1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 /*
78 * Return values:
79 * 1: the page is dissolved (if needed) and taken off from buddy,
80 * 0: the page is dissolved (if needed) and not taken off from buddy,
81 * < 0: failed to dissolve.
82 */
__page_handle_poison(struct page * page)83 static int __page_handle_poison(struct page *page)
84 {
85 int ret;
86
87 zone_pcp_disable(page_zone(page));
88 ret = dissolve_free_huge_page(page);
89 if (!ret)
90 ret = take_page_off_buddy(page);
91 zone_pcp_enable(page_zone(page));
92
93 return ret;
94 }
95
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)96 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
97 {
98 if (hugepage_or_freepage) {
99 /*
100 * Doing this check for free pages is also fine since dissolve_free_huge_page
101 * returns 0 for non-hugetlb pages as well.
102 */
103 if (__page_handle_poison(page) <= 0)
104 /*
105 * We could fail to take off the target page from buddy
106 * for example due to racy page allocation, but that's
107 * acceptable because soft-offlined page is not broken
108 * and if someone really want to use it, they should
109 * take it.
110 */
111 return false;
112 }
113
114 SetPageHWPoison(page);
115 if (release)
116 put_page(page);
117 page_ref_inc(page);
118 num_poisoned_pages_inc();
119
120 return true;
121 }
122
123 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
124
125 u32 hwpoison_filter_enable = 0;
126 u32 hwpoison_filter_dev_major = ~0U;
127 u32 hwpoison_filter_dev_minor = ~0U;
128 u64 hwpoison_filter_flags_mask;
129 u64 hwpoison_filter_flags_value;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
131 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
132 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
133 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
134 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
135
hwpoison_filter_dev(struct page * p)136 static int hwpoison_filter_dev(struct page *p)
137 {
138 struct address_space *mapping;
139 dev_t dev;
140
141 if (hwpoison_filter_dev_major == ~0U &&
142 hwpoison_filter_dev_minor == ~0U)
143 return 0;
144
145 mapping = page_mapping(p);
146 if (mapping == NULL || mapping->host == NULL)
147 return -EINVAL;
148
149 dev = mapping->host->i_sb->s_dev;
150 if (hwpoison_filter_dev_major != ~0U &&
151 hwpoison_filter_dev_major != MAJOR(dev))
152 return -EINVAL;
153 if (hwpoison_filter_dev_minor != ~0U &&
154 hwpoison_filter_dev_minor != MINOR(dev))
155 return -EINVAL;
156
157 return 0;
158 }
159
hwpoison_filter_flags(struct page * p)160 static int hwpoison_filter_flags(struct page *p)
161 {
162 if (!hwpoison_filter_flags_mask)
163 return 0;
164
165 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
166 hwpoison_filter_flags_value)
167 return 0;
168 else
169 return -EINVAL;
170 }
171
172 /*
173 * This allows stress tests to limit test scope to a collection of tasks
174 * by putting them under some memcg. This prevents killing unrelated/important
175 * processes such as /sbin/init. Note that the target task may share clean
176 * pages with init (eg. libc text), which is harmless. If the target task
177 * share _dirty_ pages with another task B, the test scheme must make sure B
178 * is also included in the memcg. At last, due to race conditions this filter
179 * can only guarantee that the page either belongs to the memcg tasks, or is
180 * a freed page.
181 */
182 #ifdef CONFIG_MEMCG
183 u64 hwpoison_filter_memcg;
184 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)185 static int hwpoison_filter_task(struct page *p)
186 {
187 if (!hwpoison_filter_memcg)
188 return 0;
189
190 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
191 return -EINVAL;
192
193 return 0;
194 }
195 #else
hwpoison_filter_task(struct page * p)196 static int hwpoison_filter_task(struct page *p) { return 0; }
197 #endif
198
hwpoison_filter(struct page * p)199 int hwpoison_filter(struct page *p)
200 {
201 if (!hwpoison_filter_enable)
202 return 0;
203
204 if (hwpoison_filter_dev(p))
205 return -EINVAL;
206
207 if (hwpoison_filter_flags(p))
208 return -EINVAL;
209
210 if (hwpoison_filter_task(p))
211 return -EINVAL;
212
213 return 0;
214 }
215 #else
hwpoison_filter(struct page * p)216 int hwpoison_filter(struct page *p)
217 {
218 return 0;
219 }
220 #endif
221
222 EXPORT_SYMBOL_GPL(hwpoison_filter);
223
224 /*
225 * Kill all processes that have a poisoned page mapped and then isolate
226 * the page.
227 *
228 * General strategy:
229 * Find all processes having the page mapped and kill them.
230 * But we keep a page reference around so that the page is not
231 * actually freed yet.
232 * Then stash the page away
233 *
234 * There's no convenient way to get back to mapped processes
235 * from the VMAs. So do a brute-force search over all
236 * running processes.
237 *
238 * Remember that machine checks are not common (or rather
239 * if they are common you have other problems), so this shouldn't
240 * be a performance issue.
241 *
242 * Also there are some races possible while we get from the
243 * error detection to actually handle it.
244 */
245
246 struct to_kill {
247 struct list_head nd;
248 struct task_struct *tsk;
249 unsigned long addr;
250 short size_shift;
251 };
252
253 /*
254 * Send all the processes who have the page mapped a signal.
255 * ``action optional'' if they are not immediately affected by the error
256 * ``action required'' if error happened in current execution context
257 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)258 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
259 {
260 struct task_struct *t = tk->tsk;
261 short addr_lsb = tk->size_shift;
262 int ret = 0;
263
264 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
265 pfn, t->comm, t->pid);
266
267 if ((flags & MF_ACTION_REQUIRED) && (t == current))
268 ret = force_sig_mceerr(BUS_MCEERR_AR,
269 (void __user *)tk->addr, addr_lsb);
270 else
271 /*
272 * Signal other processes sharing the page if they have
273 * PF_MCE_EARLY set.
274 * Don't use force here, it's convenient if the signal
275 * can be temporarily blocked.
276 * This could cause a loop when the user sets SIGBUS
277 * to SIG_IGN, but hopefully no one will do that?
278 */
279 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
280 addr_lsb, t);
281 if (ret < 0)
282 pr_info("Error sending signal to %s:%d: %d\n",
283 t->comm, t->pid, ret);
284 return ret;
285 }
286
287 /*
288 * Unknown page type encountered. Try to check whether it can turn PageLRU by
289 * lru_add_drain_all.
290 */
shake_page(struct page * p)291 void shake_page(struct page *p)
292 {
293 if (PageHuge(p))
294 return;
295
296 if (!PageSlab(p)) {
297 lru_add_drain_all();
298 if (PageLRU(p) || is_free_buddy_page(p))
299 return;
300 }
301
302 /*
303 * TODO: Could shrink slab caches here if a lightweight range-based
304 * shrinker will be available.
305 */
306 }
307 EXPORT_SYMBOL_GPL(shake_page);
308
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)309 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
310 unsigned long address)
311 {
312 unsigned long ret = 0;
313 pgd_t *pgd;
314 p4d_t *p4d;
315 pud_t *pud;
316 pmd_t *pmd;
317 pte_t *pte;
318
319 VM_BUG_ON_VMA(address == -EFAULT, vma);
320 pgd = pgd_offset(vma->vm_mm, address);
321 if (!pgd_present(*pgd))
322 return 0;
323 p4d = p4d_offset(pgd, address);
324 if (!p4d_present(*p4d))
325 return 0;
326 pud = pud_offset(p4d, address);
327 if (!pud_present(*pud))
328 return 0;
329 if (pud_devmap(*pud))
330 return PUD_SHIFT;
331 pmd = pmd_offset(pud, address);
332 if (!pmd_present(*pmd))
333 return 0;
334 if (pmd_devmap(*pmd))
335 return PMD_SHIFT;
336 pte = pte_offset_map(pmd, address);
337 if (pte_present(*pte) && pte_devmap(*pte))
338 ret = PAGE_SHIFT;
339 pte_unmap(pte);
340 return ret;
341 }
342
343 /*
344 * Failure handling: if we can't find or can't kill a process there's
345 * not much we can do. We just print a message and ignore otherwise.
346 */
347
348 #define FSDAX_INVALID_PGOFF ULONG_MAX
349
350 /*
351 * Schedule a process for later kill.
352 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
353 *
354 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
355 * filesystem with a memory failure handler has claimed the
356 * memory_failure event. In all other cases, page->index and
357 * page->mapping are sufficient for mapping the page back to its
358 * corresponding user virtual address.
359 */
add_to_kill(struct task_struct * tsk,struct page * p,pgoff_t fsdax_pgoff,struct vm_area_struct * vma,struct list_head * to_kill)360 static void add_to_kill(struct task_struct *tsk, struct page *p,
361 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
362 struct list_head *to_kill)
363 {
364 struct to_kill *tk;
365
366 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
367 if (!tk) {
368 pr_err("Out of memory while machine check handling\n");
369 return;
370 }
371
372 tk->addr = page_address_in_vma(p, vma);
373 if (is_zone_device_page(p)) {
374 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
375 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
376 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
377 } else
378 tk->size_shift = page_shift(compound_head(p));
379
380 /*
381 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
382 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
383 * so "tk->size_shift == 0" effectively checks no mapping on
384 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
385 * to a process' address space, it's possible not all N VMAs
386 * contain mappings for the page, but at least one VMA does.
387 * Only deliver SIGBUS with payload derived from the VMA that
388 * has a mapping for the page.
389 */
390 if (tk->addr == -EFAULT) {
391 pr_info("Unable to find user space address %lx in %s\n",
392 page_to_pfn(p), tsk->comm);
393 } else if (tk->size_shift == 0) {
394 kfree(tk);
395 return;
396 }
397
398 get_task_struct(tsk);
399 tk->tsk = tsk;
400 list_add_tail(&tk->nd, to_kill);
401 }
402
403 /*
404 * Kill the processes that have been collected earlier.
405 *
406 * Only do anything when FORCEKILL is set, otherwise just free the
407 * list (this is used for clean pages which do not need killing)
408 * Also when FAIL is set do a force kill because something went
409 * wrong earlier.
410 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)411 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
412 unsigned long pfn, int flags)
413 {
414 struct to_kill *tk, *next;
415
416 list_for_each_entry_safe(tk, next, to_kill, nd) {
417 if (forcekill) {
418 /*
419 * In case something went wrong with munmapping
420 * make sure the process doesn't catch the
421 * signal and then access the memory. Just kill it.
422 */
423 if (fail || tk->addr == -EFAULT) {
424 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
425 pfn, tk->tsk->comm, tk->tsk->pid);
426 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
427 tk->tsk, PIDTYPE_PID);
428 }
429
430 /*
431 * In theory the process could have mapped
432 * something else on the address in-between. We could
433 * check for that, but we need to tell the
434 * process anyways.
435 */
436 else if (kill_proc(tk, pfn, flags) < 0)
437 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
438 pfn, tk->tsk->comm, tk->tsk->pid);
439 }
440 list_del(&tk->nd);
441 put_task_struct(tk->tsk);
442 kfree(tk);
443 }
444 }
445
446 /*
447 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
448 * on behalf of the thread group. Return task_struct of the (first found)
449 * dedicated thread if found, and return NULL otherwise.
450 *
451 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
452 * have to call rcu_read_lock/unlock() in this function.
453 */
find_early_kill_thread(struct task_struct * tsk)454 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
455 {
456 struct task_struct *t;
457
458 for_each_thread(tsk, t) {
459 if (t->flags & PF_MCE_PROCESS) {
460 if (t->flags & PF_MCE_EARLY)
461 return t;
462 } else {
463 if (sysctl_memory_failure_early_kill)
464 return t;
465 }
466 }
467 return NULL;
468 }
469
470 /*
471 * Determine whether a given process is "early kill" process which expects
472 * to be signaled when some page under the process is hwpoisoned.
473 * Return task_struct of the dedicated thread (main thread unless explicitly
474 * specified) if the process is "early kill" and otherwise returns NULL.
475 *
476 * Note that the above is true for Action Optional case. For Action Required
477 * case, it's only meaningful to the current thread which need to be signaled
478 * with SIGBUS, this error is Action Optional for other non current
479 * processes sharing the same error page,if the process is "early kill", the
480 * task_struct of the dedicated thread will also be returned.
481 */
task_early_kill(struct task_struct * tsk,int force_early)482 static struct task_struct *task_early_kill(struct task_struct *tsk,
483 int force_early)
484 {
485 if (!tsk->mm)
486 return NULL;
487 /*
488 * Comparing ->mm here because current task might represent
489 * a subthread, while tsk always points to the main thread.
490 */
491 if (force_early && tsk->mm == current->mm)
492 return current;
493
494 return find_early_kill_thread(tsk);
495 }
496
497 /*
498 * Collect processes when the error hit an anonymous page.
499 */
collect_procs_anon(struct page * page,struct list_head * to_kill,int force_early)500 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
501 int force_early)
502 {
503 struct folio *folio = page_folio(page);
504 struct vm_area_struct *vma;
505 struct task_struct *tsk;
506 struct anon_vma *av;
507 pgoff_t pgoff;
508
509 av = folio_lock_anon_vma_read(folio, NULL);
510 if (av == NULL) /* Not actually mapped anymore */
511 return;
512
513 pgoff = page_to_pgoff(page);
514 read_lock(&tasklist_lock);
515 for_each_process (tsk) {
516 struct anon_vma_chain *vmac;
517 struct task_struct *t = task_early_kill(tsk, force_early);
518
519 if (!t)
520 continue;
521 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
522 pgoff, pgoff) {
523 vma = vmac->vma;
524 if (vma->vm_mm != t->mm)
525 continue;
526 if (!page_mapped_in_vma(page, vma))
527 continue;
528 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
529 }
530 }
531 read_unlock(&tasklist_lock);
532 anon_vma_unlock_read(av);
533 }
534
535 /*
536 * Collect processes when the error hit a file mapped page.
537 */
collect_procs_file(struct page * page,struct list_head * to_kill,int force_early)538 static void collect_procs_file(struct page *page, struct list_head *to_kill,
539 int force_early)
540 {
541 struct vm_area_struct *vma;
542 struct task_struct *tsk;
543 struct address_space *mapping = page->mapping;
544 pgoff_t pgoff;
545
546 i_mmap_lock_read(mapping);
547 read_lock(&tasklist_lock);
548 pgoff = page_to_pgoff(page);
549 for_each_process(tsk) {
550 struct task_struct *t = task_early_kill(tsk, force_early);
551
552 if (!t)
553 continue;
554 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
555 pgoff) {
556 /*
557 * Send early kill signal to tasks where a vma covers
558 * the page but the corrupted page is not necessarily
559 * mapped it in its pte.
560 * Assume applications who requested early kill want
561 * to be informed of all such data corruptions.
562 */
563 if (vma->vm_mm == t->mm)
564 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
565 to_kill);
566 }
567 }
568 read_unlock(&tasklist_lock);
569 i_mmap_unlock_read(mapping);
570 }
571
572 #ifdef CONFIG_FS_DAX
573 /*
574 * Collect processes when the error hit a fsdax page.
575 */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill)576 static void collect_procs_fsdax(struct page *page,
577 struct address_space *mapping, pgoff_t pgoff,
578 struct list_head *to_kill)
579 {
580 struct vm_area_struct *vma;
581 struct task_struct *tsk;
582
583 i_mmap_lock_read(mapping);
584 read_lock(&tasklist_lock);
585 for_each_process(tsk) {
586 struct task_struct *t = task_early_kill(tsk, true);
587
588 if (!t)
589 continue;
590 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
591 if (vma->vm_mm == t->mm)
592 add_to_kill(t, page, pgoff, vma, to_kill);
593 }
594 }
595 read_unlock(&tasklist_lock);
596 i_mmap_unlock_read(mapping);
597 }
598 #endif /* CONFIG_FS_DAX */
599
600 /*
601 * Collect the processes who have the corrupted page mapped to kill.
602 */
collect_procs(struct page * page,struct list_head * tokill,int force_early)603 static void collect_procs(struct page *page, struct list_head *tokill,
604 int force_early)
605 {
606 if (!page->mapping)
607 return;
608
609 if (PageAnon(page))
610 collect_procs_anon(page, tokill, force_early);
611 else
612 collect_procs_file(page, tokill, force_early);
613 }
614
615 struct hwp_walk {
616 struct to_kill tk;
617 unsigned long pfn;
618 int flags;
619 };
620
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)621 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
622 {
623 tk->addr = addr;
624 tk->size_shift = shift;
625 }
626
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)627 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
628 unsigned long poisoned_pfn, struct to_kill *tk)
629 {
630 unsigned long pfn = 0;
631
632 if (pte_present(pte)) {
633 pfn = pte_pfn(pte);
634 } else {
635 swp_entry_t swp = pte_to_swp_entry(pte);
636
637 if (is_hwpoison_entry(swp))
638 pfn = swp_offset_pfn(swp);
639 }
640
641 if (!pfn || pfn != poisoned_pfn)
642 return 0;
643
644 set_to_kill(tk, addr, shift);
645 return 1;
646 }
647
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)649 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
650 struct hwp_walk *hwp)
651 {
652 pmd_t pmd = *pmdp;
653 unsigned long pfn;
654 unsigned long hwpoison_vaddr;
655
656 if (!pmd_present(pmd))
657 return 0;
658 pfn = pmd_pfn(pmd);
659 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
660 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
661 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
662 return 1;
663 }
664 return 0;
665 }
666 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)667 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
668 struct hwp_walk *hwp)
669 {
670 return 0;
671 }
672 #endif
673
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)674 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
675 unsigned long end, struct mm_walk *walk)
676 {
677 struct hwp_walk *hwp = walk->private;
678 int ret = 0;
679 pte_t *ptep, *mapped_pte;
680 spinlock_t *ptl;
681
682 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
683 if (ptl) {
684 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
685 spin_unlock(ptl);
686 goto out;
687 }
688
689 if (pmd_trans_unstable(pmdp))
690 goto out;
691
692 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
693 addr, &ptl);
694 for (; addr != end; ptep++, addr += PAGE_SIZE) {
695 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
696 hwp->pfn, &hwp->tk);
697 if (ret == 1)
698 break;
699 }
700 pte_unmap_unlock(mapped_pte, ptl);
701 out:
702 cond_resched();
703 return ret;
704 }
705
706 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)707 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
708 unsigned long addr, unsigned long end,
709 struct mm_walk *walk)
710 {
711 struct hwp_walk *hwp = walk->private;
712 pte_t pte = huge_ptep_get(ptep);
713 struct hstate *h = hstate_vma(walk->vma);
714
715 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
716 hwp->pfn, &hwp->tk);
717 }
718 #else
719 #define hwpoison_hugetlb_range NULL
720 #endif
721
722 static const struct mm_walk_ops hwp_walk_ops = {
723 .pmd_entry = hwpoison_pte_range,
724 .hugetlb_entry = hwpoison_hugetlb_range,
725 };
726
727 /*
728 * Sends SIGBUS to the current process with error info.
729 *
730 * This function is intended to handle "Action Required" MCEs on already
731 * hardware poisoned pages. They could happen, for example, when
732 * memory_failure() failed to unmap the error page at the first call, or
733 * when multiple local machine checks happened on different CPUs.
734 *
735 * MCE handler currently has no easy access to the error virtual address,
736 * so this function walks page table to find it. The returned virtual address
737 * is proper in most cases, but it could be wrong when the application
738 * process has multiple entries mapping the error page.
739 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)740 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
741 int flags)
742 {
743 int ret;
744 struct hwp_walk priv = {
745 .pfn = pfn,
746 };
747 priv.tk.tsk = p;
748
749 if (!p->mm)
750 return -EFAULT;
751
752 mmap_read_lock(p->mm);
753 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
754 (void *)&priv);
755 if (ret == 1 && priv.tk.addr)
756 kill_proc(&priv.tk, pfn, flags);
757 else
758 ret = 0;
759 mmap_read_unlock(p->mm);
760 return ret > 0 ? -EHWPOISON : -EFAULT;
761 }
762
763 static const char *action_name[] = {
764 [MF_IGNORED] = "Ignored",
765 [MF_FAILED] = "Failed",
766 [MF_DELAYED] = "Delayed",
767 [MF_RECOVERED] = "Recovered",
768 };
769
770 static const char * const action_page_types[] = {
771 [MF_MSG_KERNEL] = "reserved kernel page",
772 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
773 [MF_MSG_SLAB] = "kernel slab page",
774 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
775 [MF_MSG_HUGE] = "huge page",
776 [MF_MSG_FREE_HUGE] = "free huge page",
777 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
778 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
779 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
780 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
781 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
782 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
783 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
784 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
785 [MF_MSG_CLEAN_LRU] = "clean LRU page",
786 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
787 [MF_MSG_BUDDY] = "free buddy page",
788 [MF_MSG_DAX] = "dax page",
789 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
790 [MF_MSG_UNKNOWN] = "unknown page",
791 };
792
793 /*
794 * XXX: It is possible that a page is isolated from LRU cache,
795 * and then kept in swap cache or failed to remove from page cache.
796 * The page count will stop it from being freed by unpoison.
797 * Stress tests should be aware of this memory leak problem.
798 */
delete_from_lru_cache(struct page * p)799 static int delete_from_lru_cache(struct page *p)
800 {
801 if (!isolate_lru_page(p)) {
802 /*
803 * Clear sensible page flags, so that the buddy system won't
804 * complain when the page is unpoison-and-freed.
805 */
806 ClearPageActive(p);
807 ClearPageUnevictable(p);
808
809 /*
810 * Poisoned page might never drop its ref count to 0 so we have
811 * to uncharge it manually from its memcg.
812 */
813 mem_cgroup_uncharge(page_folio(p));
814
815 /*
816 * drop the page count elevated by isolate_lru_page()
817 */
818 put_page(p);
819 return 0;
820 }
821 return -EIO;
822 }
823
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)824 static int truncate_error_page(struct page *p, unsigned long pfn,
825 struct address_space *mapping)
826 {
827 int ret = MF_FAILED;
828
829 if (mapping->a_ops->error_remove_page) {
830 int err = mapping->a_ops->error_remove_page(mapping, p);
831
832 if (err != 0) {
833 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
834 } else if (page_has_private(p) &&
835 !try_to_release_page(p, GFP_NOIO)) {
836 pr_info("%#lx: failed to release buffers\n", pfn);
837 } else {
838 ret = MF_RECOVERED;
839 }
840 } else {
841 /*
842 * If the file system doesn't support it just invalidate
843 * This fails on dirty or anything with private pages
844 */
845 if (invalidate_inode_page(p))
846 ret = MF_RECOVERED;
847 else
848 pr_info("%#lx: Failed to invalidate\n", pfn);
849 }
850
851 return ret;
852 }
853
854 struct page_state {
855 unsigned long mask;
856 unsigned long res;
857 enum mf_action_page_type type;
858
859 /* Callback ->action() has to unlock the relevant page inside it. */
860 int (*action)(struct page_state *ps, struct page *p);
861 };
862
863 /*
864 * Return true if page is still referenced by others, otherwise return
865 * false.
866 *
867 * The extra_pins is true when one extra refcount is expected.
868 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)869 static bool has_extra_refcount(struct page_state *ps, struct page *p,
870 bool extra_pins)
871 {
872 int count = page_count(p) - 1;
873
874 if (extra_pins)
875 count -= 1;
876
877 if (count > 0) {
878 pr_err("%#lx: %s still referenced by %d users\n",
879 page_to_pfn(p), action_page_types[ps->type], count);
880 return true;
881 }
882
883 return false;
884 }
885
886 /*
887 * Error hit kernel page.
888 * Do nothing, try to be lucky and not touch this instead. For a few cases we
889 * could be more sophisticated.
890 */
me_kernel(struct page_state * ps,struct page * p)891 static int me_kernel(struct page_state *ps, struct page *p)
892 {
893 unlock_page(p);
894 return MF_IGNORED;
895 }
896
897 /*
898 * Page in unknown state. Do nothing.
899 */
me_unknown(struct page_state * ps,struct page * p)900 static int me_unknown(struct page_state *ps, struct page *p)
901 {
902 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
903 unlock_page(p);
904 return MF_FAILED;
905 }
906
907 /*
908 * Clean (or cleaned) page cache page.
909 */
me_pagecache_clean(struct page_state * ps,struct page * p)910 static int me_pagecache_clean(struct page_state *ps, struct page *p)
911 {
912 int ret;
913 struct address_space *mapping;
914 bool extra_pins;
915
916 delete_from_lru_cache(p);
917
918 /*
919 * For anonymous pages we're done the only reference left
920 * should be the one m_f() holds.
921 */
922 if (PageAnon(p)) {
923 ret = MF_RECOVERED;
924 goto out;
925 }
926
927 /*
928 * Now truncate the page in the page cache. This is really
929 * more like a "temporary hole punch"
930 * Don't do this for block devices when someone else
931 * has a reference, because it could be file system metadata
932 * and that's not safe to truncate.
933 */
934 mapping = page_mapping(p);
935 if (!mapping) {
936 /*
937 * Page has been teared down in the meanwhile
938 */
939 ret = MF_FAILED;
940 goto out;
941 }
942
943 /*
944 * The shmem page is kept in page cache instead of truncating
945 * so is expected to have an extra refcount after error-handling.
946 */
947 extra_pins = shmem_mapping(mapping);
948
949 /*
950 * Truncation is a bit tricky. Enable it per file system for now.
951 *
952 * Open: to take i_rwsem or not for this? Right now we don't.
953 */
954 ret = truncate_error_page(p, page_to_pfn(p), mapping);
955 if (has_extra_refcount(ps, p, extra_pins))
956 ret = MF_FAILED;
957
958 out:
959 unlock_page(p);
960
961 return ret;
962 }
963
964 /*
965 * Dirty pagecache page
966 * Issues: when the error hit a hole page the error is not properly
967 * propagated.
968 */
me_pagecache_dirty(struct page_state * ps,struct page * p)969 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
970 {
971 struct address_space *mapping = page_mapping(p);
972
973 SetPageError(p);
974 /* TBD: print more information about the file. */
975 if (mapping) {
976 /*
977 * IO error will be reported by write(), fsync(), etc.
978 * who check the mapping.
979 * This way the application knows that something went
980 * wrong with its dirty file data.
981 *
982 * There's one open issue:
983 *
984 * The EIO will be only reported on the next IO
985 * operation and then cleared through the IO map.
986 * Normally Linux has two mechanisms to pass IO error
987 * first through the AS_EIO flag in the address space
988 * and then through the PageError flag in the page.
989 * Since we drop pages on memory failure handling the
990 * only mechanism open to use is through AS_AIO.
991 *
992 * This has the disadvantage that it gets cleared on
993 * the first operation that returns an error, while
994 * the PageError bit is more sticky and only cleared
995 * when the page is reread or dropped. If an
996 * application assumes it will always get error on
997 * fsync, but does other operations on the fd before
998 * and the page is dropped between then the error
999 * will not be properly reported.
1000 *
1001 * This can already happen even without hwpoisoned
1002 * pages: first on metadata IO errors (which only
1003 * report through AS_EIO) or when the page is dropped
1004 * at the wrong time.
1005 *
1006 * So right now we assume that the application DTRT on
1007 * the first EIO, but we're not worse than other parts
1008 * of the kernel.
1009 */
1010 mapping_set_error(mapping, -EIO);
1011 }
1012
1013 return me_pagecache_clean(ps, p);
1014 }
1015
1016 /*
1017 * Clean and dirty swap cache.
1018 *
1019 * Dirty swap cache page is tricky to handle. The page could live both in page
1020 * cache and swap cache(ie. page is freshly swapped in). So it could be
1021 * referenced concurrently by 2 types of PTEs:
1022 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1023 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1024 * and then
1025 * - clear dirty bit to prevent IO
1026 * - remove from LRU
1027 * - but keep in the swap cache, so that when we return to it on
1028 * a later page fault, we know the application is accessing
1029 * corrupted data and shall be killed (we installed simple
1030 * interception code in do_swap_page to catch it).
1031 *
1032 * Clean swap cache pages can be directly isolated. A later page fault will
1033 * bring in the known good data from disk.
1034 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1035 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1036 {
1037 int ret;
1038 bool extra_pins = false;
1039
1040 ClearPageDirty(p);
1041 /* Trigger EIO in shmem: */
1042 ClearPageUptodate(p);
1043
1044 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1045 unlock_page(p);
1046
1047 if (ret == MF_DELAYED)
1048 extra_pins = true;
1049
1050 if (has_extra_refcount(ps, p, extra_pins))
1051 ret = MF_FAILED;
1052
1053 return ret;
1054 }
1055
me_swapcache_clean(struct page_state * ps,struct page * p)1056 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1057 {
1058 struct folio *folio = page_folio(p);
1059 int ret;
1060
1061 delete_from_swap_cache(folio);
1062
1063 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1064 folio_unlock(folio);
1065
1066 if (has_extra_refcount(ps, p, false))
1067 ret = MF_FAILED;
1068
1069 return ret;
1070 }
1071
1072 /*
1073 * Huge pages. Needs work.
1074 * Issues:
1075 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1076 * To narrow down kill region to one page, we need to break up pmd.
1077 */
me_huge_page(struct page_state * ps,struct page * p)1078 static int me_huge_page(struct page_state *ps, struct page *p)
1079 {
1080 int res;
1081 struct page *hpage = compound_head(p);
1082 struct address_space *mapping;
1083 bool extra_pins = false;
1084
1085 if (!PageHuge(hpage))
1086 return MF_DELAYED;
1087
1088 mapping = page_mapping(hpage);
1089 if (mapping) {
1090 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1091 /* The page is kept in page cache. */
1092 extra_pins = true;
1093 unlock_page(hpage);
1094 } else {
1095 unlock_page(hpage);
1096 /*
1097 * migration entry prevents later access on error hugepage,
1098 * so we can free and dissolve it into buddy to save healthy
1099 * subpages.
1100 */
1101 put_page(hpage);
1102 if (__page_handle_poison(p) >= 0) {
1103 page_ref_inc(p);
1104 res = MF_RECOVERED;
1105 } else {
1106 res = MF_FAILED;
1107 }
1108 }
1109
1110 if (has_extra_refcount(ps, p, extra_pins))
1111 res = MF_FAILED;
1112
1113 return res;
1114 }
1115
1116 /*
1117 * Various page states we can handle.
1118 *
1119 * A page state is defined by its current page->flags bits.
1120 * The table matches them in order and calls the right handler.
1121 *
1122 * This is quite tricky because we can access page at any time
1123 * in its live cycle, so all accesses have to be extremely careful.
1124 *
1125 * This is not complete. More states could be added.
1126 * For any missing state don't attempt recovery.
1127 */
1128
1129 #define dirty (1UL << PG_dirty)
1130 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1131 #define unevict (1UL << PG_unevictable)
1132 #define mlock (1UL << PG_mlocked)
1133 #define lru (1UL << PG_lru)
1134 #define head (1UL << PG_head)
1135 #define slab (1UL << PG_slab)
1136 #define reserved (1UL << PG_reserved)
1137
1138 static struct page_state error_states[] = {
1139 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1140 /*
1141 * free pages are specially detected outside this table:
1142 * PG_buddy pages only make a small fraction of all free pages.
1143 */
1144
1145 /*
1146 * Could in theory check if slab page is free or if we can drop
1147 * currently unused objects without touching them. But just
1148 * treat it as standard kernel for now.
1149 */
1150 { slab, slab, MF_MSG_SLAB, me_kernel },
1151
1152 { head, head, MF_MSG_HUGE, me_huge_page },
1153
1154 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1155 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1156
1157 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1158 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1159
1160 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1161 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1162
1163 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1164 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1165
1166 /*
1167 * Catchall entry: must be at end.
1168 */
1169 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1170 };
1171
1172 #undef dirty
1173 #undef sc
1174 #undef unevict
1175 #undef mlock
1176 #undef lru
1177 #undef head
1178 #undef slab
1179 #undef reserved
1180
1181 /*
1182 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1183 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1184 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1185 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1186 enum mf_result result)
1187 {
1188 trace_memory_failure_event(pfn, type, result);
1189
1190 num_poisoned_pages_inc();
1191 pr_err("%#lx: recovery action for %s: %s\n",
1192 pfn, action_page_types[type], action_name[result]);
1193 }
1194
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1195 static int page_action(struct page_state *ps, struct page *p,
1196 unsigned long pfn)
1197 {
1198 int result;
1199
1200 /* page p should be unlocked after returning from ps->action(). */
1201 result = ps->action(ps, p);
1202
1203 action_result(pfn, ps->type, result);
1204
1205 /* Could do more checks here if page looks ok */
1206 /*
1207 * Could adjust zone counters here to correct for the missing page.
1208 */
1209
1210 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1211 }
1212
PageHWPoisonTakenOff(struct page * page)1213 static inline bool PageHWPoisonTakenOff(struct page *page)
1214 {
1215 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1216 }
1217
SetPageHWPoisonTakenOff(struct page * page)1218 void SetPageHWPoisonTakenOff(struct page *page)
1219 {
1220 set_page_private(page, MAGIC_HWPOISON);
1221 }
1222
ClearPageHWPoisonTakenOff(struct page * page)1223 void ClearPageHWPoisonTakenOff(struct page *page)
1224 {
1225 if (PageHWPoison(page))
1226 set_page_private(page, 0);
1227 }
1228
1229 /*
1230 * Return true if a page type of a given page is supported by hwpoison
1231 * mechanism (while handling could fail), otherwise false. This function
1232 * does not return true for hugetlb or device memory pages, so it's assumed
1233 * to be called only in the context where we never have such pages.
1234 */
HWPoisonHandlable(struct page * page,unsigned long flags)1235 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1236 {
1237 /* Soft offline could migrate non-LRU movable pages */
1238 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1239 return true;
1240
1241 return PageLRU(page) || is_free_buddy_page(page);
1242 }
1243
__get_hwpoison_page(struct page * page,unsigned long flags)1244 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1245 {
1246 struct page *head = compound_head(page);
1247 int ret = 0;
1248 bool hugetlb = false;
1249
1250 ret = get_hwpoison_huge_page(head, &hugetlb);
1251 if (hugetlb)
1252 return ret;
1253
1254 /*
1255 * This check prevents from calling get_page_unless_zero() for any
1256 * unsupported type of page in order to reduce the risk of unexpected
1257 * races caused by taking a page refcount.
1258 */
1259 if (!HWPoisonHandlable(head, flags))
1260 return -EBUSY;
1261
1262 if (get_page_unless_zero(head)) {
1263 if (head == compound_head(page))
1264 return 1;
1265
1266 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1267 put_page(head);
1268 }
1269
1270 return 0;
1271 }
1272
get_any_page(struct page * p,unsigned long flags)1273 static int get_any_page(struct page *p, unsigned long flags)
1274 {
1275 int ret = 0, pass = 0;
1276 bool count_increased = false;
1277
1278 if (flags & MF_COUNT_INCREASED)
1279 count_increased = true;
1280
1281 try_again:
1282 if (!count_increased) {
1283 ret = __get_hwpoison_page(p, flags);
1284 if (!ret) {
1285 if (page_count(p)) {
1286 /* We raced with an allocation, retry. */
1287 if (pass++ < 3)
1288 goto try_again;
1289 ret = -EBUSY;
1290 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1291 /* We raced with put_page, retry. */
1292 if (pass++ < 3)
1293 goto try_again;
1294 ret = -EIO;
1295 }
1296 goto out;
1297 } else if (ret == -EBUSY) {
1298 /*
1299 * We raced with (possibly temporary) unhandlable
1300 * page, retry.
1301 */
1302 if (pass++ < 3) {
1303 shake_page(p);
1304 goto try_again;
1305 }
1306 ret = -EIO;
1307 goto out;
1308 }
1309 }
1310
1311 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1312 ret = 1;
1313 } else {
1314 /*
1315 * A page we cannot handle. Check whether we can turn
1316 * it into something we can handle.
1317 */
1318 if (pass++ < 3) {
1319 put_page(p);
1320 shake_page(p);
1321 count_increased = false;
1322 goto try_again;
1323 }
1324 put_page(p);
1325 ret = -EIO;
1326 }
1327 out:
1328 if (ret == -EIO)
1329 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1330
1331 return ret;
1332 }
1333
__get_unpoison_page(struct page * page)1334 static int __get_unpoison_page(struct page *page)
1335 {
1336 struct page *head = compound_head(page);
1337 int ret = 0;
1338 bool hugetlb = false;
1339
1340 ret = get_hwpoison_huge_page(head, &hugetlb);
1341 if (hugetlb)
1342 return ret;
1343
1344 /*
1345 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1346 * but also isolated from buddy freelist, so need to identify the
1347 * state and have to cancel both operations to unpoison.
1348 */
1349 if (PageHWPoisonTakenOff(page))
1350 return -EHWPOISON;
1351
1352 return get_page_unless_zero(page) ? 1 : 0;
1353 }
1354
1355 /**
1356 * get_hwpoison_page() - Get refcount for memory error handling
1357 * @p: Raw error page (hit by memory error)
1358 * @flags: Flags controlling behavior of error handling
1359 *
1360 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1361 * error on it, after checking that the error page is in a well-defined state
1362 * (defined as a page-type we can successfully handle the memory error on it,
1363 * such as LRU page and hugetlb page).
1364 *
1365 * Memory error handling could be triggered at any time on any type of page,
1366 * so it's prone to race with typical memory management lifecycle (like
1367 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1368 * extra care for the error page's state (as done in __get_hwpoison_page()),
1369 * and has some retry logic in get_any_page().
1370 *
1371 * When called from unpoison_memory(), the caller should already ensure that
1372 * the given page has PG_hwpoison. So it's never reused for other page
1373 * allocations, and __get_unpoison_page() never races with them.
1374 *
1375 * Return: 0 on failure,
1376 * 1 on success for in-use pages in a well-defined state,
1377 * -EIO for pages on which we can not handle memory errors,
1378 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1379 * operations like allocation and free,
1380 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1381 */
get_hwpoison_page(struct page * p,unsigned long flags)1382 static int get_hwpoison_page(struct page *p, unsigned long flags)
1383 {
1384 int ret;
1385
1386 zone_pcp_disable(page_zone(p));
1387 if (flags & MF_UNPOISON)
1388 ret = __get_unpoison_page(p);
1389 else
1390 ret = get_any_page(p, flags);
1391 zone_pcp_enable(page_zone(p));
1392
1393 return ret;
1394 }
1395
1396 /*
1397 * Do all that is necessary to remove user space mappings. Unmap
1398 * the pages and send SIGBUS to the processes if the data was dirty.
1399 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1400 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1401 int flags, struct page *hpage)
1402 {
1403 struct folio *folio = page_folio(hpage);
1404 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1405 struct address_space *mapping;
1406 LIST_HEAD(tokill);
1407 bool unmap_success;
1408 int forcekill;
1409 bool mlocked = PageMlocked(hpage);
1410
1411 /*
1412 * Here we are interested only in user-mapped pages, so skip any
1413 * other types of pages.
1414 */
1415 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1416 return true;
1417 if (!(PageLRU(hpage) || PageHuge(p)))
1418 return true;
1419
1420 /*
1421 * This check implies we don't kill processes if their pages
1422 * are in the swap cache early. Those are always late kills.
1423 */
1424 if (!page_mapped(hpage))
1425 return true;
1426
1427 if (PageKsm(p)) {
1428 pr_err("%#lx: can't handle KSM pages.\n", pfn);
1429 return false;
1430 }
1431
1432 if (PageSwapCache(p)) {
1433 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1434 ttu |= TTU_IGNORE_HWPOISON;
1435 }
1436
1437 /*
1438 * Propagate the dirty bit from PTEs to struct page first, because we
1439 * need this to decide if we should kill or just drop the page.
1440 * XXX: the dirty test could be racy: set_page_dirty() may not always
1441 * be called inside page lock (it's recommended but not enforced).
1442 */
1443 mapping = page_mapping(hpage);
1444 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1445 mapping_can_writeback(mapping)) {
1446 if (page_mkclean(hpage)) {
1447 SetPageDirty(hpage);
1448 } else {
1449 ttu |= TTU_IGNORE_HWPOISON;
1450 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1451 pfn);
1452 }
1453 }
1454
1455 /*
1456 * First collect all the processes that have the page
1457 * mapped in dirty form. This has to be done before try_to_unmap,
1458 * because ttu takes the rmap data structures down.
1459 */
1460 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1461
1462 if (PageHuge(hpage) && !PageAnon(hpage)) {
1463 /*
1464 * For hugetlb pages in shared mappings, try_to_unmap
1465 * could potentially call huge_pmd_unshare. Because of
1466 * this, take semaphore in write mode here and set
1467 * TTU_RMAP_LOCKED to indicate we have taken the lock
1468 * at this higher level.
1469 */
1470 mapping = hugetlb_page_mapping_lock_write(hpage);
1471 if (mapping) {
1472 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1473 i_mmap_unlock_write(mapping);
1474 } else
1475 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1476 } else {
1477 try_to_unmap(folio, ttu);
1478 }
1479
1480 unmap_success = !page_mapped(hpage);
1481 if (!unmap_success)
1482 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1483 pfn, page_mapcount(hpage));
1484
1485 /*
1486 * try_to_unmap() might put mlocked page in lru cache, so call
1487 * shake_page() again to ensure that it's flushed.
1488 */
1489 if (mlocked)
1490 shake_page(hpage);
1491
1492 /*
1493 * Now that the dirty bit has been propagated to the
1494 * struct page and all unmaps done we can decide if
1495 * killing is needed or not. Only kill when the page
1496 * was dirty or the process is not restartable,
1497 * otherwise the tokill list is merely
1498 * freed. When there was a problem unmapping earlier
1499 * use a more force-full uncatchable kill to prevent
1500 * any accesses to the poisoned memory.
1501 */
1502 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1503 !unmap_success;
1504 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1505
1506 return unmap_success;
1507 }
1508
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1509 static int identify_page_state(unsigned long pfn, struct page *p,
1510 unsigned long page_flags)
1511 {
1512 struct page_state *ps;
1513
1514 /*
1515 * The first check uses the current page flags which may not have any
1516 * relevant information. The second check with the saved page flags is
1517 * carried out only if the first check can't determine the page status.
1518 */
1519 for (ps = error_states;; ps++)
1520 if ((p->flags & ps->mask) == ps->res)
1521 break;
1522
1523 page_flags |= (p->flags & (1UL << PG_dirty));
1524
1525 if (!ps->mask)
1526 for (ps = error_states;; ps++)
1527 if ((page_flags & ps->mask) == ps->res)
1528 break;
1529 return page_action(ps, p, pfn);
1530 }
1531
try_to_split_thp_page(struct page * page)1532 static int try_to_split_thp_page(struct page *page)
1533 {
1534 int ret;
1535
1536 lock_page(page);
1537 ret = split_huge_page(page);
1538 unlock_page(page);
1539
1540 if (unlikely(ret))
1541 put_page(page);
1542
1543 return ret;
1544 }
1545
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1546 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1547 struct address_space *mapping, pgoff_t index, int flags)
1548 {
1549 struct to_kill *tk;
1550 unsigned long size = 0;
1551
1552 list_for_each_entry(tk, to_kill, nd)
1553 if (tk->size_shift)
1554 size = max(size, 1UL << tk->size_shift);
1555
1556 if (size) {
1557 /*
1558 * Unmap the largest mapping to avoid breaking up device-dax
1559 * mappings which are constant size. The actual size of the
1560 * mapping being torn down is communicated in siginfo, see
1561 * kill_proc()
1562 */
1563 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1564
1565 unmap_mapping_range(mapping, start, size, 0);
1566 }
1567
1568 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1569 }
1570
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1571 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1572 struct dev_pagemap *pgmap)
1573 {
1574 struct page *page = pfn_to_page(pfn);
1575 LIST_HEAD(to_kill);
1576 dax_entry_t cookie;
1577 int rc = 0;
1578
1579 /*
1580 * Pages instantiated by device-dax (not filesystem-dax)
1581 * may be compound pages.
1582 */
1583 page = compound_head(page);
1584
1585 /*
1586 * Prevent the inode from being freed while we are interrogating
1587 * the address_space, typically this would be handled by
1588 * lock_page(), but dax pages do not use the page lock. This
1589 * also prevents changes to the mapping of this pfn until
1590 * poison signaling is complete.
1591 */
1592 cookie = dax_lock_page(page);
1593 if (!cookie)
1594 return -EBUSY;
1595
1596 if (hwpoison_filter(page)) {
1597 rc = -EOPNOTSUPP;
1598 goto unlock;
1599 }
1600
1601 switch (pgmap->type) {
1602 case MEMORY_DEVICE_PRIVATE:
1603 case MEMORY_DEVICE_COHERENT:
1604 /*
1605 * TODO: Handle device pages which may need coordination
1606 * with device-side memory.
1607 */
1608 rc = -ENXIO;
1609 goto unlock;
1610 default:
1611 break;
1612 }
1613
1614 /*
1615 * Use this flag as an indication that the dax page has been
1616 * remapped UC to prevent speculative consumption of poison.
1617 */
1618 SetPageHWPoison(page);
1619
1620 /*
1621 * Unlike System-RAM there is no possibility to swap in a
1622 * different physical page at a given virtual address, so all
1623 * userspace consumption of ZONE_DEVICE memory necessitates
1624 * SIGBUS (i.e. MF_MUST_KILL)
1625 */
1626 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1627 collect_procs(page, &to_kill, true);
1628
1629 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1630 unlock:
1631 dax_unlock_page(page, cookie);
1632 return rc;
1633 }
1634
1635 #ifdef CONFIG_FS_DAX
1636 /**
1637 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1638 * @mapping: address_space of the file in use
1639 * @index: start pgoff of the range within the file
1640 * @count: length of the range, in unit of PAGE_SIZE
1641 * @mf_flags: memory failure flags
1642 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1643 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1644 unsigned long count, int mf_flags)
1645 {
1646 LIST_HEAD(to_kill);
1647 dax_entry_t cookie;
1648 struct page *page;
1649 size_t end = index + count;
1650
1651 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1652
1653 for (; index < end; index++) {
1654 page = NULL;
1655 cookie = dax_lock_mapping_entry(mapping, index, &page);
1656 if (!cookie)
1657 return -EBUSY;
1658 if (!page)
1659 goto unlock;
1660
1661 SetPageHWPoison(page);
1662
1663 collect_procs_fsdax(page, mapping, index, &to_kill);
1664 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1665 index, mf_flags);
1666 unlock:
1667 dax_unlock_mapping_entry(mapping, index, cookie);
1668 }
1669 return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1672 #endif /* CONFIG_FS_DAX */
1673
1674 #ifdef CONFIG_HUGETLB_PAGE
1675 /*
1676 * Struct raw_hwp_page represents information about "raw error page",
1677 * constructing singly linked list originated from ->private field of
1678 * SUBPAGE_INDEX_HWPOISON-th tail page.
1679 */
1680 struct raw_hwp_page {
1681 struct llist_node node;
1682 struct page *page;
1683 };
1684
raw_hwp_list_head(struct page * hpage)1685 static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1686 {
1687 return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON);
1688 }
1689
__free_raw_hwp_pages(struct page * hpage,bool move_flag)1690 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1691 {
1692 struct llist_head *head;
1693 struct llist_node *t, *tnode;
1694 unsigned long count = 0;
1695
1696 head = raw_hwp_list_head(hpage);
1697 llist_for_each_safe(tnode, t, head->first) {
1698 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1699
1700 if (move_flag)
1701 SetPageHWPoison(p->page);
1702 kfree(p);
1703 count++;
1704 }
1705 llist_del_all(head);
1706 return count;
1707 }
1708
hugetlb_set_page_hwpoison(struct page * hpage,struct page * page)1709 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1710 {
1711 struct llist_head *head;
1712 struct raw_hwp_page *raw_hwp;
1713 struct llist_node *t, *tnode;
1714 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1715
1716 /*
1717 * Once the hwpoison hugepage has lost reliable raw error info,
1718 * there is little meaning to keep additional error info precisely,
1719 * so skip to add additional raw error info.
1720 */
1721 if (HPageRawHwpUnreliable(hpage))
1722 return -EHWPOISON;
1723 head = raw_hwp_list_head(hpage);
1724 llist_for_each_safe(tnode, t, head->first) {
1725 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1726
1727 if (p->page == page)
1728 return -EHWPOISON;
1729 }
1730
1731 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1732 if (raw_hwp) {
1733 raw_hwp->page = page;
1734 llist_add(&raw_hwp->node, head);
1735 /* the first error event will be counted in action_result(). */
1736 if (ret)
1737 num_poisoned_pages_inc();
1738 } else {
1739 /*
1740 * Failed to save raw error info. We no longer trace all
1741 * hwpoisoned subpages, and we need refuse to free/dissolve
1742 * this hwpoisoned hugepage.
1743 */
1744 SetHPageRawHwpUnreliable(hpage);
1745 /*
1746 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1747 * used any more, so free it.
1748 */
1749 __free_raw_hwp_pages(hpage, false);
1750 }
1751 return ret;
1752 }
1753
free_raw_hwp_pages(struct page * hpage,bool move_flag)1754 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1755 {
1756 /*
1757 * HPageVmemmapOptimized hugepages can't be freed because struct
1758 * pages for tail pages are required but they don't exist.
1759 */
1760 if (move_flag && HPageVmemmapOptimized(hpage))
1761 return 0;
1762
1763 /*
1764 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1765 * definition.
1766 */
1767 if (HPageRawHwpUnreliable(hpage))
1768 return 0;
1769
1770 return __free_raw_hwp_pages(hpage, move_flag);
1771 }
1772
hugetlb_clear_page_hwpoison(struct page * hpage)1773 void hugetlb_clear_page_hwpoison(struct page *hpage)
1774 {
1775 if (HPageRawHwpUnreliable(hpage))
1776 return;
1777 ClearPageHWPoison(hpage);
1778 free_raw_hwp_pages(hpage, true);
1779 }
1780
1781 /*
1782 * Called from hugetlb code with hugetlb_lock held.
1783 *
1784 * Return values:
1785 * 0 - free hugepage
1786 * 1 - in-use hugepage
1787 * 2 - not a hugepage
1788 * -EBUSY - the hugepage is busy (try to retry)
1789 * -EHWPOISON - the hugepage is already hwpoisoned
1790 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)1791 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1792 {
1793 struct page *page = pfn_to_page(pfn);
1794 struct page *head = compound_head(page);
1795 int ret = 2; /* fallback to normal page handling */
1796 bool count_increased = false;
1797
1798 if (!PageHeadHuge(head))
1799 goto out;
1800
1801 if (flags & MF_COUNT_INCREASED) {
1802 ret = 1;
1803 count_increased = true;
1804 } else if (HPageFreed(head)) {
1805 ret = 0;
1806 } else if (HPageMigratable(head)) {
1807 ret = get_page_unless_zero(head);
1808 if (ret)
1809 count_increased = true;
1810 } else {
1811 ret = -EBUSY;
1812 if (!(flags & MF_NO_RETRY))
1813 goto out;
1814 }
1815
1816 if (hugetlb_set_page_hwpoison(head, page)) {
1817 ret = -EHWPOISON;
1818 goto out;
1819 }
1820
1821 return ret;
1822 out:
1823 if (count_increased)
1824 put_page(head);
1825 return ret;
1826 }
1827
1828 /*
1829 * Taking refcount of hugetlb pages needs extra care about race conditions
1830 * with basic operations like hugepage allocation/free/demotion.
1831 * So some of prechecks for hwpoison (pinning, and testing/setting
1832 * PageHWPoison) should be done in single hugetlb_lock range.
1833 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1834 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1835 {
1836 int res;
1837 struct page *p = pfn_to_page(pfn);
1838 struct page *head;
1839 unsigned long page_flags;
1840
1841 *hugetlb = 1;
1842 retry:
1843 res = get_huge_page_for_hwpoison(pfn, flags);
1844 if (res == 2) { /* fallback to normal page handling */
1845 *hugetlb = 0;
1846 return 0;
1847 } else if (res == -EHWPOISON) {
1848 pr_err("%#lx: already hardware poisoned\n", pfn);
1849 if (flags & MF_ACTION_REQUIRED) {
1850 head = compound_head(p);
1851 res = kill_accessing_process(current, page_to_pfn(head), flags);
1852 }
1853 return res;
1854 } else if (res == -EBUSY) {
1855 if (!(flags & MF_NO_RETRY)) {
1856 flags |= MF_NO_RETRY;
1857 goto retry;
1858 }
1859 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1860 return res;
1861 }
1862
1863 head = compound_head(p);
1864 lock_page(head);
1865
1866 if (hwpoison_filter(p)) {
1867 hugetlb_clear_page_hwpoison(head);
1868 unlock_page(head);
1869 if (res == 1)
1870 put_page(head);
1871 return -EOPNOTSUPP;
1872 }
1873
1874 /*
1875 * Handling free hugepage. The possible race with hugepage allocation
1876 * or demotion can be prevented by PageHWPoison flag.
1877 */
1878 if (res == 0) {
1879 unlock_page(head);
1880 if (__page_handle_poison(p) >= 0) {
1881 page_ref_inc(p);
1882 res = MF_RECOVERED;
1883 } else {
1884 res = MF_FAILED;
1885 }
1886 action_result(pfn, MF_MSG_FREE_HUGE, res);
1887 return res == MF_RECOVERED ? 0 : -EBUSY;
1888 }
1889
1890 page_flags = head->flags;
1891
1892 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1893 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1894 res = -EBUSY;
1895 goto out;
1896 }
1897
1898 return identify_page_state(pfn, p, page_flags);
1899 out:
1900 unlock_page(head);
1901 return res;
1902 }
1903
1904 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1905 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1906 {
1907 return 0;
1908 }
1909
free_raw_hwp_pages(struct page * hpage,bool flag)1910 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1911 {
1912 return 0;
1913 }
1914 #endif /* CONFIG_HUGETLB_PAGE */
1915
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1916 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1917 struct dev_pagemap *pgmap)
1918 {
1919 struct page *page = pfn_to_page(pfn);
1920 int rc = -ENXIO;
1921
1922 if (flags & MF_COUNT_INCREASED)
1923 /*
1924 * Drop the extra refcount in case we come from madvise().
1925 */
1926 put_page(page);
1927
1928 /* device metadata space is not recoverable */
1929 if (!pgmap_pfn_valid(pgmap, pfn))
1930 goto out;
1931
1932 /*
1933 * Call driver's implementation to handle the memory failure, otherwise
1934 * fall back to generic handler.
1935 */
1936 if (pgmap_has_memory_failure(pgmap)) {
1937 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1938 /*
1939 * Fall back to generic handler too if operation is not
1940 * supported inside the driver/device/filesystem.
1941 */
1942 if (rc != -EOPNOTSUPP)
1943 goto out;
1944 }
1945
1946 rc = mf_generic_kill_procs(pfn, flags, pgmap);
1947 out:
1948 /* drop pgmap ref acquired in caller */
1949 put_dev_pagemap(pgmap);
1950 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1951 return rc;
1952 }
1953
1954 static DEFINE_MUTEX(mf_mutex);
1955
1956 /**
1957 * memory_failure - Handle memory failure of a page.
1958 * @pfn: Page Number of the corrupted page
1959 * @flags: fine tune action taken
1960 *
1961 * This function is called by the low level machine check code
1962 * of an architecture when it detects hardware memory corruption
1963 * of a page. It tries its best to recover, which includes
1964 * dropping pages, killing processes etc.
1965 *
1966 * The function is primarily of use for corruptions that
1967 * happen outside the current execution context (e.g. when
1968 * detected by a background scrubber)
1969 *
1970 * Must run in process context (e.g. a work queue) with interrupts
1971 * enabled and no spinlocks hold.
1972 *
1973 * Return: 0 for successfully handled the memory error,
1974 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1975 * < 0(except -EOPNOTSUPP) on failure.
1976 */
memory_failure(unsigned long pfn,int flags)1977 int memory_failure(unsigned long pfn, int flags)
1978 {
1979 struct page *p;
1980 struct page *hpage;
1981 struct dev_pagemap *pgmap;
1982 int res = 0;
1983 unsigned long page_flags;
1984 bool retry = true;
1985 int hugetlb = 0;
1986
1987 if (!sysctl_memory_failure_recovery)
1988 panic("Memory failure on page %lx", pfn);
1989
1990 mutex_lock(&mf_mutex);
1991
1992 if (!(flags & MF_SW_SIMULATED))
1993 hw_memory_failure = true;
1994
1995 p = pfn_to_online_page(pfn);
1996 if (!p) {
1997 res = arch_memory_failure(pfn, flags);
1998 if (res == 0)
1999 goto unlock_mutex;
2000
2001 if (pfn_valid(pfn)) {
2002 pgmap = get_dev_pagemap(pfn, NULL);
2003 if (pgmap) {
2004 res = memory_failure_dev_pagemap(pfn, flags,
2005 pgmap);
2006 goto unlock_mutex;
2007 }
2008 }
2009 pr_err("%#lx: memory outside kernel control\n", pfn);
2010 res = -ENXIO;
2011 goto unlock_mutex;
2012 }
2013
2014 try_again:
2015 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2016 if (hugetlb)
2017 goto unlock_mutex;
2018
2019 if (TestSetPageHWPoison(p)) {
2020 pr_err("%#lx: already hardware poisoned\n", pfn);
2021 res = -EHWPOISON;
2022 if (flags & MF_ACTION_REQUIRED)
2023 res = kill_accessing_process(current, pfn, flags);
2024 if (flags & MF_COUNT_INCREASED)
2025 put_page(p);
2026 goto unlock_mutex;
2027 }
2028
2029 hpage = compound_head(p);
2030
2031 /*
2032 * We need/can do nothing about count=0 pages.
2033 * 1) it's a free page, and therefore in safe hand:
2034 * check_new_page() will be the gate keeper.
2035 * 2) it's part of a non-compound high order page.
2036 * Implies some kernel user: cannot stop them from
2037 * R/W the page; let's pray that the page has been
2038 * used and will be freed some time later.
2039 * In fact it's dangerous to directly bump up page count from 0,
2040 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2041 */
2042 if (!(flags & MF_COUNT_INCREASED)) {
2043 res = get_hwpoison_page(p, flags);
2044 if (!res) {
2045 if (is_free_buddy_page(p)) {
2046 if (take_page_off_buddy(p)) {
2047 page_ref_inc(p);
2048 res = MF_RECOVERED;
2049 } else {
2050 /* We lost the race, try again */
2051 if (retry) {
2052 ClearPageHWPoison(p);
2053 retry = false;
2054 goto try_again;
2055 }
2056 res = MF_FAILED;
2057 }
2058 action_result(pfn, MF_MSG_BUDDY, res);
2059 res = res == MF_RECOVERED ? 0 : -EBUSY;
2060 } else {
2061 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2062 res = -EBUSY;
2063 }
2064 goto unlock_mutex;
2065 } else if (res < 0) {
2066 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2067 res = -EBUSY;
2068 goto unlock_mutex;
2069 }
2070 }
2071
2072 if (PageTransHuge(hpage)) {
2073 /*
2074 * The flag must be set after the refcount is bumped
2075 * otherwise it may race with THP split.
2076 * And the flag can't be set in get_hwpoison_page() since
2077 * it is called by soft offline too and it is just called
2078 * for !MF_COUNT_INCREASE. So here seems to be the best
2079 * place.
2080 *
2081 * Don't need care about the above error handling paths for
2082 * get_hwpoison_page() since they handle either free page
2083 * or unhandlable page. The refcount is bumped iff the
2084 * page is a valid handlable page.
2085 */
2086 SetPageHasHWPoisoned(hpage);
2087 if (try_to_split_thp_page(p) < 0) {
2088 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2089 res = -EBUSY;
2090 goto unlock_mutex;
2091 }
2092 VM_BUG_ON_PAGE(!page_count(p), p);
2093 }
2094
2095 /*
2096 * We ignore non-LRU pages for good reasons.
2097 * - PG_locked is only well defined for LRU pages and a few others
2098 * - to avoid races with __SetPageLocked()
2099 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2100 * The check (unnecessarily) ignores LRU pages being isolated and
2101 * walked by the page reclaim code, however that's not a big loss.
2102 */
2103 shake_page(p);
2104
2105 lock_page(p);
2106
2107 /*
2108 * We're only intended to deal with the non-Compound page here.
2109 * However, the page could have changed compound pages due to
2110 * race window. If this happens, we could try again to hopefully
2111 * handle the page next round.
2112 */
2113 if (PageCompound(p)) {
2114 if (retry) {
2115 ClearPageHWPoison(p);
2116 unlock_page(p);
2117 put_page(p);
2118 flags &= ~MF_COUNT_INCREASED;
2119 retry = false;
2120 goto try_again;
2121 }
2122 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2123 res = -EBUSY;
2124 goto unlock_page;
2125 }
2126
2127 /*
2128 * We use page flags to determine what action should be taken, but
2129 * the flags can be modified by the error containment action. One
2130 * example is an mlocked page, where PG_mlocked is cleared by
2131 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2132 * correctly, we save a copy of the page flags at this time.
2133 */
2134 page_flags = p->flags;
2135
2136 if (hwpoison_filter(p)) {
2137 ClearPageHWPoison(p);
2138 unlock_page(p);
2139 put_page(p);
2140 res = -EOPNOTSUPP;
2141 goto unlock_mutex;
2142 }
2143
2144 /*
2145 * __munlock_pagevec may clear a writeback page's LRU flag without
2146 * page_lock. We need wait writeback completion for this page or it
2147 * may trigger vfs BUG while evict inode.
2148 */
2149 if (!PageLRU(p) && !PageWriteback(p))
2150 goto identify_page_state;
2151
2152 /*
2153 * It's very difficult to mess with pages currently under IO
2154 * and in many cases impossible, so we just avoid it here.
2155 */
2156 wait_on_page_writeback(p);
2157
2158 /*
2159 * Now take care of user space mappings.
2160 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2161 */
2162 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2163 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2164 res = -EBUSY;
2165 goto unlock_page;
2166 }
2167
2168 /*
2169 * Torn down by someone else?
2170 */
2171 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2172 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2173 res = -EBUSY;
2174 goto unlock_page;
2175 }
2176
2177 identify_page_state:
2178 res = identify_page_state(pfn, p, page_flags);
2179 mutex_unlock(&mf_mutex);
2180 return res;
2181 unlock_page:
2182 unlock_page(p);
2183 unlock_mutex:
2184 mutex_unlock(&mf_mutex);
2185 return res;
2186 }
2187 EXPORT_SYMBOL_GPL(memory_failure);
2188
2189 #define MEMORY_FAILURE_FIFO_ORDER 4
2190 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2191
2192 struct memory_failure_entry {
2193 unsigned long pfn;
2194 int flags;
2195 };
2196
2197 struct memory_failure_cpu {
2198 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2199 MEMORY_FAILURE_FIFO_SIZE);
2200 spinlock_t lock;
2201 struct work_struct work;
2202 };
2203
2204 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2205
2206 /**
2207 * memory_failure_queue - Schedule handling memory failure of a page.
2208 * @pfn: Page Number of the corrupted page
2209 * @flags: Flags for memory failure handling
2210 *
2211 * This function is called by the low level hardware error handler
2212 * when it detects hardware memory corruption of a page. It schedules
2213 * the recovering of error page, including dropping pages, killing
2214 * processes etc.
2215 *
2216 * The function is primarily of use for corruptions that
2217 * happen outside the current execution context (e.g. when
2218 * detected by a background scrubber)
2219 *
2220 * Can run in IRQ context.
2221 */
memory_failure_queue(unsigned long pfn,int flags)2222 void memory_failure_queue(unsigned long pfn, int flags)
2223 {
2224 struct memory_failure_cpu *mf_cpu;
2225 unsigned long proc_flags;
2226 struct memory_failure_entry entry = {
2227 .pfn = pfn,
2228 .flags = flags,
2229 };
2230
2231 mf_cpu = &get_cpu_var(memory_failure_cpu);
2232 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2233 if (kfifo_put(&mf_cpu->fifo, entry))
2234 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2235 else
2236 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2237 pfn);
2238 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2239 put_cpu_var(memory_failure_cpu);
2240 }
2241 EXPORT_SYMBOL_GPL(memory_failure_queue);
2242
memory_failure_work_func(struct work_struct * work)2243 static void memory_failure_work_func(struct work_struct *work)
2244 {
2245 struct memory_failure_cpu *mf_cpu;
2246 struct memory_failure_entry entry = { 0, };
2247 unsigned long proc_flags;
2248 int gotten;
2249
2250 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2251 for (;;) {
2252 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2253 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2254 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2255 if (!gotten)
2256 break;
2257 if (entry.flags & MF_SOFT_OFFLINE)
2258 soft_offline_page(entry.pfn, entry.flags);
2259 else
2260 memory_failure(entry.pfn, entry.flags);
2261 }
2262 }
2263
2264 /*
2265 * Process memory_failure work queued on the specified CPU.
2266 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2267 */
memory_failure_queue_kick(int cpu)2268 void memory_failure_queue_kick(int cpu)
2269 {
2270 struct memory_failure_cpu *mf_cpu;
2271
2272 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2273 cancel_work_sync(&mf_cpu->work);
2274 memory_failure_work_func(&mf_cpu->work);
2275 }
2276
memory_failure_init(void)2277 static int __init memory_failure_init(void)
2278 {
2279 struct memory_failure_cpu *mf_cpu;
2280 int cpu;
2281
2282 for_each_possible_cpu(cpu) {
2283 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2284 spin_lock_init(&mf_cpu->lock);
2285 INIT_KFIFO(mf_cpu->fifo);
2286 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2287 }
2288
2289 return 0;
2290 }
2291 core_initcall(memory_failure_init);
2292
2293 #undef pr_fmt
2294 #define pr_fmt(fmt) "" fmt
2295 #define unpoison_pr_info(fmt, pfn, rs) \
2296 ({ \
2297 if (__ratelimit(rs)) \
2298 pr_info(fmt, pfn); \
2299 })
2300
2301 /**
2302 * unpoison_memory - Unpoison a previously poisoned page
2303 * @pfn: Page number of the to be unpoisoned page
2304 *
2305 * Software-unpoison a page that has been poisoned by
2306 * memory_failure() earlier.
2307 *
2308 * This is only done on the software-level, so it only works
2309 * for linux injected failures, not real hardware failures
2310 *
2311 * Returns 0 for success, otherwise -errno.
2312 */
unpoison_memory(unsigned long pfn)2313 int unpoison_memory(unsigned long pfn)
2314 {
2315 struct page *page;
2316 struct page *p;
2317 int ret = -EBUSY;
2318 int freeit = 0;
2319 unsigned long count = 1;
2320 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2321 DEFAULT_RATELIMIT_BURST);
2322
2323 if (!pfn_valid(pfn))
2324 return -ENXIO;
2325
2326 p = pfn_to_page(pfn);
2327 page = compound_head(p);
2328
2329 mutex_lock(&mf_mutex);
2330
2331 if (hw_memory_failure) {
2332 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2333 pfn, &unpoison_rs);
2334 ret = -EOPNOTSUPP;
2335 goto unlock_mutex;
2336 }
2337
2338 if (!PageHWPoison(p)) {
2339 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2340 pfn, &unpoison_rs);
2341 goto unlock_mutex;
2342 }
2343
2344 if (page_count(page) > 1) {
2345 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2346 pfn, &unpoison_rs);
2347 goto unlock_mutex;
2348 }
2349
2350 if (page_mapped(page)) {
2351 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2352 pfn, &unpoison_rs);
2353 goto unlock_mutex;
2354 }
2355
2356 if (page_mapping(page)) {
2357 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2358 pfn, &unpoison_rs);
2359 goto unlock_mutex;
2360 }
2361
2362 if (PageSlab(page) || PageTable(page) || PageReserved(page))
2363 goto unlock_mutex;
2364
2365 ret = get_hwpoison_page(p, MF_UNPOISON);
2366 if (!ret) {
2367 if (PageHuge(p)) {
2368 count = free_raw_hwp_pages(page, false);
2369 if (count == 0) {
2370 ret = -EBUSY;
2371 goto unlock_mutex;
2372 }
2373 }
2374 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2375 } else if (ret < 0) {
2376 if (ret == -EHWPOISON) {
2377 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2378 } else
2379 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2380 pfn, &unpoison_rs);
2381 } else {
2382 if (PageHuge(p)) {
2383 count = free_raw_hwp_pages(page, false);
2384 if (count == 0) {
2385 ret = -EBUSY;
2386 put_page(page);
2387 goto unlock_mutex;
2388 }
2389 }
2390 freeit = !!TestClearPageHWPoison(p);
2391
2392 put_page(page);
2393 if (freeit) {
2394 put_page(page);
2395 ret = 0;
2396 }
2397 }
2398
2399 unlock_mutex:
2400 mutex_unlock(&mf_mutex);
2401 if (!ret || freeit) {
2402 num_poisoned_pages_sub(count);
2403 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2404 page_to_pfn(p), &unpoison_rs);
2405 }
2406 return ret;
2407 }
2408 EXPORT_SYMBOL(unpoison_memory);
2409
isolate_page(struct page * page,struct list_head * pagelist)2410 static bool isolate_page(struct page *page, struct list_head *pagelist)
2411 {
2412 bool isolated = false;
2413
2414 if (PageHuge(page)) {
2415 isolated = !isolate_hugetlb(page, pagelist);
2416 } else {
2417 bool lru = !__PageMovable(page);
2418
2419 if (lru)
2420 isolated = !isolate_lru_page(page);
2421 else
2422 isolated = !isolate_movable_page(page,
2423 ISOLATE_UNEVICTABLE);
2424
2425 if (isolated) {
2426 list_add(&page->lru, pagelist);
2427 if (lru)
2428 inc_node_page_state(page, NR_ISOLATED_ANON +
2429 page_is_file_lru(page));
2430 }
2431 }
2432
2433 /*
2434 * If we succeed to isolate the page, we grabbed another refcount on
2435 * the page, so we can safely drop the one we got from get_any_pages().
2436 * If we failed to isolate the page, it means that we cannot go further
2437 * and we will return an error, so drop the reference we got from
2438 * get_any_pages() as well.
2439 */
2440 put_page(page);
2441 return isolated;
2442 }
2443
2444 /*
2445 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2446 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2447 * If the page is mapped, it migrates the contents over.
2448 */
soft_offline_in_use_page(struct page * page)2449 static int soft_offline_in_use_page(struct page *page)
2450 {
2451 long ret = 0;
2452 unsigned long pfn = page_to_pfn(page);
2453 struct page *hpage = compound_head(page);
2454 char const *msg_page[] = {"page", "hugepage"};
2455 bool huge = PageHuge(page);
2456 LIST_HEAD(pagelist);
2457 struct migration_target_control mtc = {
2458 .nid = NUMA_NO_NODE,
2459 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2460 };
2461
2462 if (!huge && PageTransHuge(hpage)) {
2463 if (try_to_split_thp_page(page)) {
2464 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2465 return -EBUSY;
2466 }
2467 hpage = page;
2468 }
2469
2470 lock_page(page);
2471 if (!PageHuge(page))
2472 wait_on_page_writeback(page);
2473 if (PageHWPoison(page)) {
2474 unlock_page(page);
2475 put_page(page);
2476 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2477 return 0;
2478 }
2479
2480 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2481 /*
2482 * Try to invalidate first. This should work for
2483 * non dirty unmapped page cache pages.
2484 */
2485 ret = invalidate_inode_page(page);
2486 unlock_page(page);
2487
2488 if (ret) {
2489 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2490 page_handle_poison(page, false, true);
2491 return 0;
2492 }
2493
2494 if (isolate_page(hpage, &pagelist)) {
2495 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2496 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2497 if (!ret) {
2498 bool release = !huge;
2499
2500 if (!page_handle_poison(page, huge, release))
2501 ret = -EBUSY;
2502 } else {
2503 if (!list_empty(&pagelist))
2504 putback_movable_pages(&pagelist);
2505
2506 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2507 pfn, msg_page[huge], ret, &page->flags);
2508 if (ret > 0)
2509 ret = -EBUSY;
2510 }
2511 } else {
2512 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2513 pfn, msg_page[huge], page_count(page), &page->flags);
2514 ret = -EBUSY;
2515 }
2516 return ret;
2517 }
2518
put_ref_page(struct page * page)2519 static void put_ref_page(struct page *page)
2520 {
2521 if (page)
2522 put_page(page);
2523 }
2524
2525 /**
2526 * soft_offline_page - Soft offline a page.
2527 * @pfn: pfn to soft-offline
2528 * @flags: flags. Same as memory_failure().
2529 *
2530 * Returns 0 on success
2531 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2532 * < 0 otherwise negated errno.
2533 *
2534 * Soft offline a page, by migration or invalidation,
2535 * without killing anything. This is for the case when
2536 * a page is not corrupted yet (so it's still valid to access),
2537 * but has had a number of corrected errors and is better taken
2538 * out.
2539 *
2540 * The actual policy on when to do that is maintained by
2541 * user space.
2542 *
2543 * This should never impact any application or cause data loss,
2544 * however it might take some time.
2545 *
2546 * This is not a 100% solution for all memory, but tries to be
2547 * ``good enough'' for the majority of memory.
2548 */
soft_offline_page(unsigned long pfn,int flags)2549 int soft_offline_page(unsigned long pfn, int flags)
2550 {
2551 int ret;
2552 bool try_again = true;
2553 struct page *page, *ref_page = NULL;
2554
2555 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2556
2557 if (!pfn_valid(pfn))
2558 return -ENXIO;
2559 if (flags & MF_COUNT_INCREASED)
2560 ref_page = pfn_to_page(pfn);
2561
2562 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2563 page = pfn_to_online_page(pfn);
2564 if (!page) {
2565 put_ref_page(ref_page);
2566 return -EIO;
2567 }
2568
2569 mutex_lock(&mf_mutex);
2570
2571 if (PageHWPoison(page)) {
2572 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2573 put_ref_page(ref_page);
2574 mutex_unlock(&mf_mutex);
2575 return 0;
2576 }
2577
2578 retry:
2579 get_online_mems();
2580 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2581 put_online_mems();
2582
2583 if (hwpoison_filter(page)) {
2584 if (ret > 0)
2585 put_page(page);
2586
2587 mutex_unlock(&mf_mutex);
2588 return -EOPNOTSUPP;
2589 }
2590
2591 if (ret > 0) {
2592 ret = soft_offline_in_use_page(page);
2593 } else if (ret == 0) {
2594 if (!page_handle_poison(page, true, false) && try_again) {
2595 try_again = false;
2596 flags &= ~MF_COUNT_INCREASED;
2597 goto retry;
2598 }
2599 }
2600
2601 mutex_unlock(&mf_mutex);
2602
2603 return ret;
2604 }
2605
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)2606 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2607 {
2608 int i, total = 0;
2609
2610 /*
2611 * A further optimization is to have per section refcounted
2612 * num_poisoned_pages. But that would need more space per memmap, so
2613 * for now just do a quick global check to speed up this routine in the
2614 * absence of bad pages.
2615 */
2616 if (atomic_long_read(&num_poisoned_pages) == 0)
2617 return;
2618
2619 for (i = 0; i < nr_pages; i++) {
2620 if (PageHWPoison(&memmap[i])) {
2621 total++;
2622 ClearPageHWPoison(&memmap[i]);
2623 }
2624 }
2625 if (total)
2626 num_poisoned_pages_sub(total);
2627 }
2628