1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48
49 /*
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
56 */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68 static struct shrinker deferred_split_shrinker;
69
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags,bool smaps,bool in_pf,bool enforce_sysfs)74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 if (!vma->vm_mm) /* vdso */
78 return false;
79
80 /*
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
83 * example, s390 kvm.
84 * */
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 return false;
88 /*
89 * If the hardware/firmware marked hugepage support disabled.
90 */
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 return false;
93
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 if (vma_is_dax(vma))
96 return in_pf;
97
98 /*
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
101 * VM_MIXEDMAP set.
102 */
103 if (vm_flags & VM_NO_KHUGEPAGED)
104 return false;
105
106 /*
107 * Check alignment for file vma and size for both file and anon vma.
108 *
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
111 */
112 if (!in_pf &&
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 return false;
115
116 /*
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
119 * own flags.
120 */
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_huge_enabled(vma, !enforce_sysfs);
123
124 /* Enforce sysfs THP requirements as necessary */
125 if (enforce_sysfs &&
126 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
127 !hugepage_flags_always())))
128 return false;
129
130 /* Only regular file is valid */
131 if (!in_pf && file_thp_enabled(vma))
132 return true;
133
134 if (!vma_is_anonymous(vma))
135 return false;
136
137 if (vma_is_temporary_stack(vma))
138 return false;
139
140 /*
141 * THPeligible bit of smaps should show 1 for proper VMAs even
142 * though anon_vma is not initialized yet.
143 *
144 * Allow page fault since anon_vma may be not initialized until
145 * the first page fault.
146 */
147 if (!vma->anon_vma)
148 return (smaps || in_pf);
149
150 return true;
151 }
152
get_huge_zero_page(void)153 static bool get_huge_zero_page(void)
154 {
155 struct page *zero_page;
156 retry:
157 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
158 return true;
159
160 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
161 HPAGE_PMD_ORDER);
162 if (!zero_page) {
163 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
164 return false;
165 }
166 preempt_disable();
167 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
168 preempt_enable();
169 __free_pages(zero_page, compound_order(zero_page));
170 goto retry;
171 }
172 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
173
174 /* We take additional reference here. It will be put back by shrinker */
175 atomic_set(&huge_zero_refcount, 2);
176 preempt_enable();
177 count_vm_event(THP_ZERO_PAGE_ALLOC);
178 return true;
179 }
180
put_huge_zero_page(void)181 static void put_huge_zero_page(void)
182 {
183 /*
184 * Counter should never go to zero here. Only shrinker can put
185 * last reference.
186 */
187 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
188 }
189
mm_get_huge_zero_page(struct mm_struct * mm)190 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
191 {
192 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
193 return READ_ONCE(huge_zero_page);
194
195 if (!get_huge_zero_page())
196 return NULL;
197
198 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
199 put_huge_zero_page();
200
201 return READ_ONCE(huge_zero_page);
202 }
203
mm_put_huge_zero_page(struct mm_struct * mm)204 void mm_put_huge_zero_page(struct mm_struct *mm)
205 {
206 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
207 put_huge_zero_page();
208 }
209
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)210 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
211 struct shrink_control *sc)
212 {
213 /* we can free zero page only if last reference remains */
214 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
215 }
216
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)217 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
218 struct shrink_control *sc)
219 {
220 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
221 struct page *zero_page = xchg(&huge_zero_page, NULL);
222 BUG_ON(zero_page == NULL);
223 WRITE_ONCE(huge_zero_pfn, ~0UL);
224 __free_pages(zero_page, compound_order(zero_page));
225 return HPAGE_PMD_NR;
226 }
227
228 return 0;
229 }
230
231 static struct shrinker huge_zero_page_shrinker = {
232 .count_objects = shrink_huge_zero_page_count,
233 .scan_objects = shrink_huge_zero_page_scan,
234 .seeks = DEFAULT_SEEKS,
235 };
236
237 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)238 static ssize_t enabled_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf)
240 {
241 const char *output;
242
243 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
244 output = "[always] madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [madvise] never";
248 else
249 output = "always madvise [never]";
250
251 return sysfs_emit(buf, "%s\n", output);
252 }
253
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)254 static ssize_t enabled_store(struct kobject *kobj,
255 struct kobj_attribute *attr,
256 const char *buf, size_t count)
257 {
258 ssize_t ret = count;
259
260 if (sysfs_streq(buf, "always")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
263 } else if (sysfs_streq(buf, "madvise")) {
264 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 } else if (sysfs_streq(buf, "never")) {
267 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else
270 ret = -EINVAL;
271
272 if (ret > 0) {
273 int err = start_stop_khugepaged();
274 if (err)
275 ret = err;
276 }
277 return ret;
278 }
279
280 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
281
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)282 ssize_t single_hugepage_flag_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf,
284 enum transparent_hugepage_flag flag)
285 {
286 return sysfs_emit(buf, "%d\n",
287 !!test_bit(flag, &transparent_hugepage_flags));
288 }
289
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)290 ssize_t single_hugepage_flag_store(struct kobject *kobj,
291 struct kobj_attribute *attr,
292 const char *buf, size_t count,
293 enum transparent_hugepage_flag flag)
294 {
295 unsigned long value;
296 int ret;
297
298 ret = kstrtoul(buf, 10, &value);
299 if (ret < 0)
300 return ret;
301 if (value > 1)
302 return -EINVAL;
303
304 if (value)
305 set_bit(flag, &transparent_hugepage_flags);
306 else
307 clear_bit(flag, &transparent_hugepage_flags);
308
309 return count;
310 }
311
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)312 static ssize_t defrag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
314 {
315 const char *output;
316
317 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
318 &transparent_hugepage_flags))
319 output = "[always] defer defer+madvise madvise never";
320 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
321 &transparent_hugepage_flags))
322 output = "always [defer] defer+madvise madvise never";
323 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
324 &transparent_hugepage_flags))
325 output = "always defer [defer+madvise] madvise never";
326 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
327 &transparent_hugepage_flags))
328 output = "always defer defer+madvise [madvise] never";
329 else
330 output = "always defer defer+madvise madvise [never]";
331
332 return sysfs_emit(buf, "%s\n", output);
333 }
334
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)335 static ssize_t defrag_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338 {
339 if (sysfs_streq(buf, "always")) {
340 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
343 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
344 } else if (sysfs_streq(buf, "defer+madvise")) {
345 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
348 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 } else if (sysfs_streq(buf, "defer")) {
350 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
353 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
354 } else if (sysfs_streq(buf, "madvise")) {
355 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
358 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
359 } else if (sysfs_streq(buf, "never")) {
360 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
364 } else
365 return -EINVAL;
366
367 return count;
368 }
369 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
370
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)371 static ssize_t use_zero_page_show(struct kobject *kobj,
372 struct kobj_attribute *attr, char *buf)
373 {
374 return single_hugepage_flag_show(kobj, attr, buf,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)377 static ssize_t use_zero_page_store(struct kobject *kobj,
378 struct kobj_attribute *attr, const char *buf, size_t count)
379 {
380 return single_hugepage_flag_store(kobj, attr, buf, count,
381 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
382 }
383 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
384
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)385 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
386 struct kobj_attribute *attr, char *buf)
387 {
388 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
389 }
390 static struct kobj_attribute hpage_pmd_size_attr =
391 __ATTR_RO(hpage_pmd_size);
392
393 static struct attribute *hugepage_attr[] = {
394 &enabled_attr.attr,
395 &defrag_attr.attr,
396 &use_zero_page_attr.attr,
397 &hpage_pmd_size_attr.attr,
398 #ifdef CONFIG_SHMEM
399 &shmem_enabled_attr.attr,
400 #endif
401 NULL,
402 };
403
404 static const struct attribute_group hugepage_attr_group = {
405 .attrs = hugepage_attr,
406 };
407
hugepage_init_sysfs(struct kobject ** hugepage_kobj)408 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
409 {
410 int err;
411
412 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
413 if (unlikely(!*hugepage_kobj)) {
414 pr_err("failed to create transparent hugepage kobject\n");
415 return -ENOMEM;
416 }
417
418 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
419 if (err) {
420 pr_err("failed to register transparent hugepage group\n");
421 goto delete_obj;
422 }
423
424 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
425 if (err) {
426 pr_err("failed to register transparent hugepage group\n");
427 goto remove_hp_group;
428 }
429
430 return 0;
431
432 remove_hp_group:
433 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
434 delete_obj:
435 kobject_put(*hugepage_kobj);
436 return err;
437 }
438
hugepage_exit_sysfs(struct kobject * hugepage_kobj)439 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
440 {
441 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
442 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
443 kobject_put(hugepage_kobj);
444 }
445 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)446 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
447 {
448 return 0;
449 }
450
hugepage_exit_sysfs(struct kobject * hugepage_kobj)451 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
452 {
453 }
454 #endif /* CONFIG_SYSFS */
455
hugepage_init(void)456 static int __init hugepage_init(void)
457 {
458 int err;
459 struct kobject *hugepage_kobj;
460
461 if (!has_transparent_hugepage()) {
462 /*
463 * Hardware doesn't support hugepages, hence disable
464 * DAX PMD support.
465 */
466 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
467 return -EINVAL;
468 }
469
470 /*
471 * hugepages can't be allocated by the buddy allocator
472 */
473 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
474 /*
475 * we use page->mapping and page->index in second tail page
476 * as list_head: assuming THP order >= 2
477 */
478 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
479
480 err = hugepage_init_sysfs(&hugepage_kobj);
481 if (err)
482 goto err_sysfs;
483
484 err = khugepaged_init();
485 if (err)
486 goto err_slab;
487
488 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
489 if (err)
490 goto err_hzp_shrinker;
491 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
492 if (err)
493 goto err_split_shrinker;
494
495 /*
496 * By default disable transparent hugepages on smaller systems,
497 * where the extra memory used could hurt more than TLB overhead
498 * is likely to save. The admin can still enable it through /sys.
499 */
500 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
501 transparent_hugepage_flags = 0;
502 return 0;
503 }
504
505 err = start_stop_khugepaged();
506 if (err)
507 goto err_khugepaged;
508
509 return 0;
510 err_khugepaged:
511 unregister_shrinker(&deferred_split_shrinker);
512 err_split_shrinker:
513 unregister_shrinker(&huge_zero_page_shrinker);
514 err_hzp_shrinker:
515 khugepaged_destroy();
516 err_slab:
517 hugepage_exit_sysfs(hugepage_kobj);
518 err_sysfs:
519 return err;
520 }
521 subsys_initcall(hugepage_init);
522
setup_transparent_hugepage(char * str)523 static int __init setup_transparent_hugepage(char *str)
524 {
525 int ret = 0;
526 if (!str)
527 goto out;
528 if (!strcmp(str, "always")) {
529 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
530 &transparent_hugepage_flags);
531 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
532 &transparent_hugepage_flags);
533 ret = 1;
534 } else if (!strcmp(str, "madvise")) {
535 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
536 &transparent_hugepage_flags);
537 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
538 &transparent_hugepage_flags);
539 ret = 1;
540 } else if (!strcmp(str, "never")) {
541 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
542 &transparent_hugepage_flags);
543 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
544 &transparent_hugepage_flags);
545 ret = 1;
546 }
547 out:
548 if (!ret)
549 pr_warn("transparent_hugepage= cannot parse, ignored\n");
550 return ret;
551 }
552 __setup("transparent_hugepage=", setup_transparent_hugepage);
553
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)554 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
555 {
556 if (likely(vma->vm_flags & VM_WRITE))
557 pmd = pmd_mkwrite(pmd);
558 return pmd;
559 }
560
561 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)562 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
563 {
564 struct mem_cgroup *memcg = page_memcg(compound_head(page));
565 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
566
567 if (memcg)
568 return &memcg->deferred_split_queue;
569 else
570 return &pgdat->deferred_split_queue;
571 }
572 #else
get_deferred_split_queue(struct page * page)573 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
574 {
575 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
576
577 return &pgdat->deferred_split_queue;
578 }
579 #endif
580
prep_transhuge_page(struct page * page)581 void prep_transhuge_page(struct page *page)
582 {
583 /*
584 * we use page->mapping and page->index in second tail page
585 * as list_head: assuming THP order >= 2
586 */
587
588 INIT_LIST_HEAD(page_deferred_list(page));
589 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
590 }
591
is_transparent_hugepage(struct page * page)592 static inline bool is_transparent_hugepage(struct page *page)
593 {
594 if (!PageCompound(page))
595 return false;
596
597 page = compound_head(page);
598 return is_huge_zero_page(page) ||
599 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
600 }
601
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)602 static unsigned long __thp_get_unmapped_area(struct file *filp,
603 unsigned long addr, unsigned long len,
604 loff_t off, unsigned long flags, unsigned long size)
605 {
606 loff_t off_end = off + len;
607 loff_t off_align = round_up(off, size);
608 unsigned long len_pad, ret;
609
610 if (off_end <= off_align || (off_end - off_align) < size)
611 return 0;
612
613 len_pad = len + size;
614 if (len_pad < len || (off + len_pad) < off)
615 return 0;
616
617 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
618 off >> PAGE_SHIFT, flags);
619
620 /*
621 * The failure might be due to length padding. The caller will retry
622 * without the padding.
623 */
624 if (IS_ERR_VALUE(ret))
625 return 0;
626
627 /*
628 * Do not try to align to THP boundary if allocation at the address
629 * hint succeeds.
630 */
631 if (ret == addr)
632 return addr;
633
634 ret += (off - ret) & (size - 1);
635 return ret;
636 }
637
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)638 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
639 unsigned long len, unsigned long pgoff, unsigned long flags)
640 {
641 unsigned long ret;
642 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
643
644 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
645 if (ret)
646 return ret;
647
648 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
649 }
650 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
651
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)652 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
653 struct page *page, gfp_t gfp)
654 {
655 struct vm_area_struct *vma = vmf->vma;
656 pgtable_t pgtable;
657 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 vm_fault_t ret = 0;
659
660 VM_BUG_ON_PAGE(!PageCompound(page), page);
661
662 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
663 put_page(page);
664 count_vm_event(THP_FAULT_FALLBACK);
665 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 return VM_FAULT_FALLBACK;
667 }
668 cgroup_throttle_swaprate(page, gfp);
669
670 pgtable = pte_alloc_one(vma->vm_mm);
671 if (unlikely(!pgtable)) {
672 ret = VM_FAULT_OOM;
673 goto release;
674 }
675
676 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 /*
678 * The memory barrier inside __SetPageUptodate makes sure that
679 * clear_huge_page writes become visible before the set_pmd_at()
680 * write.
681 */
682 __SetPageUptodate(page);
683
684 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 if (unlikely(!pmd_none(*vmf->pmd))) {
686 goto unlock_release;
687 } else {
688 pmd_t entry;
689
690 ret = check_stable_address_space(vma->vm_mm);
691 if (ret)
692 goto unlock_release;
693
694 /* Deliver the page fault to userland */
695 if (userfaultfd_missing(vma)) {
696 spin_unlock(vmf->ptl);
697 put_page(page);
698 pte_free(vma->vm_mm, pgtable);
699 ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 return ret;
702 }
703
704 entry = mk_huge_pmd(page, vma->vm_page_prot);
705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 page_add_new_anon_rmap(page, vma, haddr);
707 lru_cache_add_inactive_or_unevictable(page, vma);
708 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 mm_inc_nr_ptes(vma->vm_mm);
713 spin_unlock(vmf->ptl);
714 count_vm_event(THP_FAULT_ALLOC);
715 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 }
717
718 return 0;
719 unlock_release:
720 spin_unlock(vmf->ptl);
721 release:
722 if (pgtable)
723 pte_free(vma->vm_mm, pgtable);
724 put_page(page);
725 return ret;
726
727 }
728
729 /*
730 * always: directly stall for all thp allocations
731 * defer: wake kswapd and fail if not immediately available
732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733 * fail if not immediately available
734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735 * available
736 * never: never stall for any thp allocation
737 */
vma_thp_gfp_mask(struct vm_area_struct * vma)738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741
742 /* Always do synchronous compaction */
743 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745
746 /* Kick kcompactd and fail quickly */
747 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749
750 /* Synchronous compaction if madvised, otherwise kick kcompactd */
751 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 return GFP_TRANSHUGE_LIGHT |
753 (vma_madvised ? __GFP_DIRECT_RECLAIM :
754 __GFP_KSWAPD_RECLAIM);
755
756 /* Only do synchronous compaction if madvised */
757 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 return GFP_TRANSHUGE_LIGHT |
759 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760
761 return GFP_TRANSHUGE_LIGHT;
762 }
763
764 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
768 {
769 pmd_t entry;
770 if (!pmd_none(*pmd))
771 return;
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 mm_inc_nr_ptes(mm);
777 }
778
do_huge_pmd_anonymous_page(struct vm_fault * vmf)779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 struct vm_area_struct *vma = vmf->vma;
782 gfp_t gfp;
783 struct folio *folio;
784 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785
786 if (!transhuge_vma_suitable(vma, haddr))
787 return VM_FAULT_FALLBACK;
788 if (unlikely(anon_vma_prepare(vma)))
789 return VM_FAULT_OOM;
790 khugepaged_enter_vma(vma, vma->vm_flags);
791
792 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 !mm_forbids_zeropage(vma->vm_mm) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 vm_fault_t ret;
798 pgtable = pte_alloc_one(vma->vm_mm);
799 if (unlikely(!pgtable))
800 return VM_FAULT_OOM;
801 zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 if (unlikely(!zero_page)) {
803 pte_free(vma->vm_mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 return VM_FAULT_FALLBACK;
806 }
807 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 ret = 0;
809 if (pmd_none(*vmf->pmd)) {
810 ret = check_stable_address_space(vma->vm_mm);
811 if (ret) {
812 spin_unlock(vmf->ptl);
813 pte_free(vma->vm_mm, pgtable);
814 } else if (userfaultfd_missing(vma)) {
815 spin_unlock(vmf->ptl);
816 pte_free(vma->vm_mm, pgtable);
817 ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 } else {
820 set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 haddr, vmf->pmd, zero_page);
822 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 spin_unlock(vmf->ptl);
824 }
825 } else {
826 spin_unlock(vmf->ptl);
827 pte_free(vma->vm_mm, pgtable);
828 }
829 return ret;
830 }
831 gfp = vma_thp_gfp_mask(vma);
832 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 if (unlikely(!folio)) {
834 count_vm_event(THP_FAULT_FALLBACK);
835 return VM_FAULT_FALLBACK;
836 }
837 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 pgtable_t pgtable)
843 {
844 struct mm_struct *mm = vma->vm_mm;
845 pmd_t entry;
846 spinlock_t *ptl;
847
848 ptl = pmd_lock(mm, pmd);
849 if (!pmd_none(*pmd)) {
850 if (write) {
851 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 goto out_unlock;
854 }
855 entry = pmd_mkyoung(*pmd);
856 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 update_mmu_cache_pmd(vma, addr, pmd);
859 }
860
861 goto out_unlock;
862 }
863
864 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 if (pfn_t_devmap(pfn))
866 entry = pmd_mkdevmap(entry);
867 if (write) {
868 entry = pmd_mkyoung(pmd_mkdirty(entry));
869 entry = maybe_pmd_mkwrite(entry, vma);
870 }
871
872 if (pgtable) {
873 pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 mm_inc_nr_ptes(mm);
875 pgtable = NULL;
876 }
877
878 set_pmd_at(mm, addr, pmd, entry);
879 update_mmu_cache_pmd(vma, addr, pmd);
880
881 out_unlock:
882 spin_unlock(ptl);
883 if (pgtable)
884 pte_free(mm, pgtable);
885 }
886
887 /**
888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
889 * @vmf: Structure describing the fault
890 * @pfn: pfn to insert
891 * @pgprot: page protection to use
892 * @write: whether it's a write fault
893 *
894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
895 * also consult the vmf_insert_mixed_prot() documentation when
896 * @pgprot != @vmf->vma->vm_page_prot.
897 *
898 * Return: vm_fault_t value.
899 */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)900 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
901 pgprot_t pgprot, bool write)
902 {
903 unsigned long addr = vmf->address & PMD_MASK;
904 struct vm_area_struct *vma = vmf->vma;
905 pgtable_t pgtable = NULL;
906
907 /*
908 * If we had pmd_special, we could avoid all these restrictions,
909 * but we need to be consistent with PTEs and architectures that
910 * can't support a 'special' bit.
911 */
912 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
913 !pfn_t_devmap(pfn));
914 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
915 (VM_PFNMAP|VM_MIXEDMAP));
916 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
917
918 if (addr < vma->vm_start || addr >= vma->vm_end)
919 return VM_FAULT_SIGBUS;
920
921 if (arch_needs_pgtable_deposit()) {
922 pgtable = pte_alloc_one(vma->vm_mm);
923 if (!pgtable)
924 return VM_FAULT_OOM;
925 }
926
927 track_pfn_insert(vma, &pgprot, pfn);
928
929 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
930 return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
933
934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)935 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
936 {
937 if (likely(vma->vm_flags & VM_WRITE))
938 pud = pud_mkwrite(pud);
939 return pud;
940 }
941
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)942 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
943 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
944 {
945 struct mm_struct *mm = vma->vm_mm;
946 pud_t entry;
947 spinlock_t *ptl;
948
949 ptl = pud_lock(mm, pud);
950 if (!pud_none(*pud)) {
951 if (write) {
952 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
953 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
954 goto out_unlock;
955 }
956 entry = pud_mkyoung(*pud);
957 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
958 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
959 update_mmu_cache_pud(vma, addr, pud);
960 }
961 goto out_unlock;
962 }
963
964 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
965 if (pfn_t_devmap(pfn))
966 entry = pud_mkdevmap(entry);
967 if (write) {
968 entry = pud_mkyoung(pud_mkdirty(entry));
969 entry = maybe_pud_mkwrite(entry, vma);
970 }
971 set_pud_at(mm, addr, pud, entry);
972 update_mmu_cache_pud(vma, addr, pud);
973
974 out_unlock:
975 spin_unlock(ptl);
976 }
977
978 /**
979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
980 * @vmf: Structure describing the fault
981 * @pfn: pfn to insert
982 * @pgprot: page protection to use
983 * @write: whether it's a write fault
984 *
985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
986 * also consult the vmf_insert_mixed_prot() documentation when
987 * @pgprot != @vmf->vma->vm_page_prot.
988 *
989 * Return: vm_fault_t value.
990 */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)991 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
992 pgprot_t pgprot, bool write)
993 {
994 unsigned long addr = vmf->address & PUD_MASK;
995 struct vm_area_struct *vma = vmf->vma;
996
997 /*
998 * If we had pud_special, we could avoid all these restrictions,
999 * but we need to be consistent with PTEs and architectures that
1000 * can't support a 'special' bit.
1001 */
1002 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003 !pfn_t_devmap(pfn));
1004 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 (VM_PFNMAP|VM_MIXEDMAP));
1006 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007
1008 if (addr < vma->vm_start || addr >= vma->vm_end)
1009 return VM_FAULT_SIGBUS;
1010
1011 track_pfn_insert(vma, &pgprot, pfn);
1012
1013 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014 return VM_FAULT_NOPAGE;
1015 }
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1019 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 pmd_t *pmd, bool write)
1021 {
1022 pmd_t _pmd;
1023
1024 _pmd = pmd_mkyoung(*pmd);
1025 if (write)
1026 _pmd = pmd_mkdirty(_pmd);
1027 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028 pmd, _pmd, write))
1029 update_mmu_cache_pmd(vma, addr, pmd);
1030 }
1031
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1032 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034 {
1035 unsigned long pfn = pmd_pfn(*pmd);
1036 struct mm_struct *mm = vma->vm_mm;
1037 struct page *page;
1038
1039 assert_spin_locked(pmd_lockptr(mm, pmd));
1040
1041 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1042 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1043 (FOLL_PIN | FOLL_GET)))
1044 return NULL;
1045
1046 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1047 return NULL;
1048
1049 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1050 /* pass */;
1051 else
1052 return NULL;
1053
1054 if (flags & FOLL_TOUCH)
1055 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1056
1057 /*
1058 * device mapped pages can only be returned if the
1059 * caller will manage the page reference count.
1060 */
1061 if (!(flags & (FOLL_GET | FOLL_PIN)))
1062 return ERR_PTR(-EEXIST);
1063
1064 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065 *pgmap = get_dev_pagemap(pfn, *pgmap);
1066 if (!*pgmap)
1067 return ERR_PTR(-EFAULT);
1068 page = pfn_to_page(pfn);
1069 if (!try_grab_page(page, flags))
1070 page = ERR_PTR(-ENOMEM);
1071
1072 return page;
1073 }
1074
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1078 {
1079 spinlock_t *dst_ptl, *src_ptl;
1080 struct page *src_page;
1081 pmd_t pmd;
1082 pgtable_t pgtable = NULL;
1083 int ret = -ENOMEM;
1084
1085 /* Skip if can be re-fill on fault */
1086 if (!vma_is_anonymous(dst_vma))
1087 return 0;
1088
1089 pgtable = pte_alloc_one(dst_mm);
1090 if (unlikely(!pgtable))
1091 goto out;
1092
1093 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1094 src_ptl = pmd_lockptr(src_mm, src_pmd);
1095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1096
1097 ret = -EAGAIN;
1098 pmd = *src_pmd;
1099
1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1101 if (unlikely(is_swap_pmd(pmd))) {
1102 swp_entry_t entry = pmd_to_swp_entry(pmd);
1103
1104 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1105 if (!is_readable_migration_entry(entry)) {
1106 entry = make_readable_migration_entry(
1107 swp_offset(entry));
1108 pmd = swp_entry_to_pmd(entry);
1109 if (pmd_swp_soft_dirty(*src_pmd))
1110 pmd = pmd_swp_mksoft_dirty(pmd);
1111 if (pmd_swp_uffd_wp(*src_pmd))
1112 pmd = pmd_swp_mkuffd_wp(pmd);
1113 set_pmd_at(src_mm, addr, src_pmd, pmd);
1114 }
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 mm_inc_nr_ptes(dst_mm);
1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 if (!userfaultfd_wp(dst_vma))
1119 pmd = pmd_swp_clear_uffd_wp(pmd);
1120 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1121 ret = 0;
1122 goto out_unlock;
1123 }
1124 #endif
1125
1126 if (unlikely(!pmd_trans_huge(pmd))) {
1127 pte_free(dst_mm, pgtable);
1128 goto out_unlock;
1129 }
1130 /*
1131 * When page table lock is held, the huge zero pmd should not be
1132 * under splitting since we don't split the page itself, only pmd to
1133 * a page table.
1134 */
1135 if (is_huge_zero_pmd(pmd)) {
1136 /*
1137 * get_huge_zero_page() will never allocate a new page here,
1138 * since we already have a zero page to copy. It just takes a
1139 * reference.
1140 */
1141 mm_get_huge_zero_page(dst_mm);
1142 goto out_zero_page;
1143 }
1144
1145 src_page = pmd_page(pmd);
1146 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1147
1148 get_page(src_page);
1149 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1150 /* Page maybe pinned: split and retry the fault on PTEs. */
1151 put_page(src_page);
1152 pte_free(dst_mm, pgtable);
1153 spin_unlock(src_ptl);
1154 spin_unlock(dst_ptl);
1155 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1156 return -EAGAIN;
1157 }
1158 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1159 out_zero_page:
1160 mm_inc_nr_ptes(dst_mm);
1161 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1162 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1163 if (!userfaultfd_wp(dst_vma))
1164 pmd = pmd_clear_uffd_wp(pmd);
1165 pmd = pmd_mkold(pmd_wrprotect(pmd));
1166 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1167
1168 ret = 0;
1169 out_unlock:
1170 spin_unlock(src_ptl);
1171 spin_unlock(dst_ptl);
1172 out:
1173 return ret;
1174 }
1175
1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1178 pud_t *pud, bool write)
1179 {
1180 pud_t _pud;
1181
1182 _pud = pud_mkyoung(*pud);
1183 if (write)
1184 _pud = pud_mkdirty(_pud);
1185 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1186 pud, _pud, write))
1187 update_mmu_cache_pud(vma, addr, pud);
1188 }
1189
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1191 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1192 {
1193 unsigned long pfn = pud_pfn(*pud);
1194 struct mm_struct *mm = vma->vm_mm;
1195 struct page *page;
1196
1197 assert_spin_locked(pud_lockptr(mm, pud));
1198
1199 if (flags & FOLL_WRITE && !pud_write(*pud))
1200 return NULL;
1201
1202 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1203 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1204 (FOLL_PIN | FOLL_GET)))
1205 return NULL;
1206
1207 if (pud_present(*pud) && pud_devmap(*pud))
1208 /* pass */;
1209 else
1210 return NULL;
1211
1212 if (flags & FOLL_TOUCH)
1213 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1214
1215 /*
1216 * device mapped pages can only be returned if the
1217 * caller will manage the page reference count.
1218 *
1219 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1220 */
1221 if (!(flags & (FOLL_GET | FOLL_PIN)))
1222 return ERR_PTR(-EEXIST);
1223
1224 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1225 *pgmap = get_dev_pagemap(pfn, *pgmap);
1226 if (!*pgmap)
1227 return ERR_PTR(-EFAULT);
1228 page = pfn_to_page(pfn);
1229 if (!try_grab_page(page, flags))
1230 page = ERR_PTR(-ENOMEM);
1231
1232 return page;
1233 }
1234
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1235 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1236 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1237 struct vm_area_struct *vma)
1238 {
1239 spinlock_t *dst_ptl, *src_ptl;
1240 pud_t pud;
1241 int ret;
1242
1243 dst_ptl = pud_lock(dst_mm, dst_pud);
1244 src_ptl = pud_lockptr(src_mm, src_pud);
1245 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1246
1247 ret = -EAGAIN;
1248 pud = *src_pud;
1249 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1250 goto out_unlock;
1251
1252 /*
1253 * When page table lock is held, the huge zero pud should not be
1254 * under splitting since we don't split the page itself, only pud to
1255 * a page table.
1256 */
1257 if (is_huge_zero_pud(pud)) {
1258 /* No huge zero pud yet */
1259 }
1260
1261 /*
1262 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1263 * and split if duplicating fails.
1264 */
1265 pudp_set_wrprotect(src_mm, addr, src_pud);
1266 pud = pud_mkold(pud_wrprotect(pud));
1267 set_pud_at(dst_mm, addr, dst_pud, pud);
1268
1269 ret = 0;
1270 out_unlock:
1271 spin_unlock(src_ptl);
1272 spin_unlock(dst_ptl);
1273 return ret;
1274 }
1275
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1276 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1277 {
1278 bool write = vmf->flags & FAULT_FLAG_WRITE;
1279
1280 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1281 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1282 goto unlock;
1283
1284 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1285 unlock:
1286 spin_unlock(vmf->ptl);
1287 }
1288 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1289
huge_pmd_set_accessed(struct vm_fault * vmf)1290 void huge_pmd_set_accessed(struct vm_fault *vmf)
1291 {
1292 bool write = vmf->flags & FAULT_FLAG_WRITE;
1293
1294 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1295 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1296 goto unlock;
1297
1298 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1299
1300 unlock:
1301 spin_unlock(vmf->ptl);
1302 }
1303
do_huge_pmd_wp_page(struct vm_fault * vmf)1304 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1305 {
1306 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1307 struct vm_area_struct *vma = vmf->vma;
1308 struct folio *folio;
1309 struct page *page;
1310 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1311 pmd_t orig_pmd = vmf->orig_pmd;
1312
1313 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1314 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1315
1316 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1317 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1318
1319 if (is_huge_zero_pmd(orig_pmd))
1320 goto fallback;
1321
1322 spin_lock(vmf->ptl);
1323
1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 spin_unlock(vmf->ptl);
1326 return 0;
1327 }
1328
1329 page = pmd_page(orig_pmd);
1330 folio = page_folio(page);
1331 VM_BUG_ON_PAGE(!PageHead(page), page);
1332
1333 /* Early check when only holding the PT lock. */
1334 if (PageAnonExclusive(page))
1335 goto reuse;
1336
1337 if (!folio_trylock(folio)) {
1338 folio_get(folio);
1339 spin_unlock(vmf->ptl);
1340 folio_lock(folio);
1341 spin_lock(vmf->ptl);
1342 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343 spin_unlock(vmf->ptl);
1344 folio_unlock(folio);
1345 folio_put(folio);
1346 return 0;
1347 }
1348 folio_put(folio);
1349 }
1350
1351 /* Recheck after temporarily dropping the PT lock. */
1352 if (PageAnonExclusive(page)) {
1353 folio_unlock(folio);
1354 goto reuse;
1355 }
1356
1357 /*
1358 * See do_wp_page(): we can only reuse the folio exclusively if
1359 * there are no additional references. Note that we always drain
1360 * the LRU pagevecs immediately after adding a THP.
1361 */
1362 if (folio_ref_count(folio) >
1363 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1364 goto unlock_fallback;
1365 if (folio_test_swapcache(folio))
1366 folio_free_swap(folio);
1367 if (folio_ref_count(folio) == 1) {
1368 pmd_t entry;
1369
1370 page_move_anon_rmap(page, vma);
1371 folio_unlock(folio);
1372 reuse:
1373 if (unlikely(unshare)) {
1374 spin_unlock(vmf->ptl);
1375 return 0;
1376 }
1377 entry = pmd_mkyoung(orig_pmd);
1378 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1379 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1380 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1381 spin_unlock(vmf->ptl);
1382 return VM_FAULT_WRITE;
1383 }
1384
1385 unlock_fallback:
1386 folio_unlock(folio);
1387 spin_unlock(vmf->ptl);
1388 fallback:
1389 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1390 return VM_FAULT_FALLBACK;
1391 }
1392
1393 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)1394 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1395 struct vm_area_struct *vma,
1396 unsigned int flags)
1397 {
1398 /* If the pmd is writable, we can write to the page. */
1399 if (pmd_write(pmd))
1400 return true;
1401
1402 /* Maybe FOLL_FORCE is set to override it? */
1403 if (!(flags & FOLL_FORCE))
1404 return false;
1405
1406 /* But FOLL_FORCE has no effect on shared mappings */
1407 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1408 return false;
1409
1410 /* ... or read-only private ones */
1411 if (!(vma->vm_flags & VM_MAYWRITE))
1412 return false;
1413
1414 /* ... or already writable ones that just need to take a write fault */
1415 if (vma->vm_flags & VM_WRITE)
1416 return false;
1417
1418 /*
1419 * See can_change_pte_writable(): we broke COW and could map the page
1420 * writable if we have an exclusive anonymous page ...
1421 */
1422 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1423 return false;
1424
1425 /* ... and a write-fault isn't required for other reasons. */
1426 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1427 return false;
1428 return !userfaultfd_huge_pmd_wp(vma, pmd);
1429 }
1430
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1431 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1432 unsigned long addr,
1433 pmd_t *pmd,
1434 unsigned int flags)
1435 {
1436 struct mm_struct *mm = vma->vm_mm;
1437 struct page *page;
1438
1439 assert_spin_locked(pmd_lockptr(mm, pmd));
1440
1441 page = pmd_page(*pmd);
1442 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1443
1444 if ((flags & FOLL_WRITE) &&
1445 !can_follow_write_pmd(*pmd, page, vma, flags))
1446 return NULL;
1447
1448 /* Avoid dumping huge zero page */
1449 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1450 return ERR_PTR(-EFAULT);
1451
1452 /* Full NUMA hinting faults to serialise migration in fault paths */
1453 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1454 return NULL;
1455
1456 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1457 return ERR_PTR(-EMLINK);
1458
1459 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1460 !PageAnonExclusive(page), page);
1461
1462 if (!try_grab_page(page, flags))
1463 return ERR_PTR(-ENOMEM);
1464
1465 if (flags & FOLL_TOUCH)
1466 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1467
1468 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1469 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1470
1471 return page;
1472 }
1473
1474 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1475 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1476 {
1477 struct vm_area_struct *vma = vmf->vma;
1478 pmd_t oldpmd = vmf->orig_pmd;
1479 pmd_t pmd;
1480 struct page *page;
1481 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1482 int page_nid = NUMA_NO_NODE;
1483 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1484 bool migrated = false;
1485 bool was_writable = pmd_savedwrite(oldpmd);
1486 int flags = 0;
1487
1488 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1489 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1490 spin_unlock(vmf->ptl);
1491 goto out;
1492 }
1493
1494 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1495 page = vm_normal_page_pmd(vma, haddr, pmd);
1496 if (!page)
1497 goto out_map;
1498
1499 /* See similar comment in do_numa_page for explanation */
1500 if (!was_writable)
1501 flags |= TNF_NO_GROUP;
1502
1503 page_nid = page_to_nid(page);
1504 /*
1505 * For memory tiering mode, cpupid of slow memory page is used
1506 * to record page access time. So use default value.
1507 */
1508 if (node_is_toptier(page_nid))
1509 last_cpupid = page_cpupid_last(page);
1510 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1511 &flags);
1512
1513 if (target_nid == NUMA_NO_NODE) {
1514 put_page(page);
1515 goto out_map;
1516 }
1517
1518 spin_unlock(vmf->ptl);
1519
1520 migrated = migrate_misplaced_page(page, vma, target_nid);
1521 if (migrated) {
1522 flags |= TNF_MIGRATED;
1523 page_nid = target_nid;
1524 } else {
1525 flags |= TNF_MIGRATE_FAIL;
1526 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1527 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1528 spin_unlock(vmf->ptl);
1529 goto out;
1530 }
1531 goto out_map;
1532 }
1533
1534 out:
1535 if (page_nid != NUMA_NO_NODE)
1536 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1537 flags);
1538
1539 return 0;
1540
1541 out_map:
1542 /* Restore the PMD */
1543 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1544 pmd = pmd_mkyoung(pmd);
1545 if (was_writable)
1546 pmd = pmd_mkwrite(pmd);
1547 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1548 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1549 spin_unlock(vmf->ptl);
1550 goto out;
1551 }
1552
1553 /*
1554 * Return true if we do MADV_FREE successfully on entire pmd page.
1555 * Otherwise, return false.
1556 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1557 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1558 pmd_t *pmd, unsigned long addr, unsigned long next)
1559 {
1560 spinlock_t *ptl;
1561 pmd_t orig_pmd;
1562 struct page *page;
1563 struct mm_struct *mm = tlb->mm;
1564 bool ret = false;
1565
1566 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1567
1568 ptl = pmd_trans_huge_lock(pmd, vma);
1569 if (!ptl)
1570 goto out_unlocked;
1571
1572 orig_pmd = *pmd;
1573 if (is_huge_zero_pmd(orig_pmd))
1574 goto out;
1575
1576 if (unlikely(!pmd_present(orig_pmd))) {
1577 VM_BUG_ON(thp_migration_supported() &&
1578 !is_pmd_migration_entry(orig_pmd));
1579 goto out;
1580 }
1581
1582 page = pmd_page(orig_pmd);
1583 /*
1584 * If other processes are mapping this page, we couldn't discard
1585 * the page unless they all do MADV_FREE so let's skip the page.
1586 */
1587 if (total_mapcount(page) != 1)
1588 goto out;
1589
1590 if (!trylock_page(page))
1591 goto out;
1592
1593 /*
1594 * If user want to discard part-pages of THP, split it so MADV_FREE
1595 * will deactivate only them.
1596 */
1597 if (next - addr != HPAGE_PMD_SIZE) {
1598 get_page(page);
1599 spin_unlock(ptl);
1600 split_huge_page(page);
1601 unlock_page(page);
1602 put_page(page);
1603 goto out_unlocked;
1604 }
1605
1606 if (PageDirty(page))
1607 ClearPageDirty(page);
1608 unlock_page(page);
1609
1610 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1611 pmdp_invalidate(vma, addr, pmd);
1612 orig_pmd = pmd_mkold(orig_pmd);
1613 orig_pmd = pmd_mkclean(orig_pmd);
1614
1615 set_pmd_at(mm, addr, pmd, orig_pmd);
1616 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1617 }
1618
1619 mark_page_lazyfree(page);
1620 ret = true;
1621 out:
1622 spin_unlock(ptl);
1623 out_unlocked:
1624 return ret;
1625 }
1626
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1627 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1628 {
1629 pgtable_t pgtable;
1630
1631 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1632 pte_free(mm, pgtable);
1633 mm_dec_nr_ptes(mm);
1634 }
1635
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1636 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1637 pmd_t *pmd, unsigned long addr)
1638 {
1639 pmd_t orig_pmd;
1640 spinlock_t *ptl;
1641
1642 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1643
1644 ptl = __pmd_trans_huge_lock(pmd, vma);
1645 if (!ptl)
1646 return 0;
1647 /*
1648 * For architectures like ppc64 we look at deposited pgtable
1649 * when calling pmdp_huge_get_and_clear. So do the
1650 * pgtable_trans_huge_withdraw after finishing pmdp related
1651 * operations.
1652 */
1653 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1654 tlb->fullmm);
1655 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1656 if (vma_is_special_huge(vma)) {
1657 if (arch_needs_pgtable_deposit())
1658 zap_deposited_table(tlb->mm, pmd);
1659 spin_unlock(ptl);
1660 } else if (is_huge_zero_pmd(orig_pmd)) {
1661 zap_deposited_table(tlb->mm, pmd);
1662 spin_unlock(ptl);
1663 } else {
1664 struct page *page = NULL;
1665 int flush_needed = 1;
1666
1667 if (pmd_present(orig_pmd)) {
1668 page = pmd_page(orig_pmd);
1669 page_remove_rmap(page, vma, true);
1670 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1671 VM_BUG_ON_PAGE(!PageHead(page), page);
1672 } else if (thp_migration_supported()) {
1673 swp_entry_t entry;
1674
1675 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1676 entry = pmd_to_swp_entry(orig_pmd);
1677 page = pfn_swap_entry_to_page(entry);
1678 flush_needed = 0;
1679 } else
1680 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1681
1682 if (PageAnon(page)) {
1683 zap_deposited_table(tlb->mm, pmd);
1684 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1685 } else {
1686 if (arch_needs_pgtable_deposit())
1687 zap_deposited_table(tlb->mm, pmd);
1688 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1689 }
1690
1691 spin_unlock(ptl);
1692 if (flush_needed)
1693 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1694 }
1695 return 1;
1696 }
1697
1698 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1699 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1700 spinlock_t *old_pmd_ptl,
1701 struct vm_area_struct *vma)
1702 {
1703 /*
1704 * With split pmd lock we also need to move preallocated
1705 * PTE page table if new_pmd is on different PMD page table.
1706 *
1707 * We also don't deposit and withdraw tables for file pages.
1708 */
1709 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1710 }
1711 #endif
1712
move_soft_dirty_pmd(pmd_t pmd)1713 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1714 {
1715 #ifdef CONFIG_MEM_SOFT_DIRTY
1716 if (unlikely(is_pmd_migration_entry(pmd)))
1717 pmd = pmd_swp_mksoft_dirty(pmd);
1718 else if (pmd_present(pmd))
1719 pmd = pmd_mksoft_dirty(pmd);
1720 #endif
1721 return pmd;
1722 }
1723
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1724 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1725 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1726 {
1727 spinlock_t *old_ptl, *new_ptl;
1728 pmd_t pmd;
1729 struct mm_struct *mm = vma->vm_mm;
1730 bool force_flush = false;
1731
1732 /*
1733 * The destination pmd shouldn't be established, free_pgtables()
1734 * should have release it.
1735 */
1736 if (WARN_ON(!pmd_none(*new_pmd))) {
1737 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1738 return false;
1739 }
1740
1741 /*
1742 * We don't have to worry about the ordering of src and dst
1743 * ptlocks because exclusive mmap_lock prevents deadlock.
1744 */
1745 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1746 if (old_ptl) {
1747 new_ptl = pmd_lockptr(mm, new_pmd);
1748 if (new_ptl != old_ptl)
1749 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1750 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1751 if (pmd_present(pmd))
1752 force_flush = true;
1753 VM_BUG_ON(!pmd_none(*new_pmd));
1754
1755 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1756 pgtable_t pgtable;
1757 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1758 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1759 }
1760 pmd = move_soft_dirty_pmd(pmd);
1761 set_pmd_at(mm, new_addr, new_pmd, pmd);
1762 if (force_flush)
1763 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1764 if (new_ptl != old_ptl)
1765 spin_unlock(new_ptl);
1766 spin_unlock(old_ptl);
1767 return true;
1768 }
1769 return false;
1770 }
1771
1772 /*
1773 * Returns
1774 * - 0 if PMD could not be locked
1775 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1776 * or if prot_numa but THP migration is not supported
1777 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1778 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1779 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1780 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1781 unsigned long cp_flags)
1782 {
1783 struct mm_struct *mm = vma->vm_mm;
1784 spinlock_t *ptl;
1785 pmd_t oldpmd, entry;
1786 bool preserve_write;
1787 int ret;
1788 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1789 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1790 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1791
1792 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1793
1794 if (prot_numa && !thp_migration_supported())
1795 return 1;
1796
1797 ptl = __pmd_trans_huge_lock(pmd, vma);
1798 if (!ptl)
1799 return 0;
1800
1801 preserve_write = prot_numa && pmd_write(*pmd);
1802 ret = 1;
1803
1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805 if (is_swap_pmd(*pmd)) {
1806 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807 struct page *page = pfn_swap_entry_to_page(entry);
1808
1809 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1810 if (is_writable_migration_entry(entry)) {
1811 pmd_t newpmd;
1812 /*
1813 * A protection check is difficult so
1814 * just be safe and disable write
1815 */
1816 if (PageAnon(page))
1817 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1818 else
1819 entry = make_readable_migration_entry(swp_offset(entry));
1820 newpmd = swp_entry_to_pmd(entry);
1821 if (pmd_swp_soft_dirty(*pmd))
1822 newpmd = pmd_swp_mksoft_dirty(newpmd);
1823 if (pmd_swp_uffd_wp(*pmd))
1824 newpmd = pmd_swp_mkuffd_wp(newpmd);
1825 set_pmd_at(mm, addr, pmd, newpmd);
1826 }
1827 goto unlock;
1828 }
1829 #endif
1830
1831 if (prot_numa) {
1832 struct page *page;
1833 bool toptier;
1834 /*
1835 * Avoid trapping faults against the zero page. The read-only
1836 * data is likely to be read-cached on the local CPU and
1837 * local/remote hits to the zero page are not interesting.
1838 */
1839 if (is_huge_zero_pmd(*pmd))
1840 goto unlock;
1841
1842 if (pmd_protnone(*pmd))
1843 goto unlock;
1844
1845 page = pmd_page(*pmd);
1846 toptier = node_is_toptier(page_to_nid(page));
1847 /*
1848 * Skip scanning top tier node if normal numa
1849 * balancing is disabled
1850 */
1851 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1852 toptier)
1853 goto unlock;
1854
1855 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1856 !toptier)
1857 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1858 }
1859 /*
1860 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1861 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1862 * which is also under mmap_read_lock(mm):
1863 *
1864 * CPU0: CPU1:
1865 * change_huge_pmd(prot_numa=1)
1866 * pmdp_huge_get_and_clear_notify()
1867 * madvise_dontneed()
1868 * zap_pmd_range()
1869 * pmd_trans_huge(*pmd) == 0 (without ptl)
1870 * // skip the pmd
1871 * set_pmd_at();
1872 * // pmd is re-established
1873 *
1874 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1875 * which may break userspace.
1876 *
1877 * pmdp_invalidate_ad() is required to make sure we don't miss
1878 * dirty/young flags set by hardware.
1879 */
1880 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1881
1882 entry = pmd_modify(oldpmd, newprot);
1883 if (preserve_write)
1884 entry = pmd_mk_savedwrite(entry);
1885 if (uffd_wp) {
1886 entry = pmd_wrprotect(entry);
1887 entry = pmd_mkuffd_wp(entry);
1888 } else if (uffd_wp_resolve) {
1889 /*
1890 * Leave the write bit to be handled by PF interrupt
1891 * handler, then things like COW could be properly
1892 * handled.
1893 */
1894 entry = pmd_clear_uffd_wp(entry);
1895 }
1896 ret = HPAGE_PMD_NR;
1897 set_pmd_at(mm, addr, pmd, entry);
1898
1899 if (huge_pmd_needs_flush(oldpmd, entry))
1900 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1901
1902 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1903 unlock:
1904 spin_unlock(ptl);
1905 return ret;
1906 }
1907
1908 /*
1909 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1910 *
1911 * Note that if it returns page table lock pointer, this routine returns without
1912 * unlocking page table lock. So callers must unlock it.
1913 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1914 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1915 {
1916 spinlock_t *ptl;
1917 ptl = pmd_lock(vma->vm_mm, pmd);
1918 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1919 pmd_devmap(*pmd)))
1920 return ptl;
1921 spin_unlock(ptl);
1922 return NULL;
1923 }
1924
1925 /*
1926 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1927 *
1928 * Note that if it returns page table lock pointer, this routine returns without
1929 * unlocking page table lock. So callers must unlock it.
1930 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1931 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1932 {
1933 spinlock_t *ptl;
1934
1935 ptl = pud_lock(vma->vm_mm, pud);
1936 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1937 return ptl;
1938 spin_unlock(ptl);
1939 return NULL;
1940 }
1941
1942 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1943 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1944 pud_t *pud, unsigned long addr)
1945 {
1946 spinlock_t *ptl;
1947
1948 ptl = __pud_trans_huge_lock(pud, vma);
1949 if (!ptl)
1950 return 0;
1951
1952 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1953 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1954 if (vma_is_special_huge(vma)) {
1955 spin_unlock(ptl);
1956 /* No zero page support yet */
1957 } else {
1958 /* No support for anonymous PUD pages yet */
1959 BUG();
1960 }
1961 return 1;
1962 }
1963
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1964 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1965 unsigned long haddr)
1966 {
1967 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1968 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1969 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1970 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1971
1972 count_vm_event(THP_SPLIT_PUD);
1973
1974 pudp_huge_clear_flush_notify(vma, haddr, pud);
1975 }
1976
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1977 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1978 unsigned long address)
1979 {
1980 spinlock_t *ptl;
1981 struct mmu_notifier_range range;
1982
1983 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1984 address & HPAGE_PUD_MASK,
1985 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1986 mmu_notifier_invalidate_range_start(&range);
1987 ptl = pud_lock(vma->vm_mm, pud);
1988 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1989 goto out;
1990 __split_huge_pud_locked(vma, pud, range.start);
1991
1992 out:
1993 spin_unlock(ptl);
1994 /*
1995 * No need to double call mmu_notifier->invalidate_range() callback as
1996 * the above pudp_huge_clear_flush_notify() did already call it.
1997 */
1998 mmu_notifier_invalidate_range_only_end(&range);
1999 }
2000 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2001
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2002 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2003 unsigned long haddr, pmd_t *pmd)
2004 {
2005 struct mm_struct *mm = vma->vm_mm;
2006 pgtable_t pgtable;
2007 pmd_t _pmd;
2008 int i;
2009
2010 /*
2011 * Leave pmd empty until pte is filled note that it is fine to delay
2012 * notification until mmu_notifier_invalidate_range_end() as we are
2013 * replacing a zero pmd write protected page with a zero pte write
2014 * protected page.
2015 *
2016 * See Documentation/mm/mmu_notifier.rst
2017 */
2018 pmdp_huge_clear_flush(vma, haddr, pmd);
2019
2020 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2021 pmd_populate(mm, &_pmd, pgtable);
2022
2023 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2024 pte_t *pte, entry;
2025 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2026 entry = pte_mkspecial(entry);
2027 pte = pte_offset_map(&_pmd, haddr);
2028 VM_BUG_ON(!pte_none(*pte));
2029 set_pte_at(mm, haddr, pte, entry);
2030 pte_unmap(pte);
2031 }
2032 smp_wmb(); /* make pte visible before pmd */
2033 pmd_populate(mm, pmd, pgtable);
2034 }
2035
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2036 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2037 unsigned long haddr, bool freeze)
2038 {
2039 struct mm_struct *mm = vma->vm_mm;
2040 struct page *page;
2041 pgtable_t pgtable;
2042 pmd_t old_pmd, _pmd;
2043 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2044 bool anon_exclusive = false, dirty = false;
2045 unsigned long addr;
2046 int i;
2047
2048 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2049 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2050 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2051 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2052 && !pmd_devmap(*pmd));
2053
2054 count_vm_event(THP_SPLIT_PMD);
2055
2056 if (!vma_is_anonymous(vma)) {
2057 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2058 /*
2059 * We are going to unmap this huge page. So
2060 * just go ahead and zap it
2061 */
2062 if (arch_needs_pgtable_deposit())
2063 zap_deposited_table(mm, pmd);
2064 if (vma_is_special_huge(vma))
2065 return;
2066 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2067 swp_entry_t entry;
2068
2069 entry = pmd_to_swp_entry(old_pmd);
2070 page = pfn_swap_entry_to_page(entry);
2071 } else {
2072 page = pmd_page(old_pmd);
2073 if (!PageDirty(page) && pmd_dirty(old_pmd))
2074 set_page_dirty(page);
2075 if (!PageReferenced(page) && pmd_young(old_pmd))
2076 SetPageReferenced(page);
2077 page_remove_rmap(page, vma, true);
2078 put_page(page);
2079 }
2080 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2081 return;
2082 }
2083
2084 if (is_huge_zero_pmd(*pmd)) {
2085 /*
2086 * FIXME: Do we want to invalidate secondary mmu by calling
2087 * mmu_notifier_invalidate_range() see comments below inside
2088 * __split_huge_pmd() ?
2089 *
2090 * We are going from a zero huge page write protected to zero
2091 * small page also write protected so it does not seems useful
2092 * to invalidate secondary mmu at this time.
2093 */
2094 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2095 }
2096
2097 /*
2098 * Up to this point the pmd is present and huge and userland has the
2099 * whole access to the hugepage during the split (which happens in
2100 * place). If we overwrite the pmd with the not-huge version pointing
2101 * to the pte here (which of course we could if all CPUs were bug
2102 * free), userland could trigger a small page size TLB miss on the
2103 * small sized TLB while the hugepage TLB entry is still established in
2104 * the huge TLB. Some CPU doesn't like that.
2105 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2106 * 383 on page 105. Intel should be safe but is also warns that it's
2107 * only safe if the permission and cache attributes of the two entries
2108 * loaded in the two TLB is identical (which should be the case here).
2109 * But it is generally safer to never allow small and huge TLB entries
2110 * for the same virtual address to be loaded simultaneously. So instead
2111 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2112 * current pmd notpresent (atomically because here the pmd_trans_huge
2113 * must remain set at all times on the pmd until the split is complete
2114 * for this pmd), then we flush the SMP TLB and finally we write the
2115 * non-huge version of the pmd entry with pmd_populate.
2116 */
2117 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2118
2119 pmd_migration = is_pmd_migration_entry(old_pmd);
2120 if (unlikely(pmd_migration)) {
2121 swp_entry_t entry;
2122
2123 entry = pmd_to_swp_entry(old_pmd);
2124 page = pfn_swap_entry_to_page(entry);
2125 write = is_writable_migration_entry(entry);
2126 if (PageAnon(page))
2127 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2128 young = is_migration_entry_young(entry);
2129 dirty = is_migration_entry_dirty(entry);
2130 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2131 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2132 } else {
2133 page = pmd_page(old_pmd);
2134 if (pmd_dirty(old_pmd)) {
2135 dirty = true;
2136 SetPageDirty(page);
2137 }
2138 write = pmd_write(old_pmd);
2139 young = pmd_young(old_pmd);
2140 soft_dirty = pmd_soft_dirty(old_pmd);
2141 uffd_wp = pmd_uffd_wp(old_pmd);
2142
2143 VM_BUG_ON_PAGE(!page_count(page), page);
2144 page_ref_add(page, HPAGE_PMD_NR - 1);
2145
2146 /*
2147 * Without "freeze", we'll simply split the PMD, propagating the
2148 * PageAnonExclusive() flag for each PTE by setting it for
2149 * each subpage -- no need to (temporarily) clear.
2150 *
2151 * With "freeze" we want to replace mapped pages by
2152 * migration entries right away. This is only possible if we
2153 * managed to clear PageAnonExclusive() -- see
2154 * set_pmd_migration_entry().
2155 *
2156 * In case we cannot clear PageAnonExclusive(), split the PMD
2157 * only and let try_to_migrate_one() fail later.
2158 *
2159 * See page_try_share_anon_rmap(): invalidate PMD first.
2160 */
2161 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2162 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2163 freeze = false;
2164 }
2165
2166 /*
2167 * Withdraw the table only after we mark the pmd entry invalid.
2168 * This's critical for some architectures (Power).
2169 */
2170 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2171 pmd_populate(mm, &_pmd, pgtable);
2172
2173 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2174 pte_t entry, *pte;
2175 /*
2176 * Note that NUMA hinting access restrictions are not
2177 * transferred to avoid any possibility of altering
2178 * permissions across VMAs.
2179 */
2180 if (freeze || pmd_migration) {
2181 swp_entry_t swp_entry;
2182 if (write)
2183 swp_entry = make_writable_migration_entry(
2184 page_to_pfn(page + i));
2185 else if (anon_exclusive)
2186 swp_entry = make_readable_exclusive_migration_entry(
2187 page_to_pfn(page + i));
2188 else
2189 swp_entry = make_readable_migration_entry(
2190 page_to_pfn(page + i));
2191 if (young)
2192 swp_entry = make_migration_entry_young(swp_entry);
2193 if (dirty)
2194 swp_entry = make_migration_entry_dirty(swp_entry);
2195 entry = swp_entry_to_pte(swp_entry);
2196 if (soft_dirty)
2197 entry = pte_swp_mksoft_dirty(entry);
2198 if (uffd_wp)
2199 entry = pte_swp_mkuffd_wp(entry);
2200 } else {
2201 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2202 entry = maybe_mkwrite(entry, vma);
2203 if (anon_exclusive)
2204 SetPageAnonExclusive(page + i);
2205 if (!write)
2206 entry = pte_wrprotect(entry);
2207 if (!young)
2208 entry = pte_mkold(entry);
2209 /*
2210 * NOTE: we don't do pte_mkdirty when dirty==true
2211 * because it breaks sparc64 which can sigsegv
2212 * random process. Need to revisit when we figure
2213 * out what is special with sparc64.
2214 */
2215 if (soft_dirty)
2216 entry = pte_mksoft_dirty(entry);
2217 if (uffd_wp)
2218 entry = pte_mkuffd_wp(entry);
2219 }
2220 pte = pte_offset_map(&_pmd, addr);
2221 BUG_ON(!pte_none(*pte));
2222 set_pte_at(mm, addr, pte, entry);
2223 if (!pmd_migration)
2224 atomic_inc(&page[i]._mapcount);
2225 pte_unmap(pte);
2226 }
2227
2228 if (!pmd_migration) {
2229 /*
2230 * Set PG_double_map before dropping compound_mapcount to avoid
2231 * false-negative page_mapped().
2232 */
2233 if (compound_mapcount(page) > 1 &&
2234 !TestSetPageDoubleMap(page)) {
2235 for (i = 0; i < HPAGE_PMD_NR; i++)
2236 atomic_inc(&page[i]._mapcount);
2237 }
2238
2239 lock_page_memcg(page);
2240 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2241 /* Last compound_mapcount is gone. */
2242 __mod_lruvec_page_state(page, NR_ANON_THPS,
2243 -HPAGE_PMD_NR);
2244 if (TestClearPageDoubleMap(page)) {
2245 /* No need in mapcount reference anymore */
2246 for (i = 0; i < HPAGE_PMD_NR; i++)
2247 atomic_dec(&page[i]._mapcount);
2248 }
2249 }
2250 unlock_page_memcg(page);
2251
2252 /* Above is effectively page_remove_rmap(page, vma, true) */
2253 munlock_vma_page(page, vma, true);
2254 }
2255
2256 smp_wmb(); /* make pte visible before pmd */
2257 pmd_populate(mm, pmd, pgtable);
2258
2259 if (freeze) {
2260 for (i = 0; i < HPAGE_PMD_NR; i++) {
2261 page_remove_rmap(page + i, vma, false);
2262 put_page(page + i);
2263 }
2264 }
2265 }
2266
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2267 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2268 unsigned long address, bool freeze, struct folio *folio)
2269 {
2270 spinlock_t *ptl;
2271 struct mmu_notifier_range range;
2272
2273 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2274 address & HPAGE_PMD_MASK,
2275 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2276 mmu_notifier_invalidate_range_start(&range);
2277 ptl = pmd_lock(vma->vm_mm, pmd);
2278
2279 /*
2280 * If caller asks to setup a migration entry, we need a folio to check
2281 * pmd against. Otherwise we can end up replacing wrong folio.
2282 */
2283 VM_BUG_ON(freeze && !folio);
2284 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2285
2286 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2287 is_pmd_migration_entry(*pmd)) {
2288 /*
2289 * It's safe to call pmd_page when folio is set because it's
2290 * guaranteed that pmd is present.
2291 */
2292 if (folio && folio != page_folio(pmd_page(*pmd)))
2293 goto out;
2294 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2295 }
2296
2297 out:
2298 spin_unlock(ptl);
2299 /*
2300 * No need to double call mmu_notifier->invalidate_range() callback.
2301 * They are 3 cases to consider inside __split_huge_pmd_locked():
2302 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2303 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2304 * fault will trigger a flush_notify before pointing to a new page
2305 * (it is fine if the secondary mmu keeps pointing to the old zero
2306 * page in the meantime)
2307 * 3) Split a huge pmd into pte pointing to the same page. No need
2308 * to invalidate secondary tlb entry they are all still valid.
2309 * any further changes to individual pte will notify. So no need
2310 * to call mmu_notifier->invalidate_range()
2311 */
2312 mmu_notifier_invalidate_range_only_end(&range);
2313 }
2314
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2315 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2316 bool freeze, struct folio *folio)
2317 {
2318 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2319
2320 if (!pmd)
2321 return;
2322
2323 __split_huge_pmd(vma, pmd, address, freeze, folio);
2324 }
2325
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2326 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2327 {
2328 /*
2329 * If the new address isn't hpage aligned and it could previously
2330 * contain an hugepage: check if we need to split an huge pmd.
2331 */
2332 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2333 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2334 ALIGN(address, HPAGE_PMD_SIZE)))
2335 split_huge_pmd_address(vma, address, false, NULL);
2336 }
2337
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2338 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2339 unsigned long start,
2340 unsigned long end,
2341 long adjust_next)
2342 {
2343 /* Check if we need to split start first. */
2344 split_huge_pmd_if_needed(vma, start);
2345
2346 /* Check if we need to split end next. */
2347 split_huge_pmd_if_needed(vma, end);
2348
2349 /*
2350 * If we're also updating the next vma vm_start,
2351 * check if we need to split it.
2352 */
2353 if (adjust_next > 0) {
2354 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2355 unsigned long nstart = next->vm_start;
2356 nstart += adjust_next;
2357 split_huge_pmd_if_needed(next, nstart);
2358 }
2359 }
2360
unmap_folio(struct folio * folio)2361 static void unmap_folio(struct folio *folio)
2362 {
2363 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2364 TTU_SYNC;
2365
2366 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2367
2368 /*
2369 * Anon pages need migration entries to preserve them, but file
2370 * pages can simply be left unmapped, then faulted back on demand.
2371 * If that is ever changed (perhaps for mlock), update remap_page().
2372 */
2373 if (folio_test_anon(folio))
2374 try_to_migrate(folio, ttu_flags);
2375 else
2376 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2377 }
2378
remap_page(struct folio * folio,unsigned long nr)2379 static void remap_page(struct folio *folio, unsigned long nr)
2380 {
2381 int i = 0;
2382
2383 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2384 if (!folio_test_anon(folio))
2385 return;
2386 for (;;) {
2387 remove_migration_ptes(folio, folio, true);
2388 i += folio_nr_pages(folio);
2389 if (i >= nr)
2390 break;
2391 folio = folio_next(folio);
2392 }
2393 }
2394
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2395 static void lru_add_page_tail(struct page *head, struct page *tail,
2396 struct lruvec *lruvec, struct list_head *list)
2397 {
2398 VM_BUG_ON_PAGE(!PageHead(head), head);
2399 VM_BUG_ON_PAGE(PageCompound(tail), head);
2400 VM_BUG_ON_PAGE(PageLRU(tail), head);
2401 lockdep_assert_held(&lruvec->lru_lock);
2402
2403 if (list) {
2404 /* page reclaim is reclaiming a huge page */
2405 VM_WARN_ON(PageLRU(head));
2406 get_page(tail);
2407 list_add_tail(&tail->lru, list);
2408 } else {
2409 /* head is still on lru (and we have it frozen) */
2410 VM_WARN_ON(!PageLRU(head));
2411 if (PageUnevictable(tail))
2412 tail->mlock_count = 0;
2413 else
2414 list_add_tail(&tail->lru, &head->lru);
2415 SetPageLRU(tail);
2416 }
2417 }
2418
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2419 static void __split_huge_page_tail(struct page *head, int tail,
2420 struct lruvec *lruvec, struct list_head *list)
2421 {
2422 struct page *page_tail = head + tail;
2423
2424 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2425
2426 /*
2427 * Clone page flags before unfreezing refcount.
2428 *
2429 * After successful get_page_unless_zero() might follow flags change,
2430 * for example lock_page() which set PG_waiters.
2431 *
2432 * Note that for mapped sub-pages of an anonymous THP,
2433 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2434 * the migration entry instead from where remap_page() will restore it.
2435 * We can still have PG_anon_exclusive set on effectively unmapped and
2436 * unreferenced sub-pages of an anonymous THP: we can simply drop
2437 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2438 */
2439 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2440 page_tail->flags |= (head->flags &
2441 ((1L << PG_referenced) |
2442 (1L << PG_swapbacked) |
2443 (1L << PG_swapcache) |
2444 (1L << PG_mlocked) |
2445 (1L << PG_uptodate) |
2446 (1L << PG_active) |
2447 (1L << PG_workingset) |
2448 (1L << PG_locked) |
2449 (1L << PG_unevictable) |
2450 #ifdef CONFIG_64BIT
2451 (1L << PG_arch_2) |
2452 #endif
2453 (1L << PG_dirty) |
2454 LRU_GEN_MASK | LRU_REFS_MASK));
2455
2456 /* ->mapping in first tail page is compound_mapcount */
2457 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2458 page_tail);
2459 page_tail->mapping = head->mapping;
2460 page_tail->index = head->index + tail;
2461
2462 /*
2463 * page->private should not be set in tail pages with the exception
2464 * of swap cache pages that store the swp_entry_t in tail pages.
2465 * Fix up and warn once if private is unexpectedly set.
2466 */
2467 if (!folio_test_swapcache(page_folio(head))) {
2468 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2469 page_tail->private = 0;
2470 }
2471
2472 /* Page flags must be visible before we make the page non-compound. */
2473 smp_wmb();
2474
2475 /*
2476 * Clear PageTail before unfreezing page refcount.
2477 *
2478 * After successful get_page_unless_zero() might follow put_page()
2479 * which needs correct compound_head().
2480 */
2481 clear_compound_head(page_tail);
2482
2483 /* Finally unfreeze refcount. Additional reference from page cache. */
2484 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2485 PageSwapCache(head)));
2486
2487 if (page_is_young(head))
2488 set_page_young(page_tail);
2489 if (page_is_idle(head))
2490 set_page_idle(page_tail);
2491
2492 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2493
2494 /*
2495 * always add to the tail because some iterators expect new
2496 * pages to show after the currently processed elements - e.g.
2497 * migrate_pages
2498 */
2499 lru_add_page_tail(head, page_tail, lruvec, list);
2500 }
2501
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)2502 static void __split_huge_page(struct page *page, struct list_head *list,
2503 pgoff_t end)
2504 {
2505 struct folio *folio = page_folio(page);
2506 struct page *head = &folio->page;
2507 struct lruvec *lruvec;
2508 struct address_space *swap_cache = NULL;
2509 unsigned long offset = 0;
2510 unsigned int nr = thp_nr_pages(head);
2511 int i;
2512
2513 /* complete memcg works before add pages to LRU */
2514 split_page_memcg(head, nr);
2515
2516 if (PageAnon(head) && PageSwapCache(head)) {
2517 swp_entry_t entry = { .val = page_private(head) };
2518
2519 offset = swp_offset(entry);
2520 swap_cache = swap_address_space(entry);
2521 xa_lock(&swap_cache->i_pages);
2522 }
2523
2524 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2525 lruvec = folio_lruvec_lock(folio);
2526
2527 ClearPageHasHWPoisoned(head);
2528
2529 for (i = nr - 1; i >= 1; i--) {
2530 __split_huge_page_tail(head, i, lruvec, list);
2531 /* Some pages can be beyond EOF: drop them from page cache */
2532 if (head[i].index >= end) {
2533 struct folio *tail = page_folio(head + i);
2534
2535 if (shmem_mapping(head->mapping))
2536 shmem_uncharge(head->mapping->host, 1);
2537 else if (folio_test_clear_dirty(tail))
2538 folio_account_cleaned(tail,
2539 inode_to_wb(folio->mapping->host));
2540 __filemap_remove_folio(tail, NULL);
2541 folio_put(tail);
2542 } else if (!PageAnon(page)) {
2543 __xa_store(&head->mapping->i_pages, head[i].index,
2544 head + i, 0);
2545 } else if (swap_cache) {
2546 __xa_store(&swap_cache->i_pages, offset + i,
2547 head + i, 0);
2548 }
2549 }
2550
2551 ClearPageCompound(head);
2552 unlock_page_lruvec(lruvec);
2553 /* Caller disabled irqs, so they are still disabled here */
2554
2555 split_page_owner(head, nr);
2556
2557 /* See comment in __split_huge_page_tail() */
2558 if (PageAnon(head)) {
2559 /* Additional pin to swap cache */
2560 if (PageSwapCache(head)) {
2561 page_ref_add(head, 2);
2562 xa_unlock(&swap_cache->i_pages);
2563 } else {
2564 page_ref_inc(head);
2565 }
2566 } else {
2567 /* Additional pin to page cache */
2568 page_ref_add(head, 2);
2569 xa_unlock(&head->mapping->i_pages);
2570 }
2571 local_irq_enable();
2572
2573 remap_page(folio, nr);
2574
2575 if (PageSwapCache(head)) {
2576 swp_entry_t entry = { .val = page_private(head) };
2577
2578 split_swap_cluster(entry);
2579 }
2580
2581 for (i = 0; i < nr; i++) {
2582 struct page *subpage = head + i;
2583 if (subpage == page)
2584 continue;
2585 unlock_page(subpage);
2586
2587 /*
2588 * Subpages may be freed if there wasn't any mapping
2589 * like if add_to_swap() is running on a lru page that
2590 * had its mapping zapped. And freeing these pages
2591 * requires taking the lru_lock so we do the put_page
2592 * of the tail pages after the split is complete.
2593 */
2594 free_page_and_swap_cache(subpage);
2595 }
2596 }
2597
2598 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int * pextra_pins)2599 bool can_split_folio(struct folio *folio, int *pextra_pins)
2600 {
2601 int extra_pins;
2602
2603 /* Additional pins from page cache */
2604 if (folio_test_anon(folio))
2605 extra_pins = folio_test_swapcache(folio) ?
2606 folio_nr_pages(folio) : 0;
2607 else
2608 extra_pins = folio_nr_pages(folio);
2609 if (pextra_pins)
2610 *pextra_pins = extra_pins;
2611 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2612 }
2613
2614 /*
2615 * This function splits huge page into normal pages. @page can point to any
2616 * subpage of huge page to split. Split doesn't change the position of @page.
2617 *
2618 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2619 * The huge page must be locked.
2620 *
2621 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2622 *
2623 * Both head page and tail pages will inherit mapping, flags, and so on from
2624 * the hugepage.
2625 *
2626 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2627 * they are not mapped.
2628 *
2629 * Returns 0 if the hugepage is split successfully.
2630 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2631 * us.
2632 */
split_huge_page_to_list(struct page * page,struct list_head * list)2633 int split_huge_page_to_list(struct page *page, struct list_head *list)
2634 {
2635 struct folio *folio = page_folio(page);
2636 struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2637 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2638 struct anon_vma *anon_vma = NULL;
2639 struct address_space *mapping = NULL;
2640 int extra_pins, ret;
2641 pgoff_t end;
2642 bool is_hzp;
2643
2644 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2645 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2646
2647 is_hzp = is_huge_zero_page(&folio->page);
2648 VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2649 if (is_hzp)
2650 return -EBUSY;
2651
2652 if (folio_test_writeback(folio))
2653 return -EBUSY;
2654
2655 if (folio_test_anon(folio)) {
2656 /*
2657 * The caller does not necessarily hold an mmap_lock that would
2658 * prevent the anon_vma disappearing so we first we take a
2659 * reference to it and then lock the anon_vma for write. This
2660 * is similar to folio_lock_anon_vma_read except the write lock
2661 * is taken to serialise against parallel split or collapse
2662 * operations.
2663 */
2664 anon_vma = folio_get_anon_vma(folio);
2665 if (!anon_vma) {
2666 ret = -EBUSY;
2667 goto out;
2668 }
2669 end = -1;
2670 mapping = NULL;
2671 anon_vma_lock_write(anon_vma);
2672 } else {
2673 gfp_t gfp;
2674
2675 mapping = folio->mapping;
2676
2677 /* Truncated ? */
2678 if (!mapping) {
2679 ret = -EBUSY;
2680 goto out;
2681 }
2682
2683 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2684 GFP_RECLAIM_MASK);
2685
2686 if (folio_test_private(folio) &&
2687 !filemap_release_folio(folio, gfp)) {
2688 ret = -EBUSY;
2689 goto out;
2690 }
2691
2692 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2693 if (xas_error(&xas)) {
2694 ret = xas_error(&xas);
2695 goto out;
2696 }
2697
2698 anon_vma = NULL;
2699 i_mmap_lock_read(mapping);
2700
2701 /*
2702 *__split_huge_page() may need to trim off pages beyond EOF:
2703 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2704 * which cannot be nested inside the page tree lock. So note
2705 * end now: i_size itself may be changed at any moment, but
2706 * folio lock is good enough to serialize the trimming.
2707 */
2708 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2709 if (shmem_mapping(mapping))
2710 end = shmem_fallocend(mapping->host, end);
2711 }
2712
2713 /*
2714 * Racy check if we can split the page, before unmap_folio() will
2715 * split PMDs
2716 */
2717 if (!can_split_folio(folio, &extra_pins)) {
2718 ret = -EBUSY;
2719 goto out_unlock;
2720 }
2721
2722 unmap_folio(folio);
2723
2724 /* block interrupt reentry in xa_lock and spinlock */
2725 local_irq_disable();
2726 if (mapping) {
2727 /*
2728 * Check if the folio is present in page cache.
2729 * We assume all tail are present too, if folio is there.
2730 */
2731 xas_lock(&xas);
2732 xas_reset(&xas);
2733 if (xas_load(&xas) != folio)
2734 goto fail;
2735 }
2736
2737 /* Prevent deferred_split_scan() touching ->_refcount */
2738 spin_lock(&ds_queue->split_queue_lock);
2739 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2740 if (!list_empty(page_deferred_list(&folio->page))) {
2741 ds_queue->split_queue_len--;
2742 list_del(page_deferred_list(&folio->page));
2743 }
2744 spin_unlock(&ds_queue->split_queue_lock);
2745 if (mapping) {
2746 int nr = folio_nr_pages(folio);
2747
2748 xas_split(&xas, folio, folio_order(folio));
2749 if (folio_test_swapbacked(folio)) {
2750 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2751 -nr);
2752 } else {
2753 __lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2754 -nr);
2755 filemap_nr_thps_dec(mapping);
2756 }
2757 }
2758
2759 __split_huge_page(page, list, end);
2760 ret = 0;
2761 } else {
2762 spin_unlock(&ds_queue->split_queue_lock);
2763 fail:
2764 if (mapping)
2765 xas_unlock(&xas);
2766 local_irq_enable();
2767 remap_page(folio, folio_nr_pages(folio));
2768 ret = -EBUSY;
2769 }
2770
2771 out_unlock:
2772 if (anon_vma) {
2773 anon_vma_unlock_write(anon_vma);
2774 put_anon_vma(anon_vma);
2775 }
2776 if (mapping)
2777 i_mmap_unlock_read(mapping);
2778 out:
2779 xas_destroy(&xas);
2780 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2781 return ret;
2782 }
2783
free_transhuge_page(struct page * page)2784 void free_transhuge_page(struct page *page)
2785 {
2786 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2787 unsigned long flags;
2788
2789 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2790 if (!list_empty(page_deferred_list(page))) {
2791 ds_queue->split_queue_len--;
2792 list_del(page_deferred_list(page));
2793 }
2794 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2795 free_compound_page(page);
2796 }
2797
deferred_split_huge_page(struct page * page)2798 void deferred_split_huge_page(struct page *page)
2799 {
2800 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2801 #ifdef CONFIG_MEMCG
2802 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2803 #endif
2804 unsigned long flags;
2805
2806 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2807
2808 /*
2809 * The try_to_unmap() in page reclaim path might reach here too,
2810 * this may cause a race condition to corrupt deferred split queue.
2811 * And, if page reclaim is already handling the same page, it is
2812 * unnecessary to handle it again in shrinker.
2813 *
2814 * Check PageSwapCache to determine if the page is being
2815 * handled by page reclaim since THP swap would add the page into
2816 * swap cache before calling try_to_unmap().
2817 */
2818 if (PageSwapCache(page))
2819 return;
2820
2821 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2822 if (list_empty(page_deferred_list(page))) {
2823 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2824 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2825 ds_queue->split_queue_len++;
2826 #ifdef CONFIG_MEMCG
2827 if (memcg)
2828 set_shrinker_bit(memcg, page_to_nid(page),
2829 deferred_split_shrinker.id);
2830 #endif
2831 }
2832 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2833 }
2834
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2835 static unsigned long deferred_split_count(struct shrinker *shrink,
2836 struct shrink_control *sc)
2837 {
2838 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2839 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2840
2841 #ifdef CONFIG_MEMCG
2842 if (sc->memcg)
2843 ds_queue = &sc->memcg->deferred_split_queue;
2844 #endif
2845 return READ_ONCE(ds_queue->split_queue_len);
2846 }
2847
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2848 static unsigned long deferred_split_scan(struct shrinker *shrink,
2849 struct shrink_control *sc)
2850 {
2851 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2853 unsigned long flags;
2854 LIST_HEAD(list), *pos, *next;
2855 struct page *page;
2856 int split = 0;
2857
2858 #ifdef CONFIG_MEMCG
2859 if (sc->memcg)
2860 ds_queue = &sc->memcg->deferred_split_queue;
2861 #endif
2862
2863 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2864 /* Take pin on all head pages to avoid freeing them under us */
2865 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2866 page = list_entry((void *)pos, struct page, deferred_list);
2867 page = compound_head(page);
2868 if (get_page_unless_zero(page)) {
2869 list_move(page_deferred_list(page), &list);
2870 } else {
2871 /* We lost race with put_compound_page() */
2872 list_del_init(page_deferred_list(page));
2873 ds_queue->split_queue_len--;
2874 }
2875 if (!--sc->nr_to_scan)
2876 break;
2877 }
2878 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2879
2880 list_for_each_safe(pos, next, &list) {
2881 page = list_entry((void *)pos, struct page, deferred_list);
2882 if (!trylock_page(page))
2883 goto next;
2884 /* split_huge_page() removes page from list on success */
2885 if (!split_huge_page(page))
2886 split++;
2887 unlock_page(page);
2888 next:
2889 put_page(page);
2890 }
2891
2892 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2893 list_splice_tail(&list, &ds_queue->split_queue);
2894 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2895
2896 /*
2897 * Stop shrinker if we didn't split any page, but the queue is empty.
2898 * This can happen if pages were freed under us.
2899 */
2900 if (!split && list_empty(&ds_queue->split_queue))
2901 return SHRINK_STOP;
2902 return split;
2903 }
2904
2905 static struct shrinker deferred_split_shrinker = {
2906 .count_objects = deferred_split_count,
2907 .scan_objects = deferred_split_scan,
2908 .seeks = DEFAULT_SEEKS,
2909 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2910 SHRINKER_NONSLAB,
2911 };
2912
2913 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)2914 static void split_huge_pages_all(void)
2915 {
2916 struct zone *zone;
2917 struct page *page;
2918 unsigned long pfn, max_zone_pfn;
2919 unsigned long total = 0, split = 0;
2920
2921 pr_debug("Split all THPs\n");
2922 for_each_zone(zone) {
2923 if (!managed_zone(zone))
2924 continue;
2925 max_zone_pfn = zone_end_pfn(zone);
2926 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2927 int nr_pages;
2928
2929 page = pfn_to_online_page(pfn);
2930 if (!page || !get_page_unless_zero(page))
2931 continue;
2932
2933 if (zone != page_zone(page))
2934 goto next;
2935
2936 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2937 goto next;
2938
2939 total++;
2940 lock_page(page);
2941 nr_pages = thp_nr_pages(page);
2942 if (!split_huge_page(page))
2943 split++;
2944 pfn += nr_pages - 1;
2945 unlock_page(page);
2946 next:
2947 put_page(page);
2948 cond_resched();
2949 }
2950 }
2951
2952 pr_debug("%lu of %lu THP split\n", split, total);
2953 }
2954
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)2955 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2956 {
2957 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2958 is_vm_hugetlb_page(vma);
2959 }
2960
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)2961 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2962 unsigned long vaddr_end)
2963 {
2964 int ret = 0;
2965 struct task_struct *task;
2966 struct mm_struct *mm;
2967 unsigned long total = 0, split = 0;
2968 unsigned long addr;
2969
2970 vaddr_start &= PAGE_MASK;
2971 vaddr_end &= PAGE_MASK;
2972
2973 /* Find the task_struct from pid */
2974 rcu_read_lock();
2975 task = find_task_by_vpid(pid);
2976 if (!task) {
2977 rcu_read_unlock();
2978 ret = -ESRCH;
2979 goto out;
2980 }
2981 get_task_struct(task);
2982 rcu_read_unlock();
2983
2984 /* Find the mm_struct */
2985 mm = get_task_mm(task);
2986 put_task_struct(task);
2987
2988 if (!mm) {
2989 ret = -EINVAL;
2990 goto out;
2991 }
2992
2993 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2994 pid, vaddr_start, vaddr_end);
2995
2996 mmap_read_lock(mm);
2997 /*
2998 * always increase addr by PAGE_SIZE, since we could have a PTE page
2999 * table filled with PTE-mapped THPs, each of which is distinct.
3000 */
3001 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3002 struct vm_area_struct *vma = vma_lookup(mm, addr);
3003 struct page *page;
3004
3005 if (!vma)
3006 break;
3007
3008 /* skip special VMA and hugetlb VMA */
3009 if (vma_not_suitable_for_thp_split(vma)) {
3010 addr = vma->vm_end;
3011 continue;
3012 }
3013
3014 /* FOLL_DUMP to ignore special (like zero) pages */
3015 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3016
3017 if (IS_ERR_OR_NULL(page))
3018 continue;
3019
3020 if (!is_transparent_hugepage(page))
3021 goto next;
3022
3023 total++;
3024 if (!can_split_folio(page_folio(page), NULL))
3025 goto next;
3026
3027 if (!trylock_page(page))
3028 goto next;
3029
3030 if (!split_huge_page(page))
3031 split++;
3032
3033 unlock_page(page);
3034 next:
3035 put_page(page);
3036 cond_resched();
3037 }
3038 mmap_read_unlock(mm);
3039 mmput(mm);
3040
3041 pr_debug("%lu of %lu THP split\n", split, total);
3042
3043 out:
3044 return ret;
3045 }
3046
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)3047 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3048 pgoff_t off_end)
3049 {
3050 struct filename *file;
3051 struct file *candidate;
3052 struct address_space *mapping;
3053 int ret = -EINVAL;
3054 pgoff_t index;
3055 int nr_pages = 1;
3056 unsigned long total = 0, split = 0;
3057
3058 file = getname_kernel(file_path);
3059 if (IS_ERR(file))
3060 return ret;
3061
3062 candidate = file_open_name(file, O_RDONLY, 0);
3063 if (IS_ERR(candidate))
3064 goto out;
3065
3066 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3067 file_path, off_start, off_end);
3068
3069 mapping = candidate->f_mapping;
3070
3071 for (index = off_start; index < off_end; index += nr_pages) {
3072 struct page *fpage = pagecache_get_page(mapping, index,
3073 FGP_ENTRY | FGP_HEAD, 0);
3074
3075 nr_pages = 1;
3076 if (xa_is_value(fpage) || !fpage)
3077 continue;
3078
3079 if (!is_transparent_hugepage(fpage))
3080 goto next;
3081
3082 total++;
3083 nr_pages = thp_nr_pages(fpage);
3084
3085 if (!trylock_page(fpage))
3086 goto next;
3087
3088 if (!split_huge_page(fpage))
3089 split++;
3090
3091 unlock_page(fpage);
3092 next:
3093 put_page(fpage);
3094 cond_resched();
3095 }
3096
3097 filp_close(candidate, NULL);
3098 ret = 0;
3099
3100 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3101 out:
3102 putname(file);
3103 return ret;
3104 }
3105
3106 #define MAX_INPUT_BUF_SZ 255
3107
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3108 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3109 size_t count, loff_t *ppops)
3110 {
3111 static DEFINE_MUTEX(split_debug_mutex);
3112 ssize_t ret;
3113 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3114 char input_buf[MAX_INPUT_BUF_SZ];
3115 int pid;
3116 unsigned long vaddr_start, vaddr_end;
3117
3118 ret = mutex_lock_interruptible(&split_debug_mutex);
3119 if (ret)
3120 return ret;
3121
3122 ret = -EFAULT;
3123
3124 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3125 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3126 goto out;
3127
3128 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3129
3130 if (input_buf[0] == '/') {
3131 char *tok;
3132 char *buf = input_buf;
3133 char file_path[MAX_INPUT_BUF_SZ];
3134 pgoff_t off_start = 0, off_end = 0;
3135 size_t input_len = strlen(input_buf);
3136
3137 tok = strsep(&buf, ",");
3138 if (tok) {
3139 strcpy(file_path, tok);
3140 } else {
3141 ret = -EINVAL;
3142 goto out;
3143 }
3144
3145 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3146 if (ret != 2) {
3147 ret = -EINVAL;
3148 goto out;
3149 }
3150 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3151 if (!ret)
3152 ret = input_len;
3153
3154 goto out;
3155 }
3156
3157 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3158 if (ret == 1 && pid == 1) {
3159 split_huge_pages_all();
3160 ret = strlen(input_buf);
3161 goto out;
3162 } else if (ret != 3) {
3163 ret = -EINVAL;
3164 goto out;
3165 }
3166
3167 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3168 if (!ret)
3169 ret = strlen(input_buf);
3170 out:
3171 mutex_unlock(&split_debug_mutex);
3172 return ret;
3173
3174 }
3175
3176 static const struct file_operations split_huge_pages_fops = {
3177 .owner = THIS_MODULE,
3178 .write = split_huge_pages_write,
3179 .llseek = no_llseek,
3180 };
3181
split_huge_pages_debugfs(void)3182 static int __init split_huge_pages_debugfs(void)
3183 {
3184 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3185 &split_huge_pages_fops);
3186 return 0;
3187 }
3188 late_initcall(split_huge_pages_debugfs);
3189 #endif
3190
3191 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3192 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3193 struct page *page)
3194 {
3195 struct vm_area_struct *vma = pvmw->vma;
3196 struct mm_struct *mm = vma->vm_mm;
3197 unsigned long address = pvmw->address;
3198 bool anon_exclusive;
3199 pmd_t pmdval;
3200 swp_entry_t entry;
3201 pmd_t pmdswp;
3202
3203 if (!(pvmw->pmd && !pvmw->pte))
3204 return 0;
3205
3206 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3207 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3208
3209 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3210 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3211 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3212 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3213 return -EBUSY;
3214 }
3215
3216 if (pmd_dirty(pmdval))
3217 set_page_dirty(page);
3218 if (pmd_write(pmdval))
3219 entry = make_writable_migration_entry(page_to_pfn(page));
3220 else if (anon_exclusive)
3221 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3222 else
3223 entry = make_readable_migration_entry(page_to_pfn(page));
3224 if (pmd_young(pmdval))
3225 entry = make_migration_entry_young(entry);
3226 if (pmd_dirty(pmdval))
3227 entry = make_migration_entry_dirty(entry);
3228 pmdswp = swp_entry_to_pmd(entry);
3229 if (pmd_soft_dirty(pmdval))
3230 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3231 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3232 page_remove_rmap(page, vma, true);
3233 put_page(page);
3234 trace_set_migration_pmd(address, pmd_val(pmdswp));
3235
3236 return 0;
3237 }
3238
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3239 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3240 {
3241 struct vm_area_struct *vma = pvmw->vma;
3242 struct mm_struct *mm = vma->vm_mm;
3243 unsigned long address = pvmw->address;
3244 unsigned long haddr = address & HPAGE_PMD_MASK;
3245 pmd_t pmde;
3246 swp_entry_t entry;
3247
3248 if (!(pvmw->pmd && !pvmw->pte))
3249 return;
3250
3251 entry = pmd_to_swp_entry(*pvmw->pmd);
3252 get_page(new);
3253 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3254 if (pmd_swp_soft_dirty(*pvmw->pmd))
3255 pmde = pmd_mksoft_dirty(pmde);
3256 if (is_writable_migration_entry(entry))
3257 pmde = maybe_pmd_mkwrite(pmde, vma);
3258 if (pmd_swp_uffd_wp(*pvmw->pmd))
3259 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3260 if (!is_migration_entry_young(entry))
3261 pmde = pmd_mkold(pmde);
3262 /* NOTE: this may contain setting soft-dirty on some archs */
3263 if (PageDirty(new) && is_migration_entry_dirty(entry))
3264 pmde = pmd_mkdirty(pmde);
3265
3266 if (PageAnon(new)) {
3267 rmap_t rmap_flags = RMAP_COMPOUND;
3268
3269 if (!is_readable_migration_entry(entry))
3270 rmap_flags |= RMAP_EXCLUSIVE;
3271
3272 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3273 } else {
3274 page_add_file_rmap(new, vma, true);
3275 }
3276 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3277 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3278
3279 /* No need to invalidate - it was non-present before */
3280 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3281 trace_remove_migration_pmd(address, pmd_val(pmde));
3282 }
3283 #endif
3284