1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27
28 enum scan_result {
29 SCAN_FAIL,
30 SCAN_SUCCEED,
31 SCAN_PMD_NULL,
32 SCAN_PMD_NONE,
33 SCAN_PMD_MAPPED,
34 SCAN_EXCEED_NONE_PTE,
35 SCAN_EXCEED_SWAP_PTE,
36 SCAN_EXCEED_SHARED_PTE,
37 SCAN_PTE_NON_PRESENT,
38 SCAN_PTE_UFFD_WP,
39 SCAN_PTE_MAPPED_HUGEPAGE,
40 SCAN_PAGE_RO,
41 SCAN_LACK_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_PAGE_COMPOUND,
49 SCAN_ANY_PROCESS,
50 SCAN_VMA_NULL,
51 SCAN_VMA_CHECK,
52 SCAN_ADDRESS_RANGE,
53 SCAN_DEL_PAGE_LRU,
54 SCAN_ALLOC_HUGE_PAGE_FAIL,
55 SCAN_CGROUP_CHARGE_FAIL,
56 SCAN_TRUNCATED,
57 SCAN_PAGE_HAS_PRIVATE,
58 };
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
65
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
76 /*
77 * default collapse hugepages if there is at least one pte mapped like
78 * it would have happened if the vma was large enough during page
79 * fault.
80 *
81 * Note that these are only respected if collapse was initiated by khugepaged.
82 */
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
86
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
89
90 static struct kmem_cache *mm_slot_cache __read_mostly;
91
92 #define MAX_PTE_MAPPED_THP 8
93
94 struct collapse_control {
95 bool is_khugepaged;
96
97 /* Num pages scanned per node */
98 u32 node_load[MAX_NUMNODES];
99
100 /* nodemask for allocation fallback */
101 nodemask_t alloc_nmask;
102 };
103
104 /**
105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106 * @slot: hash lookup from mm to mm_slot
107 * @nr_pte_mapped_thp: number of pte mapped THP
108 * @pte_mapped_thp: address array corresponding pte mapped THP
109 */
110 struct khugepaged_mm_slot {
111 struct mm_slot slot;
112
113 /* pte-mapped THP in this mm */
114 int nr_pte_mapped_thp;
115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
116 };
117
118 /**
119 * struct khugepaged_scan - cursor for scanning
120 * @mm_head: the head of the mm list to scan
121 * @mm_slot: the current mm_slot we are scanning
122 * @address: the next address inside that to be scanned
123 *
124 * There is only the one khugepaged_scan instance of this cursor structure.
125 */
126 struct khugepaged_scan {
127 struct list_head mm_head;
128 struct khugepaged_mm_slot *mm_slot;
129 unsigned long address;
130 };
131
132 static struct khugepaged_scan khugepaged_scan = {
133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135
136 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138 struct kobj_attribute *attr,
139 char *buf)
140 {
141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
142 }
143
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145 struct kobj_attribute *attr,
146 const char *buf, size_t count)
147 {
148 unsigned int msecs;
149 int err;
150
151 err = kstrtouint(buf, 10, &msecs);
152 if (err)
153 return -EINVAL;
154
155 khugepaged_scan_sleep_millisecs = msecs;
156 khugepaged_sleep_expire = 0;
157 wake_up_interruptible(&khugepaged_wait);
158
159 return count;
160 }
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162 __ATTR_RW(scan_sleep_millisecs);
163
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165 struct kobj_attribute *attr,
166 char *buf)
167 {
168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
169 }
170
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172 struct kobj_attribute *attr,
173 const char *buf, size_t count)
174 {
175 unsigned int msecs;
176 int err;
177
178 err = kstrtouint(buf, 10, &msecs);
179 if (err)
180 return -EINVAL;
181
182 khugepaged_alloc_sleep_millisecs = msecs;
183 khugepaged_sleep_expire = 0;
184 wake_up_interruptible(&khugepaged_wait);
185
186 return count;
187 }
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189 __ATTR_RW(alloc_sleep_millisecs);
190
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192 struct kobj_attribute *attr,
193 char *buf)
194 {
195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
196 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198 struct kobj_attribute *attr,
199 const char *buf, size_t count)
200 {
201 unsigned int pages;
202 int err;
203
204 err = kstrtouint(buf, 10, &pages);
205 if (err || !pages)
206 return -EINVAL;
207
208 khugepaged_pages_to_scan = pages;
209
210 return count;
211 }
212 static struct kobj_attribute pages_to_scan_attr =
213 __ATTR_RW(pages_to_scan);
214
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 char *buf)
218 {
219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
220 }
221 static struct kobj_attribute pages_collapsed_attr =
222 __ATTR_RO(pages_collapsed);
223
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)224 static ssize_t full_scans_show(struct kobject *kobj,
225 struct kobj_attribute *attr,
226 char *buf)
227 {
228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
229 }
230 static struct kobj_attribute full_scans_attr =
231 __ATTR_RO(full_scans);
232
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)233 static ssize_t defrag_show(struct kobject *kobj,
234 struct kobj_attribute *attr, char *buf)
235 {
236 return single_hugepage_flag_show(kobj, attr, buf,
237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
238 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)239 static ssize_t defrag_store(struct kobject *kobj,
240 struct kobj_attribute *attr,
241 const char *buf, size_t count)
242 {
243 return single_hugepage_flag_store(kobj, attr, buf, count,
244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
245 }
246 static struct kobj_attribute khugepaged_defrag_attr =
247 __ATTR_RW(defrag);
248
249 /*
250 * max_ptes_none controls if khugepaged should collapse hugepages over
251 * any unmapped ptes in turn potentially increasing the memory
252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253 * reduce the available free memory in the system as it
254 * runs. Increasing max_ptes_none will instead potentially reduce the
255 * free memory in the system during the khugepaged scan.
256 */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258 struct kobj_attribute *attr,
259 char *buf)
260 {
261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
262 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count)
266 {
267 int err;
268 unsigned long max_ptes_none;
269
270 err = kstrtoul(buf, 10, &max_ptes_none);
271 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
272 return -EINVAL;
273
274 khugepaged_max_ptes_none = max_ptes_none;
275
276 return count;
277 }
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279 __ATTR_RW(max_ptes_none);
280
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 char *buf)
284 {
285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
286 }
287
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289 struct kobj_attribute *attr,
290 const char *buf, size_t count)
291 {
292 int err;
293 unsigned long max_ptes_swap;
294
295 err = kstrtoul(buf, 10, &max_ptes_swap);
296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
297 return -EINVAL;
298
299 khugepaged_max_ptes_swap = max_ptes_swap;
300
301 return count;
302 }
303
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305 __ATTR_RW(max_ptes_swap);
306
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308 struct kobj_attribute *attr,
309 char *buf)
310 {
311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
312 }
313
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315 struct kobj_attribute *attr,
316 const char *buf, size_t count)
317 {
318 int err;
319 unsigned long max_ptes_shared;
320
321 err = kstrtoul(buf, 10, &max_ptes_shared);
322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
323 return -EINVAL;
324
325 khugepaged_max_ptes_shared = max_ptes_shared;
326
327 return count;
328 }
329
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331 __ATTR_RW(max_ptes_shared);
332
333 static struct attribute *khugepaged_attr[] = {
334 &khugepaged_defrag_attr.attr,
335 &khugepaged_max_ptes_none_attr.attr,
336 &khugepaged_max_ptes_swap_attr.attr,
337 &khugepaged_max_ptes_shared_attr.attr,
338 &pages_to_scan_attr.attr,
339 &pages_collapsed_attr.attr,
340 &full_scans_attr.attr,
341 &scan_sleep_millisecs_attr.attr,
342 &alloc_sleep_millisecs_attr.attr,
343 NULL,
344 };
345
346 struct attribute_group khugepaged_attr_group = {
347 .attrs = khugepaged_attr,
348 .name = "khugepaged",
349 };
350 #endif /* CONFIG_SYSFS */
351
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)352 int hugepage_madvise(struct vm_area_struct *vma,
353 unsigned long *vm_flags, int advice)
354 {
355 switch (advice) {
356 case MADV_HUGEPAGE:
357 #ifdef CONFIG_S390
358 /*
359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360 * can't handle this properly after s390_enable_sie, so we simply
361 * ignore the madvise to prevent qemu from causing a SIGSEGV.
362 */
363 if (mm_has_pgste(vma->vm_mm))
364 return 0;
365 #endif
366 *vm_flags &= ~VM_NOHUGEPAGE;
367 *vm_flags |= VM_HUGEPAGE;
368 /*
369 * If the vma become good for khugepaged to scan,
370 * register it here without waiting a page fault that
371 * may not happen any time soon.
372 */
373 khugepaged_enter_vma(vma, *vm_flags);
374 break;
375 case MADV_NOHUGEPAGE:
376 *vm_flags &= ~VM_HUGEPAGE;
377 *vm_flags |= VM_NOHUGEPAGE;
378 /*
379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380 * this vma even if we leave the mm registered in khugepaged if
381 * it got registered before VM_NOHUGEPAGE was set.
382 */
383 break;
384 }
385
386 return 0;
387 }
388
khugepaged_init(void)389 int __init khugepaged_init(void)
390 {
391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392 sizeof(struct khugepaged_mm_slot),
393 __alignof__(struct khugepaged_mm_slot),
394 0, NULL);
395 if (!mm_slot_cache)
396 return -ENOMEM;
397
398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402
403 return 0;
404 }
405
khugepaged_destroy(void)406 void __init khugepaged_destroy(void)
407 {
408 kmem_cache_destroy(mm_slot_cache);
409 }
410
hpage_collapse_test_exit(struct mm_struct * mm)411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
412 {
413 return atomic_read(&mm->mm_users) == 0;
414 }
415
__khugepaged_enter(struct mm_struct * mm)416 void __khugepaged_enter(struct mm_struct *mm)
417 {
418 struct khugepaged_mm_slot *mm_slot;
419 struct mm_slot *slot;
420 int wakeup;
421
422 mm_slot = mm_slot_alloc(mm_slot_cache);
423 if (!mm_slot)
424 return;
425
426 slot = &mm_slot->slot;
427
428 /* __khugepaged_exit() must not run from under us */
429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431 mm_slot_free(mm_slot_cache, mm_slot);
432 return;
433 }
434
435 spin_lock(&khugepaged_mm_lock);
436 mm_slot_insert(mm_slots_hash, mm, slot);
437 /*
438 * Insert just behind the scanning cursor, to let the area settle
439 * down a little.
440 */
441 wakeup = list_empty(&khugepaged_scan.mm_head);
442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443 spin_unlock(&khugepaged_mm_lock);
444
445 mmgrab(mm);
446 if (wakeup)
447 wake_up_interruptible(&khugepaged_wait);
448 }
449
khugepaged_enter_vma(struct vm_area_struct * vma,unsigned long vm_flags)450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451 unsigned long vm_flags)
452 {
453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454 hugepage_flags_enabled()) {
455 if (hugepage_vma_check(vma, vm_flags, false, false, true))
456 __khugepaged_enter(vma->vm_mm);
457 }
458 }
459
__khugepaged_exit(struct mm_struct * mm)460 void __khugepaged_exit(struct mm_struct *mm)
461 {
462 struct khugepaged_mm_slot *mm_slot;
463 struct mm_slot *slot;
464 int free = 0;
465
466 spin_lock(&khugepaged_mm_lock);
467 slot = mm_slot_lookup(mm_slots_hash, mm);
468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470 hash_del(&slot->hash);
471 list_del(&slot->mm_node);
472 free = 1;
473 }
474 spin_unlock(&khugepaged_mm_lock);
475
476 if (free) {
477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478 mm_slot_free(mm_slot_cache, mm_slot);
479 mmdrop(mm);
480 } else if (mm_slot) {
481 /*
482 * This is required to serialize against
483 * hpage_collapse_test_exit() (which is guaranteed to run
484 * under mmap sem read mode). Stop here (after we return all
485 * pagetables will be destroyed) until khugepaged has finished
486 * working on the pagetables under the mmap_lock.
487 */
488 mmap_write_lock(mm);
489 mmap_write_unlock(mm);
490 }
491 }
492
release_pte_page(struct page * page)493 static void release_pte_page(struct page *page)
494 {
495 mod_node_page_state(page_pgdat(page),
496 NR_ISOLATED_ANON + page_is_file_lru(page),
497 -compound_nr(page));
498 unlock_page(page);
499 putback_lru_page(page);
500 }
501
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)502 static void release_pte_pages(pte_t *pte, pte_t *_pte,
503 struct list_head *compound_pagelist)
504 {
505 struct page *page, *tmp;
506
507 while (--_pte >= pte) {
508 pte_t pteval = *_pte;
509
510 page = pte_page(pteval);
511 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
512 !PageCompound(page))
513 release_pte_page(page);
514 }
515
516 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
517 list_del(&page->lru);
518 release_pte_page(page);
519 }
520 }
521
is_refcount_suitable(struct page * page)522 static bool is_refcount_suitable(struct page *page)
523 {
524 int expected_refcount;
525
526 expected_refcount = total_mapcount(page);
527 if (PageSwapCache(page))
528 expected_refcount += compound_nr(page);
529
530 return page_count(page) == expected_refcount;
531 }
532
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
534 unsigned long address,
535 pte_t *pte,
536 struct collapse_control *cc,
537 struct list_head *compound_pagelist)
538 {
539 struct page *page = NULL;
540 pte_t *_pte;
541 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
542 bool writable = false;
543
544 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
545 _pte++, address += PAGE_SIZE) {
546 pte_t pteval = *_pte;
547 if (pte_none(pteval) || (pte_present(pteval) &&
548 is_zero_pfn(pte_pfn(pteval)))) {
549 ++none_or_zero;
550 if (!userfaultfd_armed(vma) &&
551 (!cc->is_khugepaged ||
552 none_or_zero <= khugepaged_max_ptes_none)) {
553 continue;
554 } else {
555 result = SCAN_EXCEED_NONE_PTE;
556 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
557 goto out;
558 }
559 }
560 if (!pte_present(pteval)) {
561 result = SCAN_PTE_NON_PRESENT;
562 goto out;
563 }
564 page = vm_normal_page(vma, address, pteval);
565 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
566 result = SCAN_PAGE_NULL;
567 goto out;
568 }
569
570 VM_BUG_ON_PAGE(!PageAnon(page), page);
571
572 if (page_mapcount(page) > 1) {
573 ++shared;
574 if (cc->is_khugepaged &&
575 shared > khugepaged_max_ptes_shared) {
576 result = SCAN_EXCEED_SHARED_PTE;
577 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
578 goto out;
579 }
580 }
581
582 if (PageCompound(page)) {
583 struct page *p;
584 page = compound_head(page);
585
586 /*
587 * Check if we have dealt with the compound page
588 * already
589 */
590 list_for_each_entry(p, compound_pagelist, lru) {
591 if (page == p)
592 goto next;
593 }
594 }
595
596 /*
597 * We can do it before isolate_lru_page because the
598 * page can't be freed from under us. NOTE: PG_lock
599 * is needed to serialize against split_huge_page
600 * when invoked from the VM.
601 */
602 if (!trylock_page(page)) {
603 result = SCAN_PAGE_LOCK;
604 goto out;
605 }
606
607 /*
608 * Check if the page has any GUP (or other external) pins.
609 *
610 * The page table that maps the page has been already unlinked
611 * from the page table tree and this process cannot get
612 * an additional pin on the page.
613 *
614 * New pins can come later if the page is shared across fork,
615 * but not from this process. The other process cannot write to
616 * the page, only trigger CoW.
617 */
618 if (!is_refcount_suitable(page)) {
619 unlock_page(page);
620 result = SCAN_PAGE_COUNT;
621 goto out;
622 }
623
624 /*
625 * Isolate the page to avoid collapsing an hugepage
626 * currently in use by the VM.
627 */
628 if (isolate_lru_page(page)) {
629 unlock_page(page);
630 result = SCAN_DEL_PAGE_LRU;
631 goto out;
632 }
633 mod_node_page_state(page_pgdat(page),
634 NR_ISOLATED_ANON + page_is_file_lru(page),
635 compound_nr(page));
636 VM_BUG_ON_PAGE(!PageLocked(page), page);
637 VM_BUG_ON_PAGE(PageLRU(page), page);
638
639 if (PageCompound(page))
640 list_add_tail(&page->lru, compound_pagelist);
641 next:
642 /*
643 * If collapse was initiated by khugepaged, check that there is
644 * enough young pte to justify collapsing the page
645 */
646 if (cc->is_khugepaged &&
647 (pte_young(pteval) || page_is_young(page) ||
648 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
649 address)))
650 referenced++;
651
652 if (pte_write(pteval))
653 writable = true;
654 }
655
656 if (unlikely(!writable)) {
657 result = SCAN_PAGE_RO;
658 } else if (unlikely(cc->is_khugepaged && !referenced)) {
659 result = SCAN_LACK_REFERENCED_PAGE;
660 } else {
661 result = SCAN_SUCCEED;
662 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
663 referenced, writable, result);
664 return result;
665 }
666 out:
667 release_pte_pages(pte, _pte, compound_pagelist);
668 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
669 referenced, writable, result);
670 return result;
671 }
672
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
674 struct vm_area_struct *vma,
675 unsigned long address,
676 spinlock_t *ptl,
677 struct list_head *compound_pagelist)
678 {
679 struct page *src_page, *tmp;
680 pte_t *_pte;
681 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
682 _pte++, page++, address += PAGE_SIZE) {
683 pte_t pteval = *_pte;
684
685 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
686 clear_user_highpage(page, address);
687 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
688 if (is_zero_pfn(pte_pfn(pteval))) {
689 /*
690 * ptl mostly unnecessary.
691 */
692 spin_lock(ptl);
693 ptep_clear(vma->vm_mm, address, _pte);
694 spin_unlock(ptl);
695 }
696 } else {
697 src_page = pte_page(pteval);
698 copy_user_highpage(page, src_page, address, vma);
699 if (!PageCompound(src_page))
700 release_pte_page(src_page);
701 /*
702 * ptl mostly unnecessary, but preempt has to
703 * be disabled to update the per-cpu stats
704 * inside page_remove_rmap().
705 */
706 spin_lock(ptl);
707 ptep_clear(vma->vm_mm, address, _pte);
708 page_remove_rmap(src_page, vma, false);
709 spin_unlock(ptl);
710 free_page_and_swap_cache(src_page);
711 }
712 }
713
714 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
715 list_del(&src_page->lru);
716 mod_node_page_state(page_pgdat(src_page),
717 NR_ISOLATED_ANON + page_is_file_lru(src_page),
718 -compound_nr(src_page));
719 unlock_page(src_page);
720 free_swap_cache(src_page);
721 putback_lru_page(src_page);
722 }
723 }
724
khugepaged_alloc_sleep(void)725 static void khugepaged_alloc_sleep(void)
726 {
727 DEFINE_WAIT(wait);
728
729 add_wait_queue(&khugepaged_wait, &wait);
730 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
731 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
732 remove_wait_queue(&khugepaged_wait, &wait);
733 }
734
735 struct collapse_control khugepaged_collapse_control = {
736 .is_khugepaged = true,
737 };
738
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
740 {
741 int i;
742
743 /*
744 * If node_reclaim_mode is disabled, then no extra effort is made to
745 * allocate memory locally.
746 */
747 if (!node_reclaim_enabled())
748 return false;
749
750 /* If there is a count for this node already, it must be acceptable */
751 if (cc->node_load[nid])
752 return false;
753
754 for (i = 0; i < MAX_NUMNODES; i++) {
755 if (!cc->node_load[i])
756 continue;
757 if (node_distance(nid, i) > node_reclaim_distance)
758 return true;
759 }
760 return false;
761 }
762
763 #define khugepaged_defrag() \
764 (transparent_hugepage_flags & \
765 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
766
767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
769 {
770 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
771 }
772
773 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)774 static int hpage_collapse_find_target_node(struct collapse_control *cc)
775 {
776 int nid, target_node = 0, max_value = 0;
777
778 /* find first node with max normal pages hit */
779 for (nid = 0; nid < MAX_NUMNODES; nid++)
780 if (cc->node_load[nid] > max_value) {
781 max_value = cc->node_load[nid];
782 target_node = nid;
783 }
784
785 for_each_online_node(nid) {
786 if (max_value == cc->node_load[nid])
787 node_set(nid, cc->alloc_nmask);
788 }
789
790 return target_node;
791 }
792 #else
hpage_collapse_find_target_node(struct collapse_control * cc)793 static int hpage_collapse_find_target_node(struct collapse_control *cc)
794 {
795 return 0;
796 }
797 #endif
798
hpage_collapse_alloc_page(struct page ** hpage,gfp_t gfp,int node,nodemask_t * nmask)799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
800 nodemask_t *nmask)
801 {
802 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
803 if (unlikely(!*hpage)) {
804 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
805 return false;
806 }
807
808 prep_transhuge_page(*hpage);
809 count_vm_event(THP_COLLAPSE_ALLOC);
810 return true;
811 }
812
813 /*
814 * If mmap_lock temporarily dropped, revalidate vma
815 * before taking mmap_lock.
816 * Returns enum scan_result value.
817 */
818
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
820 bool expect_anon,
821 struct vm_area_struct **vmap,
822 struct collapse_control *cc)
823 {
824 struct vm_area_struct *vma;
825
826 if (unlikely(hpage_collapse_test_exit(mm)))
827 return SCAN_ANY_PROCESS;
828
829 *vmap = vma = find_vma(mm, address);
830 if (!vma)
831 return SCAN_VMA_NULL;
832
833 if (!transhuge_vma_suitable(vma, address))
834 return SCAN_ADDRESS_RANGE;
835 if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
836 cc->is_khugepaged))
837 return SCAN_VMA_CHECK;
838 /*
839 * Anon VMA expected, the address may be unmapped then
840 * remapped to file after khugepaged reaquired the mmap_lock.
841 *
842 * hugepage_vma_check may return true for qualified file
843 * vmas.
844 */
845 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
846 return SCAN_PAGE_ANON;
847 return SCAN_SUCCEED;
848 }
849
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)850 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
851 unsigned long address,
852 pmd_t **pmd)
853 {
854 pmd_t pmde;
855
856 *pmd = mm_find_pmd(mm, address);
857 if (!*pmd)
858 return SCAN_PMD_NULL;
859
860 pmde = pmd_read_atomic(*pmd);
861
862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
863 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */
864 barrier();
865 #endif
866 if (pmd_none(pmde))
867 return SCAN_PMD_NONE;
868 if (pmd_trans_huge(pmde))
869 return SCAN_PMD_MAPPED;
870 if (pmd_bad(pmde))
871 return SCAN_PMD_NULL;
872 return SCAN_SUCCEED;
873 }
874
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)875 static int check_pmd_still_valid(struct mm_struct *mm,
876 unsigned long address,
877 pmd_t *pmd)
878 {
879 pmd_t *new_pmd;
880 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
881
882 if (result != SCAN_SUCCEED)
883 return result;
884 if (new_pmd != pmd)
885 return SCAN_FAIL;
886 return SCAN_SUCCEED;
887 }
888
889 /*
890 * Bring missing pages in from swap, to complete THP collapse.
891 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
892 *
893 * Called and returns without pte mapped or spinlocks held.
894 * Note that if false is returned, mmap_lock will be released.
895 */
896
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)897 static int __collapse_huge_page_swapin(struct mm_struct *mm,
898 struct vm_area_struct *vma,
899 unsigned long haddr, pmd_t *pmd,
900 int referenced)
901 {
902 int swapped_in = 0;
903 vm_fault_t ret = 0;
904 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
905
906 for (address = haddr; address < end; address += PAGE_SIZE) {
907 struct vm_fault vmf = {
908 .vma = vma,
909 .address = address,
910 .pgoff = linear_page_index(vma, haddr),
911 .flags = FAULT_FLAG_ALLOW_RETRY,
912 .pmd = pmd,
913 };
914
915 vmf.pte = pte_offset_map(pmd, address);
916 vmf.orig_pte = *vmf.pte;
917 if (!is_swap_pte(vmf.orig_pte)) {
918 pte_unmap(vmf.pte);
919 continue;
920 }
921 ret = do_swap_page(&vmf);
922
923 /*
924 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
925 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
926 * we do not retry here and swap entry will remain in pagetable
927 * resulting in later failure.
928 */
929 if (ret & VM_FAULT_RETRY) {
930 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
931 /* Likely, but not guaranteed, that page lock failed */
932 return SCAN_PAGE_LOCK;
933 }
934 if (ret & VM_FAULT_ERROR) {
935 mmap_read_unlock(mm);
936 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
937 return SCAN_FAIL;
938 }
939 swapped_in++;
940 }
941
942 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
943 if (swapped_in)
944 lru_add_drain();
945
946 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
947 return SCAN_SUCCEED;
948 }
949
alloc_charge_hpage(struct page ** hpage,struct mm_struct * mm,struct collapse_control * cc)950 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
951 struct collapse_control *cc)
952 {
953 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
954 GFP_TRANSHUGE);
955 int node = hpage_collapse_find_target_node(cc);
956
957 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
958 return SCAN_ALLOC_HUGE_PAGE_FAIL;
959 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
960 return SCAN_CGROUP_CHARGE_FAIL;
961 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
962 return SCAN_SUCCEED;
963 }
964
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)965 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
966 int referenced, int unmapped,
967 struct collapse_control *cc)
968 {
969 LIST_HEAD(compound_pagelist);
970 pmd_t *pmd, _pmd;
971 pte_t *pte;
972 pgtable_t pgtable;
973 struct page *hpage;
974 spinlock_t *pmd_ptl, *pte_ptl;
975 int result = SCAN_FAIL;
976 struct vm_area_struct *vma;
977 struct mmu_notifier_range range;
978
979 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
980
981 /*
982 * Before allocating the hugepage, release the mmap_lock read lock.
983 * The allocation can take potentially a long time if it involves
984 * sync compaction, and we do not need to hold the mmap_lock during
985 * that. We will recheck the vma after taking it again in write mode.
986 */
987 mmap_read_unlock(mm);
988
989 result = alloc_charge_hpage(&hpage, mm, cc);
990 if (result != SCAN_SUCCEED)
991 goto out_nolock;
992
993 mmap_read_lock(mm);
994 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
995 if (result != SCAN_SUCCEED) {
996 mmap_read_unlock(mm);
997 goto out_nolock;
998 }
999
1000 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1001 if (result != SCAN_SUCCEED) {
1002 mmap_read_unlock(mm);
1003 goto out_nolock;
1004 }
1005
1006 if (unmapped) {
1007 /*
1008 * __collapse_huge_page_swapin will return with mmap_lock
1009 * released when it fails. So we jump out_nolock directly in
1010 * that case. Continuing to collapse causes inconsistency.
1011 */
1012 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1013 referenced);
1014 if (result != SCAN_SUCCEED)
1015 goto out_nolock;
1016 }
1017
1018 mmap_read_unlock(mm);
1019 /*
1020 * Prevent all access to pagetables with the exception of
1021 * gup_fast later handled by the ptep_clear_flush and the VM
1022 * handled by the anon_vma lock + PG_lock.
1023 */
1024 mmap_write_lock(mm);
1025 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1026 if (result != SCAN_SUCCEED)
1027 goto out_up_write;
1028 /* check if the pmd is still valid */
1029 result = check_pmd_still_valid(mm, address, pmd);
1030 if (result != SCAN_SUCCEED)
1031 goto out_up_write;
1032
1033 anon_vma_lock_write(vma->anon_vma);
1034
1035 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1036 address, address + HPAGE_PMD_SIZE);
1037 mmu_notifier_invalidate_range_start(&range);
1038
1039 pte = pte_offset_map(pmd, address);
1040 pte_ptl = pte_lockptr(mm, pmd);
1041
1042 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1043 /*
1044 * This removes any huge TLB entry from the CPU so we won't allow
1045 * huge and small TLB entries for the same virtual address to
1046 * avoid the risk of CPU bugs in that area.
1047 *
1048 * Parallel fast GUP is fine since fast GUP will back off when
1049 * it detects PMD is changed.
1050 */
1051 _pmd = pmdp_collapse_flush(vma, address, pmd);
1052 spin_unlock(pmd_ptl);
1053 mmu_notifier_invalidate_range_end(&range);
1054 tlb_remove_table_sync_one();
1055
1056 spin_lock(pte_ptl);
1057 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1058 &compound_pagelist);
1059 spin_unlock(pte_ptl);
1060
1061 if (unlikely(result != SCAN_SUCCEED)) {
1062 pte_unmap(pte);
1063 spin_lock(pmd_ptl);
1064 BUG_ON(!pmd_none(*pmd));
1065 /*
1066 * We can only use set_pmd_at when establishing
1067 * hugepmds and never for establishing regular pmds that
1068 * points to regular pagetables. Use pmd_populate for that
1069 */
1070 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1071 spin_unlock(pmd_ptl);
1072 anon_vma_unlock_write(vma->anon_vma);
1073 goto out_up_write;
1074 }
1075
1076 /*
1077 * All pages are isolated and locked so anon_vma rmap
1078 * can't run anymore.
1079 */
1080 anon_vma_unlock_write(vma->anon_vma);
1081
1082 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1083 &compound_pagelist);
1084 pte_unmap(pte);
1085 /*
1086 * spin_lock() below is not the equivalent of smp_wmb(), but
1087 * the smp_wmb() inside __SetPageUptodate() can be reused to
1088 * avoid the copy_huge_page writes to become visible after
1089 * the set_pmd_at() write.
1090 */
1091 __SetPageUptodate(hpage);
1092 pgtable = pmd_pgtable(_pmd);
1093
1094 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1095 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1096
1097 spin_lock(pmd_ptl);
1098 BUG_ON(!pmd_none(*pmd));
1099 page_add_new_anon_rmap(hpage, vma, address);
1100 lru_cache_add_inactive_or_unevictable(hpage, vma);
1101 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1102 set_pmd_at(mm, address, pmd, _pmd);
1103 update_mmu_cache_pmd(vma, address, pmd);
1104 spin_unlock(pmd_ptl);
1105
1106 hpage = NULL;
1107
1108 result = SCAN_SUCCEED;
1109 out_up_write:
1110 mmap_write_unlock(mm);
1111 out_nolock:
1112 if (hpage) {
1113 mem_cgroup_uncharge(page_folio(hpage));
1114 put_page(hpage);
1115 }
1116 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1117 return result;
1118 }
1119
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,bool * mmap_locked,struct collapse_control * cc)1120 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1121 struct vm_area_struct *vma,
1122 unsigned long address, bool *mmap_locked,
1123 struct collapse_control *cc)
1124 {
1125 pmd_t *pmd;
1126 pte_t *pte, *_pte;
1127 int result = SCAN_FAIL, referenced = 0;
1128 int none_or_zero = 0, shared = 0;
1129 struct page *page = NULL;
1130 unsigned long _address;
1131 spinlock_t *ptl;
1132 int node = NUMA_NO_NODE, unmapped = 0;
1133 bool writable = false;
1134
1135 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1136
1137 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1138 if (result != SCAN_SUCCEED)
1139 goto out;
1140
1141 memset(cc->node_load, 0, sizeof(cc->node_load));
1142 nodes_clear(cc->alloc_nmask);
1143 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1144 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1145 _pte++, _address += PAGE_SIZE) {
1146 pte_t pteval = *_pte;
1147 if (is_swap_pte(pteval)) {
1148 ++unmapped;
1149 if (!cc->is_khugepaged ||
1150 unmapped <= khugepaged_max_ptes_swap) {
1151 /*
1152 * Always be strict with uffd-wp
1153 * enabled swap entries. Please see
1154 * comment below for pte_uffd_wp().
1155 */
1156 if (pte_swp_uffd_wp(pteval)) {
1157 result = SCAN_PTE_UFFD_WP;
1158 goto out_unmap;
1159 }
1160 continue;
1161 } else {
1162 result = SCAN_EXCEED_SWAP_PTE;
1163 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1164 goto out_unmap;
1165 }
1166 }
1167 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1168 ++none_or_zero;
1169 if (!userfaultfd_armed(vma) &&
1170 (!cc->is_khugepaged ||
1171 none_or_zero <= khugepaged_max_ptes_none)) {
1172 continue;
1173 } else {
1174 result = SCAN_EXCEED_NONE_PTE;
1175 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1176 goto out_unmap;
1177 }
1178 }
1179 if (pte_uffd_wp(pteval)) {
1180 /*
1181 * Don't collapse the page if any of the small
1182 * PTEs are armed with uffd write protection.
1183 * Here we can also mark the new huge pmd as
1184 * write protected if any of the small ones is
1185 * marked but that could bring unknown
1186 * userfault messages that falls outside of
1187 * the registered range. So, just be simple.
1188 */
1189 result = SCAN_PTE_UFFD_WP;
1190 goto out_unmap;
1191 }
1192 if (pte_write(pteval))
1193 writable = true;
1194
1195 page = vm_normal_page(vma, _address, pteval);
1196 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1197 result = SCAN_PAGE_NULL;
1198 goto out_unmap;
1199 }
1200
1201 if (page_mapcount(page) > 1) {
1202 ++shared;
1203 if (cc->is_khugepaged &&
1204 shared > khugepaged_max_ptes_shared) {
1205 result = SCAN_EXCEED_SHARED_PTE;
1206 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1207 goto out_unmap;
1208 }
1209 }
1210
1211 page = compound_head(page);
1212
1213 /*
1214 * Record which node the original page is from and save this
1215 * information to cc->node_load[].
1216 * Khugepaged will allocate hugepage from the node has the max
1217 * hit record.
1218 */
1219 node = page_to_nid(page);
1220 if (hpage_collapse_scan_abort(node, cc)) {
1221 result = SCAN_SCAN_ABORT;
1222 goto out_unmap;
1223 }
1224 cc->node_load[node]++;
1225 if (!PageLRU(page)) {
1226 result = SCAN_PAGE_LRU;
1227 goto out_unmap;
1228 }
1229 if (PageLocked(page)) {
1230 result = SCAN_PAGE_LOCK;
1231 goto out_unmap;
1232 }
1233 if (!PageAnon(page)) {
1234 result = SCAN_PAGE_ANON;
1235 goto out_unmap;
1236 }
1237
1238 /*
1239 * Check if the page has any GUP (or other external) pins.
1240 *
1241 * Here the check is racy it may see total_mapcount > refcount
1242 * in some cases.
1243 * For example, one process with one forked child process.
1244 * The parent has the PMD split due to MADV_DONTNEED, then
1245 * the child is trying unmap the whole PMD, but khugepaged
1246 * may be scanning the parent between the child has
1247 * PageDoubleMap flag cleared and dec the mapcount. So
1248 * khugepaged may see total_mapcount > refcount.
1249 *
1250 * But such case is ephemeral we could always retry collapse
1251 * later. However it may report false positive if the page
1252 * has excessive GUP pins (i.e. 512). Anyway the same check
1253 * will be done again later the risk seems low.
1254 */
1255 if (!is_refcount_suitable(page)) {
1256 result = SCAN_PAGE_COUNT;
1257 goto out_unmap;
1258 }
1259
1260 /*
1261 * If collapse was initiated by khugepaged, check that there is
1262 * enough young pte to justify collapsing the page
1263 */
1264 if (cc->is_khugepaged &&
1265 (pte_young(pteval) || page_is_young(page) ||
1266 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1267 address)))
1268 referenced++;
1269 }
1270 if (!writable) {
1271 result = SCAN_PAGE_RO;
1272 } else if (cc->is_khugepaged &&
1273 (!referenced ||
1274 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1275 result = SCAN_LACK_REFERENCED_PAGE;
1276 } else {
1277 result = SCAN_SUCCEED;
1278 }
1279 out_unmap:
1280 pte_unmap_unlock(pte, ptl);
1281 if (result == SCAN_SUCCEED) {
1282 result = collapse_huge_page(mm, address, referenced,
1283 unmapped, cc);
1284 /* collapse_huge_page will return with the mmap_lock released */
1285 *mmap_locked = false;
1286 }
1287 out:
1288 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1289 none_or_zero, result, unmapped);
1290 return result;
1291 }
1292
collect_mm_slot(struct khugepaged_mm_slot * mm_slot)1293 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1294 {
1295 struct mm_slot *slot = &mm_slot->slot;
1296 struct mm_struct *mm = slot->mm;
1297
1298 lockdep_assert_held(&khugepaged_mm_lock);
1299
1300 if (hpage_collapse_test_exit(mm)) {
1301 /* free mm_slot */
1302 hash_del(&slot->hash);
1303 list_del(&slot->mm_node);
1304
1305 /*
1306 * Not strictly needed because the mm exited already.
1307 *
1308 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1309 */
1310
1311 /* khugepaged_mm_lock actually not necessary for the below */
1312 mm_slot_free(mm_slot_cache, mm_slot);
1313 mmdrop(mm);
1314 }
1315 }
1316
1317 #ifdef CONFIG_SHMEM
1318 /*
1319 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1320 * khugepaged should try to collapse the page table.
1321 *
1322 * Note that following race exists:
1323 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1324 * emptying the A's ->pte_mapped_thp[] array.
1325 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1326 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1327 * (at virtual address X) and adds an entry (for X) into mm_struct A's
1328 * ->pte-mapped_thp[] array.
1329 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1330 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1331 * (for X) into mm_struct A's ->pte-mapped_thp[] array.
1332 * Thus, it's possible the same address is added multiple times for the same
1333 * mm_struct. Should this happen, we'll simply attempt
1334 * collapse_pte_mapped_thp() multiple times for the same address, under the same
1335 * exclusive mmap_lock, and assuming the first call is successful, subsequent
1336 * attempts will return quickly (without grabbing any additional locks) when
1337 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap
1338 * check, and since this is a rare occurrence, the cost of preventing this
1339 * "multiple-add" is thought to be more expensive than just handling it, should
1340 * it occur.
1341 */
khugepaged_add_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1342 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1343 unsigned long addr)
1344 {
1345 struct khugepaged_mm_slot *mm_slot;
1346 struct mm_slot *slot;
1347 bool ret = false;
1348
1349 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1350
1351 spin_lock(&khugepaged_mm_lock);
1352 slot = mm_slot_lookup(mm_slots_hash, mm);
1353 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1354 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1355 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1356 ret = true;
1357 }
1358 spin_unlock(&khugepaged_mm_lock);
1359 return ret;
1360 }
1361
1362 /* hpage must be locked, and mmap_lock must be held in write */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct page * hpage)1363 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1364 pmd_t *pmdp, struct page *hpage)
1365 {
1366 struct vm_fault vmf = {
1367 .vma = vma,
1368 .address = addr,
1369 .flags = 0,
1370 .pmd = pmdp,
1371 };
1372
1373 VM_BUG_ON(!PageTransHuge(hpage));
1374 mmap_assert_write_locked(vma->vm_mm);
1375
1376 if (do_set_pmd(&vmf, hpage))
1377 return SCAN_FAIL;
1378
1379 get_page(hpage);
1380 return SCAN_SUCCEED;
1381 }
1382
1383 /*
1384 * A note about locking:
1385 * Trying to take the page table spinlocks would be useless here because those
1386 * are only used to synchronize:
1387 *
1388 * - modifying terminal entries (ones that point to a data page, not to another
1389 * page table)
1390 * - installing *new* non-terminal entries
1391 *
1392 * Instead, we need roughly the same kind of protection as free_pgtables() or
1393 * mm_take_all_locks() (but only for a single VMA):
1394 * The mmap lock together with this VMA's rmap locks covers all paths towards
1395 * the page table entries we're messing with here, except for hardware page
1396 * table walks and lockless_pages_from_mm().
1397 */
collapse_and_free_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1398 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1399 unsigned long addr, pmd_t *pmdp)
1400 {
1401 pmd_t pmd;
1402 struct mmu_notifier_range range;
1403
1404 mmap_assert_write_locked(mm);
1405 if (vma->vm_file)
1406 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1407 /*
1408 * All anon_vmas attached to the VMA have the same root and are
1409 * therefore locked by the same lock.
1410 */
1411 if (vma->anon_vma)
1412 lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1413
1414 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr,
1415 addr + HPAGE_PMD_SIZE);
1416 mmu_notifier_invalidate_range_start(&range);
1417 pmd = pmdp_collapse_flush(vma, addr, pmdp);
1418 tlb_remove_table_sync_one();
1419 mmu_notifier_invalidate_range_end(&range);
1420 mm_dec_nr_ptes(mm);
1421 page_table_check_pte_clear_range(mm, addr, pmd);
1422 pte_free(mm, pmd_pgtable(pmd));
1423 }
1424
1425 /**
1426 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1427 * address haddr.
1428 *
1429 * @mm: process address space where collapse happens
1430 * @addr: THP collapse address
1431 * @install_pmd: If a huge PMD should be installed
1432 *
1433 * This function checks whether all the PTEs in the PMD are pointing to the
1434 * right THP. If so, retract the page table so the THP can refault in with
1435 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1436 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1437 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1438 bool install_pmd)
1439 {
1440 unsigned long haddr = addr & HPAGE_PMD_MASK;
1441 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1442 struct page *hpage;
1443 pte_t *start_pte, *pte;
1444 pmd_t *pmd;
1445 spinlock_t *ptl;
1446 int count = 0, result = SCAN_FAIL;
1447 int i;
1448
1449 mmap_assert_write_locked(mm);
1450
1451 /* Fast check before locking page if already PMD-mapped */
1452 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1453 if (result == SCAN_PMD_MAPPED)
1454 return result;
1455
1456 if (!vma || !vma->vm_file ||
1457 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1458 return SCAN_VMA_CHECK;
1459
1460 /*
1461 * If we are here, we've succeeded in replacing all the native pages
1462 * in the page cache with a single hugepage. If a mm were to fault-in
1463 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1464 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1465 * analogously elide sysfs THP settings here.
1466 */
1467 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1468 return SCAN_VMA_CHECK;
1469
1470 /*
1471 * Symmetry with retract_page_tables(): Exclude MAP_PRIVATE mappings
1472 * that got written to. Without this, we'd have to also lock the
1473 * anon_vma if one exists.
1474 */
1475 if (vma->anon_vma)
1476 return SCAN_VMA_CHECK;
1477
1478 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1479 if (userfaultfd_wp(vma))
1480 return SCAN_PTE_UFFD_WP;
1481
1482 hpage = find_lock_page(vma->vm_file->f_mapping,
1483 linear_page_index(vma, haddr));
1484 if (!hpage)
1485 return SCAN_PAGE_NULL;
1486
1487 if (!PageHead(hpage)) {
1488 result = SCAN_FAIL;
1489 goto drop_hpage;
1490 }
1491
1492 if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1493 result = SCAN_PAGE_COMPOUND;
1494 goto drop_hpage;
1495 }
1496
1497 switch (result) {
1498 case SCAN_SUCCEED:
1499 break;
1500 case SCAN_PMD_NONE:
1501 /*
1502 * In MADV_COLLAPSE path, possible race with khugepaged where
1503 * all pte entries have been removed and pmd cleared. If so,
1504 * skip all the pte checks and just update the pmd mapping.
1505 */
1506 goto maybe_install_pmd;
1507 default:
1508 goto drop_hpage;
1509 }
1510
1511 /*
1512 * We need to lock the mapping so that from here on, only GUP-fast and
1513 * hardware page walks can access the parts of the page tables that
1514 * we're operating on.
1515 * See collapse_and_free_pmd().
1516 */
1517 i_mmap_lock_write(vma->vm_file->f_mapping);
1518
1519 /*
1520 * This spinlock should be unnecessary: Nobody else should be accessing
1521 * the page tables under spinlock protection here, only
1522 * lockless_pages_from_mm() and the hardware page walker can access page
1523 * tables while all the high-level locks are held in write mode.
1524 */
1525 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1526 result = SCAN_FAIL;
1527
1528 /* step 1: check all mapped PTEs are to the right huge page */
1529 for (i = 0, addr = haddr, pte = start_pte;
1530 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1531 struct page *page;
1532
1533 /* empty pte, skip */
1534 if (pte_none(*pte))
1535 continue;
1536
1537 /* page swapped out, abort */
1538 if (!pte_present(*pte)) {
1539 result = SCAN_PTE_NON_PRESENT;
1540 goto abort;
1541 }
1542
1543 page = vm_normal_page(vma, addr, *pte);
1544 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1545 page = NULL;
1546 /*
1547 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1548 * page table, but the new page will not be a subpage of hpage.
1549 */
1550 if (hpage + i != page)
1551 goto abort;
1552 count++;
1553 }
1554
1555 /* step 2: adjust rmap */
1556 for (i = 0, addr = haddr, pte = start_pte;
1557 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1558 struct page *page;
1559
1560 if (pte_none(*pte))
1561 continue;
1562 page = vm_normal_page(vma, addr, *pte);
1563 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1564 goto abort;
1565 page_remove_rmap(page, vma, false);
1566 }
1567
1568 pte_unmap_unlock(start_pte, ptl);
1569
1570 /* step 3: set proper refcount and mm_counters. */
1571 if (count) {
1572 page_ref_sub(hpage, count);
1573 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1574 }
1575
1576 /* step 4: remove pte entries */
1577 collapse_and_free_pmd(mm, vma, haddr, pmd);
1578
1579 i_mmap_unlock_write(vma->vm_file->f_mapping);
1580
1581 maybe_install_pmd:
1582 /* step 5: install pmd entry */
1583 result = install_pmd
1584 ? set_huge_pmd(vma, haddr, pmd, hpage)
1585 : SCAN_SUCCEED;
1586
1587 drop_hpage:
1588 unlock_page(hpage);
1589 put_page(hpage);
1590 return result;
1591
1592 abort:
1593 pte_unmap_unlock(start_pte, ptl);
1594 i_mmap_unlock_write(vma->vm_file->f_mapping);
1595 goto drop_hpage;
1596 }
1597
khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot * mm_slot)1598 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1599 {
1600 struct mm_slot *slot = &mm_slot->slot;
1601 struct mm_struct *mm = slot->mm;
1602 int i;
1603
1604 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1605 return;
1606
1607 if (!mmap_write_trylock(mm))
1608 return;
1609
1610 if (unlikely(hpage_collapse_test_exit(mm)))
1611 goto out;
1612
1613 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1614 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1615
1616 out:
1617 mm_slot->nr_pte_mapped_thp = 0;
1618 mmap_write_unlock(mm);
1619 }
1620
retract_page_tables(struct address_space * mapping,pgoff_t pgoff,struct mm_struct * target_mm,unsigned long target_addr,struct page * hpage,struct collapse_control * cc)1621 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1622 struct mm_struct *target_mm,
1623 unsigned long target_addr, struct page *hpage,
1624 struct collapse_control *cc)
1625 {
1626 struct vm_area_struct *vma;
1627 int target_result = SCAN_FAIL;
1628
1629 i_mmap_lock_write(mapping);
1630 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1631 int result = SCAN_FAIL;
1632 struct mm_struct *mm = NULL;
1633 unsigned long addr = 0;
1634 pmd_t *pmd;
1635 bool is_target = false;
1636
1637 /*
1638 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1639 * got written to. These VMAs are likely not worth investing
1640 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1641 * later.
1642 *
1643 * Note that vma->anon_vma check is racy: it can be set up after
1644 * the check but before we took mmap_lock by the fault path.
1645 * But page lock would prevent establishing any new ptes of the
1646 * page, so we are safe.
1647 *
1648 * An alternative would be drop the check, but check that page
1649 * table is clear before calling pmdp_collapse_flush() under
1650 * ptl. It has higher chance to recover THP for the VMA, but
1651 * has higher cost too. It would also probably require locking
1652 * the anon_vma.
1653 */
1654 if (vma->anon_vma) {
1655 result = SCAN_PAGE_ANON;
1656 goto next;
1657 }
1658 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1659 if (addr & ~HPAGE_PMD_MASK ||
1660 vma->vm_end < addr + HPAGE_PMD_SIZE) {
1661 result = SCAN_VMA_CHECK;
1662 goto next;
1663 }
1664 mm = vma->vm_mm;
1665 is_target = mm == target_mm && addr == target_addr;
1666 result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1667 if (result != SCAN_SUCCEED)
1668 goto next;
1669 /*
1670 * We need exclusive mmap_lock to retract page table.
1671 *
1672 * We use trylock due to lock inversion: we need to acquire
1673 * mmap_lock while holding page lock. Fault path does it in
1674 * reverse order. Trylock is a way to avoid deadlock.
1675 *
1676 * Also, it's not MADV_COLLAPSE's job to collapse other
1677 * mappings - let khugepaged take care of them later.
1678 */
1679 result = SCAN_PTE_MAPPED_HUGEPAGE;
1680 if ((cc->is_khugepaged || is_target) &&
1681 mmap_write_trylock(mm)) {
1682 /*
1683 * When a vma is registered with uffd-wp, we can't
1684 * recycle the pmd pgtable because there can be pte
1685 * markers installed. Skip it only, so the rest mm/vma
1686 * can still have the same file mapped hugely, however
1687 * it'll always mapped in small page size for uffd-wp
1688 * registered ranges.
1689 */
1690 if (hpage_collapse_test_exit(mm)) {
1691 result = SCAN_ANY_PROCESS;
1692 goto unlock_next;
1693 }
1694 if (userfaultfd_wp(vma)) {
1695 result = SCAN_PTE_UFFD_WP;
1696 goto unlock_next;
1697 }
1698 collapse_and_free_pmd(mm, vma, addr, pmd);
1699 if (!cc->is_khugepaged && is_target)
1700 result = set_huge_pmd(vma, addr, pmd, hpage);
1701 else
1702 result = SCAN_SUCCEED;
1703
1704 unlock_next:
1705 mmap_write_unlock(mm);
1706 goto next;
1707 }
1708 /*
1709 * Calling context will handle target mm/addr. Otherwise, let
1710 * khugepaged try again later.
1711 */
1712 if (!is_target) {
1713 khugepaged_add_pte_mapped_thp(mm, addr);
1714 continue;
1715 }
1716 next:
1717 if (is_target)
1718 target_result = result;
1719 }
1720 i_mmap_unlock_write(mapping);
1721 return target_result;
1722 }
1723
1724 /**
1725 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1726 *
1727 * @mm: process address space where collapse happens
1728 * @addr: virtual collapse start address
1729 * @file: file that collapse on
1730 * @start: collapse start address
1731 * @cc: collapse context and scratchpad
1732 *
1733 * Basic scheme is simple, details are more complex:
1734 * - allocate and lock a new huge page;
1735 * - scan page cache replacing old pages with the new one
1736 * + swap/gup in pages if necessary;
1737 * + fill in gaps;
1738 * + keep old pages around in case rollback is required;
1739 * - if replacing succeeds:
1740 * + copy data over;
1741 * + free old pages;
1742 * + unlock huge page;
1743 * - if replacing failed;
1744 * + put all pages back and unfreeze them;
1745 * + restore gaps in the page cache;
1746 * + unlock and free huge page;
1747 */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1748 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1749 struct file *file, pgoff_t start,
1750 struct collapse_control *cc)
1751 {
1752 struct address_space *mapping = file->f_mapping;
1753 struct page *hpage;
1754 pgoff_t index, end = start + HPAGE_PMD_NR;
1755 LIST_HEAD(pagelist);
1756 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1757 int nr_none = 0, result = SCAN_SUCCEED;
1758 bool is_shmem = shmem_file(file);
1759 int nr;
1760
1761 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1762 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1763
1764 result = alloc_charge_hpage(&hpage, mm, cc);
1765 if (result != SCAN_SUCCEED)
1766 goto out;
1767
1768 /*
1769 * Ensure we have slots for all the pages in the range. This is
1770 * almost certainly a no-op because most of the pages must be present
1771 */
1772 do {
1773 xas_lock_irq(&xas);
1774 xas_create_range(&xas);
1775 if (!xas_error(&xas))
1776 break;
1777 xas_unlock_irq(&xas);
1778 if (!xas_nomem(&xas, GFP_KERNEL)) {
1779 result = SCAN_FAIL;
1780 goto out;
1781 }
1782 } while (1);
1783
1784 __SetPageLocked(hpage);
1785 if (is_shmem)
1786 __SetPageSwapBacked(hpage);
1787 hpage->index = start;
1788 hpage->mapping = mapping;
1789
1790 /*
1791 * At this point the hpage is locked and not up-to-date.
1792 * It's safe to insert it into the page cache, because nobody would
1793 * be able to map it or use it in another way until we unlock it.
1794 */
1795
1796 xas_set(&xas, start);
1797 for (index = start; index < end; index++) {
1798 struct page *page = xas_next(&xas);
1799
1800 VM_BUG_ON(index != xas.xa_index);
1801 if (is_shmem) {
1802 if (!page) {
1803 /*
1804 * Stop if extent has been truncated or
1805 * hole-punched, and is now completely
1806 * empty.
1807 */
1808 if (index == start) {
1809 if (!xas_next_entry(&xas, end - 1)) {
1810 result = SCAN_TRUNCATED;
1811 goto xa_locked;
1812 }
1813 xas_set(&xas, index);
1814 }
1815 if (!shmem_charge(mapping->host, 1)) {
1816 result = SCAN_FAIL;
1817 goto xa_locked;
1818 }
1819 xas_store(&xas, hpage);
1820 nr_none++;
1821 continue;
1822 }
1823
1824 if (xa_is_value(page) || !PageUptodate(page)) {
1825 struct folio *folio;
1826
1827 xas_unlock_irq(&xas);
1828 /* swap in or instantiate fallocated page */
1829 if (shmem_get_folio(mapping->host, index,
1830 &folio, SGP_NOALLOC)) {
1831 result = SCAN_FAIL;
1832 goto xa_unlocked;
1833 }
1834 page = folio_file_page(folio, index);
1835 } else if (trylock_page(page)) {
1836 get_page(page);
1837 xas_unlock_irq(&xas);
1838 } else {
1839 result = SCAN_PAGE_LOCK;
1840 goto xa_locked;
1841 }
1842 } else { /* !is_shmem */
1843 if (!page || xa_is_value(page)) {
1844 xas_unlock_irq(&xas);
1845 page_cache_sync_readahead(mapping, &file->f_ra,
1846 file, index,
1847 end - index);
1848 /* drain pagevecs to help isolate_lru_page() */
1849 lru_add_drain();
1850 page = find_lock_page(mapping, index);
1851 if (unlikely(page == NULL)) {
1852 result = SCAN_FAIL;
1853 goto xa_unlocked;
1854 }
1855 } else if (PageDirty(page)) {
1856 /*
1857 * khugepaged only works on read-only fd,
1858 * so this page is dirty because it hasn't
1859 * been flushed since first write. There
1860 * won't be new dirty pages.
1861 *
1862 * Trigger async flush here and hope the
1863 * writeback is done when khugepaged
1864 * revisits this page.
1865 *
1866 * This is a one-off situation. We are not
1867 * forcing writeback in loop.
1868 */
1869 xas_unlock_irq(&xas);
1870 filemap_flush(mapping);
1871 result = SCAN_FAIL;
1872 goto xa_unlocked;
1873 } else if (PageWriteback(page)) {
1874 xas_unlock_irq(&xas);
1875 result = SCAN_FAIL;
1876 goto xa_unlocked;
1877 } else if (trylock_page(page)) {
1878 get_page(page);
1879 xas_unlock_irq(&xas);
1880 } else {
1881 result = SCAN_PAGE_LOCK;
1882 goto xa_locked;
1883 }
1884 }
1885
1886 /*
1887 * The page must be locked, so we can drop the i_pages lock
1888 * without racing with truncate.
1889 */
1890 VM_BUG_ON_PAGE(!PageLocked(page), page);
1891
1892 /* make sure the page is up to date */
1893 if (unlikely(!PageUptodate(page))) {
1894 result = SCAN_FAIL;
1895 goto out_unlock;
1896 }
1897
1898 /*
1899 * If file was truncated then extended, or hole-punched, before
1900 * we locked the first page, then a THP might be there already.
1901 * This will be discovered on the first iteration.
1902 */
1903 if (PageTransCompound(page)) {
1904 struct page *head = compound_head(page);
1905
1906 result = compound_order(head) == HPAGE_PMD_ORDER &&
1907 head->index == start
1908 /* Maybe PMD-mapped */
1909 ? SCAN_PTE_MAPPED_HUGEPAGE
1910 : SCAN_PAGE_COMPOUND;
1911 goto out_unlock;
1912 }
1913
1914 if (page_mapping(page) != mapping) {
1915 result = SCAN_TRUNCATED;
1916 goto out_unlock;
1917 }
1918
1919 if (!is_shmem && (PageDirty(page) ||
1920 PageWriteback(page))) {
1921 /*
1922 * khugepaged only works on read-only fd, so this
1923 * page is dirty because it hasn't been flushed
1924 * since first write.
1925 */
1926 result = SCAN_FAIL;
1927 goto out_unlock;
1928 }
1929
1930 if (isolate_lru_page(page)) {
1931 result = SCAN_DEL_PAGE_LRU;
1932 goto out_unlock;
1933 }
1934
1935 if (page_has_private(page) &&
1936 !try_to_release_page(page, GFP_KERNEL)) {
1937 result = SCAN_PAGE_HAS_PRIVATE;
1938 putback_lru_page(page);
1939 goto out_unlock;
1940 }
1941
1942 if (page_mapped(page))
1943 try_to_unmap(page_folio(page),
1944 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1945
1946 xas_lock_irq(&xas);
1947 xas_set(&xas, index);
1948
1949 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1950
1951 /*
1952 * The page is expected to have page_count() == 3:
1953 * - we hold a pin on it;
1954 * - one reference from page cache;
1955 * - one from isolate_lru_page;
1956 */
1957 if (!page_ref_freeze(page, 3)) {
1958 result = SCAN_PAGE_COUNT;
1959 xas_unlock_irq(&xas);
1960 putback_lru_page(page);
1961 goto out_unlock;
1962 }
1963
1964 /*
1965 * Add the page to the list to be able to undo the collapse if
1966 * something go wrong.
1967 */
1968 list_add_tail(&page->lru, &pagelist);
1969
1970 /* Finally, replace with the new page. */
1971 xas_store(&xas, hpage);
1972 continue;
1973 out_unlock:
1974 unlock_page(page);
1975 put_page(page);
1976 goto xa_unlocked;
1977 }
1978 nr = thp_nr_pages(hpage);
1979
1980 if (is_shmem)
1981 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
1982 else {
1983 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
1984 filemap_nr_thps_inc(mapping);
1985 /*
1986 * Paired with smp_mb() in do_dentry_open() to ensure
1987 * i_writecount is up to date and the update to nr_thps is
1988 * visible. Ensures the page cache will be truncated if the
1989 * file is opened writable.
1990 */
1991 smp_mb();
1992 if (inode_is_open_for_write(mapping->host)) {
1993 result = SCAN_FAIL;
1994 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
1995 filemap_nr_thps_dec(mapping);
1996 goto xa_locked;
1997 }
1998 }
1999
2000 if (nr_none) {
2001 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2002 /* nr_none is always 0 for non-shmem. */
2003 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2004 }
2005
2006 /* Join all the small entries into a single multi-index entry */
2007 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2008 xas_store(&xas, hpage);
2009 xa_locked:
2010 xas_unlock_irq(&xas);
2011 xa_unlocked:
2012
2013 /*
2014 * If collapse is successful, flush must be done now before copying.
2015 * If collapse is unsuccessful, does flush actually need to be done?
2016 * Do it anyway, to clear the state.
2017 */
2018 try_to_unmap_flush();
2019
2020 if (result == SCAN_SUCCEED) {
2021 struct page *page, *tmp;
2022
2023 /*
2024 * Replacing old pages with new one has succeeded, now we
2025 * need to copy the content and free the old pages.
2026 */
2027 index = start;
2028 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2029 while (index < page->index) {
2030 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2031 index++;
2032 }
2033 copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
2034 page);
2035 list_del(&page->lru);
2036 page->mapping = NULL;
2037 page_ref_unfreeze(page, 1);
2038 ClearPageActive(page);
2039 ClearPageUnevictable(page);
2040 unlock_page(page);
2041 put_page(page);
2042 index++;
2043 }
2044 while (index < end) {
2045 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2046 index++;
2047 }
2048
2049 SetPageUptodate(hpage);
2050 page_ref_add(hpage, HPAGE_PMD_NR - 1);
2051 if (is_shmem)
2052 set_page_dirty(hpage);
2053 lru_cache_add(hpage);
2054
2055 /*
2056 * Remove pte page tables, so we can re-fault the page as huge.
2057 */
2058 result = retract_page_tables(mapping, start, mm, addr, hpage,
2059 cc);
2060 unlock_page(hpage);
2061 hpage = NULL;
2062 } else {
2063 struct page *page;
2064
2065 /* Something went wrong: roll back page cache changes */
2066 xas_lock_irq(&xas);
2067 if (nr_none) {
2068 mapping->nrpages -= nr_none;
2069 shmem_uncharge(mapping->host, nr_none);
2070 }
2071
2072 xas_set(&xas, start);
2073 xas_for_each(&xas, page, end - 1) {
2074 page = list_first_entry_or_null(&pagelist,
2075 struct page, lru);
2076 if (!page || xas.xa_index < page->index) {
2077 if (!nr_none)
2078 break;
2079 nr_none--;
2080 /* Put holes back where they were */
2081 xas_store(&xas, NULL);
2082 continue;
2083 }
2084
2085 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2086
2087 /* Unfreeze the page. */
2088 list_del(&page->lru);
2089 page_ref_unfreeze(page, 2);
2090 xas_store(&xas, page);
2091 xas_pause(&xas);
2092 xas_unlock_irq(&xas);
2093 unlock_page(page);
2094 putback_lru_page(page);
2095 xas_lock_irq(&xas);
2096 }
2097 VM_BUG_ON(nr_none);
2098 xas_unlock_irq(&xas);
2099
2100 hpage->mapping = NULL;
2101 }
2102
2103 if (hpage)
2104 unlock_page(hpage);
2105 out:
2106 VM_BUG_ON(!list_empty(&pagelist));
2107 if (hpage) {
2108 mem_cgroup_uncharge(page_folio(hpage));
2109 put_page(hpage);
2110 }
2111 /* TODO: tracepoints */
2112 return result;
2113 }
2114
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2115 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2116 struct file *file, pgoff_t start,
2117 struct collapse_control *cc)
2118 {
2119 struct page *page = NULL;
2120 struct address_space *mapping = file->f_mapping;
2121 XA_STATE(xas, &mapping->i_pages, start);
2122 int present, swap;
2123 int node = NUMA_NO_NODE;
2124 int result = SCAN_SUCCEED;
2125
2126 present = 0;
2127 swap = 0;
2128 memset(cc->node_load, 0, sizeof(cc->node_load));
2129 nodes_clear(cc->alloc_nmask);
2130 rcu_read_lock();
2131 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2132 if (xas_retry(&xas, page))
2133 continue;
2134
2135 if (xa_is_value(page)) {
2136 ++swap;
2137 if (cc->is_khugepaged &&
2138 swap > khugepaged_max_ptes_swap) {
2139 result = SCAN_EXCEED_SWAP_PTE;
2140 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2141 break;
2142 }
2143 continue;
2144 }
2145
2146 /*
2147 * TODO: khugepaged should compact smaller compound pages
2148 * into a PMD sized page
2149 */
2150 if (PageTransCompound(page)) {
2151 struct page *head = compound_head(page);
2152
2153 result = compound_order(head) == HPAGE_PMD_ORDER &&
2154 head->index == start
2155 /* Maybe PMD-mapped */
2156 ? SCAN_PTE_MAPPED_HUGEPAGE
2157 : SCAN_PAGE_COMPOUND;
2158 /*
2159 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2160 * by the caller won't touch the page cache, and so
2161 * it's safe to skip LRU and refcount checks before
2162 * returning.
2163 */
2164 break;
2165 }
2166
2167 node = page_to_nid(page);
2168 if (hpage_collapse_scan_abort(node, cc)) {
2169 result = SCAN_SCAN_ABORT;
2170 break;
2171 }
2172 cc->node_load[node]++;
2173
2174 if (!PageLRU(page)) {
2175 result = SCAN_PAGE_LRU;
2176 break;
2177 }
2178
2179 if (page_count(page) !=
2180 1 + page_mapcount(page) + page_has_private(page)) {
2181 result = SCAN_PAGE_COUNT;
2182 break;
2183 }
2184
2185 /*
2186 * We probably should check if the page is referenced here, but
2187 * nobody would transfer pte_young() to PageReferenced() for us.
2188 * And rmap walk here is just too costly...
2189 */
2190
2191 present++;
2192
2193 if (need_resched()) {
2194 xas_pause(&xas);
2195 cond_resched_rcu();
2196 }
2197 }
2198 rcu_read_unlock();
2199
2200 if (result == SCAN_SUCCEED) {
2201 if (cc->is_khugepaged &&
2202 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2203 result = SCAN_EXCEED_NONE_PTE;
2204 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2205 } else {
2206 result = collapse_file(mm, addr, file, start, cc);
2207 }
2208 }
2209
2210 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2211 return result;
2212 }
2213 #else
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2214 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2215 struct file *file, pgoff_t start,
2216 struct collapse_control *cc)
2217 {
2218 BUILD_BUG();
2219 }
2220
khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot * mm_slot)2221 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2222 {
2223 }
2224
khugepaged_add_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)2225 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2226 unsigned long addr)
2227 {
2228 return false;
2229 }
2230 #endif
2231
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2232 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2233 struct collapse_control *cc)
2234 __releases(&khugepaged_mm_lock)
2235 __acquires(&khugepaged_mm_lock)
2236 {
2237 struct vma_iterator vmi;
2238 struct khugepaged_mm_slot *mm_slot;
2239 struct mm_slot *slot;
2240 struct mm_struct *mm;
2241 struct vm_area_struct *vma;
2242 int progress = 0;
2243
2244 VM_BUG_ON(!pages);
2245 lockdep_assert_held(&khugepaged_mm_lock);
2246 *result = SCAN_FAIL;
2247
2248 if (khugepaged_scan.mm_slot) {
2249 mm_slot = khugepaged_scan.mm_slot;
2250 slot = &mm_slot->slot;
2251 } else {
2252 slot = list_entry(khugepaged_scan.mm_head.next,
2253 struct mm_slot, mm_node);
2254 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2255 khugepaged_scan.address = 0;
2256 khugepaged_scan.mm_slot = mm_slot;
2257 }
2258 spin_unlock(&khugepaged_mm_lock);
2259 khugepaged_collapse_pte_mapped_thps(mm_slot);
2260
2261 mm = slot->mm;
2262 /*
2263 * Don't wait for semaphore (to avoid long wait times). Just move to
2264 * the next mm on the list.
2265 */
2266 vma = NULL;
2267 if (unlikely(!mmap_read_trylock(mm)))
2268 goto breakouterloop_mmap_lock;
2269
2270 progress++;
2271 if (unlikely(hpage_collapse_test_exit(mm)))
2272 goto breakouterloop;
2273
2274 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2275 for_each_vma(vmi, vma) {
2276 unsigned long hstart, hend;
2277
2278 cond_resched();
2279 if (unlikely(hpage_collapse_test_exit(mm))) {
2280 progress++;
2281 break;
2282 }
2283 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2284 skip:
2285 progress++;
2286 continue;
2287 }
2288 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2289 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2290 if (khugepaged_scan.address > hend)
2291 goto skip;
2292 if (khugepaged_scan.address < hstart)
2293 khugepaged_scan.address = hstart;
2294 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2295
2296 while (khugepaged_scan.address < hend) {
2297 bool mmap_locked = true;
2298
2299 cond_resched();
2300 if (unlikely(hpage_collapse_test_exit(mm)))
2301 goto breakouterloop;
2302
2303 VM_BUG_ON(khugepaged_scan.address < hstart ||
2304 khugepaged_scan.address + HPAGE_PMD_SIZE >
2305 hend);
2306 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2307 struct file *file = get_file(vma->vm_file);
2308 pgoff_t pgoff = linear_page_index(vma,
2309 khugepaged_scan.address);
2310
2311 mmap_read_unlock(mm);
2312 *result = hpage_collapse_scan_file(mm,
2313 khugepaged_scan.address,
2314 file, pgoff, cc);
2315 mmap_locked = false;
2316 fput(file);
2317 } else {
2318 *result = hpage_collapse_scan_pmd(mm, vma,
2319 khugepaged_scan.address,
2320 &mmap_locked,
2321 cc);
2322 }
2323 switch (*result) {
2324 case SCAN_PTE_MAPPED_HUGEPAGE: {
2325 pmd_t *pmd;
2326
2327 *result = find_pmd_or_thp_or_none(mm,
2328 khugepaged_scan.address,
2329 &pmd);
2330 if (*result != SCAN_SUCCEED)
2331 break;
2332 if (!khugepaged_add_pte_mapped_thp(mm,
2333 khugepaged_scan.address))
2334 break;
2335 } fallthrough;
2336 case SCAN_SUCCEED:
2337 ++khugepaged_pages_collapsed;
2338 break;
2339 default:
2340 break;
2341 }
2342
2343 /* move to next address */
2344 khugepaged_scan.address += HPAGE_PMD_SIZE;
2345 progress += HPAGE_PMD_NR;
2346 if (!mmap_locked)
2347 /*
2348 * We released mmap_lock so break loop. Note
2349 * that we drop mmap_lock before all hugepage
2350 * allocations, so if allocation fails, we are
2351 * guaranteed to break here and report the
2352 * correct result back to caller.
2353 */
2354 goto breakouterloop_mmap_lock;
2355 if (progress >= pages)
2356 goto breakouterloop;
2357 }
2358 }
2359 breakouterloop:
2360 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2361 breakouterloop_mmap_lock:
2362
2363 spin_lock(&khugepaged_mm_lock);
2364 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2365 /*
2366 * Release the current mm_slot if this mm is about to die, or
2367 * if we scanned all vmas of this mm.
2368 */
2369 if (hpage_collapse_test_exit(mm) || !vma) {
2370 /*
2371 * Make sure that if mm_users is reaching zero while
2372 * khugepaged runs here, khugepaged_exit will find
2373 * mm_slot not pointing to the exiting mm.
2374 */
2375 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2376 slot = list_entry(slot->mm_node.next,
2377 struct mm_slot, mm_node);
2378 khugepaged_scan.mm_slot =
2379 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2380 khugepaged_scan.address = 0;
2381 } else {
2382 khugepaged_scan.mm_slot = NULL;
2383 khugepaged_full_scans++;
2384 }
2385
2386 collect_mm_slot(mm_slot);
2387 }
2388
2389 return progress;
2390 }
2391
khugepaged_has_work(void)2392 static int khugepaged_has_work(void)
2393 {
2394 return !list_empty(&khugepaged_scan.mm_head) &&
2395 hugepage_flags_enabled();
2396 }
2397
khugepaged_wait_event(void)2398 static int khugepaged_wait_event(void)
2399 {
2400 return !list_empty(&khugepaged_scan.mm_head) ||
2401 kthread_should_stop();
2402 }
2403
khugepaged_do_scan(struct collapse_control * cc)2404 static void khugepaged_do_scan(struct collapse_control *cc)
2405 {
2406 unsigned int progress = 0, pass_through_head = 0;
2407 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2408 bool wait = true;
2409 int result = SCAN_SUCCEED;
2410
2411 lru_add_drain_all();
2412
2413 while (true) {
2414 cond_resched();
2415
2416 if (unlikely(kthread_should_stop() || try_to_freeze()))
2417 break;
2418
2419 spin_lock(&khugepaged_mm_lock);
2420 if (!khugepaged_scan.mm_slot)
2421 pass_through_head++;
2422 if (khugepaged_has_work() &&
2423 pass_through_head < 2)
2424 progress += khugepaged_scan_mm_slot(pages - progress,
2425 &result, cc);
2426 else
2427 progress = pages;
2428 spin_unlock(&khugepaged_mm_lock);
2429
2430 if (progress >= pages)
2431 break;
2432
2433 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2434 /*
2435 * If fail to allocate the first time, try to sleep for
2436 * a while. When hit again, cancel the scan.
2437 */
2438 if (!wait)
2439 break;
2440 wait = false;
2441 khugepaged_alloc_sleep();
2442 }
2443 }
2444 }
2445
khugepaged_should_wakeup(void)2446 static bool khugepaged_should_wakeup(void)
2447 {
2448 return kthread_should_stop() ||
2449 time_after_eq(jiffies, khugepaged_sleep_expire);
2450 }
2451
khugepaged_wait_work(void)2452 static void khugepaged_wait_work(void)
2453 {
2454 if (khugepaged_has_work()) {
2455 const unsigned long scan_sleep_jiffies =
2456 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2457
2458 if (!scan_sleep_jiffies)
2459 return;
2460
2461 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2462 wait_event_freezable_timeout(khugepaged_wait,
2463 khugepaged_should_wakeup(),
2464 scan_sleep_jiffies);
2465 return;
2466 }
2467
2468 if (hugepage_flags_enabled())
2469 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2470 }
2471
khugepaged(void * none)2472 static int khugepaged(void *none)
2473 {
2474 struct khugepaged_mm_slot *mm_slot;
2475
2476 set_freezable();
2477 set_user_nice(current, MAX_NICE);
2478
2479 while (!kthread_should_stop()) {
2480 khugepaged_do_scan(&khugepaged_collapse_control);
2481 khugepaged_wait_work();
2482 }
2483
2484 spin_lock(&khugepaged_mm_lock);
2485 mm_slot = khugepaged_scan.mm_slot;
2486 khugepaged_scan.mm_slot = NULL;
2487 if (mm_slot)
2488 collect_mm_slot(mm_slot);
2489 spin_unlock(&khugepaged_mm_lock);
2490 return 0;
2491 }
2492
set_recommended_min_free_kbytes(void)2493 static void set_recommended_min_free_kbytes(void)
2494 {
2495 struct zone *zone;
2496 int nr_zones = 0;
2497 unsigned long recommended_min;
2498
2499 if (!hugepage_flags_enabled()) {
2500 calculate_min_free_kbytes();
2501 goto update_wmarks;
2502 }
2503
2504 for_each_populated_zone(zone) {
2505 /*
2506 * We don't need to worry about fragmentation of
2507 * ZONE_MOVABLE since it only has movable pages.
2508 */
2509 if (zone_idx(zone) > gfp_zone(GFP_USER))
2510 continue;
2511
2512 nr_zones++;
2513 }
2514
2515 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2516 recommended_min = pageblock_nr_pages * nr_zones * 2;
2517
2518 /*
2519 * Make sure that on average at least two pageblocks are almost free
2520 * of another type, one for a migratetype to fall back to and a
2521 * second to avoid subsequent fallbacks of other types There are 3
2522 * MIGRATE_TYPES we care about.
2523 */
2524 recommended_min += pageblock_nr_pages * nr_zones *
2525 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2526
2527 /* don't ever allow to reserve more than 5% of the lowmem */
2528 recommended_min = min(recommended_min,
2529 (unsigned long) nr_free_buffer_pages() / 20);
2530 recommended_min <<= (PAGE_SHIFT-10);
2531
2532 if (recommended_min > min_free_kbytes) {
2533 if (user_min_free_kbytes >= 0)
2534 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2535 min_free_kbytes, recommended_min);
2536
2537 min_free_kbytes = recommended_min;
2538 }
2539
2540 update_wmarks:
2541 setup_per_zone_wmarks();
2542 }
2543
start_stop_khugepaged(void)2544 int start_stop_khugepaged(void)
2545 {
2546 int err = 0;
2547
2548 mutex_lock(&khugepaged_mutex);
2549 if (hugepage_flags_enabled()) {
2550 if (!khugepaged_thread)
2551 khugepaged_thread = kthread_run(khugepaged, NULL,
2552 "khugepaged");
2553 if (IS_ERR(khugepaged_thread)) {
2554 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2555 err = PTR_ERR(khugepaged_thread);
2556 khugepaged_thread = NULL;
2557 goto fail;
2558 }
2559
2560 if (!list_empty(&khugepaged_scan.mm_head))
2561 wake_up_interruptible(&khugepaged_wait);
2562 } else if (khugepaged_thread) {
2563 kthread_stop(khugepaged_thread);
2564 khugepaged_thread = NULL;
2565 }
2566 set_recommended_min_free_kbytes();
2567 fail:
2568 mutex_unlock(&khugepaged_mutex);
2569 return err;
2570 }
2571
khugepaged_min_free_kbytes_update(void)2572 void khugepaged_min_free_kbytes_update(void)
2573 {
2574 mutex_lock(&khugepaged_mutex);
2575 if (hugepage_flags_enabled() && khugepaged_thread)
2576 set_recommended_min_free_kbytes();
2577 mutex_unlock(&khugepaged_mutex);
2578 }
2579
madvise_collapse_errno(enum scan_result r)2580 static int madvise_collapse_errno(enum scan_result r)
2581 {
2582 /*
2583 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2584 * actionable feedback to caller, so they may take an appropriate
2585 * fallback measure depending on the nature of the failure.
2586 */
2587 switch (r) {
2588 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2589 return -ENOMEM;
2590 case SCAN_CGROUP_CHARGE_FAIL:
2591 return -EBUSY;
2592 /* Resource temporary unavailable - trying again might succeed */
2593 case SCAN_PAGE_LOCK:
2594 case SCAN_PAGE_LRU:
2595 case SCAN_DEL_PAGE_LRU:
2596 return -EAGAIN;
2597 /*
2598 * Other: Trying again likely not to succeed / error intrinsic to
2599 * specified memory range. khugepaged likely won't be able to collapse
2600 * either.
2601 */
2602 default:
2603 return -EINVAL;
2604 }
2605 }
2606
madvise_collapse(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)2607 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2608 unsigned long start, unsigned long end)
2609 {
2610 struct collapse_control *cc;
2611 struct mm_struct *mm = vma->vm_mm;
2612 unsigned long hstart, hend, addr;
2613 int thps = 0, last_fail = SCAN_FAIL;
2614 bool mmap_locked = true;
2615
2616 BUG_ON(vma->vm_start > start);
2617 BUG_ON(vma->vm_end < end);
2618
2619 *prev = vma;
2620
2621 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2622 return -EINVAL;
2623
2624 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2625 if (!cc)
2626 return -ENOMEM;
2627 cc->is_khugepaged = false;
2628
2629 mmgrab(mm);
2630 lru_add_drain_all();
2631
2632 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2633 hend = end & HPAGE_PMD_MASK;
2634
2635 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2636 int result = SCAN_FAIL;
2637
2638 if (!mmap_locked) {
2639 cond_resched();
2640 mmap_read_lock(mm);
2641 mmap_locked = true;
2642 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2643 cc);
2644 if (result != SCAN_SUCCEED) {
2645 last_fail = result;
2646 goto out_nolock;
2647 }
2648
2649 hend = vma->vm_end & HPAGE_PMD_MASK;
2650 }
2651 mmap_assert_locked(mm);
2652 memset(cc->node_load, 0, sizeof(cc->node_load));
2653 nodes_clear(cc->alloc_nmask);
2654 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2655 struct file *file = get_file(vma->vm_file);
2656 pgoff_t pgoff = linear_page_index(vma, addr);
2657
2658 mmap_read_unlock(mm);
2659 mmap_locked = false;
2660 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2661 cc);
2662 fput(file);
2663 } else {
2664 result = hpage_collapse_scan_pmd(mm, vma, addr,
2665 &mmap_locked, cc);
2666 }
2667 if (!mmap_locked)
2668 *prev = NULL; /* Tell caller we dropped mmap_lock */
2669
2670 handle_result:
2671 switch (result) {
2672 case SCAN_SUCCEED:
2673 case SCAN_PMD_MAPPED:
2674 ++thps;
2675 break;
2676 case SCAN_PTE_MAPPED_HUGEPAGE:
2677 BUG_ON(mmap_locked);
2678 BUG_ON(*prev);
2679 mmap_write_lock(mm);
2680 result = collapse_pte_mapped_thp(mm, addr, true);
2681 mmap_write_unlock(mm);
2682 goto handle_result;
2683 /* Whitelisted set of results where continuing OK */
2684 case SCAN_PMD_NULL:
2685 case SCAN_PTE_NON_PRESENT:
2686 case SCAN_PTE_UFFD_WP:
2687 case SCAN_PAGE_RO:
2688 case SCAN_LACK_REFERENCED_PAGE:
2689 case SCAN_PAGE_NULL:
2690 case SCAN_PAGE_COUNT:
2691 case SCAN_PAGE_LOCK:
2692 case SCAN_PAGE_COMPOUND:
2693 case SCAN_PAGE_LRU:
2694 case SCAN_DEL_PAGE_LRU:
2695 last_fail = result;
2696 break;
2697 default:
2698 last_fail = result;
2699 /* Other error, exit */
2700 goto out_maybelock;
2701 }
2702 }
2703
2704 out_maybelock:
2705 /* Caller expects us to hold mmap_lock on return */
2706 if (!mmap_locked)
2707 mmap_read_lock(mm);
2708 out_nolock:
2709 mmap_assert_locked(mm);
2710 mmdrop(mm);
2711 kfree(cc);
2712
2713 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2714 : madvise_collapse_errno(last_fail);
2715 }
2716