1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
numa_map_to_online_node(int node)141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
get_task_policy(struct task_struct * p)161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
mpol_store_user_nodemask(const struct mempolicy * pol)185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the page's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
queue_pages_required(struct page * page,struct queue_pages * qp)435 static inline bool queue_pages_required(struct page *page,
436 					struct queue_pages *qp)
437 {
438 	int nid = page_to_nid(page);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_pages_pmd() has three possible return values:
446  * 0 - pages are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing page was already on a node that does not follow the
452  *        policy.
453  */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct page *page;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	page = pmd_page(*pmd);
468 	if (is_huge_zero_page(page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_pages_required(page, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to thp migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_pages_pte_range() has three possible return values:
495  * 0 - pages are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500  *        on a node that does not follow the policy.
501  */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct page *page;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_pages_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		page = vm_normal_page(vma, addr, *pte);
525 		if (!page || is_zone_device_page(page))
526 			continue;
527 		/*
528 		 * vm_normal_page() filters out zero pages, but there might
529 		 * still be PageReserved pages to skip, perhaps in a VDSO.
530 		 */
531 		if (PageReserved(page))
532 			continue;
533 		if (!queue_pages_required(page, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_page_add(page, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct page *page;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	page = pte_page(entry);
578 	if (!queue_pages_required(page, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced page and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced page but allow migrating pages which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 	if (flags & (MPOL_MF_MOVE_ALL) ||
603 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
604 		if (isolate_hugetlb(page, qp->pagelist) &&
605 			(flags & MPOL_MF_STRICT))
606 			/*
607 			 * Failed to isolate page but allow migrating pages
608 			 * which have been queued.
609 			 */
610 			ret = 1;
611 	}
612 unlock:
613 	spin_unlock(ptl);
614 #else
615 	BUG();
616 #endif
617 	return ret;
618 }
619 
620 #ifdef CONFIG_NUMA_BALANCING
621 /*
622  * This is used to mark a range of virtual addresses to be inaccessible.
623  * These are later cleared by a NUMA hinting fault. Depending on these
624  * faults, pages may be migrated for better NUMA placement.
625  *
626  * This is assuming that NUMA faults are handled using PROT_NONE. If
627  * an architecture makes a different choice, it will need further
628  * changes to the core.
629  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 			unsigned long addr, unsigned long end)
632 {
633 	struct mmu_gather tlb;
634 	int nr_updated;
635 
636 	tlb_gather_mmu(&tlb, vma->vm_mm);
637 
638 	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
639 				       MM_CP_PROT_NUMA);
640 	if (nr_updated)
641 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642 
643 	tlb_finish_mmu(&tlb);
644 
645 	return nr_updated;
646 }
647 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 			unsigned long addr, unsigned long end)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_NUMA_BALANCING */
654 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 				struct mm_walk *walk)
657 {
658 	struct vm_area_struct *next, *vma = walk->vma;
659 	struct queue_pages *qp = walk->private;
660 	unsigned long endvma = vma->vm_end;
661 	unsigned long flags = qp->flags;
662 
663 	/* range check first */
664 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 
666 	if (!qp->first) {
667 		qp->first = vma;
668 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 			(qp->start < vma->vm_start))
670 			/* hole at head side of range */
671 			return -EFAULT;
672 	}
673 	next = find_vma(vma->vm_mm, vma->vm_end);
674 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 		((vma->vm_end < qp->end) &&
676 		(!next || vma->vm_end < next->vm_start)))
677 		/* hole at middle or tail of range */
678 		return -EFAULT;
679 
680 	/*
681 	 * Need check MPOL_MF_STRICT to return -EIO if possible
682 	 * regardless of vma_migratable
683 	 */
684 	if (!vma_migratable(vma) &&
685 	    !(flags & MPOL_MF_STRICT))
686 		return 1;
687 
688 	if (endvma > end)
689 		endvma = end;
690 
691 	if (flags & MPOL_MF_LAZY) {
692 		/* Similar to task_numa_work, skip inaccessible VMAs */
693 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 			!(vma->vm_flags & VM_MIXEDMAP))
695 			change_prot_numa(vma, start, endvma);
696 		return 1;
697 	}
698 
699 	/* queue pages from current vma */
700 	if (flags & MPOL_MF_VALID)
701 		return 0;
702 	return 1;
703 }
704 
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 	.hugetlb_entry		= queue_pages_hugetlb,
707 	.pmd_entry		= queue_pages_pte_range,
708 	.test_walk		= queue_pages_test_walk,
709 };
710 
711 /*
712  * Walk through page tables and collect pages to be migrated.
713  *
714  * If pages found in a given range are on a set of nodes (determined by
715  * @nodes and @flags,) it's isolated and queued to the pagelist which is
716  * passed via @private.
717  *
718  * queue_pages_range() has three possible return values:
719  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
720  *     specified.
721  * 0 - queue pages successfully or no misplaced page.
722  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723  *         memory range specified by nodemask and maxnode points outside
724  *         your accessible address space (-EFAULT)
725  */
726 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 		nodemask_t *nodes, unsigned long flags,
729 		struct list_head *pagelist)
730 {
731 	int err;
732 	struct queue_pages qp = {
733 		.pagelist = pagelist,
734 		.flags = flags,
735 		.nmask = nodes,
736 		.start = start,
737 		.end = end,
738 		.first = NULL,
739 	};
740 
741 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
742 
743 	if (!qp.first)
744 		/* whole range in hole */
745 		err = -EFAULT;
746 
747 	return err;
748 }
749 
750 /*
751  * Apply policy to a single VMA
752  * This must be called with the mmap_lock held for writing.
753  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)754 static int vma_replace_policy(struct vm_area_struct *vma,
755 						struct mempolicy *pol)
756 {
757 	int err;
758 	struct mempolicy *old;
759 	struct mempolicy *new;
760 
761 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 		 vma->vm_ops, vma->vm_file,
764 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
765 
766 	new = mpol_dup(pol);
767 	if (IS_ERR(new))
768 		return PTR_ERR(new);
769 
770 	if (vma->vm_ops && vma->vm_ops->set_policy) {
771 		err = vma->vm_ops->set_policy(vma, new);
772 		if (err)
773 			goto err_out;
774 	}
775 
776 	old = vma->vm_policy;
777 	vma->vm_policy = new; /* protected by mmap_lock */
778 	mpol_put(old);
779 
780 	return 0;
781  err_out:
782 	mpol_put(new);
783 	return err;
784 }
785 
786 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 		       unsigned long end, struct mempolicy *new_pol)
789 {
790 	MA_STATE(mas, &mm->mm_mt, start, start);
791 	struct vm_area_struct *prev;
792 	struct vm_area_struct *vma;
793 	int err = 0;
794 	pgoff_t pgoff;
795 
796 	prev = mas_prev(&mas, 0);
797 	if (unlikely(!prev))
798 		mas_set(&mas, start);
799 
800 	vma = mas_find(&mas, end - 1);
801 	if (WARN_ON(!vma))
802 		return 0;
803 
804 	if (start > vma->vm_start)
805 		prev = vma;
806 
807 	for (; vma; vma = mas_next(&mas, end - 1)) {
808 		unsigned long vmstart = max(start, vma->vm_start);
809 		unsigned long vmend = min(end, vma->vm_end);
810 
811 		if (mpol_equal(vma_policy(vma), new_pol))
812 			goto next;
813 
814 		pgoff = vma->vm_pgoff +
815 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
816 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
817 				 vma->anon_vma, vma->vm_file, pgoff,
818 				 new_pol, vma->vm_userfaultfd_ctx,
819 				 anon_vma_name(vma));
820 		if (prev) {
821 			/* vma_merge() invalidated the mas */
822 			mas_pause(&mas);
823 			vma = prev;
824 			goto replace;
825 		}
826 		if (vma->vm_start != vmstart) {
827 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
828 			if (err)
829 				goto out;
830 			/* split_vma() invalidated the mas */
831 			mas_pause(&mas);
832 		}
833 		if (vma->vm_end != vmend) {
834 			err = split_vma(vma->vm_mm, vma, vmend, 0);
835 			if (err)
836 				goto out;
837 			/* split_vma() invalidated the mas */
838 			mas_pause(&mas);
839 		}
840 replace:
841 		err = vma_replace_policy(vma, new_pol);
842 		if (err)
843 			goto out;
844 next:
845 		prev = vma;
846 	}
847 
848 out:
849 	return err;
850 }
851 
852 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)853 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
854 			     nodemask_t *nodes)
855 {
856 	struct mempolicy *new, *old;
857 	NODEMASK_SCRATCH(scratch);
858 	int ret;
859 
860 	if (!scratch)
861 		return -ENOMEM;
862 
863 	new = mpol_new(mode, flags, nodes);
864 	if (IS_ERR(new)) {
865 		ret = PTR_ERR(new);
866 		goto out;
867 	}
868 
869 	task_lock(current);
870 	ret = mpol_set_nodemask(new, nodes, scratch);
871 	if (ret) {
872 		task_unlock(current);
873 		mpol_put(new);
874 		goto out;
875 	}
876 
877 	old = current->mempolicy;
878 	current->mempolicy = new;
879 	if (new && new->mode == MPOL_INTERLEAVE)
880 		current->il_prev = MAX_NUMNODES-1;
881 	task_unlock(current);
882 	mpol_put(old);
883 	ret = 0;
884 out:
885 	NODEMASK_SCRATCH_FREE(scratch);
886 	return ret;
887 }
888 
889 /*
890  * Return nodemask for policy for get_mempolicy() query
891  *
892  * Called with task's alloc_lock held
893  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)894 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
895 {
896 	nodes_clear(*nodes);
897 	if (p == &default_policy)
898 		return;
899 
900 	switch (p->mode) {
901 	case MPOL_BIND:
902 	case MPOL_INTERLEAVE:
903 	case MPOL_PREFERRED:
904 	case MPOL_PREFERRED_MANY:
905 		*nodes = p->nodes;
906 		break;
907 	case MPOL_LOCAL:
908 		/* return empty node mask for local allocation */
909 		break;
910 	default:
911 		BUG();
912 	}
913 }
914 
lookup_node(struct mm_struct * mm,unsigned long addr)915 static int lookup_node(struct mm_struct *mm, unsigned long addr)
916 {
917 	struct page *p = NULL;
918 	int ret;
919 
920 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
921 	if (ret > 0) {
922 		ret = page_to_nid(p);
923 		put_page(p);
924 	}
925 	return ret;
926 }
927 
928 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)929 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
930 			     unsigned long addr, unsigned long flags)
931 {
932 	int err;
933 	struct mm_struct *mm = current->mm;
934 	struct vm_area_struct *vma = NULL;
935 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
936 
937 	if (flags &
938 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
939 		return -EINVAL;
940 
941 	if (flags & MPOL_F_MEMS_ALLOWED) {
942 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
943 			return -EINVAL;
944 		*policy = 0;	/* just so it's initialized */
945 		task_lock(current);
946 		*nmask  = cpuset_current_mems_allowed;
947 		task_unlock(current);
948 		return 0;
949 	}
950 
951 	if (flags & MPOL_F_ADDR) {
952 		/*
953 		 * Do NOT fall back to task policy if the
954 		 * vma/shared policy at addr is NULL.  We
955 		 * want to return MPOL_DEFAULT in this case.
956 		 */
957 		mmap_read_lock(mm);
958 		vma = vma_lookup(mm, addr);
959 		if (!vma) {
960 			mmap_read_unlock(mm);
961 			return -EFAULT;
962 		}
963 		if (vma->vm_ops && vma->vm_ops->get_policy)
964 			pol = vma->vm_ops->get_policy(vma, addr);
965 		else
966 			pol = vma->vm_policy;
967 	} else if (addr)
968 		return -EINVAL;
969 
970 	if (!pol)
971 		pol = &default_policy;	/* indicates default behavior */
972 
973 	if (flags & MPOL_F_NODE) {
974 		if (flags & MPOL_F_ADDR) {
975 			/*
976 			 * Take a refcount on the mpol, because we are about to
977 			 * drop the mmap_lock, after which only "pol" remains
978 			 * valid, "vma" is stale.
979 			 */
980 			pol_refcount = pol;
981 			vma = NULL;
982 			mpol_get(pol);
983 			mmap_read_unlock(mm);
984 			err = lookup_node(mm, addr);
985 			if (err < 0)
986 				goto out;
987 			*policy = err;
988 		} else if (pol == current->mempolicy &&
989 				pol->mode == MPOL_INTERLEAVE) {
990 			*policy = next_node_in(current->il_prev, pol->nodes);
991 		} else {
992 			err = -EINVAL;
993 			goto out;
994 		}
995 	} else {
996 		*policy = pol == &default_policy ? MPOL_DEFAULT :
997 						pol->mode;
998 		/*
999 		 * Internal mempolicy flags must be masked off before exposing
1000 		 * the policy to userspace.
1001 		 */
1002 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1003 	}
1004 
1005 	err = 0;
1006 	if (nmask) {
1007 		if (mpol_store_user_nodemask(pol)) {
1008 			*nmask = pol->w.user_nodemask;
1009 		} else {
1010 			task_lock(current);
1011 			get_policy_nodemask(pol, nmask);
1012 			task_unlock(current);
1013 		}
1014 	}
1015 
1016  out:
1017 	mpol_cond_put(pol);
1018 	if (vma)
1019 		mmap_read_unlock(mm);
1020 	if (pol_refcount)
1021 		mpol_put(pol_refcount);
1022 	return err;
1023 }
1024 
1025 #ifdef CONFIG_MIGRATION
1026 /*
1027  * page migration, thp tail pages can be passed.
1028  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1029 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1030 				unsigned long flags)
1031 {
1032 	struct page *head = compound_head(page);
1033 	/*
1034 	 * Avoid migrating a page that is shared with others.
1035 	 */
1036 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1037 		if (!isolate_lru_page(head)) {
1038 			list_add_tail(&head->lru, pagelist);
1039 			mod_node_page_state(page_pgdat(head),
1040 				NR_ISOLATED_ANON + page_is_file_lru(head),
1041 				thp_nr_pages(head));
1042 		} else if (flags & MPOL_MF_STRICT) {
1043 			/*
1044 			 * Non-movable page may reach here.  And, there may be
1045 			 * temporary off LRU pages or non-LRU movable pages.
1046 			 * Treat them as unmovable pages since they can't be
1047 			 * isolated, so they can't be moved at the moment.  It
1048 			 * should return -EIO for this case too.
1049 			 */
1050 			return -EIO;
1051 		}
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Migrate pages from one node to a target node.
1059  * Returns error or the number of pages not migrated.
1060  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1061 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1062 			   int flags)
1063 {
1064 	nodemask_t nmask;
1065 	struct vm_area_struct *vma;
1066 	LIST_HEAD(pagelist);
1067 	int err = 0;
1068 	struct migration_target_control mtc = {
1069 		.nid = dest,
1070 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 	};
1072 
1073 	nodes_clear(nmask);
1074 	node_set(source, nmask);
1075 
1076 	/*
1077 	 * This does not "check" the range but isolates all pages that
1078 	 * need migration.  Between passing in the full user address
1079 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1080 	 */
1081 	vma = find_vma(mm, 0);
1082 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1083 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1084 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1085 
1086 	if (!list_empty(&pagelist)) {
1087 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1088 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1089 		if (err)
1090 			putback_movable_pages(&pagelist);
1091 	}
1092 
1093 	return err;
1094 }
1095 
1096 /*
1097  * Move pages between the two nodesets so as to preserve the physical
1098  * layout as much as possible.
1099  *
1100  * Returns the number of page that could not be moved.
1101  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1103 		     const nodemask_t *to, int flags)
1104 {
1105 	int busy = 0;
1106 	int err = 0;
1107 	nodemask_t tmp;
1108 
1109 	lru_cache_disable();
1110 
1111 	mmap_read_lock(mm);
1112 
1113 	/*
1114 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1115 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1116 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1117 	 * The pair of nodemasks 'to' and 'from' define the map.
1118 	 *
1119 	 * If no pair of bits is found that way, fallback to picking some
1120 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1121 	 * 'source' and 'dest' bits are the same, this represents a node
1122 	 * that will be migrating to itself, so no pages need move.
1123 	 *
1124 	 * If no bits are left in 'tmp', or if all remaining bits left
1125 	 * in 'tmp' correspond to the same bit in 'to', return false
1126 	 * (nothing left to migrate).
1127 	 *
1128 	 * This lets us pick a pair of nodes to migrate between, such that
1129 	 * if possible the dest node is not already occupied by some other
1130 	 * source node, minimizing the risk of overloading the memory on a
1131 	 * node that would happen if we migrated incoming memory to a node
1132 	 * before migrating outgoing memory source that same node.
1133 	 *
1134 	 * A single scan of tmp is sufficient.  As we go, we remember the
1135 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1136 	 * that not only moved, but what's better, moved to an empty slot
1137 	 * (d is not set in tmp), then we break out then, with that pair.
1138 	 * Otherwise when we finish scanning from_tmp, we at least have the
1139 	 * most recent <s, d> pair that moved.  If we get all the way through
1140 	 * the scan of tmp without finding any node that moved, much less
1141 	 * moved to an empty node, then there is nothing left worth migrating.
1142 	 */
1143 
1144 	tmp = *from;
1145 	while (!nodes_empty(tmp)) {
1146 		int s, d;
1147 		int source = NUMA_NO_NODE;
1148 		int dest = 0;
1149 
1150 		for_each_node_mask(s, tmp) {
1151 
1152 			/*
1153 			 * do_migrate_pages() tries to maintain the relative
1154 			 * node relationship of the pages established between
1155 			 * threads and memory areas.
1156                          *
1157 			 * However if the number of source nodes is not equal to
1158 			 * the number of destination nodes we can not preserve
1159 			 * this node relative relationship.  In that case, skip
1160 			 * copying memory from a node that is in the destination
1161 			 * mask.
1162 			 *
1163 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1164 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1165 			 */
1166 
1167 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1168 						(node_isset(s, *to)))
1169 				continue;
1170 
1171 			d = node_remap(s, *from, *to);
1172 			if (s == d)
1173 				continue;
1174 
1175 			source = s;	/* Node moved. Memorize */
1176 			dest = d;
1177 
1178 			/* dest not in remaining from nodes? */
1179 			if (!node_isset(dest, tmp))
1180 				break;
1181 		}
1182 		if (source == NUMA_NO_NODE)
1183 			break;
1184 
1185 		node_clear(source, tmp);
1186 		err = migrate_to_node(mm, source, dest, flags);
1187 		if (err > 0)
1188 			busy += err;
1189 		if (err < 0)
1190 			break;
1191 	}
1192 	mmap_read_unlock(mm);
1193 
1194 	lru_cache_enable();
1195 	if (err < 0)
1196 		return err;
1197 	return busy;
1198 
1199 }
1200 
1201 /*
1202  * Allocate a new page for page migration based on vma policy.
1203  * Start by assuming the page is mapped by the same vma as contains @start.
1204  * Search forward from there, if not.  N.B., this assumes that the
1205  * list of pages handed to migrate_pages()--which is how we get here--
1206  * is in virtual address order.
1207  */
new_page(struct page * page,unsigned long start)1208 static struct page *new_page(struct page *page, unsigned long start)
1209 {
1210 	struct folio *dst, *src = page_folio(page);
1211 	struct vm_area_struct *vma;
1212 	unsigned long address;
1213 	VMA_ITERATOR(vmi, current->mm, start);
1214 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1215 
1216 	for_each_vma(vmi, vma) {
1217 		address = page_address_in_vma(page, vma);
1218 		if (address != -EFAULT)
1219 			break;
1220 	}
1221 
1222 	if (folio_test_hugetlb(src))
1223 		return alloc_huge_page_vma(page_hstate(&src->page),
1224 				vma, address);
1225 
1226 	if (folio_test_large(src))
1227 		gfp = GFP_TRANSHUGE;
1228 
1229 	/*
1230 	 * if !vma, vma_alloc_folio() will use task or system default policy
1231 	 */
1232 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1233 			folio_test_large(src));
1234 	return &dst->page;
1235 }
1236 #else
1237 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1238 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1239 				unsigned long flags)
1240 {
1241 	return -EIO;
1242 }
1243 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1244 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1245 		     const nodemask_t *to, int flags)
1246 {
1247 	return -ENOSYS;
1248 }
1249 
new_page(struct page * page,unsigned long start)1250 static struct page *new_page(struct page *page, unsigned long start)
1251 {
1252 	return NULL;
1253 }
1254 #endif
1255 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1256 static long do_mbind(unsigned long start, unsigned long len,
1257 		     unsigned short mode, unsigned short mode_flags,
1258 		     nodemask_t *nmask, unsigned long flags)
1259 {
1260 	struct mm_struct *mm = current->mm;
1261 	struct mempolicy *new;
1262 	unsigned long end;
1263 	int err;
1264 	int ret;
1265 	LIST_HEAD(pagelist);
1266 
1267 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1268 		return -EINVAL;
1269 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1270 		return -EPERM;
1271 
1272 	if (start & ~PAGE_MASK)
1273 		return -EINVAL;
1274 
1275 	if (mode == MPOL_DEFAULT)
1276 		flags &= ~MPOL_MF_STRICT;
1277 
1278 	len = PAGE_ALIGN(len);
1279 	end = start + len;
1280 
1281 	if (end < start)
1282 		return -EINVAL;
1283 	if (end == start)
1284 		return 0;
1285 
1286 	new = mpol_new(mode, mode_flags, nmask);
1287 	if (IS_ERR(new))
1288 		return PTR_ERR(new);
1289 
1290 	if (flags & MPOL_MF_LAZY)
1291 		new->flags |= MPOL_F_MOF;
1292 
1293 	/*
1294 	 * If we are using the default policy then operation
1295 	 * on discontinuous address spaces is okay after all
1296 	 */
1297 	if (!new)
1298 		flags |= MPOL_MF_DISCONTIG_OK;
1299 
1300 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1301 		 start, start + len, mode, mode_flags,
1302 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1303 
1304 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1305 
1306 		lru_cache_disable();
1307 	}
1308 	{
1309 		NODEMASK_SCRATCH(scratch);
1310 		if (scratch) {
1311 			mmap_write_lock(mm);
1312 			err = mpol_set_nodemask(new, nmask, scratch);
1313 			if (err)
1314 				mmap_write_unlock(mm);
1315 		} else
1316 			err = -ENOMEM;
1317 		NODEMASK_SCRATCH_FREE(scratch);
1318 	}
1319 	if (err)
1320 		goto mpol_out;
1321 
1322 	ret = queue_pages_range(mm, start, end, nmask,
1323 			  flags | MPOL_MF_INVERT, &pagelist);
1324 
1325 	if (ret < 0) {
1326 		err = ret;
1327 		goto up_out;
1328 	}
1329 
1330 	err = mbind_range(mm, start, end, new);
1331 
1332 	if (!err) {
1333 		int nr_failed = 0;
1334 
1335 		if (!list_empty(&pagelist)) {
1336 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1337 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1338 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1339 			if (nr_failed)
1340 				putback_movable_pages(&pagelist);
1341 		}
1342 
1343 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1344 			err = -EIO;
1345 	} else {
1346 up_out:
1347 		if (!list_empty(&pagelist))
1348 			putback_movable_pages(&pagelist);
1349 	}
1350 
1351 	mmap_write_unlock(mm);
1352 mpol_out:
1353 	mpol_put(new);
1354 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1355 		lru_cache_enable();
1356 	return err;
1357 }
1358 
1359 /*
1360  * User space interface with variable sized bitmaps for nodelists.
1361  */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1363 		      unsigned long maxnode)
1364 {
1365 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1366 	int ret;
1367 
1368 	if (in_compat_syscall())
1369 		ret = compat_get_bitmap(mask,
1370 					(const compat_ulong_t __user *)nmask,
1371 					maxnode);
1372 	else
1373 		ret = copy_from_user(mask, nmask,
1374 				     nlongs * sizeof(unsigned long));
1375 
1376 	if (ret)
1377 		return -EFAULT;
1378 
1379 	if (maxnode % BITS_PER_LONG)
1380 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1381 
1382 	return 0;
1383 }
1384 
1385 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 		     unsigned long maxnode)
1388 {
1389 	--maxnode;
1390 	nodes_clear(*nodes);
1391 	if (maxnode == 0 || !nmask)
1392 		return 0;
1393 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1394 		return -EINVAL;
1395 
1396 	/*
1397 	 * When the user specified more nodes than supported just check
1398 	 * if the non supported part is all zero, one word at a time,
1399 	 * starting at the end.
1400 	 */
1401 	while (maxnode > MAX_NUMNODES) {
1402 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1403 		unsigned long t;
1404 
1405 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1406 			return -EFAULT;
1407 
1408 		if (maxnode - bits >= MAX_NUMNODES) {
1409 			maxnode -= bits;
1410 		} else {
1411 			maxnode = MAX_NUMNODES;
1412 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1413 		}
1414 		if (t)
1415 			return -EINVAL;
1416 	}
1417 
1418 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1419 }
1420 
1421 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1423 			      nodemask_t *nodes)
1424 {
1425 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1426 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1427 	bool compat = in_compat_syscall();
1428 
1429 	if (compat)
1430 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1431 
1432 	if (copy > nbytes) {
1433 		if (copy > PAGE_SIZE)
1434 			return -EINVAL;
1435 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1436 			return -EFAULT;
1437 		copy = nbytes;
1438 		maxnode = nr_node_ids;
1439 	}
1440 
1441 	if (compat)
1442 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1443 					 nodes_addr(*nodes), maxnode);
1444 
1445 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1446 }
1447 
1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1450 {
1451 	*flags = *mode & MPOL_MODE_FLAGS;
1452 	*mode &= ~MPOL_MODE_FLAGS;
1453 
1454 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1455 		return -EINVAL;
1456 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1457 		return -EINVAL;
1458 	if (*flags & MPOL_F_NUMA_BALANCING) {
1459 		if (*mode != MPOL_BIND)
1460 			return -EINVAL;
1461 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1462 	}
1463 	return 0;
1464 }
1465 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1466 static long kernel_mbind(unsigned long start, unsigned long len,
1467 			 unsigned long mode, const unsigned long __user *nmask,
1468 			 unsigned long maxnode, unsigned int flags)
1469 {
1470 	unsigned short mode_flags;
1471 	nodemask_t nodes;
1472 	int lmode = mode;
1473 	int err;
1474 
1475 	start = untagged_addr(start);
1476 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1477 	if (err)
1478 		return err;
1479 
1480 	err = get_nodes(&nodes, nmask, maxnode);
1481 	if (err)
1482 		return err;
1483 
1484 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1485 }
1486 
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1488 		unsigned long, home_node, unsigned long, flags)
1489 {
1490 	struct mm_struct *mm = current->mm;
1491 	struct vm_area_struct *vma;
1492 	struct mempolicy *new;
1493 	unsigned long vmstart;
1494 	unsigned long vmend;
1495 	unsigned long end;
1496 	int err = -ENOENT;
1497 	VMA_ITERATOR(vmi, mm, start);
1498 
1499 	start = untagged_addr(start);
1500 	if (start & ~PAGE_MASK)
1501 		return -EINVAL;
1502 	/*
1503 	 * flags is used for future extension if any.
1504 	 */
1505 	if (flags != 0)
1506 		return -EINVAL;
1507 
1508 	/*
1509 	 * Check home_node is online to avoid accessing uninitialized
1510 	 * NODE_DATA.
1511 	 */
1512 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1513 		return -EINVAL;
1514 
1515 	len = PAGE_ALIGN(len);
1516 	end = start + len;
1517 
1518 	if (end < start)
1519 		return -EINVAL;
1520 	if (end == start)
1521 		return 0;
1522 	mmap_write_lock(mm);
1523 	for_each_vma_range(vmi, vma, end) {
1524 		vmstart = max(start, vma->vm_start);
1525 		vmend   = min(end, vma->vm_end);
1526 		new = mpol_dup(vma_policy(vma));
1527 		if (IS_ERR(new)) {
1528 			err = PTR_ERR(new);
1529 			break;
1530 		}
1531 		/*
1532 		 * Only update home node if there is an existing vma policy
1533 		 */
1534 		if (!new)
1535 			continue;
1536 
1537 		/*
1538 		 * If any vma in the range got policy other than MPOL_BIND
1539 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1540 		 * the home node for vmas we already updated before.
1541 		 */
1542 		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1543 			err = -EOPNOTSUPP;
1544 			break;
1545 		}
1546 
1547 		new->home_node = home_node;
1548 		err = mbind_range(mm, vmstart, vmend, new);
1549 		mpol_put(new);
1550 		if (err)
1551 			break;
1552 	}
1553 	mmap_write_unlock(mm);
1554 	return err;
1555 }
1556 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1557 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1558 		unsigned long, mode, const unsigned long __user *, nmask,
1559 		unsigned long, maxnode, unsigned int, flags)
1560 {
1561 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1562 }
1563 
1564 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1565 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1566 				 unsigned long maxnode)
1567 {
1568 	unsigned short mode_flags;
1569 	nodemask_t nodes;
1570 	int lmode = mode;
1571 	int err;
1572 
1573 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1574 	if (err)
1575 		return err;
1576 
1577 	err = get_nodes(&nodes, nmask, maxnode);
1578 	if (err)
1579 		return err;
1580 
1581 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1582 }
1583 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1584 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1585 		unsigned long, maxnode)
1586 {
1587 	return kernel_set_mempolicy(mode, nmask, maxnode);
1588 }
1589 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1590 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1591 				const unsigned long __user *old_nodes,
1592 				const unsigned long __user *new_nodes)
1593 {
1594 	struct mm_struct *mm = NULL;
1595 	struct task_struct *task;
1596 	nodemask_t task_nodes;
1597 	int err;
1598 	nodemask_t *old;
1599 	nodemask_t *new;
1600 	NODEMASK_SCRATCH(scratch);
1601 
1602 	if (!scratch)
1603 		return -ENOMEM;
1604 
1605 	old = &scratch->mask1;
1606 	new = &scratch->mask2;
1607 
1608 	err = get_nodes(old, old_nodes, maxnode);
1609 	if (err)
1610 		goto out;
1611 
1612 	err = get_nodes(new, new_nodes, maxnode);
1613 	if (err)
1614 		goto out;
1615 
1616 	/* Find the mm_struct */
1617 	rcu_read_lock();
1618 	task = pid ? find_task_by_vpid(pid) : current;
1619 	if (!task) {
1620 		rcu_read_unlock();
1621 		err = -ESRCH;
1622 		goto out;
1623 	}
1624 	get_task_struct(task);
1625 
1626 	err = -EINVAL;
1627 
1628 	/*
1629 	 * Check if this process has the right to modify the specified process.
1630 	 * Use the regular "ptrace_may_access()" checks.
1631 	 */
1632 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1633 		rcu_read_unlock();
1634 		err = -EPERM;
1635 		goto out_put;
1636 	}
1637 	rcu_read_unlock();
1638 
1639 	task_nodes = cpuset_mems_allowed(task);
1640 	/* Is the user allowed to access the target nodes? */
1641 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1642 		err = -EPERM;
1643 		goto out_put;
1644 	}
1645 
1646 	task_nodes = cpuset_mems_allowed(current);
1647 	nodes_and(*new, *new, task_nodes);
1648 	if (nodes_empty(*new))
1649 		goto out_put;
1650 
1651 	err = security_task_movememory(task);
1652 	if (err)
1653 		goto out_put;
1654 
1655 	mm = get_task_mm(task);
1656 	put_task_struct(task);
1657 
1658 	if (!mm) {
1659 		err = -EINVAL;
1660 		goto out;
1661 	}
1662 
1663 	err = do_migrate_pages(mm, old, new,
1664 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1665 
1666 	mmput(mm);
1667 out:
1668 	NODEMASK_SCRATCH_FREE(scratch);
1669 
1670 	return err;
1671 
1672 out_put:
1673 	put_task_struct(task);
1674 	goto out;
1675 
1676 }
1677 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1678 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1679 		const unsigned long __user *, old_nodes,
1680 		const unsigned long __user *, new_nodes)
1681 {
1682 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1683 }
1684 
1685 
1686 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1687 static int kernel_get_mempolicy(int __user *policy,
1688 				unsigned long __user *nmask,
1689 				unsigned long maxnode,
1690 				unsigned long addr,
1691 				unsigned long flags)
1692 {
1693 	int err;
1694 	int pval;
1695 	nodemask_t nodes;
1696 
1697 	if (nmask != NULL && maxnode < nr_node_ids)
1698 		return -EINVAL;
1699 
1700 	addr = untagged_addr(addr);
1701 
1702 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1703 
1704 	if (err)
1705 		return err;
1706 
1707 	if (policy && put_user(pval, policy))
1708 		return -EFAULT;
1709 
1710 	if (nmask)
1711 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1712 
1713 	return err;
1714 }
1715 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1716 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1717 		unsigned long __user *, nmask, unsigned long, maxnode,
1718 		unsigned long, addr, unsigned long, flags)
1719 {
1720 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1721 }
1722 
vma_migratable(struct vm_area_struct * vma)1723 bool vma_migratable(struct vm_area_struct *vma)
1724 {
1725 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1726 		return false;
1727 
1728 	/*
1729 	 * DAX device mappings require predictable access latency, so avoid
1730 	 * incurring periodic faults.
1731 	 */
1732 	if (vma_is_dax(vma))
1733 		return false;
1734 
1735 	if (is_vm_hugetlb_page(vma) &&
1736 		!hugepage_migration_supported(hstate_vma(vma)))
1737 		return false;
1738 
1739 	/*
1740 	 * Migration allocates pages in the highest zone. If we cannot
1741 	 * do so then migration (at least from node to node) is not
1742 	 * possible.
1743 	 */
1744 	if (vma->vm_file &&
1745 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1746 			< policy_zone)
1747 		return false;
1748 	return true;
1749 }
1750 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1751 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1752 						unsigned long addr)
1753 {
1754 	struct mempolicy *pol = NULL;
1755 
1756 	if (vma) {
1757 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1758 			pol = vma->vm_ops->get_policy(vma, addr);
1759 		} else if (vma->vm_policy) {
1760 			pol = vma->vm_policy;
1761 
1762 			/*
1763 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1764 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1765 			 * count on these policies which will be dropped by
1766 			 * mpol_cond_put() later
1767 			 */
1768 			if (mpol_needs_cond_ref(pol))
1769 				mpol_get(pol);
1770 		}
1771 	}
1772 
1773 	return pol;
1774 }
1775 
1776 /*
1777  * get_vma_policy(@vma, @addr)
1778  * @vma: virtual memory area whose policy is sought
1779  * @addr: address in @vma for shared policy lookup
1780  *
1781  * Returns effective policy for a VMA at specified address.
1782  * Falls back to current->mempolicy or system default policy, as necessary.
1783  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1784  * count--added by the get_policy() vm_op, as appropriate--to protect against
1785  * freeing by another task.  It is the caller's responsibility to free the
1786  * extra reference for shared policies.
1787  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1788 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1789 						unsigned long addr)
1790 {
1791 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1792 
1793 	if (!pol)
1794 		pol = get_task_policy(current);
1795 
1796 	return pol;
1797 }
1798 
vma_policy_mof(struct vm_area_struct * vma)1799 bool vma_policy_mof(struct vm_area_struct *vma)
1800 {
1801 	struct mempolicy *pol;
1802 
1803 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1804 		bool ret = false;
1805 
1806 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1807 		if (pol && (pol->flags & MPOL_F_MOF))
1808 			ret = true;
1809 		mpol_cond_put(pol);
1810 
1811 		return ret;
1812 	}
1813 
1814 	pol = vma->vm_policy;
1815 	if (!pol)
1816 		pol = get_task_policy(current);
1817 
1818 	return pol->flags & MPOL_F_MOF;
1819 }
1820 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1821 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1822 {
1823 	enum zone_type dynamic_policy_zone = policy_zone;
1824 
1825 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1826 
1827 	/*
1828 	 * if policy->nodes has movable memory only,
1829 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1830 	 *
1831 	 * policy->nodes is intersect with node_states[N_MEMORY].
1832 	 * so if the following test fails, it implies
1833 	 * policy->nodes has movable memory only.
1834 	 */
1835 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1836 		dynamic_policy_zone = ZONE_MOVABLE;
1837 
1838 	return zone >= dynamic_policy_zone;
1839 }
1840 
1841 /*
1842  * Return a nodemask representing a mempolicy for filtering nodes for
1843  * page allocation
1844  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1845 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1846 {
1847 	int mode = policy->mode;
1848 
1849 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1850 	if (unlikely(mode == MPOL_BIND) &&
1851 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1852 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1853 		return &policy->nodes;
1854 
1855 	if (mode == MPOL_PREFERRED_MANY)
1856 		return &policy->nodes;
1857 
1858 	return NULL;
1859 }
1860 
1861 /*
1862  * Return the  preferred node id for 'prefer' mempolicy, and return
1863  * the given id for all other policies.
1864  *
1865  * policy_node() is always coupled with policy_nodemask(), which
1866  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1867  */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1868 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1869 {
1870 	if (policy->mode == MPOL_PREFERRED) {
1871 		nd = first_node(policy->nodes);
1872 	} else {
1873 		/*
1874 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1875 		 * because we might easily break the expectation to stay on the
1876 		 * requested node and not break the policy.
1877 		 */
1878 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1879 	}
1880 
1881 	if ((policy->mode == MPOL_BIND ||
1882 	     policy->mode == MPOL_PREFERRED_MANY) &&
1883 	    policy->home_node != NUMA_NO_NODE)
1884 		return policy->home_node;
1885 
1886 	return nd;
1887 }
1888 
1889 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1890 static unsigned interleave_nodes(struct mempolicy *policy)
1891 {
1892 	unsigned next;
1893 	struct task_struct *me = current;
1894 
1895 	next = next_node_in(me->il_prev, policy->nodes);
1896 	if (next < MAX_NUMNODES)
1897 		me->il_prev = next;
1898 	return next;
1899 }
1900 
1901 /*
1902  * Depending on the memory policy provide a node from which to allocate the
1903  * next slab entry.
1904  */
mempolicy_slab_node(void)1905 unsigned int mempolicy_slab_node(void)
1906 {
1907 	struct mempolicy *policy;
1908 	int node = numa_mem_id();
1909 
1910 	if (!in_task())
1911 		return node;
1912 
1913 	policy = current->mempolicy;
1914 	if (!policy)
1915 		return node;
1916 
1917 	switch (policy->mode) {
1918 	case MPOL_PREFERRED:
1919 		return first_node(policy->nodes);
1920 
1921 	case MPOL_INTERLEAVE:
1922 		return interleave_nodes(policy);
1923 
1924 	case MPOL_BIND:
1925 	case MPOL_PREFERRED_MANY:
1926 	{
1927 		struct zoneref *z;
1928 
1929 		/*
1930 		 * Follow bind policy behavior and start allocation at the
1931 		 * first node.
1932 		 */
1933 		struct zonelist *zonelist;
1934 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1935 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1936 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1937 							&policy->nodes);
1938 		return z->zone ? zone_to_nid(z->zone) : node;
1939 	}
1940 	case MPOL_LOCAL:
1941 		return node;
1942 
1943 	default:
1944 		BUG();
1945 	}
1946 }
1947 
1948 /*
1949  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1950  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1951  * number of present nodes.
1952  */
offset_il_node(struct mempolicy * pol,unsigned long n)1953 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1954 {
1955 	nodemask_t nodemask = pol->nodes;
1956 	unsigned int target, nnodes;
1957 	int i;
1958 	int nid;
1959 	/*
1960 	 * The barrier will stabilize the nodemask in a register or on
1961 	 * the stack so that it will stop changing under the code.
1962 	 *
1963 	 * Between first_node() and next_node(), pol->nodes could be changed
1964 	 * by other threads. So we put pol->nodes in a local stack.
1965 	 */
1966 	barrier();
1967 
1968 	nnodes = nodes_weight(nodemask);
1969 	if (!nnodes)
1970 		return numa_node_id();
1971 	target = (unsigned int)n % nnodes;
1972 	nid = first_node(nodemask);
1973 	for (i = 0; i < target; i++)
1974 		nid = next_node(nid, nodemask);
1975 	return nid;
1976 }
1977 
1978 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1979 static inline unsigned interleave_nid(struct mempolicy *pol,
1980 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1981 {
1982 	if (vma) {
1983 		unsigned long off;
1984 
1985 		/*
1986 		 * for small pages, there is no difference between
1987 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1988 		 * for huge pages, since vm_pgoff is in units of small
1989 		 * pages, we need to shift off the always 0 bits to get
1990 		 * a useful offset.
1991 		 */
1992 		BUG_ON(shift < PAGE_SHIFT);
1993 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1994 		off += (addr - vma->vm_start) >> shift;
1995 		return offset_il_node(pol, off);
1996 	} else
1997 		return interleave_nodes(pol);
1998 }
1999 
2000 #ifdef CONFIG_HUGETLBFS
2001 /*
2002  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2003  * @vma: virtual memory area whose policy is sought
2004  * @addr: address in @vma for shared policy lookup and interleave policy
2005  * @gfp_flags: for requested zone
2006  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2007  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2008  *
2009  * Returns a nid suitable for a huge page allocation and a pointer
2010  * to the struct mempolicy for conditional unref after allocation.
2011  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2012  * to the mempolicy's @nodemask for filtering the zonelist.
2013  *
2014  * Must be protected by read_mems_allowed_begin()
2015  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2016 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2017 				struct mempolicy **mpol, nodemask_t **nodemask)
2018 {
2019 	int nid;
2020 	int mode;
2021 
2022 	*mpol = get_vma_policy(vma, addr);
2023 	*nodemask = NULL;
2024 	mode = (*mpol)->mode;
2025 
2026 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2027 		nid = interleave_nid(*mpol, vma, addr,
2028 					huge_page_shift(hstate_vma(vma)));
2029 	} else {
2030 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2031 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2032 			*nodemask = &(*mpol)->nodes;
2033 	}
2034 	return nid;
2035 }
2036 
2037 /*
2038  * init_nodemask_of_mempolicy
2039  *
2040  * If the current task's mempolicy is "default" [NULL], return 'false'
2041  * to indicate default policy.  Otherwise, extract the policy nodemask
2042  * for 'bind' or 'interleave' policy into the argument nodemask, or
2043  * initialize the argument nodemask to contain the single node for
2044  * 'preferred' or 'local' policy and return 'true' to indicate presence
2045  * of non-default mempolicy.
2046  *
2047  * We don't bother with reference counting the mempolicy [mpol_get/put]
2048  * because the current task is examining it's own mempolicy and a task's
2049  * mempolicy is only ever changed by the task itself.
2050  *
2051  * N.B., it is the caller's responsibility to free a returned nodemask.
2052  */
init_nodemask_of_mempolicy(nodemask_t * mask)2053 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2054 {
2055 	struct mempolicy *mempolicy;
2056 
2057 	if (!(mask && current->mempolicy))
2058 		return false;
2059 
2060 	task_lock(current);
2061 	mempolicy = current->mempolicy;
2062 	switch (mempolicy->mode) {
2063 	case MPOL_PREFERRED:
2064 	case MPOL_PREFERRED_MANY:
2065 	case MPOL_BIND:
2066 	case MPOL_INTERLEAVE:
2067 		*mask = mempolicy->nodes;
2068 		break;
2069 
2070 	case MPOL_LOCAL:
2071 		init_nodemask_of_node(mask, numa_node_id());
2072 		break;
2073 
2074 	default:
2075 		BUG();
2076 	}
2077 	task_unlock(current);
2078 
2079 	return true;
2080 }
2081 #endif
2082 
2083 /*
2084  * mempolicy_in_oom_domain
2085  *
2086  * If tsk's mempolicy is "bind", check for intersection between mask and
2087  * the policy nodemask. Otherwise, return true for all other policies
2088  * including "interleave", as a tsk with "interleave" policy may have
2089  * memory allocated from all nodes in system.
2090  *
2091  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2092  */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2093 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2094 					const nodemask_t *mask)
2095 {
2096 	struct mempolicy *mempolicy;
2097 	bool ret = true;
2098 
2099 	if (!mask)
2100 		return ret;
2101 
2102 	task_lock(tsk);
2103 	mempolicy = tsk->mempolicy;
2104 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2105 		ret = nodes_intersects(mempolicy->nodes, *mask);
2106 	task_unlock(tsk);
2107 
2108 	return ret;
2109 }
2110 
2111 /* Allocate a page in interleaved policy.
2112    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2113 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2114 					unsigned nid)
2115 {
2116 	struct page *page;
2117 
2118 	page = __alloc_pages(gfp, order, nid, NULL);
2119 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2120 	if (!static_branch_likely(&vm_numa_stat_key))
2121 		return page;
2122 	if (page && page_to_nid(page) == nid) {
2123 		preempt_disable();
2124 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2125 		preempt_enable();
2126 	}
2127 	return page;
2128 }
2129 
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,struct mempolicy * pol)2130 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2131 						int nid, struct mempolicy *pol)
2132 {
2133 	struct page *page;
2134 	gfp_t preferred_gfp;
2135 
2136 	/*
2137 	 * This is a two pass approach. The first pass will only try the
2138 	 * preferred nodes but skip the direct reclaim and allow the
2139 	 * allocation to fail, while the second pass will try all the
2140 	 * nodes in system.
2141 	 */
2142 	preferred_gfp = gfp | __GFP_NOWARN;
2143 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2144 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2145 	if (!page)
2146 		page = __alloc_pages(gfp, order, nid, NULL);
2147 
2148 	return page;
2149 }
2150 
2151 /**
2152  * vma_alloc_folio - Allocate a folio for a VMA.
2153  * @gfp: GFP flags.
2154  * @order: Order of the folio.
2155  * @vma: Pointer to VMA or NULL if not available.
2156  * @addr: Virtual address of the allocation.  Must be inside @vma.
2157  * @hugepage: For hugepages try only the preferred node if possible.
2158  *
2159  * Allocate a folio for a specific address in @vma, using the appropriate
2160  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2161  * of the mm_struct of the VMA to prevent it from going away.  Should be
2162  * used for all allocations for folios that will be mapped into user space.
2163  *
2164  * Return: The folio on success or NULL if allocation fails.
2165  */
vma_alloc_folio(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,bool hugepage)2166 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2167 		unsigned long addr, bool hugepage)
2168 {
2169 	struct mempolicy *pol;
2170 	int node = numa_node_id();
2171 	struct folio *folio;
2172 	int preferred_nid;
2173 	nodemask_t *nmask;
2174 
2175 	pol = get_vma_policy(vma, addr);
2176 
2177 	if (pol->mode == MPOL_INTERLEAVE) {
2178 		struct page *page;
2179 		unsigned nid;
2180 
2181 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2182 		mpol_cond_put(pol);
2183 		gfp |= __GFP_COMP;
2184 		page = alloc_page_interleave(gfp, order, nid);
2185 		if (page && order > 1)
2186 			prep_transhuge_page(page);
2187 		folio = (struct folio *)page;
2188 		goto out;
2189 	}
2190 
2191 	if (pol->mode == MPOL_PREFERRED_MANY) {
2192 		struct page *page;
2193 
2194 		node = policy_node(gfp, pol, node);
2195 		gfp |= __GFP_COMP;
2196 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2197 		mpol_cond_put(pol);
2198 		if (page && order > 1)
2199 			prep_transhuge_page(page);
2200 		folio = (struct folio *)page;
2201 		goto out;
2202 	}
2203 
2204 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2205 		int hpage_node = node;
2206 
2207 		/*
2208 		 * For hugepage allocation and non-interleave policy which
2209 		 * allows the current node (or other explicitly preferred
2210 		 * node) we only try to allocate from the current/preferred
2211 		 * node and don't fall back to other nodes, as the cost of
2212 		 * remote accesses would likely offset THP benefits.
2213 		 *
2214 		 * If the policy is interleave or does not allow the current
2215 		 * node in its nodemask, we allocate the standard way.
2216 		 */
2217 		if (pol->mode == MPOL_PREFERRED)
2218 			hpage_node = first_node(pol->nodes);
2219 
2220 		nmask = policy_nodemask(gfp, pol);
2221 		if (!nmask || node_isset(hpage_node, *nmask)) {
2222 			mpol_cond_put(pol);
2223 			/*
2224 			 * First, try to allocate THP only on local node, but
2225 			 * don't reclaim unnecessarily, just compact.
2226 			 */
2227 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2228 					__GFP_NORETRY, order, hpage_node);
2229 
2230 			/*
2231 			 * If hugepage allocations are configured to always
2232 			 * synchronous compact or the vma has been madvised
2233 			 * to prefer hugepage backing, retry allowing remote
2234 			 * memory with both reclaim and compact as well.
2235 			 */
2236 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2237 				folio = __folio_alloc(gfp, order, hpage_node,
2238 						      nmask);
2239 
2240 			goto out;
2241 		}
2242 	}
2243 
2244 	nmask = policy_nodemask(gfp, pol);
2245 	preferred_nid = policy_node(gfp, pol, node);
2246 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2247 	mpol_cond_put(pol);
2248 out:
2249 	return folio;
2250 }
2251 EXPORT_SYMBOL(vma_alloc_folio);
2252 
2253 /**
2254  * alloc_pages - Allocate pages.
2255  * @gfp: GFP flags.
2256  * @order: Power of two of number of pages to allocate.
2257  *
2258  * Allocate 1 << @order contiguous pages.  The physical address of the
2259  * first page is naturally aligned (eg an order-3 allocation will be aligned
2260  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2261  * process is honoured when in process context.
2262  *
2263  * Context: Can be called from any context, providing the appropriate GFP
2264  * flags are used.
2265  * Return: The page on success or NULL if allocation fails.
2266  */
alloc_pages(gfp_t gfp,unsigned order)2267 struct page *alloc_pages(gfp_t gfp, unsigned order)
2268 {
2269 	struct mempolicy *pol = &default_policy;
2270 	struct page *page;
2271 
2272 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2273 		pol = get_task_policy(current);
2274 
2275 	/*
2276 	 * No reference counting needed for current->mempolicy
2277 	 * nor system default_policy
2278 	 */
2279 	if (pol->mode == MPOL_INTERLEAVE)
2280 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2281 	else if (pol->mode == MPOL_PREFERRED_MANY)
2282 		page = alloc_pages_preferred_many(gfp, order,
2283 				  policy_node(gfp, pol, numa_node_id()), pol);
2284 	else
2285 		page = __alloc_pages(gfp, order,
2286 				policy_node(gfp, pol, numa_node_id()),
2287 				policy_nodemask(gfp, pol));
2288 
2289 	return page;
2290 }
2291 EXPORT_SYMBOL(alloc_pages);
2292 
folio_alloc(gfp_t gfp,unsigned order)2293 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2294 {
2295 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2296 
2297 	if (page && order > 1)
2298 		prep_transhuge_page(page);
2299 	return (struct folio *)page;
2300 }
2301 EXPORT_SYMBOL(folio_alloc);
2302 
alloc_pages_bulk_array_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2303 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2304 		struct mempolicy *pol, unsigned long nr_pages,
2305 		struct page **page_array)
2306 {
2307 	int nodes;
2308 	unsigned long nr_pages_per_node;
2309 	int delta;
2310 	int i;
2311 	unsigned long nr_allocated;
2312 	unsigned long total_allocated = 0;
2313 
2314 	nodes = nodes_weight(pol->nodes);
2315 	nr_pages_per_node = nr_pages / nodes;
2316 	delta = nr_pages - nodes * nr_pages_per_node;
2317 
2318 	for (i = 0; i < nodes; i++) {
2319 		if (delta) {
2320 			nr_allocated = __alloc_pages_bulk(gfp,
2321 					interleave_nodes(pol), NULL,
2322 					nr_pages_per_node + 1, NULL,
2323 					page_array);
2324 			delta--;
2325 		} else {
2326 			nr_allocated = __alloc_pages_bulk(gfp,
2327 					interleave_nodes(pol), NULL,
2328 					nr_pages_per_node, NULL, page_array);
2329 		}
2330 
2331 		page_array += nr_allocated;
2332 		total_allocated += nr_allocated;
2333 	}
2334 
2335 	return total_allocated;
2336 }
2337 
alloc_pages_bulk_array_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2338 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2339 		struct mempolicy *pol, unsigned long nr_pages,
2340 		struct page **page_array)
2341 {
2342 	gfp_t preferred_gfp;
2343 	unsigned long nr_allocated = 0;
2344 
2345 	preferred_gfp = gfp | __GFP_NOWARN;
2346 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2347 
2348 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2349 					   nr_pages, NULL, page_array);
2350 
2351 	if (nr_allocated < nr_pages)
2352 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2353 				nr_pages - nr_allocated, NULL,
2354 				page_array + nr_allocated);
2355 	return nr_allocated;
2356 }
2357 
2358 /* alloc pages bulk and mempolicy should be considered at the
2359  * same time in some situation such as vmalloc.
2360  *
2361  * It can accelerate memory allocation especially interleaving
2362  * allocate memory.
2363  */
alloc_pages_bulk_array_mempolicy(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2364 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2365 		unsigned long nr_pages, struct page **page_array)
2366 {
2367 	struct mempolicy *pol = &default_policy;
2368 
2369 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2370 		pol = get_task_policy(current);
2371 
2372 	if (pol->mode == MPOL_INTERLEAVE)
2373 		return alloc_pages_bulk_array_interleave(gfp, pol,
2374 							 nr_pages, page_array);
2375 
2376 	if (pol->mode == MPOL_PREFERRED_MANY)
2377 		return alloc_pages_bulk_array_preferred_many(gfp,
2378 				numa_node_id(), pol, nr_pages, page_array);
2379 
2380 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2381 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2382 				  page_array);
2383 }
2384 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2385 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2386 {
2387 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2388 
2389 	if (IS_ERR(pol))
2390 		return PTR_ERR(pol);
2391 	dst->vm_policy = pol;
2392 	return 0;
2393 }
2394 
2395 /*
2396  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2397  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2398  * with the mems_allowed returned by cpuset_mems_allowed().  This
2399  * keeps mempolicies cpuset relative after its cpuset moves.  See
2400  * further kernel/cpuset.c update_nodemask().
2401  *
2402  * current's mempolicy may be rebinded by the other task(the task that changes
2403  * cpuset's mems), so we needn't do rebind work for current task.
2404  */
2405 
2406 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2407 struct mempolicy *__mpol_dup(struct mempolicy *old)
2408 {
2409 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2410 
2411 	if (!new)
2412 		return ERR_PTR(-ENOMEM);
2413 
2414 	/* task's mempolicy is protected by alloc_lock */
2415 	if (old == current->mempolicy) {
2416 		task_lock(current);
2417 		*new = *old;
2418 		task_unlock(current);
2419 	} else
2420 		*new = *old;
2421 
2422 	if (current_cpuset_is_being_rebound()) {
2423 		nodemask_t mems = cpuset_mems_allowed(current);
2424 		mpol_rebind_policy(new, &mems);
2425 	}
2426 	atomic_set(&new->refcnt, 1);
2427 	return new;
2428 }
2429 
2430 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2431 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2432 {
2433 	if (!a || !b)
2434 		return false;
2435 	if (a->mode != b->mode)
2436 		return false;
2437 	if (a->flags != b->flags)
2438 		return false;
2439 	if (a->home_node != b->home_node)
2440 		return false;
2441 	if (mpol_store_user_nodemask(a))
2442 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2443 			return false;
2444 
2445 	switch (a->mode) {
2446 	case MPOL_BIND:
2447 	case MPOL_INTERLEAVE:
2448 	case MPOL_PREFERRED:
2449 	case MPOL_PREFERRED_MANY:
2450 		return !!nodes_equal(a->nodes, b->nodes);
2451 	case MPOL_LOCAL:
2452 		return true;
2453 	default:
2454 		BUG();
2455 		return false;
2456 	}
2457 }
2458 
2459 /*
2460  * Shared memory backing store policy support.
2461  *
2462  * Remember policies even when nobody has shared memory mapped.
2463  * The policies are kept in Red-Black tree linked from the inode.
2464  * They are protected by the sp->lock rwlock, which should be held
2465  * for any accesses to the tree.
2466  */
2467 
2468 /*
2469  * lookup first element intersecting start-end.  Caller holds sp->lock for
2470  * reading or for writing
2471  */
2472 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2473 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2474 {
2475 	struct rb_node *n = sp->root.rb_node;
2476 
2477 	while (n) {
2478 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2479 
2480 		if (start >= p->end)
2481 			n = n->rb_right;
2482 		else if (end <= p->start)
2483 			n = n->rb_left;
2484 		else
2485 			break;
2486 	}
2487 	if (!n)
2488 		return NULL;
2489 	for (;;) {
2490 		struct sp_node *w = NULL;
2491 		struct rb_node *prev = rb_prev(n);
2492 		if (!prev)
2493 			break;
2494 		w = rb_entry(prev, struct sp_node, nd);
2495 		if (w->end <= start)
2496 			break;
2497 		n = prev;
2498 	}
2499 	return rb_entry(n, struct sp_node, nd);
2500 }
2501 
2502 /*
2503  * Insert a new shared policy into the list.  Caller holds sp->lock for
2504  * writing.
2505  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2506 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2507 {
2508 	struct rb_node **p = &sp->root.rb_node;
2509 	struct rb_node *parent = NULL;
2510 	struct sp_node *nd;
2511 
2512 	while (*p) {
2513 		parent = *p;
2514 		nd = rb_entry(parent, struct sp_node, nd);
2515 		if (new->start < nd->start)
2516 			p = &(*p)->rb_left;
2517 		else if (new->end > nd->end)
2518 			p = &(*p)->rb_right;
2519 		else
2520 			BUG();
2521 	}
2522 	rb_link_node(&new->nd, parent, p);
2523 	rb_insert_color(&new->nd, &sp->root);
2524 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2525 		 new->policy ? new->policy->mode : 0);
2526 }
2527 
2528 /* Find shared policy intersecting idx */
2529 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2530 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2531 {
2532 	struct mempolicy *pol = NULL;
2533 	struct sp_node *sn;
2534 
2535 	if (!sp->root.rb_node)
2536 		return NULL;
2537 	read_lock(&sp->lock);
2538 	sn = sp_lookup(sp, idx, idx+1);
2539 	if (sn) {
2540 		mpol_get(sn->policy);
2541 		pol = sn->policy;
2542 	}
2543 	read_unlock(&sp->lock);
2544 	return pol;
2545 }
2546 
sp_free(struct sp_node * n)2547 static void sp_free(struct sp_node *n)
2548 {
2549 	mpol_put(n->policy);
2550 	kmem_cache_free(sn_cache, n);
2551 }
2552 
2553 /**
2554  * mpol_misplaced - check whether current page node is valid in policy
2555  *
2556  * @page: page to be checked
2557  * @vma: vm area where page mapped
2558  * @addr: virtual address where page mapped
2559  *
2560  * Lookup current policy node id for vma,addr and "compare to" page's
2561  * node id.  Policy determination "mimics" alloc_page_vma().
2562  * Called from fault path where we know the vma and faulting address.
2563  *
2564  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2565  * policy, or a suitable node ID to allocate a replacement page from.
2566  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2567 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2568 {
2569 	struct mempolicy *pol;
2570 	struct zoneref *z;
2571 	int curnid = page_to_nid(page);
2572 	unsigned long pgoff;
2573 	int thiscpu = raw_smp_processor_id();
2574 	int thisnid = cpu_to_node(thiscpu);
2575 	int polnid = NUMA_NO_NODE;
2576 	int ret = NUMA_NO_NODE;
2577 
2578 	pol = get_vma_policy(vma, addr);
2579 	if (!(pol->flags & MPOL_F_MOF))
2580 		goto out;
2581 
2582 	switch (pol->mode) {
2583 	case MPOL_INTERLEAVE:
2584 		pgoff = vma->vm_pgoff;
2585 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2586 		polnid = offset_il_node(pol, pgoff);
2587 		break;
2588 
2589 	case MPOL_PREFERRED:
2590 		if (node_isset(curnid, pol->nodes))
2591 			goto out;
2592 		polnid = first_node(pol->nodes);
2593 		break;
2594 
2595 	case MPOL_LOCAL:
2596 		polnid = numa_node_id();
2597 		break;
2598 
2599 	case MPOL_BIND:
2600 		/* Optimize placement among multiple nodes via NUMA balancing */
2601 		if (pol->flags & MPOL_F_MORON) {
2602 			if (node_isset(thisnid, pol->nodes))
2603 				break;
2604 			goto out;
2605 		}
2606 		fallthrough;
2607 
2608 	case MPOL_PREFERRED_MANY:
2609 		/*
2610 		 * use current page if in policy nodemask,
2611 		 * else select nearest allowed node, if any.
2612 		 * If no allowed nodes, use current [!misplaced].
2613 		 */
2614 		if (node_isset(curnid, pol->nodes))
2615 			goto out;
2616 		z = first_zones_zonelist(
2617 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2618 				gfp_zone(GFP_HIGHUSER),
2619 				&pol->nodes);
2620 		polnid = zone_to_nid(z->zone);
2621 		break;
2622 
2623 	default:
2624 		BUG();
2625 	}
2626 
2627 	/* Migrate the page towards the node whose CPU is referencing it */
2628 	if (pol->flags & MPOL_F_MORON) {
2629 		polnid = thisnid;
2630 
2631 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2632 			goto out;
2633 	}
2634 
2635 	if (curnid != polnid)
2636 		ret = polnid;
2637 out:
2638 	mpol_cond_put(pol);
2639 
2640 	return ret;
2641 }
2642 
2643 /*
2644  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2645  * dropped after task->mempolicy is set to NULL so that any allocation done as
2646  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2647  * policy.
2648  */
mpol_put_task_policy(struct task_struct * task)2649 void mpol_put_task_policy(struct task_struct *task)
2650 {
2651 	struct mempolicy *pol;
2652 
2653 	task_lock(task);
2654 	pol = task->mempolicy;
2655 	task->mempolicy = NULL;
2656 	task_unlock(task);
2657 	mpol_put(pol);
2658 }
2659 
sp_delete(struct shared_policy * sp,struct sp_node * n)2660 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2661 {
2662 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2663 	rb_erase(&n->nd, &sp->root);
2664 	sp_free(n);
2665 }
2666 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2667 static void sp_node_init(struct sp_node *node, unsigned long start,
2668 			unsigned long end, struct mempolicy *pol)
2669 {
2670 	node->start = start;
2671 	node->end = end;
2672 	node->policy = pol;
2673 }
2674 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2675 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2676 				struct mempolicy *pol)
2677 {
2678 	struct sp_node *n;
2679 	struct mempolicy *newpol;
2680 
2681 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2682 	if (!n)
2683 		return NULL;
2684 
2685 	newpol = mpol_dup(pol);
2686 	if (IS_ERR(newpol)) {
2687 		kmem_cache_free(sn_cache, n);
2688 		return NULL;
2689 	}
2690 	newpol->flags |= MPOL_F_SHARED;
2691 	sp_node_init(n, start, end, newpol);
2692 
2693 	return n;
2694 }
2695 
2696 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2697 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2698 				 unsigned long end, struct sp_node *new)
2699 {
2700 	struct sp_node *n;
2701 	struct sp_node *n_new = NULL;
2702 	struct mempolicy *mpol_new = NULL;
2703 	int ret = 0;
2704 
2705 restart:
2706 	write_lock(&sp->lock);
2707 	n = sp_lookup(sp, start, end);
2708 	/* Take care of old policies in the same range. */
2709 	while (n && n->start < end) {
2710 		struct rb_node *next = rb_next(&n->nd);
2711 		if (n->start >= start) {
2712 			if (n->end <= end)
2713 				sp_delete(sp, n);
2714 			else
2715 				n->start = end;
2716 		} else {
2717 			/* Old policy spanning whole new range. */
2718 			if (n->end > end) {
2719 				if (!n_new)
2720 					goto alloc_new;
2721 
2722 				*mpol_new = *n->policy;
2723 				atomic_set(&mpol_new->refcnt, 1);
2724 				sp_node_init(n_new, end, n->end, mpol_new);
2725 				n->end = start;
2726 				sp_insert(sp, n_new);
2727 				n_new = NULL;
2728 				mpol_new = NULL;
2729 				break;
2730 			} else
2731 				n->end = start;
2732 		}
2733 		if (!next)
2734 			break;
2735 		n = rb_entry(next, struct sp_node, nd);
2736 	}
2737 	if (new)
2738 		sp_insert(sp, new);
2739 	write_unlock(&sp->lock);
2740 	ret = 0;
2741 
2742 err_out:
2743 	if (mpol_new)
2744 		mpol_put(mpol_new);
2745 	if (n_new)
2746 		kmem_cache_free(sn_cache, n_new);
2747 
2748 	return ret;
2749 
2750 alloc_new:
2751 	write_unlock(&sp->lock);
2752 	ret = -ENOMEM;
2753 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2754 	if (!n_new)
2755 		goto err_out;
2756 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2757 	if (!mpol_new)
2758 		goto err_out;
2759 	atomic_set(&mpol_new->refcnt, 1);
2760 	goto restart;
2761 }
2762 
2763 /**
2764  * mpol_shared_policy_init - initialize shared policy for inode
2765  * @sp: pointer to inode shared policy
2766  * @mpol:  struct mempolicy to install
2767  *
2768  * Install non-NULL @mpol in inode's shared policy rb-tree.
2769  * On entry, the current task has a reference on a non-NULL @mpol.
2770  * This must be released on exit.
2771  * This is called at get_inode() calls and we can use GFP_KERNEL.
2772  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2773 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2774 {
2775 	int ret;
2776 
2777 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2778 	rwlock_init(&sp->lock);
2779 
2780 	if (mpol) {
2781 		struct vm_area_struct pvma;
2782 		struct mempolicy *new;
2783 		NODEMASK_SCRATCH(scratch);
2784 
2785 		if (!scratch)
2786 			goto put_mpol;
2787 		/* contextualize the tmpfs mount point mempolicy */
2788 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2789 		if (IS_ERR(new))
2790 			goto free_scratch; /* no valid nodemask intersection */
2791 
2792 		task_lock(current);
2793 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2794 		task_unlock(current);
2795 		if (ret)
2796 			goto put_new;
2797 
2798 		/* Create pseudo-vma that contains just the policy */
2799 		vma_init(&pvma, NULL);
2800 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2801 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2802 
2803 put_new:
2804 		mpol_put(new);			/* drop initial ref */
2805 free_scratch:
2806 		NODEMASK_SCRATCH_FREE(scratch);
2807 put_mpol:
2808 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2809 	}
2810 }
2811 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2812 int mpol_set_shared_policy(struct shared_policy *info,
2813 			struct vm_area_struct *vma, struct mempolicy *npol)
2814 {
2815 	int err;
2816 	struct sp_node *new = NULL;
2817 	unsigned long sz = vma_pages(vma);
2818 
2819 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2820 		 vma->vm_pgoff,
2821 		 sz, npol ? npol->mode : -1,
2822 		 npol ? npol->flags : -1,
2823 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2824 
2825 	if (npol) {
2826 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2827 		if (!new)
2828 			return -ENOMEM;
2829 	}
2830 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2831 	if (err && new)
2832 		sp_free(new);
2833 	return err;
2834 }
2835 
2836 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2837 void mpol_free_shared_policy(struct shared_policy *p)
2838 {
2839 	struct sp_node *n;
2840 	struct rb_node *next;
2841 
2842 	if (!p->root.rb_node)
2843 		return;
2844 	write_lock(&p->lock);
2845 	next = rb_first(&p->root);
2846 	while (next) {
2847 		n = rb_entry(next, struct sp_node, nd);
2848 		next = rb_next(&n->nd);
2849 		sp_delete(p, n);
2850 	}
2851 	write_unlock(&p->lock);
2852 }
2853 
2854 #ifdef CONFIG_NUMA_BALANCING
2855 static int __initdata numabalancing_override;
2856 
check_numabalancing_enable(void)2857 static void __init check_numabalancing_enable(void)
2858 {
2859 	bool numabalancing_default = false;
2860 
2861 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2862 		numabalancing_default = true;
2863 
2864 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2865 	if (numabalancing_override)
2866 		set_numabalancing_state(numabalancing_override == 1);
2867 
2868 	if (num_online_nodes() > 1 && !numabalancing_override) {
2869 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2870 			numabalancing_default ? "Enabling" : "Disabling");
2871 		set_numabalancing_state(numabalancing_default);
2872 	}
2873 }
2874 
setup_numabalancing(char * str)2875 static int __init setup_numabalancing(char *str)
2876 {
2877 	int ret = 0;
2878 	if (!str)
2879 		goto out;
2880 
2881 	if (!strcmp(str, "enable")) {
2882 		numabalancing_override = 1;
2883 		ret = 1;
2884 	} else if (!strcmp(str, "disable")) {
2885 		numabalancing_override = -1;
2886 		ret = 1;
2887 	}
2888 out:
2889 	if (!ret)
2890 		pr_warn("Unable to parse numa_balancing=\n");
2891 
2892 	return ret;
2893 }
2894 __setup("numa_balancing=", setup_numabalancing);
2895 #else
check_numabalancing_enable(void)2896 static inline void __init check_numabalancing_enable(void)
2897 {
2898 }
2899 #endif /* CONFIG_NUMA_BALANCING */
2900 
2901 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2902 void __init numa_policy_init(void)
2903 {
2904 	nodemask_t interleave_nodes;
2905 	unsigned long largest = 0;
2906 	int nid, prefer = 0;
2907 
2908 	policy_cache = kmem_cache_create("numa_policy",
2909 					 sizeof(struct mempolicy),
2910 					 0, SLAB_PANIC, NULL);
2911 
2912 	sn_cache = kmem_cache_create("shared_policy_node",
2913 				     sizeof(struct sp_node),
2914 				     0, SLAB_PANIC, NULL);
2915 
2916 	for_each_node(nid) {
2917 		preferred_node_policy[nid] = (struct mempolicy) {
2918 			.refcnt = ATOMIC_INIT(1),
2919 			.mode = MPOL_PREFERRED,
2920 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2921 			.nodes = nodemask_of_node(nid),
2922 		};
2923 	}
2924 
2925 	/*
2926 	 * Set interleaving policy for system init. Interleaving is only
2927 	 * enabled across suitably sized nodes (default is >= 16MB), or
2928 	 * fall back to the largest node if they're all smaller.
2929 	 */
2930 	nodes_clear(interleave_nodes);
2931 	for_each_node_state(nid, N_MEMORY) {
2932 		unsigned long total_pages = node_present_pages(nid);
2933 
2934 		/* Preserve the largest node */
2935 		if (largest < total_pages) {
2936 			largest = total_pages;
2937 			prefer = nid;
2938 		}
2939 
2940 		/* Interleave this node? */
2941 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2942 			node_set(nid, interleave_nodes);
2943 	}
2944 
2945 	/* All too small, use the largest */
2946 	if (unlikely(nodes_empty(interleave_nodes)))
2947 		node_set(prefer, interleave_nodes);
2948 
2949 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2950 		pr_err("%s: interleaving failed\n", __func__);
2951 
2952 	check_numabalancing_enable();
2953 }
2954 
2955 /* Reset policy of current process to default */
numa_default_policy(void)2956 void numa_default_policy(void)
2957 {
2958 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2959 }
2960 
2961 /*
2962  * Parse and format mempolicy from/to strings
2963  */
2964 
2965 static const char * const policy_modes[] =
2966 {
2967 	[MPOL_DEFAULT]    = "default",
2968 	[MPOL_PREFERRED]  = "prefer",
2969 	[MPOL_BIND]       = "bind",
2970 	[MPOL_INTERLEAVE] = "interleave",
2971 	[MPOL_LOCAL]      = "local",
2972 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2973 };
2974 
2975 
2976 #ifdef CONFIG_TMPFS
2977 /**
2978  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2979  * @str:  string containing mempolicy to parse
2980  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2981  *
2982  * Format of input:
2983  *	<mode>[=<flags>][:<nodelist>]
2984  *
2985  * Return: %0 on success, else %1
2986  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2987 int mpol_parse_str(char *str, struct mempolicy **mpol)
2988 {
2989 	struct mempolicy *new = NULL;
2990 	unsigned short mode_flags;
2991 	nodemask_t nodes;
2992 	char *nodelist = strchr(str, ':');
2993 	char *flags = strchr(str, '=');
2994 	int err = 1, mode;
2995 
2996 	if (flags)
2997 		*flags++ = '\0';	/* terminate mode string */
2998 
2999 	if (nodelist) {
3000 		/* NUL-terminate mode or flags string */
3001 		*nodelist++ = '\0';
3002 		if (nodelist_parse(nodelist, nodes))
3003 			goto out;
3004 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3005 			goto out;
3006 	} else
3007 		nodes_clear(nodes);
3008 
3009 	mode = match_string(policy_modes, MPOL_MAX, str);
3010 	if (mode < 0)
3011 		goto out;
3012 
3013 	switch (mode) {
3014 	case MPOL_PREFERRED:
3015 		/*
3016 		 * Insist on a nodelist of one node only, although later
3017 		 * we use first_node(nodes) to grab a single node, so here
3018 		 * nodelist (or nodes) cannot be empty.
3019 		 */
3020 		if (nodelist) {
3021 			char *rest = nodelist;
3022 			while (isdigit(*rest))
3023 				rest++;
3024 			if (*rest)
3025 				goto out;
3026 			if (nodes_empty(nodes))
3027 				goto out;
3028 		}
3029 		break;
3030 	case MPOL_INTERLEAVE:
3031 		/*
3032 		 * Default to online nodes with memory if no nodelist
3033 		 */
3034 		if (!nodelist)
3035 			nodes = node_states[N_MEMORY];
3036 		break;
3037 	case MPOL_LOCAL:
3038 		/*
3039 		 * Don't allow a nodelist;  mpol_new() checks flags
3040 		 */
3041 		if (nodelist)
3042 			goto out;
3043 		break;
3044 	case MPOL_DEFAULT:
3045 		/*
3046 		 * Insist on a empty nodelist
3047 		 */
3048 		if (!nodelist)
3049 			err = 0;
3050 		goto out;
3051 	case MPOL_PREFERRED_MANY:
3052 	case MPOL_BIND:
3053 		/*
3054 		 * Insist on a nodelist
3055 		 */
3056 		if (!nodelist)
3057 			goto out;
3058 	}
3059 
3060 	mode_flags = 0;
3061 	if (flags) {
3062 		/*
3063 		 * Currently, we only support two mutually exclusive
3064 		 * mode flags.
3065 		 */
3066 		if (!strcmp(flags, "static"))
3067 			mode_flags |= MPOL_F_STATIC_NODES;
3068 		else if (!strcmp(flags, "relative"))
3069 			mode_flags |= MPOL_F_RELATIVE_NODES;
3070 		else
3071 			goto out;
3072 	}
3073 
3074 	new = mpol_new(mode, mode_flags, &nodes);
3075 	if (IS_ERR(new))
3076 		goto out;
3077 
3078 	/*
3079 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3080 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3081 	 */
3082 	if (mode != MPOL_PREFERRED) {
3083 		new->nodes = nodes;
3084 	} else if (nodelist) {
3085 		nodes_clear(new->nodes);
3086 		node_set(first_node(nodes), new->nodes);
3087 	} else {
3088 		new->mode = MPOL_LOCAL;
3089 	}
3090 
3091 	/*
3092 	 * Save nodes for contextualization: this will be used to "clone"
3093 	 * the mempolicy in a specific context [cpuset] at a later time.
3094 	 */
3095 	new->w.user_nodemask = nodes;
3096 
3097 	err = 0;
3098 
3099 out:
3100 	/* Restore string for error message */
3101 	if (nodelist)
3102 		*--nodelist = ':';
3103 	if (flags)
3104 		*--flags = '=';
3105 	if (!err)
3106 		*mpol = new;
3107 	return err;
3108 }
3109 #endif /* CONFIG_TMPFS */
3110 
3111 /**
3112  * mpol_to_str - format a mempolicy structure for printing
3113  * @buffer:  to contain formatted mempolicy string
3114  * @maxlen:  length of @buffer
3115  * @pol:  pointer to mempolicy to be formatted
3116  *
3117  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3118  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3119  * longest flag, "relative", and to display at least a few node ids.
3120  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3121 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3122 {
3123 	char *p = buffer;
3124 	nodemask_t nodes = NODE_MASK_NONE;
3125 	unsigned short mode = MPOL_DEFAULT;
3126 	unsigned short flags = 0;
3127 
3128 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3129 		mode = pol->mode;
3130 		flags = pol->flags;
3131 	}
3132 
3133 	switch (mode) {
3134 	case MPOL_DEFAULT:
3135 	case MPOL_LOCAL:
3136 		break;
3137 	case MPOL_PREFERRED:
3138 	case MPOL_PREFERRED_MANY:
3139 	case MPOL_BIND:
3140 	case MPOL_INTERLEAVE:
3141 		nodes = pol->nodes;
3142 		break;
3143 	default:
3144 		WARN_ON_ONCE(1);
3145 		snprintf(p, maxlen, "unknown");
3146 		return;
3147 	}
3148 
3149 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3150 
3151 	if (flags & MPOL_MODE_FLAGS) {
3152 		p += snprintf(p, buffer + maxlen - p, "=");
3153 
3154 		/*
3155 		 * Currently, the only defined flags are mutually exclusive
3156 		 */
3157 		if (flags & MPOL_F_STATIC_NODES)
3158 			p += snprintf(p, buffer + maxlen - p, "static");
3159 		else if (flags & MPOL_F_RELATIVE_NODES)
3160 			p += snprintf(p, buffer + maxlen - p, "relative");
3161 	}
3162 
3163 	if (!nodes_empty(nodes))
3164 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3165 			       nodemask_pr_args(&nodes));
3166 }
3167