1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * membarrier system call
6 */
7
8 /*
9 * For documentation purposes, here are some membarrier ordering
10 * scenarios to keep in mind:
11 *
12 * A) Userspace thread execution after IPI vs membarrier's memory
13 * barrier before sending the IPI
14 *
15 * Userspace variables:
16 *
17 * int x = 0, y = 0;
18 *
19 * The memory barrier at the start of membarrier() on CPU0 is necessary in
20 * order to enforce the guarantee that any writes occurring on CPU0 before
21 * the membarrier() is executed will be visible to any code executing on
22 * CPU1 after the IPI-induced memory barrier:
23 *
24 * CPU0 CPU1
25 *
26 * x = 1
27 * membarrier():
28 * a: smp_mb()
29 * b: send IPI IPI-induced mb
30 * c: smp_mb()
31 * r2 = y
32 * y = 1
33 * barrier()
34 * r1 = x
35 *
36 * BUG_ON(r1 == 0 && r2 == 0)
37 *
38 * The write to y and load from x by CPU1 are unordered by the hardware,
39 * so it's possible to have "r1 = x" reordered before "y = 1" at any
40 * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
41 * can be reordered after (a) (although not after (c)), so we get r1 == 0
42 * and r2 == 0. This violates the guarantee that membarrier() is
43 * supposed by provide.
44 *
45 * The timing of the memory barrier at (a) has to ensure that it executes
46 * before the IPI-induced memory barrier on CPU1.
47 *
48 * B) Userspace thread execution before IPI vs membarrier's memory
49 * barrier after completing the IPI
50 *
51 * Userspace variables:
52 *
53 * int x = 0, y = 0;
54 *
55 * The memory barrier at the end of membarrier() on CPU0 is necessary in
56 * order to enforce the guarantee that any writes occurring on CPU1 before
57 * the membarrier() is executed will be visible to any code executing on
58 * CPU0 after the membarrier():
59 *
60 * CPU0 CPU1
61 *
62 * x = 1
63 * barrier()
64 * y = 1
65 * r2 = y
66 * membarrier():
67 * a: smp_mb()
68 * b: send IPI IPI-induced mb
69 * c: smp_mb()
70 * r1 = x
71 * BUG_ON(r1 == 0 && r2 == 1)
72 *
73 * The writes to x and y are unordered by the hardware, so it's possible to
74 * have "r2 = 1" even though the write to x doesn't execute until (b). If
75 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
76 * before (b) (although not before (a)), so we get "r1 = 0". This violates
77 * the guarantee that membarrier() is supposed to provide.
78 *
79 * The timing of the memory barrier at (c) has to ensure that it executes
80 * after the IPI-induced memory barrier on CPU1.
81 *
82 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
83 *
84 * CPU0 CPU1
85 *
86 * membarrier():
87 * a: smp_mb()
88 * d: switch to kthread (includes mb)
89 * b: read rq->curr->mm == NULL
90 * e: switch to user (includes mb)
91 * c: smp_mb()
92 *
93 * Using the scenario from (A), we can show that (a) needs to be paired
94 * with (e). Using the scenario from (B), we can show that (c) needs to
95 * be paired with (d).
96 *
97 * D) exit_mm vs membarrier
98 *
99 * Two thread groups are created, A and B. Thread group B is created by
100 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
101 * Let's assume we have a single thread within each thread group (Thread A
102 * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
103 *
104 * CPU0 CPU1
105 *
106 * membarrier():
107 * a: smp_mb()
108 * exit_mm():
109 * d: smp_mb()
110 * e: current->mm = NULL
111 * b: read rq->curr->mm == NULL
112 * c: smp_mb()
113 *
114 * Using scenario (B), we can show that (c) needs to be paired with (d).
115 *
116 * E) kthread_{use,unuse}_mm vs membarrier
117 *
118 * CPU0 CPU1
119 *
120 * membarrier():
121 * a: smp_mb()
122 * kthread_unuse_mm()
123 * d: smp_mb()
124 * e: current->mm = NULL
125 * b: read rq->curr->mm == NULL
126 * kthread_use_mm()
127 * f: current->mm = mm
128 * g: smp_mb()
129 * c: smp_mb()
130 *
131 * Using the scenario from (A), we can show that (a) needs to be paired
132 * with (g). Using the scenario from (B), we can show that (c) needs to
133 * be paired with (d).
134 */
135
136 /*
137 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
138 * except MEMBARRIER_CMD_QUERY.
139 */
140 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
141 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
142 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
143 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
144 #else
145 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
146 #endif
147
148 #ifdef CONFIG_RSEQ
149 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
150 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
151 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
152 #else
153 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
154 #endif
155
156 #define MEMBARRIER_CMD_BITMASK \
157 (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
158 | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
159 | MEMBARRIER_CMD_PRIVATE_EXPEDITED \
160 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
161 | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
162 | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
163
ipi_mb(void * info)164 static void ipi_mb(void *info)
165 {
166 smp_mb(); /* IPIs should be serializing but paranoid. */
167 }
168
ipi_sync_core(void * info)169 static void ipi_sync_core(void *info)
170 {
171 /*
172 * The smp_mb() in membarrier after all the IPIs is supposed to
173 * ensure that memory on remote CPUs that occur before the IPI
174 * become visible to membarrier()'s caller -- see scenario B in
175 * the big comment at the top of this file.
176 *
177 * A sync_core() would provide this guarantee, but
178 * sync_core_before_usermode() might end up being deferred until
179 * after membarrier()'s smp_mb().
180 */
181 smp_mb(); /* IPIs should be serializing but paranoid. */
182
183 sync_core_before_usermode();
184 }
185
ipi_rseq(void * info)186 static void ipi_rseq(void *info)
187 {
188 /*
189 * Ensure that all stores done by the calling thread are visible
190 * to the current task before the current task resumes. We could
191 * probably optimize this away on most architectures, but by the
192 * time we've already sent an IPI, the cost of the extra smp_mb()
193 * is negligible.
194 */
195 smp_mb();
196 rseq_preempt(current);
197 }
198
ipi_sync_rq_state(void * info)199 static void ipi_sync_rq_state(void *info)
200 {
201 struct mm_struct *mm = (struct mm_struct *) info;
202
203 if (current->mm != mm)
204 return;
205 this_cpu_write(runqueues.membarrier_state,
206 atomic_read(&mm->membarrier_state));
207 /*
208 * Issue a memory barrier after setting
209 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
210 * guarantee that no memory access following registration is reordered
211 * before registration.
212 */
213 smp_mb();
214 }
215
membarrier_exec_mmap(struct mm_struct * mm)216 void membarrier_exec_mmap(struct mm_struct *mm)
217 {
218 /*
219 * Issue a memory barrier before clearing membarrier_state to
220 * guarantee that no memory access prior to exec is reordered after
221 * clearing this state.
222 */
223 smp_mb();
224 atomic_set(&mm->membarrier_state, 0);
225 /*
226 * Keep the runqueue membarrier_state in sync with this mm
227 * membarrier_state.
228 */
229 this_cpu_write(runqueues.membarrier_state, 0);
230 }
231
membarrier_update_current_mm(struct mm_struct * next_mm)232 void membarrier_update_current_mm(struct mm_struct *next_mm)
233 {
234 struct rq *rq = this_rq();
235 int membarrier_state = 0;
236
237 if (next_mm)
238 membarrier_state = atomic_read(&next_mm->membarrier_state);
239 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
240 return;
241 WRITE_ONCE(rq->membarrier_state, membarrier_state);
242 }
243
membarrier_global_expedited(void)244 static int membarrier_global_expedited(void)
245 {
246 int cpu;
247 cpumask_var_t tmpmask;
248
249 if (num_online_cpus() == 1)
250 return 0;
251
252 /*
253 * Matches memory barriers around rq->curr modification in
254 * scheduler.
255 */
256 smp_mb(); /* system call entry is not a mb. */
257
258 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
259 return -ENOMEM;
260
261 cpus_read_lock();
262 rcu_read_lock();
263 for_each_online_cpu(cpu) {
264 struct task_struct *p;
265
266 /*
267 * Skipping the current CPU is OK even through we can be
268 * migrated at any point. The current CPU, at the point
269 * where we read raw_smp_processor_id(), is ensured to
270 * be in program order with respect to the caller
271 * thread. Therefore, we can skip this CPU from the
272 * iteration.
273 */
274 if (cpu == raw_smp_processor_id())
275 continue;
276
277 if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
278 MEMBARRIER_STATE_GLOBAL_EXPEDITED))
279 continue;
280
281 /*
282 * Skip the CPU if it runs a kernel thread which is not using
283 * a task mm.
284 */
285 p = rcu_dereference(cpu_rq(cpu)->curr);
286 if (!p->mm)
287 continue;
288
289 __cpumask_set_cpu(cpu, tmpmask);
290 }
291 rcu_read_unlock();
292
293 preempt_disable();
294 smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
295 preempt_enable();
296
297 free_cpumask_var(tmpmask);
298 cpus_read_unlock();
299
300 /*
301 * Memory barrier on the caller thread _after_ we finished
302 * waiting for the last IPI. Matches memory barriers around
303 * rq->curr modification in scheduler.
304 */
305 smp_mb(); /* exit from system call is not a mb */
306 return 0;
307 }
308
membarrier_private_expedited(int flags,int cpu_id)309 static int membarrier_private_expedited(int flags, int cpu_id)
310 {
311 cpumask_var_t tmpmask;
312 struct mm_struct *mm = current->mm;
313 smp_call_func_t ipi_func = ipi_mb;
314
315 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
316 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
317 return -EINVAL;
318 if (!(atomic_read(&mm->membarrier_state) &
319 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
320 return -EPERM;
321 ipi_func = ipi_sync_core;
322 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
323 if (!IS_ENABLED(CONFIG_RSEQ))
324 return -EINVAL;
325 if (!(atomic_read(&mm->membarrier_state) &
326 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
327 return -EPERM;
328 ipi_func = ipi_rseq;
329 } else {
330 WARN_ON_ONCE(flags);
331 if (!(atomic_read(&mm->membarrier_state) &
332 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
333 return -EPERM;
334 }
335
336 if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
337 (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
338 return 0;
339
340 /*
341 * Matches memory barriers around rq->curr modification in
342 * scheduler.
343 */
344 smp_mb(); /* system call entry is not a mb. */
345
346 if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
347 return -ENOMEM;
348
349 cpus_read_lock();
350
351 if (cpu_id >= 0) {
352 struct task_struct *p;
353
354 if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
355 goto out;
356 rcu_read_lock();
357 p = rcu_dereference(cpu_rq(cpu_id)->curr);
358 if (!p || p->mm != mm) {
359 rcu_read_unlock();
360 goto out;
361 }
362 rcu_read_unlock();
363 } else {
364 int cpu;
365
366 rcu_read_lock();
367 for_each_online_cpu(cpu) {
368 struct task_struct *p;
369
370 p = rcu_dereference(cpu_rq(cpu)->curr);
371 if (p && p->mm == mm)
372 __cpumask_set_cpu(cpu, tmpmask);
373 }
374 rcu_read_unlock();
375 }
376
377 if (cpu_id >= 0) {
378 /*
379 * smp_call_function_single() will call ipi_func() if cpu_id
380 * is the calling CPU.
381 */
382 smp_call_function_single(cpu_id, ipi_func, NULL, 1);
383 } else {
384 /*
385 * For regular membarrier, we can save a few cycles by
386 * skipping the current cpu -- we're about to do smp_mb()
387 * below, and if we migrate to a different cpu, this cpu
388 * and the new cpu will execute a full barrier in the
389 * scheduler.
390 *
391 * For SYNC_CORE, we do need a barrier on the current cpu --
392 * otherwise, if we are migrated and replaced by a different
393 * task in the same mm just before, during, or after
394 * membarrier, we will end up with some thread in the mm
395 * running without a core sync.
396 *
397 * For RSEQ, don't rseq_preempt() the caller. User code
398 * is not supposed to issue syscalls at all from inside an
399 * rseq critical section.
400 */
401 if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
402 preempt_disable();
403 smp_call_function_many(tmpmask, ipi_func, NULL, true);
404 preempt_enable();
405 } else {
406 on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
407 }
408 }
409
410 out:
411 if (cpu_id < 0)
412 free_cpumask_var(tmpmask);
413 cpus_read_unlock();
414
415 /*
416 * Memory barrier on the caller thread _after_ we finished
417 * waiting for the last IPI. Matches memory barriers around
418 * rq->curr modification in scheduler.
419 */
420 smp_mb(); /* exit from system call is not a mb */
421
422 return 0;
423 }
424
sync_runqueues_membarrier_state(struct mm_struct * mm)425 static int sync_runqueues_membarrier_state(struct mm_struct *mm)
426 {
427 int membarrier_state = atomic_read(&mm->membarrier_state);
428 cpumask_var_t tmpmask;
429 int cpu;
430
431 if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
432 this_cpu_write(runqueues.membarrier_state, membarrier_state);
433
434 /*
435 * For single mm user, we can simply issue a memory barrier
436 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
437 * mm and in the current runqueue to guarantee that no memory
438 * access following registration is reordered before
439 * registration.
440 */
441 smp_mb();
442 return 0;
443 }
444
445 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
446 return -ENOMEM;
447
448 /*
449 * For mm with multiple users, we need to ensure all future
450 * scheduler executions will observe @mm's new membarrier
451 * state.
452 */
453 synchronize_rcu();
454
455 /*
456 * For each cpu runqueue, if the task's mm match @mm, ensure that all
457 * @mm's membarrier state set bits are also set in the runqueue's
458 * membarrier state. This ensures that a runqueue scheduling
459 * between threads which are users of @mm has its membarrier state
460 * updated.
461 */
462 cpus_read_lock();
463 rcu_read_lock();
464 for_each_online_cpu(cpu) {
465 struct rq *rq = cpu_rq(cpu);
466 struct task_struct *p;
467
468 p = rcu_dereference(rq->curr);
469 if (p && p->mm == mm)
470 __cpumask_set_cpu(cpu, tmpmask);
471 }
472 rcu_read_unlock();
473
474 on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
475
476 free_cpumask_var(tmpmask);
477 cpus_read_unlock();
478
479 return 0;
480 }
481
membarrier_register_global_expedited(void)482 static int membarrier_register_global_expedited(void)
483 {
484 struct task_struct *p = current;
485 struct mm_struct *mm = p->mm;
486 int ret;
487
488 if (atomic_read(&mm->membarrier_state) &
489 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
490 return 0;
491 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
492 ret = sync_runqueues_membarrier_state(mm);
493 if (ret)
494 return ret;
495 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
496 &mm->membarrier_state);
497
498 return 0;
499 }
500
membarrier_register_private_expedited(int flags)501 static int membarrier_register_private_expedited(int flags)
502 {
503 struct task_struct *p = current;
504 struct mm_struct *mm = p->mm;
505 int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
506 set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
507 ret;
508
509 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
510 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
511 return -EINVAL;
512 ready_state =
513 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
514 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
515 if (!IS_ENABLED(CONFIG_RSEQ))
516 return -EINVAL;
517 ready_state =
518 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
519 } else {
520 WARN_ON_ONCE(flags);
521 }
522
523 /*
524 * We need to consider threads belonging to different thread
525 * groups, which use the same mm. (CLONE_VM but not
526 * CLONE_THREAD).
527 */
528 if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
529 return 0;
530 if (flags & MEMBARRIER_FLAG_SYNC_CORE)
531 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
532 if (flags & MEMBARRIER_FLAG_RSEQ)
533 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
534 atomic_or(set_state, &mm->membarrier_state);
535 ret = sync_runqueues_membarrier_state(mm);
536 if (ret)
537 return ret;
538 atomic_or(ready_state, &mm->membarrier_state);
539
540 return 0;
541 }
542
543 /**
544 * sys_membarrier - issue memory barriers on a set of threads
545 * @cmd: Takes command values defined in enum membarrier_cmd.
546 * @flags: Currently needs to be 0 for all commands other than
547 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
548 * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
549 * contains the CPU on which to interrupt (= restart)
550 * the RSEQ critical section.
551 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
552 * RSEQ CS should be interrupted (@cmd must be
553 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
554 *
555 * If this system call is not implemented, -ENOSYS is returned. If the
556 * command specified does not exist, not available on the running
557 * kernel, or if the command argument is invalid, this system call
558 * returns -EINVAL. For a given command, with flags argument set to 0,
559 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
560 * always return the same value until reboot. In addition, it can return
561 * -ENOMEM if there is not enough memory available to perform the system
562 * call.
563 *
564 * All memory accesses performed in program order from each targeted thread
565 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
566 * the semantic "barrier()" to represent a compiler barrier forcing memory
567 * accesses to be performed in program order across the barrier, and
568 * smp_mb() to represent explicit memory barriers forcing full memory
569 * ordering across the barrier, we have the following ordering table for
570 * each pair of barrier(), sys_membarrier() and smp_mb():
571 *
572 * The pair ordering is detailed as (O: ordered, X: not ordered):
573 *
574 * barrier() smp_mb() sys_membarrier()
575 * barrier() X X O
576 * smp_mb() X O O
577 * sys_membarrier() O O O
578 */
SYSCALL_DEFINE3(membarrier,int,cmd,unsigned int,flags,int,cpu_id)579 SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
580 {
581 switch (cmd) {
582 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
583 if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
584 return -EINVAL;
585 break;
586 default:
587 if (unlikely(flags))
588 return -EINVAL;
589 }
590
591 if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
592 cpu_id = -1;
593
594 switch (cmd) {
595 case MEMBARRIER_CMD_QUERY:
596 {
597 int cmd_mask = MEMBARRIER_CMD_BITMASK;
598
599 if (tick_nohz_full_enabled())
600 cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
601 return cmd_mask;
602 }
603 case MEMBARRIER_CMD_GLOBAL:
604 /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
605 if (tick_nohz_full_enabled())
606 return -EINVAL;
607 if (num_online_cpus() > 1)
608 synchronize_rcu();
609 return 0;
610 case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
611 return membarrier_global_expedited();
612 case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
613 return membarrier_register_global_expedited();
614 case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
615 return membarrier_private_expedited(0, cpu_id);
616 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
617 return membarrier_register_private_expedited(0);
618 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
619 return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
620 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
621 return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
622 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
623 return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
624 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
625 return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
626 default:
627 return -EINVAL;
628 }
629 }
630