks_mutex.
3462 */
3463 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3464 /*
3465 * We can safely modify head.next after taking the
3466 * anon_vma->root->rwsem. If some other vma in this mm shares
3467 * the same anon_vma we won't take it again.
3468 *
3469 * No need of atomic instructions here, head.next
3470 * can't change from under us thanks to the
3471 * anon_vma->root->rwsem.
3472 */
3473 if (__test_and_set_bit(0, (unsigned long *)
3474 &anon_vma->root->rb_root.rb_root.rb_node))
3475 BUG();
3476 }
3477 }
3478
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3479 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3480 {
3481 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3482 /*
3483 * AS_MM_ALL_LOCKS can't change from under us because
3484 * we hold the mm_all_locks_mutex.
3485 *
3486 * Operations on ->flags have to be atomic because
3487 * even if AS_MM_ALL_LOCKS is stable thanks to the
3488 * mm_all_locks_mutex, there may be other cpus
3489 * changing other bitflags in parallel to us.
3490 */
3491 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3492 BUG();
3493 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3494 }
3495 }
3496
3497 /*
3498 * This operation locks against the VM for all pte/vma/mm related
3499 * operations that could ever happen on a certain mm. This includes
3500 * vmtruncate, try_to_unmap, and all page faults.
3501 *
3502 * The caller must take the mmap_lock in write mode before calling
3503 * mm_take_all_locks(). The caller isn't allowed to release the
3504 * mmap_lock until mm_drop_all_locks() returns.
3505 *
3506 * mmap_lock in write mode is required in order to block all operations
3507 * that could modify pagetables and free pages without need of
3508 * altering the vma layout. It's also needed in write mode to avoid new
3509 * anon_vmas to be associated with existing vmas.
3510 *
3511 * A single task can't take more than one mm_take_all_locks() in a row
3512 * or it would deadlock.
3513 *
3514 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3515 * mapping->flags avoid to take the same lock twice, if more than one
3516 * vma in this mm is backed by the same anon_vma or address_space.
3517 *
3518 * We take locks in following order, accordingly to comment at beginning
3519 * of mm/rmap.c:
3520 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3521 * hugetlb mapping);
3522 * - all i_mmap_rwsem locks;
3523 * - all anon_vma->rwseml
3524 *
3525 * We can take all locks within these types randomly because the VM code
3526 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3527 * mm_all_locks_mutex.
3528 *
3529 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3530 * that may have to take thousand of locks.
3531 *
3532 * mm_take_all_locks() can fail if it's interrupted by signals.
3533 */
mm_take_all_locks(struct mm_struct * mm)3534 int mm_take_all_locks(struct mm_struct *mm)
3535 {
3536 struct vm_area_struct *vma;
3537 struct anon_vma_chain *avc;
3538 MA_STATE(mas, &mm->mm_mt, 0, 0);
3539
3540 mmap_assert_write_locked(mm);
3541
3542 mutex_lock(&mm_all_locks_mutex);
3543
3544 mas_for_each(&mas, vma, ULONG_MAX) {
3545 if (signal_pending(current))
3546 goto out_unlock;
3547 if (vma->vm_file && vma->vm_file->f_mapping &&
3548 is_vm_hugetlb_page(vma))
3549 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3550 }
3551
3552 mas_set(&mas, 0);
3553 mas_for_each(&mas, vma, ULONG_MAX) {
3554 if (signal_pending(current))
3555 goto out_unlock;
3556 if (vma->vm_file && vma->vm_file->f_mapping &&
3557 !is_vm_hugetlb_page(vma))
3558 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3559 }
3560
3561 mas_set(&mas, 0);
3562 mas_for_each(&mas, vma, ULONG_MAX) {
3563 if (signal_pending(current))
3564 goto out_unlock;
3565 if (vma->anon_vma)
3566 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3567 vm_lock_anon_vma(mm, avc->anon_vma);
3568 }
3569
3570 return 0;
3571
3572 out_unlock:
3573 mm_drop_all_locks(mm);
3574 return -EINTR;
3575 }
3576
vm_unlock_anon_vma(struct anon_vma * anon_vma)3577 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3578 {
3579 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3580 /*
3581 * The LSB of head.next can't change to 0 from under
3582 * us because we hold the mm_all_locks_mutex.
3583 *
3584 * We must however clear the bitflag before unlocking
3585 * the vma so the users using the anon_vma->rb_root will
3586 * never see our bitflag.
3587 *
3588 * No need of atomic instructions here, head.next
3589 * can't change from under us until we release the
3590 * anon_vma->root->rwsem.
3591 */
3592 if (!__test_and_clear_bit(0, (unsigned long *)
3593 &anon_vma->root->rb_root.rb_root.rb_node))
3594 BUG();
3595 anon_vma_unlock_write(anon_vma);
3596 }
3597 }
3598
vm_unlock_mapping(struct address_space * mapping)3599 static void vm_unlock_mapping(struct address_space *mapping)
3600 {
3601 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3602 /*
3603 * AS_MM_ALL_LOCKS can't change to 0 from under us
3604 * because we hold the mm_all_locks_mutex.
3605 */
3606 i_mmap_unlock_write(mapping);
3607 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3608 &mapping->flags))
3609 BUG();
3610 }
3611 }
3612
3613 /*
3614 * The mmap_lock cannot be released by the caller until
3615 * mm_drop_all_locks() returns.
3616 */
mm_drop_all_locks(struct mm_struct * mm)3617 void mm_drop_all_locks(struct mm_struct *mm)
3618 {
3619 struct vm_area_struct *vma;
3620 struct anon_vma_chain *avc;
3621 MA_STATE(mas, &mm->mm_mt, 0, 0);
3622
3623 mmap_assert_write_locked(mm);
3624 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3625
3626 mas_for_each(&mas, vma, ULONG_MAX) {
3627 if (vma->anon_vma)
3628 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3629 vm_unlock_anon_vma(avc->anon_vma);
3630 if (vma->vm_file && vma->vm_file->f_mapping)
3631 vm_unlock_mapping(vma->vm_file->f_mapping);
3632 }
3633
3634 mutex_unlock(&mm_all_locks_mutex);
3635 }
3636
3637 /*
3638 * initialise the percpu counter for VM
3639 */
mmap_init(void)3640 void __init mmap_init(void)
3641 {
3642 int ret;
3643
3644 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3645 VM_BUG_ON(ret);
3646 }
3647
3648 /*
3649 * Initialise sysctl_user_reserve_kbytes.
3650 *
3651 * This is intended to prevent a user from starting a single memory hogging
3652 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3653 * mode.
3654 *
3655 * The default value is min(3% of free memory, 128MB)
3656 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3657 */
init_user_reserve(void)3658 static int init_user_reserve(void)
3659 {
3660 unsigned long free_kbytes;
3661
3662 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3663
3664 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3665 return 0;
3666 }
3667 subsys_initcall(init_user_reserve);
3668
3669 /*
3670 * Initialise sysctl_admin_reserve_kbytes.
3671 *
3672 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3673 * to log in and kill a memory hogging process.
3674 *
3675 * Systems with more than 256MB will reserve 8MB, enough to recover
3676 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3677 * only reserve 3% of free pages by default.
3678 */
init_admin_reserve(void)3679 static int init_admin_reserve(void)
3680 {
3681 unsigned long free_kbytes;
3682
3683 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3684
3685 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3686 return 0;
3687 }
3688 subsys_initcall(init_admin_reserve);
3689
3690 /*
3691 * Reinititalise user and admin reserves if memory is added or removed.
3692 *
3693 * The default user reserve max is 128MB, and the default max for the
3694 * admin reserve is 8MB. These are usually, but not always, enough to
3695 * enable recovery from a memory hogging process using login/sshd, a shell,
3696 * and tools like top. It may make sense to increase or even disable the
3697 * reserve depending on the existence of swap or variations in the recovery
3698 * tools. So, the admin may have changed them.
3699 *
3700 * If memory is added and the reserves have been eliminated or increased above
3701 * the default max, then we'll trust the admin.
3702 *
3703 * If memory is removed and there isn't enough free memory, then we
3704 * need to reset the reserves.
3705 *
3706 * Otherwise keep the reserve set by the admin.
3707 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3708 static int reserve_mem_notifier(struct notifier_block *nb,
3709 unsigned long action, void *data)
3710 {
3711 unsigned long tmp, free_kbytes;
3712
3713 switch (action) {
3714 case MEM_ONLINE:
3715 /* Default max is 128MB. Leave alone if modified by operator. */
3716 tmp = sysctl_user_reserve_kbytes;
3717 if (0 < tmp && tmp < (1UL << 17))
3718 init_user_reserve();
3719
3720 /* Default max is 8MB. Leave alone if modified by operator. */
3721 tmp = sysctl_admin_reserve_kbytes;
3722 if (0 < tmp && tmp < (1UL << 13))
3723 init_admin_reserve();
3724
3725 break;
3726 case MEM_OFFLINE:
3727 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3728
3729 if (sysctl_user_reserve_kbytes > free_kbytes) {
3730 init_user_reserve();
3731 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3732 sysctl_user_reserve_kbytes);
3733 }
3734
3735 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3736 init_admin_reserve();
3737 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3738 sysctl_admin_reserve_kbytes);
3739 }
3740 break;
3741 default:
3742 break;
3743 }
3744 return NOTIFY_OK;
3745 }
3746
3747 static struct notifier_block reserve_mem_nb = {
3748 .notifier_call = reserve_mem_notifier,
3749 };
3750
init_reserve_notifier(void)3751 static int __meminit init_reserve_notifier(void)
3752 {
3753 if (register_hotmemory_notifier(&reserve_mem_nb))
3754 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3755
3756 return 0;
3757 }
3758 subsys_initcall(init_reserve_notifier);
3759