1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78
79 #include <uapi/linux/io_uring.h>
80
81 #include "io-wq.h"
82
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98
99 #define IORING_MAX_ENTRIES 32768
100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
101
102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
103 IORING_REGISTER_LAST + IORING_OP_LAST)
104
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107
108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 REQ_F_ASYNC_DATA)
114
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 IO_REQ_CLEAN_FLAGS)
117
118 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
119
120 #define IO_COMPL_BATCH 32
121 #define IO_REQ_ALLOC_BATCH 8
122
123 enum {
124 IO_CHECK_CQ_OVERFLOW_BIT,
125 IO_CHECK_CQ_DROPPED_BIT,
126 };
127
128 enum {
129 IO_EVENTFD_OP_SIGNAL_BIT,
130 IO_EVENTFD_OP_FREE_BIT,
131 };
132
133 struct io_defer_entry {
134 struct list_head list;
135 struct io_kiocb *req;
136 u32 seq;
137 };
138
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 struct task_struct *task,
145 bool cancel_all);
146
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152
153 static struct kmem_cache *req_cachep;
154
io_uring_get_socket(struct file * file)155 struct sock *io_uring_get_socket(struct file *file)
156 {
157 #if defined(CONFIG_UNIX)
158 if (io_is_uring_fops(file)) {
159 struct io_ring_ctx *ctx = file->private_data;
160
161 return ctx->ring_sock->sk;
162 }
163 #endif
164 return NULL;
165 }
166 EXPORT_SYMBOL(io_uring_get_socket);
167
io_submit_flush_completions(struct io_ring_ctx * ctx)168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
169 {
170 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
171 __io_submit_flush_completions(ctx);
172 }
173
__io_cqring_events(struct io_ring_ctx * ctx)174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
175 {
176 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
177 }
178
__io_cqring_events_user(struct io_ring_ctx * ctx)179 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
180 {
181 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
182 }
183
io_match_linked(struct io_kiocb * head)184 static bool io_match_linked(struct io_kiocb *head)
185 {
186 struct io_kiocb *req;
187
188 io_for_each_link(req, head) {
189 if (req->flags & REQ_F_INFLIGHT)
190 return true;
191 }
192 return false;
193 }
194
195 /*
196 * As io_match_task() but protected against racing with linked timeouts.
197 * User must not hold timeout_lock.
198 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)199 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
200 bool cancel_all)
201 {
202 bool matched;
203
204 if (task && head->task != task)
205 return false;
206 if (cancel_all)
207 return true;
208
209 if (head->flags & REQ_F_LINK_TIMEOUT) {
210 struct io_ring_ctx *ctx = head->ctx;
211
212 /* protect against races with linked timeouts */
213 spin_lock_irq(&ctx->timeout_lock);
214 matched = io_match_linked(head);
215 spin_unlock_irq(&ctx->timeout_lock);
216 } else {
217 matched = io_match_linked(head);
218 }
219 return matched;
220 }
221
req_fail_link_node(struct io_kiocb * req,int res)222 static inline void req_fail_link_node(struct io_kiocb *req, int res)
223 {
224 req_set_fail(req);
225 io_req_set_res(req, res, 0);
226 }
227
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)228 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
229 {
230 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
231 }
232
io_ring_ctx_ref_free(struct percpu_ref * ref)233 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
234 {
235 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
236
237 complete(&ctx->ref_comp);
238 }
239
io_fallback_req_func(struct work_struct * work)240 static __cold void io_fallback_req_func(struct work_struct *work)
241 {
242 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
243 fallback_work.work);
244 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
245 struct io_kiocb *req, *tmp;
246 bool locked = false;
247
248 percpu_ref_get(&ctx->refs);
249 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
250 req->io_task_work.func(req, &locked);
251
252 if (locked) {
253 io_submit_flush_completions(ctx);
254 mutex_unlock(&ctx->uring_lock);
255 }
256 percpu_ref_put(&ctx->refs);
257 }
258
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
260 {
261 unsigned hash_buckets = 1U << bits;
262 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
263
264 table->hbs = kmalloc(hash_size, GFP_KERNEL);
265 if (!table->hbs)
266 return -ENOMEM;
267
268 table->hash_bits = bits;
269 init_hash_table(table, hash_buckets);
270 return 0;
271 }
272
io_ring_ctx_alloc(struct io_uring_params * p)273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
274 {
275 struct io_ring_ctx *ctx;
276 int hash_bits;
277
278 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
279 if (!ctx)
280 return NULL;
281
282 xa_init(&ctx->io_bl_xa);
283
284 /*
285 * Use 5 bits less than the max cq entries, that should give us around
286 * 32 entries per hash list if totally full and uniformly spread, but
287 * don't keep too many buckets to not overconsume memory.
288 */
289 hash_bits = ilog2(p->cq_entries) - 5;
290 hash_bits = clamp(hash_bits, 1, 8);
291 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
292 goto err;
293 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
294 goto err;
295
296 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
297 if (!ctx->dummy_ubuf)
298 goto err;
299 /* set invalid range, so io_import_fixed() fails meeting it */
300 ctx->dummy_ubuf->ubuf = -1UL;
301
302 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
303 0, GFP_KERNEL))
304 goto err;
305
306 ctx->flags = p->flags;
307 init_waitqueue_head(&ctx->sqo_sq_wait);
308 INIT_LIST_HEAD(&ctx->sqd_list);
309 INIT_LIST_HEAD(&ctx->cq_overflow_list);
310 INIT_LIST_HEAD(&ctx->io_buffers_cache);
311 io_alloc_cache_init(&ctx->apoll_cache);
312 io_alloc_cache_init(&ctx->netmsg_cache);
313 init_completion(&ctx->ref_comp);
314 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
315 mutex_init(&ctx->uring_lock);
316 init_waitqueue_head(&ctx->cq_wait);
317 spin_lock_init(&ctx->completion_lock);
318 spin_lock_init(&ctx->timeout_lock);
319 INIT_WQ_LIST(&ctx->iopoll_list);
320 INIT_LIST_HEAD(&ctx->io_buffers_pages);
321 INIT_LIST_HEAD(&ctx->io_buffers_comp);
322 INIT_LIST_HEAD(&ctx->defer_list);
323 INIT_LIST_HEAD(&ctx->timeout_list);
324 INIT_LIST_HEAD(&ctx->ltimeout_list);
325 spin_lock_init(&ctx->rsrc_ref_lock);
326 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
327 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
328 init_llist_head(&ctx->rsrc_put_llist);
329 init_llist_head(&ctx->work_llist);
330 INIT_LIST_HEAD(&ctx->tctx_list);
331 ctx->submit_state.free_list.next = NULL;
332 INIT_WQ_LIST(&ctx->locked_free_list);
333 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
334 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
335 return ctx;
336 err:
337 kfree(ctx->dummy_ubuf);
338 kfree(ctx->cancel_table.hbs);
339 kfree(ctx->cancel_table_locked.hbs);
340 kfree(ctx->io_bl);
341 xa_destroy(&ctx->io_bl_xa);
342 kfree(ctx);
343 return NULL;
344 }
345
io_account_cq_overflow(struct io_ring_ctx * ctx)346 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
347 {
348 struct io_rings *r = ctx->rings;
349
350 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
351 ctx->cq_extra--;
352 }
353
req_need_defer(struct io_kiocb * req,u32 seq)354 static bool req_need_defer(struct io_kiocb *req, u32 seq)
355 {
356 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
357 struct io_ring_ctx *ctx = req->ctx;
358
359 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
360 }
361
362 return false;
363 }
364
io_req_track_inflight(struct io_kiocb * req)365 static inline void io_req_track_inflight(struct io_kiocb *req)
366 {
367 if (!(req->flags & REQ_F_INFLIGHT)) {
368 req->flags |= REQ_F_INFLIGHT;
369 atomic_inc(&req->task->io_uring->inflight_tracked);
370 }
371 }
372
__io_prep_linked_timeout(struct io_kiocb * req)373 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
374 {
375 if (WARN_ON_ONCE(!req->link))
376 return NULL;
377
378 req->flags &= ~REQ_F_ARM_LTIMEOUT;
379 req->flags |= REQ_F_LINK_TIMEOUT;
380
381 /* linked timeouts should have two refs once prep'ed */
382 io_req_set_refcount(req);
383 __io_req_set_refcount(req->link, 2);
384 return req->link;
385 }
386
io_prep_linked_timeout(struct io_kiocb * req)387 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
388 {
389 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
390 return NULL;
391 return __io_prep_linked_timeout(req);
392 }
393
__io_arm_ltimeout(struct io_kiocb * req)394 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
395 {
396 io_queue_linked_timeout(__io_prep_linked_timeout(req));
397 }
398
io_arm_ltimeout(struct io_kiocb * req)399 static inline void io_arm_ltimeout(struct io_kiocb *req)
400 {
401 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
402 __io_arm_ltimeout(req);
403 }
404
io_prep_async_work(struct io_kiocb * req)405 static void io_prep_async_work(struct io_kiocb *req)
406 {
407 const struct io_op_def *def = &io_op_defs[req->opcode];
408 struct io_ring_ctx *ctx = req->ctx;
409
410 if (!(req->flags & REQ_F_CREDS)) {
411 req->flags |= REQ_F_CREDS;
412 req->creds = get_current_cred();
413 }
414
415 req->work.list.next = NULL;
416 req->work.flags = 0;
417 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
418 if (req->flags & REQ_F_FORCE_ASYNC)
419 req->work.flags |= IO_WQ_WORK_CONCURRENT;
420
421 if (req->file && !io_req_ffs_set(req))
422 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
423
424 if (req->flags & REQ_F_ISREG) {
425 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
426 io_wq_hash_work(&req->work, file_inode(req->file));
427 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
428 if (def->unbound_nonreg_file)
429 req->work.flags |= IO_WQ_WORK_UNBOUND;
430 }
431 }
432
io_prep_async_link(struct io_kiocb * req)433 static void io_prep_async_link(struct io_kiocb *req)
434 {
435 struct io_kiocb *cur;
436
437 if (req->flags & REQ_F_LINK_TIMEOUT) {
438 struct io_ring_ctx *ctx = req->ctx;
439
440 spin_lock_irq(&ctx->timeout_lock);
441 io_for_each_link(cur, req)
442 io_prep_async_work(cur);
443 spin_unlock_irq(&ctx->timeout_lock);
444 } else {
445 io_for_each_link(cur, req)
446 io_prep_async_work(cur);
447 }
448 }
449
io_queue_iowq(struct io_kiocb * req,bool * dont_use)450 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
451 {
452 struct io_kiocb *link = io_prep_linked_timeout(req);
453 struct io_uring_task *tctx = req->task->io_uring;
454
455 BUG_ON(!tctx);
456 BUG_ON(!tctx->io_wq);
457
458 /* init ->work of the whole link before punting */
459 io_prep_async_link(req);
460
461 /*
462 * Not expected to happen, but if we do have a bug where this _can_
463 * happen, catch it here and ensure the request is marked as
464 * canceled. That will make io-wq go through the usual work cancel
465 * procedure rather than attempt to run this request (or create a new
466 * worker for it).
467 */
468 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
469 req->work.flags |= IO_WQ_WORK_CANCEL;
470
471 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
472 io_wq_enqueue(tctx->io_wq, &req->work);
473 if (link)
474 io_queue_linked_timeout(link);
475 }
476
io_queue_deferred(struct io_ring_ctx * ctx)477 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
478 {
479 while (!list_empty(&ctx->defer_list)) {
480 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
481 struct io_defer_entry, list);
482
483 if (req_need_defer(de->req, de->seq))
484 break;
485 list_del_init(&de->list);
486 io_req_task_queue(de->req);
487 kfree(de);
488 }
489 }
490
491
io_eventfd_ops(struct rcu_head * rcu)492 static void io_eventfd_ops(struct rcu_head *rcu)
493 {
494 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
495 int ops = atomic_xchg(&ev_fd->ops, 0);
496
497 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
498 eventfd_signal(ev_fd->cq_ev_fd, 1);
499
500 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
501 * ordering in a race but if references are 0 we know we have to free
502 * it regardless.
503 */
504 if (atomic_dec_and_test(&ev_fd->refs)) {
505 eventfd_ctx_put(ev_fd->cq_ev_fd);
506 kfree(ev_fd);
507 }
508 }
509
io_eventfd_signal(struct io_ring_ctx * ctx)510 static void io_eventfd_signal(struct io_ring_ctx *ctx)
511 {
512 struct io_ev_fd *ev_fd = NULL;
513
514 rcu_read_lock();
515 /*
516 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
517 * and eventfd_signal
518 */
519 ev_fd = rcu_dereference(ctx->io_ev_fd);
520
521 /*
522 * Check again if ev_fd exists incase an io_eventfd_unregister call
523 * completed between the NULL check of ctx->io_ev_fd at the start of
524 * the function and rcu_read_lock.
525 */
526 if (unlikely(!ev_fd))
527 goto out;
528 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
529 goto out;
530 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
531 goto out;
532
533 if (likely(eventfd_signal_allowed())) {
534 eventfd_signal(ev_fd->cq_ev_fd, 1);
535 } else {
536 atomic_inc(&ev_fd->refs);
537 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
538 call_rcu(&ev_fd->rcu, io_eventfd_ops);
539 else
540 atomic_dec(&ev_fd->refs);
541 }
542
543 out:
544 rcu_read_unlock();
545 }
546
io_eventfd_flush_signal(struct io_ring_ctx * ctx)547 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
548 {
549 bool skip;
550
551 spin_lock(&ctx->completion_lock);
552
553 /*
554 * Eventfd should only get triggered when at least one event has been
555 * posted. Some applications rely on the eventfd notification count
556 * only changing IFF a new CQE has been added to the CQ ring. There's
557 * no depedency on 1:1 relationship between how many times this
558 * function is called (and hence the eventfd count) and number of CQEs
559 * posted to the CQ ring.
560 */
561 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
562 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
563 spin_unlock(&ctx->completion_lock);
564 if (skip)
565 return;
566
567 io_eventfd_signal(ctx);
568 }
569
__io_commit_cqring_flush(struct io_ring_ctx * ctx)570 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
571 {
572 if (ctx->off_timeout_used || ctx->drain_active) {
573 spin_lock(&ctx->completion_lock);
574 if (ctx->off_timeout_used)
575 io_flush_timeouts(ctx);
576 if (ctx->drain_active)
577 io_queue_deferred(ctx);
578 spin_unlock(&ctx->completion_lock);
579 }
580 if (ctx->has_evfd)
581 io_eventfd_flush_signal(ctx);
582 }
583
io_cqring_ev_posted(struct io_ring_ctx * ctx)584 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
585 {
586 io_commit_cqring_flush(ctx);
587 io_cqring_wake(ctx);
588 }
589
__io_cq_unlock_post(struct io_ring_ctx * ctx)590 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
591 __releases(ctx->completion_lock)
592 {
593 io_commit_cqring(ctx);
594 spin_unlock(&ctx->completion_lock);
595 io_cqring_ev_posted(ctx);
596 }
597
io_cq_unlock_post(struct io_ring_ctx * ctx)598 void io_cq_unlock_post(struct io_ring_ctx *ctx)
599 {
600 __io_cq_unlock_post(ctx);
601 }
602
603 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)604 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
605 {
606 bool all_flushed;
607 size_t cqe_size = sizeof(struct io_uring_cqe);
608
609 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
610 return false;
611
612 if (ctx->flags & IORING_SETUP_CQE32)
613 cqe_size <<= 1;
614
615 io_cq_lock(ctx);
616 while (!list_empty(&ctx->cq_overflow_list)) {
617 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
618 struct io_overflow_cqe *ocqe;
619
620 if (!cqe && !force)
621 break;
622 ocqe = list_first_entry(&ctx->cq_overflow_list,
623 struct io_overflow_cqe, list);
624 if (cqe)
625 memcpy(cqe, &ocqe->cqe, cqe_size);
626 else
627 io_account_cq_overflow(ctx);
628
629 list_del(&ocqe->list);
630 kfree(ocqe);
631 }
632
633 all_flushed = list_empty(&ctx->cq_overflow_list);
634 if (all_flushed) {
635 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
636 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
637 }
638
639 io_cq_unlock_post(ctx);
640 return all_flushed;
641 }
642
io_cqring_overflow_flush(struct io_ring_ctx * ctx)643 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
644 {
645 bool ret = true;
646
647 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
648 /* iopoll syncs against uring_lock, not completion_lock */
649 if (ctx->flags & IORING_SETUP_IOPOLL)
650 mutex_lock(&ctx->uring_lock);
651 ret = __io_cqring_overflow_flush(ctx, false);
652 if (ctx->flags & IORING_SETUP_IOPOLL)
653 mutex_unlock(&ctx->uring_lock);
654 }
655
656 return ret;
657 }
658
__io_put_task(struct task_struct * task,int nr)659 void __io_put_task(struct task_struct *task, int nr)
660 {
661 struct io_uring_task *tctx = task->io_uring;
662
663 percpu_counter_sub(&tctx->inflight, nr);
664 if (unlikely(atomic_read(&tctx->in_idle)))
665 wake_up(&tctx->wait);
666 put_task_struct_many(task, nr);
667 }
668
io_task_refs_refill(struct io_uring_task * tctx)669 void io_task_refs_refill(struct io_uring_task *tctx)
670 {
671 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
672
673 percpu_counter_add(&tctx->inflight, refill);
674 refcount_add(refill, ¤t->usage);
675 tctx->cached_refs += refill;
676 }
677
io_uring_drop_tctx_refs(struct task_struct * task)678 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
679 {
680 struct io_uring_task *tctx = task->io_uring;
681 unsigned int refs = tctx->cached_refs;
682
683 if (refs) {
684 tctx->cached_refs = 0;
685 percpu_counter_sub(&tctx->inflight, refs);
686 put_task_struct_many(task, refs);
687 }
688 }
689
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)690 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
691 s32 res, u32 cflags, u64 extra1, u64 extra2)
692 {
693 struct io_overflow_cqe *ocqe;
694 size_t ocq_size = sizeof(struct io_overflow_cqe);
695 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
696
697 if (is_cqe32)
698 ocq_size += sizeof(struct io_uring_cqe);
699
700 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
701 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
702 if (!ocqe) {
703 /*
704 * If we're in ring overflow flush mode, or in task cancel mode,
705 * or cannot allocate an overflow entry, then we need to drop it
706 * on the floor.
707 */
708 io_account_cq_overflow(ctx);
709 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
710 return false;
711 }
712 if (list_empty(&ctx->cq_overflow_list)) {
713 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
714 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
715
716 }
717 ocqe->cqe.user_data = user_data;
718 ocqe->cqe.res = res;
719 ocqe->cqe.flags = cflags;
720 if (is_cqe32) {
721 ocqe->cqe.big_cqe[0] = extra1;
722 ocqe->cqe.big_cqe[1] = extra2;
723 }
724 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
725 return true;
726 }
727
io_req_cqe_overflow(struct io_kiocb * req)728 bool io_req_cqe_overflow(struct io_kiocb *req)
729 {
730 if (!(req->flags & REQ_F_CQE32_INIT)) {
731 req->extra1 = 0;
732 req->extra2 = 0;
733 }
734 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
735 req->cqe.res, req->cqe.flags,
736 req->extra1, req->extra2);
737 }
738
739 /*
740 * writes to the cq entry need to come after reading head; the
741 * control dependency is enough as we're using WRITE_ONCE to
742 * fill the cq entry
743 */
__io_get_cqe(struct io_ring_ctx * ctx,bool overflow)744 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
745 {
746 struct io_rings *rings = ctx->rings;
747 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
748 unsigned int free, queued, len;
749
750 /*
751 * Posting into the CQ when there are pending overflowed CQEs may break
752 * ordering guarantees, which will affect links, F_MORE users and more.
753 * Force overflow the completion.
754 */
755 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
756 return NULL;
757
758 /* userspace may cheat modifying the tail, be safe and do min */
759 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
760 free = ctx->cq_entries - queued;
761 /* we need a contiguous range, limit based on the current array offset */
762 len = min(free, ctx->cq_entries - off);
763 if (!len)
764 return NULL;
765
766 if (ctx->flags & IORING_SETUP_CQE32) {
767 off <<= 1;
768 len <<= 1;
769 }
770
771 ctx->cqe_cached = &rings->cqes[off];
772 ctx->cqe_sentinel = ctx->cqe_cached + len;
773
774 ctx->cached_cq_tail++;
775 ctx->cqe_cached++;
776 if (ctx->flags & IORING_SETUP_CQE32)
777 ctx->cqe_cached++;
778 return &rings->cqes[off];
779 }
780
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)781 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
782 bool allow_overflow)
783 {
784 struct io_uring_cqe *cqe;
785
786 ctx->cq_extra++;
787
788 /*
789 * If we can't get a cq entry, userspace overflowed the
790 * submission (by quite a lot). Increment the overflow count in
791 * the ring.
792 */
793 cqe = io_get_cqe(ctx);
794 if (likely(cqe)) {
795 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
796
797 WRITE_ONCE(cqe->user_data, user_data);
798 WRITE_ONCE(cqe->res, res);
799 WRITE_ONCE(cqe->flags, cflags);
800
801 if (ctx->flags & IORING_SETUP_CQE32) {
802 WRITE_ONCE(cqe->big_cqe[0], 0);
803 WRITE_ONCE(cqe->big_cqe[1], 0);
804 }
805 return true;
806 }
807
808 if (allow_overflow)
809 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
810
811 return false;
812 }
813
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)814 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
815 u64 user_data, s32 res, u32 cflags,
816 bool allow_overflow)
817 {
818 bool filled;
819
820 io_cq_lock(ctx);
821 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
822 io_cq_unlock_post(ctx);
823 return filled;
824 }
825
__io_req_complete_put(struct io_kiocb * req)826 static void __io_req_complete_put(struct io_kiocb *req)
827 {
828 /*
829 * If we're the last reference to this request, add to our locked
830 * free_list cache.
831 */
832 if (req_ref_put_and_test(req)) {
833 struct io_ring_ctx *ctx = req->ctx;
834
835 if (req->flags & IO_REQ_LINK_FLAGS) {
836 if (req->flags & IO_DISARM_MASK)
837 io_disarm_next(req);
838 if (req->link) {
839 io_req_task_queue(req->link);
840 req->link = NULL;
841 }
842 }
843 io_req_put_rsrc(req);
844 /*
845 * Selected buffer deallocation in io_clean_op() assumes that
846 * we don't hold ->completion_lock. Clean them here to avoid
847 * deadlocks.
848 */
849 io_put_kbuf_comp(req);
850 io_dismantle_req(req);
851 io_put_task(req->task, 1);
852 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
853 ctx->locked_free_nr++;
854 }
855 }
856
__io_req_complete_post(struct io_kiocb * req)857 void __io_req_complete_post(struct io_kiocb *req)
858 {
859 if (!(req->flags & REQ_F_CQE_SKIP))
860 __io_fill_cqe_req(req->ctx, req);
861 __io_req_complete_put(req);
862 }
863
io_req_complete_post(struct io_kiocb * req)864 void io_req_complete_post(struct io_kiocb *req)
865 {
866 struct io_ring_ctx *ctx = req->ctx;
867
868 io_cq_lock(ctx);
869 __io_req_complete_post(req);
870 io_cq_unlock_post(ctx);
871 }
872
__io_req_complete(struct io_kiocb * req,unsigned issue_flags)873 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
874 {
875 io_req_complete_post(req);
876 }
877
io_req_complete_failed(struct io_kiocb * req,s32 res)878 void io_req_complete_failed(struct io_kiocb *req, s32 res)
879 {
880 const struct io_op_def *def = &io_op_defs[req->opcode];
881
882 req_set_fail(req);
883 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
884 if (def->fail)
885 def->fail(req);
886 io_req_complete_post(req);
887 }
888
889 /*
890 * Don't initialise the fields below on every allocation, but do that in
891 * advance and keep them valid across allocations.
892 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)893 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
894 {
895 req->ctx = ctx;
896 req->link = NULL;
897 req->async_data = NULL;
898 /* not necessary, but safer to zero */
899 req->cqe.res = 0;
900 }
901
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)902 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
903 struct io_submit_state *state)
904 {
905 spin_lock(&ctx->completion_lock);
906 wq_list_splice(&ctx->locked_free_list, &state->free_list);
907 ctx->locked_free_nr = 0;
908 spin_unlock(&ctx->completion_lock);
909 }
910
911 /*
912 * A request might get retired back into the request caches even before opcode
913 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
914 * Because of that, io_alloc_req() should be called only under ->uring_lock
915 * and with extra caution to not get a request that is still worked on.
916 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)917 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
918 __must_hold(&ctx->uring_lock)
919 {
920 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
921 void *reqs[IO_REQ_ALLOC_BATCH];
922 int ret, i;
923
924 /*
925 * If we have more than a batch's worth of requests in our IRQ side
926 * locked cache, grab the lock and move them over to our submission
927 * side cache.
928 */
929 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
930 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
931 if (!io_req_cache_empty(ctx))
932 return true;
933 }
934
935 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
936
937 /*
938 * Bulk alloc is all-or-nothing. If we fail to get a batch,
939 * retry single alloc to be on the safe side.
940 */
941 if (unlikely(ret <= 0)) {
942 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
943 if (!reqs[0])
944 return false;
945 ret = 1;
946 }
947
948 percpu_ref_get_many(&ctx->refs, ret);
949 for (i = 0; i < ret; i++) {
950 struct io_kiocb *req = reqs[i];
951
952 io_preinit_req(req, ctx);
953 io_req_add_to_cache(req, ctx);
954 }
955 return true;
956 }
957
io_dismantle_req(struct io_kiocb * req)958 static inline void io_dismantle_req(struct io_kiocb *req)
959 {
960 unsigned int flags = req->flags;
961
962 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
963 io_clean_op(req);
964 if (!(flags & REQ_F_FIXED_FILE))
965 io_put_file(req->file);
966 }
967
io_free_req(struct io_kiocb * req)968 __cold void io_free_req(struct io_kiocb *req)
969 {
970 struct io_ring_ctx *ctx = req->ctx;
971
972 io_req_put_rsrc(req);
973 io_dismantle_req(req);
974 io_put_task(req->task, 1);
975
976 spin_lock(&ctx->completion_lock);
977 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
978 ctx->locked_free_nr++;
979 spin_unlock(&ctx->completion_lock);
980 }
981
__io_req_find_next_prep(struct io_kiocb * req)982 static void __io_req_find_next_prep(struct io_kiocb *req)
983 {
984 struct io_ring_ctx *ctx = req->ctx;
985
986 io_cq_lock(ctx);
987 io_disarm_next(req);
988 io_cq_unlock_post(ctx);
989 }
990
io_req_find_next(struct io_kiocb * req)991 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
992 {
993 struct io_kiocb *nxt;
994
995 /*
996 * If LINK is set, we have dependent requests in this chain. If we
997 * didn't fail this request, queue the first one up, moving any other
998 * dependencies to the next request. In case of failure, fail the rest
999 * of the chain.
1000 */
1001 if (unlikely(req->flags & IO_DISARM_MASK))
1002 __io_req_find_next_prep(req);
1003 nxt = req->link;
1004 req->link = NULL;
1005 return nxt;
1006 }
1007
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)1008 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1009 {
1010 if (!ctx)
1011 return;
1012 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1013 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1014 if (*locked) {
1015 io_submit_flush_completions(ctx);
1016 mutex_unlock(&ctx->uring_lock);
1017 *locked = false;
1018 }
1019 percpu_ref_put(&ctx->refs);
1020 }
1021
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,bool * locked,struct llist_node * last)1022 static unsigned int handle_tw_list(struct llist_node *node,
1023 struct io_ring_ctx **ctx, bool *locked,
1024 struct llist_node *last)
1025 {
1026 unsigned int count = 0;
1027
1028 while (node != last) {
1029 struct llist_node *next = node->next;
1030 struct io_kiocb *req = container_of(node, struct io_kiocb,
1031 io_task_work.node);
1032
1033 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1034
1035 if (req->ctx != *ctx) {
1036 ctx_flush_and_put(*ctx, locked);
1037 *ctx = req->ctx;
1038 /* if not contended, grab and improve batching */
1039 *locked = mutex_trylock(&(*ctx)->uring_lock);
1040 percpu_ref_get(&(*ctx)->refs);
1041 }
1042 req->io_task_work.func(req, locked);
1043 node = next;
1044 count++;
1045 }
1046
1047 return count;
1048 }
1049
1050 /**
1051 * io_llist_xchg - swap all entries in a lock-less list
1052 * @head: the head of lock-less list to delete all entries
1053 * @new: new entry as the head of the list
1054 *
1055 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1056 * The order of entries returned is from the newest to the oldest added one.
1057 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1058 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1059 struct llist_node *new)
1060 {
1061 return xchg(&head->first, new);
1062 }
1063
1064 /**
1065 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1066 * @head: the head of lock-less list to delete all entries
1067 * @old: expected old value of the first entry of the list
1068 * @new: new entry as the head of the list
1069 *
1070 * perform a cmpxchg on the first entry of the list.
1071 */
1072
io_llist_cmpxchg(struct llist_head * head,struct llist_node * old,struct llist_node * new)1073 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1074 struct llist_node *old,
1075 struct llist_node *new)
1076 {
1077 return cmpxchg(&head->first, old, new);
1078 }
1079
tctx_task_work(struct callback_head * cb)1080 void tctx_task_work(struct callback_head *cb)
1081 {
1082 bool uring_locked = false;
1083 struct io_ring_ctx *ctx = NULL;
1084 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1085 task_work);
1086 struct llist_node fake = {};
1087 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1088 unsigned int loops = 1;
1089 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1090
1091 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1092 while (node != &fake) {
1093 loops++;
1094 node = io_llist_xchg(&tctx->task_list, &fake);
1095 count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1096 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1097 }
1098
1099 ctx_flush_and_put(ctx, &uring_locked);
1100
1101 /* relaxed read is enough as only the task itself sets ->in_idle */
1102 if (unlikely(atomic_read(&tctx->in_idle)))
1103 io_uring_drop_tctx_refs(current);
1104
1105 trace_io_uring_task_work_run(tctx, count, loops);
1106 }
1107
io_req_local_work_add(struct io_kiocb * req)1108 static void io_req_local_work_add(struct io_kiocb *req)
1109 {
1110 struct io_ring_ctx *ctx = req->ctx;
1111
1112 if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1113 return;
1114 /* need it for the following io_cqring_wake() */
1115 smp_mb__after_atomic();
1116
1117 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1118 io_move_task_work_from_local(ctx);
1119 return;
1120 }
1121
1122 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1123 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1124
1125 if (ctx->has_evfd)
1126 io_eventfd_signal(ctx);
1127 __io_cqring_wake(ctx);
1128 }
1129
__io_req_task_work_add(struct io_kiocb * req,bool allow_local)1130 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1131 {
1132 struct io_uring_task *tctx = req->task->io_uring;
1133 struct io_ring_ctx *ctx = req->ctx;
1134 struct llist_node *node;
1135
1136 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1137 io_req_local_work_add(req);
1138 return;
1139 }
1140
1141 /* task_work already pending, we're done */
1142 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1143 return;
1144
1145 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1146 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1147
1148 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1149 return;
1150
1151 node = llist_del_all(&tctx->task_list);
1152
1153 while (node) {
1154 req = container_of(node, struct io_kiocb, io_task_work.node);
1155 node = node->next;
1156 if (llist_add(&req->io_task_work.node,
1157 &req->ctx->fallback_llist))
1158 schedule_delayed_work(&req->ctx->fallback_work, 1);
1159 }
1160 }
1161
io_req_task_work_add(struct io_kiocb * req)1162 void io_req_task_work_add(struct io_kiocb *req)
1163 {
1164 __io_req_task_work_add(req, true);
1165 }
1166
io_move_task_work_from_local(struct io_ring_ctx * ctx)1167 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1168 {
1169 struct llist_node *node;
1170
1171 node = llist_del_all(&ctx->work_llist);
1172 while (node) {
1173 struct io_kiocb *req = container_of(node, struct io_kiocb,
1174 io_task_work.node);
1175
1176 node = node->next;
1177 __io_req_task_work_add(req, false);
1178 }
1179 }
1180
__io_run_local_work(struct io_ring_ctx * ctx,bool * locked)1181 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1182 {
1183 struct llist_node *node;
1184 struct llist_node fake;
1185 struct llist_node *current_final = NULL;
1186 int ret;
1187 unsigned int loops = 1;
1188
1189 if (unlikely(ctx->submitter_task != current))
1190 return -EEXIST;
1191
1192 node = io_llist_xchg(&ctx->work_llist, &fake);
1193 ret = 0;
1194 again:
1195 while (node != current_final) {
1196 struct llist_node *next = node->next;
1197 struct io_kiocb *req = container_of(node, struct io_kiocb,
1198 io_task_work.node);
1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 req->io_task_work.func(req, locked);
1201 ret++;
1202 node = next;
1203 }
1204
1205 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1206 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1207
1208 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1209 if (node != &fake) {
1210 loops++;
1211 current_final = &fake;
1212 node = io_llist_xchg(&ctx->work_llist, &fake);
1213 goto again;
1214 }
1215
1216 if (*locked)
1217 io_submit_flush_completions(ctx);
1218 trace_io_uring_local_work_run(ctx, ret, loops);
1219 return ret;
1220
1221 }
1222
io_run_local_work(struct io_ring_ctx * ctx)1223 int io_run_local_work(struct io_ring_ctx *ctx)
1224 {
1225 bool locked;
1226 int ret;
1227
1228 if (llist_empty(&ctx->work_llist))
1229 return 0;
1230
1231 __set_current_state(TASK_RUNNING);
1232 locked = mutex_trylock(&ctx->uring_lock);
1233 ret = __io_run_local_work(ctx, &locked);
1234 if (locked)
1235 mutex_unlock(&ctx->uring_lock);
1236
1237 return ret;
1238 }
1239
io_req_tw_post(struct io_kiocb * req,bool * locked)1240 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1241 {
1242 io_req_complete_post(req);
1243 }
1244
io_req_tw_post_queue(struct io_kiocb * req,s32 res,u32 cflags)1245 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1246 {
1247 io_req_set_res(req, res, cflags);
1248 req->io_task_work.func = io_req_tw_post;
1249 io_req_task_work_add(req);
1250 }
1251
io_req_task_cancel(struct io_kiocb * req,bool * locked)1252 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1253 {
1254 /* not needed for normal modes, but SQPOLL depends on it */
1255 io_tw_lock(req->ctx, locked);
1256 io_req_complete_failed(req, req->cqe.res);
1257 }
1258
io_req_task_submit(struct io_kiocb * req,bool * locked)1259 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1260 {
1261 io_tw_lock(req->ctx, locked);
1262 /* req->task == current here, checking PF_EXITING is safe */
1263 if (likely(!(req->task->flags & PF_EXITING)))
1264 io_queue_sqe(req);
1265 else
1266 io_req_complete_failed(req, -EFAULT);
1267 }
1268
io_req_task_queue_fail(struct io_kiocb * req,int ret)1269 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1270 {
1271 io_req_set_res(req, ret, 0);
1272 req->io_task_work.func = io_req_task_cancel;
1273 io_req_task_work_add(req);
1274 }
1275
io_req_task_queue(struct io_kiocb * req)1276 void io_req_task_queue(struct io_kiocb *req)
1277 {
1278 req->io_task_work.func = io_req_task_submit;
1279 io_req_task_work_add(req);
1280 }
1281
io_queue_next(struct io_kiocb * req)1282 void io_queue_next(struct io_kiocb *req)
1283 {
1284 struct io_kiocb *nxt = io_req_find_next(req);
1285
1286 if (nxt)
1287 io_req_task_queue(nxt);
1288 }
1289
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1290 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1291 __must_hold(&ctx->uring_lock)
1292 {
1293 struct task_struct *task = NULL;
1294 int task_refs = 0;
1295
1296 do {
1297 struct io_kiocb *req = container_of(node, struct io_kiocb,
1298 comp_list);
1299
1300 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1301 if (req->flags & REQ_F_REFCOUNT) {
1302 node = req->comp_list.next;
1303 if (!req_ref_put_and_test(req))
1304 continue;
1305 }
1306 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1307 struct async_poll *apoll = req->apoll;
1308
1309 if (apoll->double_poll)
1310 kfree(apoll->double_poll);
1311 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1312 kfree(apoll);
1313 req->flags &= ~REQ_F_POLLED;
1314 }
1315 if (req->flags & IO_REQ_LINK_FLAGS)
1316 io_queue_next(req);
1317 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1318 io_clean_op(req);
1319 }
1320 if (!(req->flags & REQ_F_FIXED_FILE))
1321 io_put_file(req->file);
1322
1323 io_req_put_rsrc_locked(req, ctx);
1324
1325 if (req->task != task) {
1326 if (task)
1327 io_put_task(task, task_refs);
1328 task = req->task;
1329 task_refs = 0;
1330 }
1331 task_refs++;
1332 node = req->comp_list.next;
1333 io_req_add_to_cache(req, ctx);
1334 } while (node);
1335
1336 if (task)
1337 io_put_task(task, task_refs);
1338 }
1339
__io_submit_flush_completions(struct io_ring_ctx * ctx)1340 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1341 __must_hold(&ctx->uring_lock)
1342 {
1343 struct io_wq_work_node *node, *prev;
1344 struct io_submit_state *state = &ctx->submit_state;
1345
1346 io_cq_lock(ctx);
1347 wq_list_for_each(node, prev, &state->compl_reqs) {
1348 struct io_kiocb *req = container_of(node, struct io_kiocb,
1349 comp_list);
1350
1351 if (!(req->flags & REQ_F_CQE_SKIP))
1352 __io_fill_cqe_req(ctx, req);
1353 }
1354 __io_cq_unlock_post(ctx);
1355
1356 io_free_batch_list(ctx, state->compl_reqs.first);
1357 INIT_WQ_LIST(&state->compl_reqs);
1358 }
1359
1360 /*
1361 * Drop reference to request, return next in chain (if there is one) if this
1362 * was the last reference to this request.
1363 */
io_put_req_find_next(struct io_kiocb * req)1364 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1365 {
1366 struct io_kiocb *nxt = NULL;
1367
1368 if (req_ref_put_and_test(req)) {
1369 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1370 nxt = io_req_find_next(req);
1371 io_free_req(req);
1372 }
1373 return nxt;
1374 }
1375
io_cqring_events(struct io_ring_ctx * ctx)1376 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1377 {
1378 /* See comment at the top of this file */
1379 smp_rmb();
1380 return __io_cqring_events(ctx);
1381 }
1382
1383 /*
1384 * We can't just wait for polled events to come to us, we have to actively
1385 * find and complete them.
1386 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1387 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1388 {
1389 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1390 return;
1391
1392 mutex_lock(&ctx->uring_lock);
1393 while (!wq_list_empty(&ctx->iopoll_list)) {
1394 /* let it sleep and repeat later if can't complete a request */
1395 if (io_do_iopoll(ctx, true) == 0)
1396 break;
1397 /*
1398 * Ensure we allow local-to-the-cpu processing to take place,
1399 * in this case we need to ensure that we reap all events.
1400 * Also let task_work, etc. to progress by releasing the mutex
1401 */
1402 if (need_resched()) {
1403 mutex_unlock(&ctx->uring_lock);
1404 cond_resched();
1405 mutex_lock(&ctx->uring_lock);
1406 }
1407 }
1408 mutex_unlock(&ctx->uring_lock);
1409 }
1410
io_iopoll_check(struct io_ring_ctx * ctx,long min)1411 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1412 {
1413 unsigned int nr_events = 0;
1414 int ret = 0;
1415 unsigned long check_cq;
1416
1417 if (!io_allowed_run_tw(ctx))
1418 return -EEXIST;
1419
1420 check_cq = READ_ONCE(ctx->check_cq);
1421 if (unlikely(check_cq)) {
1422 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1423 __io_cqring_overflow_flush(ctx, false);
1424 /*
1425 * Similarly do not spin if we have not informed the user of any
1426 * dropped CQE.
1427 */
1428 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1429 return -EBADR;
1430 }
1431 /*
1432 * Don't enter poll loop if we already have events pending.
1433 * If we do, we can potentially be spinning for commands that
1434 * already triggered a CQE (eg in error).
1435 */
1436 if (io_cqring_events(ctx))
1437 return 0;
1438
1439 do {
1440 /*
1441 * If a submit got punted to a workqueue, we can have the
1442 * application entering polling for a command before it gets
1443 * issued. That app will hold the uring_lock for the duration
1444 * of the poll right here, so we need to take a breather every
1445 * now and then to ensure that the issue has a chance to add
1446 * the poll to the issued list. Otherwise we can spin here
1447 * forever, while the workqueue is stuck trying to acquire the
1448 * very same mutex.
1449 */
1450 if (wq_list_empty(&ctx->iopoll_list) ||
1451 io_task_work_pending(ctx)) {
1452 u32 tail = ctx->cached_cq_tail;
1453
1454 (void) io_run_local_work_locked(ctx);
1455
1456 if (task_work_pending(current) ||
1457 wq_list_empty(&ctx->iopoll_list)) {
1458 mutex_unlock(&ctx->uring_lock);
1459 io_run_task_work();
1460 mutex_lock(&ctx->uring_lock);
1461 }
1462 /* some requests don't go through iopoll_list */
1463 if (tail != ctx->cached_cq_tail ||
1464 wq_list_empty(&ctx->iopoll_list))
1465 break;
1466 }
1467 ret = io_do_iopoll(ctx, !min);
1468 if (ret < 0)
1469 break;
1470 nr_events += ret;
1471 ret = 0;
1472 } while (nr_events < min && !need_resched());
1473
1474 return ret;
1475 }
1476
io_req_task_complete(struct io_kiocb * req,bool * locked)1477 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1478 {
1479 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1480 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1481
1482 req->cqe.flags |= io_put_kbuf(req, issue_flags);
1483 }
1484
1485 if (*locked)
1486 io_req_complete_defer(req);
1487 else
1488 io_req_complete_post(req);
1489 }
1490
1491 /*
1492 * After the iocb has been issued, it's safe to be found on the poll list.
1493 * Adding the kiocb to the list AFTER submission ensures that we don't
1494 * find it from a io_do_iopoll() thread before the issuer is done
1495 * accessing the kiocb cookie.
1496 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1497 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1498 {
1499 struct io_ring_ctx *ctx = req->ctx;
1500 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1501
1502 /* workqueue context doesn't hold uring_lock, grab it now */
1503 if (unlikely(needs_lock))
1504 mutex_lock(&ctx->uring_lock);
1505
1506 /*
1507 * Track whether we have multiple files in our lists. This will impact
1508 * how we do polling eventually, not spinning if we're on potentially
1509 * different devices.
1510 */
1511 if (wq_list_empty(&ctx->iopoll_list)) {
1512 ctx->poll_multi_queue = false;
1513 } else if (!ctx->poll_multi_queue) {
1514 struct io_kiocb *list_req;
1515
1516 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1517 comp_list);
1518 if (list_req->file != req->file)
1519 ctx->poll_multi_queue = true;
1520 }
1521
1522 /*
1523 * For fast devices, IO may have already completed. If it has, add
1524 * it to the front so we find it first.
1525 */
1526 if (READ_ONCE(req->iopoll_completed))
1527 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1528 else
1529 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1530
1531 if (unlikely(needs_lock)) {
1532 /*
1533 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1534 * in sq thread task context or in io worker task context. If
1535 * current task context is sq thread, we don't need to check
1536 * whether should wake up sq thread.
1537 */
1538 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1539 wq_has_sleeper(&ctx->sq_data->wait))
1540 wake_up(&ctx->sq_data->wait);
1541
1542 mutex_unlock(&ctx->uring_lock);
1543 }
1544 }
1545
io_bdev_nowait(struct block_device * bdev)1546 static bool io_bdev_nowait(struct block_device *bdev)
1547 {
1548 return !bdev || bdev_nowait(bdev);
1549 }
1550
1551 /*
1552 * If we tracked the file through the SCM inflight mechanism, we could support
1553 * any file. For now, just ensure that anything potentially problematic is done
1554 * inline.
1555 */
__io_file_supports_nowait(struct file * file,umode_t mode)1556 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1557 {
1558 if (S_ISBLK(mode)) {
1559 if (IS_ENABLED(CONFIG_BLOCK) &&
1560 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1561 return true;
1562 return false;
1563 }
1564 if (S_ISSOCK(mode))
1565 return true;
1566 if (S_ISREG(mode)) {
1567 if (IS_ENABLED(CONFIG_BLOCK) &&
1568 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1569 !io_is_uring_fops(file))
1570 return true;
1571 return false;
1572 }
1573
1574 /* any ->read/write should understand O_NONBLOCK */
1575 if (file->f_flags & O_NONBLOCK)
1576 return true;
1577 return file->f_mode & FMODE_NOWAIT;
1578 }
1579
1580 /*
1581 * If we tracked the file through the SCM inflight mechanism, we could support
1582 * any file. For now, just ensure that anything potentially problematic is done
1583 * inline.
1584 */
io_file_get_flags(struct file * file)1585 unsigned int io_file_get_flags(struct file *file)
1586 {
1587 umode_t mode = file_inode(file)->i_mode;
1588 unsigned int res = 0;
1589
1590 if (S_ISREG(mode))
1591 res |= FFS_ISREG;
1592 if (__io_file_supports_nowait(file, mode))
1593 res |= FFS_NOWAIT;
1594 return res;
1595 }
1596
io_alloc_async_data(struct io_kiocb * req)1597 bool io_alloc_async_data(struct io_kiocb *req)
1598 {
1599 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1600 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1601 if (req->async_data) {
1602 req->flags |= REQ_F_ASYNC_DATA;
1603 return false;
1604 }
1605 return true;
1606 }
1607
io_req_prep_async(struct io_kiocb * req)1608 int io_req_prep_async(struct io_kiocb *req)
1609 {
1610 const struct io_op_def *def = &io_op_defs[req->opcode];
1611
1612 /* assign early for deferred execution for non-fixed file */
1613 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1614 req->file = io_file_get_normal(req, req->cqe.fd);
1615 if (!def->prep_async)
1616 return 0;
1617 if (WARN_ON_ONCE(req_has_async_data(req)))
1618 return -EFAULT;
1619 if (!io_op_defs[req->opcode].manual_alloc) {
1620 if (io_alloc_async_data(req))
1621 return -EAGAIN;
1622 }
1623 return def->prep_async(req);
1624 }
1625
io_get_sequence(struct io_kiocb * req)1626 static u32 io_get_sequence(struct io_kiocb *req)
1627 {
1628 u32 seq = req->ctx->cached_sq_head;
1629 struct io_kiocb *cur;
1630
1631 /* need original cached_sq_head, but it was increased for each req */
1632 io_for_each_link(cur, req)
1633 seq--;
1634 return seq;
1635 }
1636
io_drain_req(struct io_kiocb * req)1637 static __cold void io_drain_req(struct io_kiocb *req)
1638 {
1639 struct io_ring_ctx *ctx = req->ctx;
1640 struct io_defer_entry *de;
1641 int ret;
1642 u32 seq = io_get_sequence(req);
1643
1644 /* Still need defer if there is pending req in defer list. */
1645 spin_lock(&ctx->completion_lock);
1646 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1647 spin_unlock(&ctx->completion_lock);
1648 queue:
1649 ctx->drain_active = false;
1650 io_req_task_queue(req);
1651 return;
1652 }
1653 spin_unlock(&ctx->completion_lock);
1654
1655 ret = io_req_prep_async(req);
1656 if (ret) {
1657 fail:
1658 io_req_complete_failed(req, ret);
1659 return;
1660 }
1661 io_prep_async_link(req);
1662 de = kmalloc(sizeof(*de), GFP_KERNEL);
1663 if (!de) {
1664 ret = -ENOMEM;
1665 goto fail;
1666 }
1667
1668 spin_lock(&ctx->completion_lock);
1669 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1670 spin_unlock(&ctx->completion_lock);
1671 kfree(de);
1672 goto queue;
1673 }
1674
1675 trace_io_uring_defer(req);
1676 de->req = req;
1677 de->seq = seq;
1678 list_add_tail(&de->list, &ctx->defer_list);
1679 spin_unlock(&ctx->completion_lock);
1680 }
1681
io_clean_op(struct io_kiocb * req)1682 static void io_clean_op(struct io_kiocb *req)
1683 {
1684 if (req->flags & REQ_F_BUFFER_SELECTED) {
1685 spin_lock(&req->ctx->completion_lock);
1686 io_put_kbuf_comp(req);
1687 spin_unlock(&req->ctx->completion_lock);
1688 }
1689
1690 if (req->flags & REQ_F_NEED_CLEANUP) {
1691 const struct io_op_def *def = &io_op_defs[req->opcode];
1692
1693 if (def->cleanup)
1694 def->cleanup(req);
1695 }
1696 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1697 kfree(req->apoll->double_poll);
1698 kfree(req->apoll);
1699 req->apoll = NULL;
1700 }
1701 if (req->flags & REQ_F_INFLIGHT) {
1702 struct io_uring_task *tctx = req->task->io_uring;
1703
1704 atomic_dec(&tctx->inflight_tracked);
1705 }
1706 if (req->flags & REQ_F_CREDS)
1707 put_cred(req->creds);
1708 if (req->flags & REQ_F_ASYNC_DATA) {
1709 kfree(req->async_data);
1710 req->async_data = NULL;
1711 }
1712 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1713 }
1714
io_assign_file(struct io_kiocb * req,unsigned int issue_flags)1715 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1716 {
1717 if (req->file || !io_op_defs[req->opcode].needs_file)
1718 return true;
1719
1720 if (req->flags & REQ_F_FIXED_FILE)
1721 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1722 else
1723 req->file = io_file_get_normal(req, req->cqe.fd);
1724
1725 return !!req->file;
1726 }
1727
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1728 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1729 {
1730 const struct io_op_def *def = &io_op_defs[req->opcode];
1731 const struct cred *creds = NULL;
1732 int ret;
1733
1734 if (unlikely(!io_assign_file(req, issue_flags)))
1735 return -EBADF;
1736
1737 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1738 creds = override_creds(req->creds);
1739
1740 if (!def->audit_skip)
1741 audit_uring_entry(req->opcode);
1742
1743 ret = def->issue(req, issue_flags);
1744
1745 if (!def->audit_skip)
1746 audit_uring_exit(!ret, ret);
1747
1748 if (creds)
1749 revert_creds(creds);
1750
1751 if (ret == IOU_OK) {
1752 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1753 io_req_complete_defer(req);
1754 else
1755 io_req_complete_post(req);
1756 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1757 return ret;
1758
1759 /* If the op doesn't have a file, we're not polling for it */
1760 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1761 io_iopoll_req_issued(req, issue_flags);
1762
1763 return 0;
1764 }
1765
io_poll_issue(struct io_kiocb * req,bool * locked)1766 int io_poll_issue(struct io_kiocb *req, bool *locked)
1767 {
1768 io_tw_lock(req->ctx, locked);
1769 if (unlikely(req->task->flags & PF_EXITING))
1770 return -EFAULT;
1771 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT);
1772 }
1773
io_wq_free_work(struct io_wq_work * work)1774 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1775 {
1776 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1777
1778 req = io_put_req_find_next(req);
1779 return req ? &req->work : NULL;
1780 }
1781
io_wq_submit_work(struct io_wq_work * work)1782 void io_wq_submit_work(struct io_wq_work *work)
1783 {
1784 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1785 const struct io_op_def *def = &io_op_defs[req->opcode];
1786 unsigned int issue_flags = IO_URING_F_UNLOCKED;
1787 bool needs_poll = false;
1788 int ret = 0, err = -ECANCELED;
1789
1790 /* one will be dropped by ->io_free_work() after returning to io-wq */
1791 if (!(req->flags & REQ_F_REFCOUNT))
1792 __io_req_set_refcount(req, 2);
1793 else
1794 req_ref_get(req);
1795
1796 io_arm_ltimeout(req);
1797
1798 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1799 if (work->flags & IO_WQ_WORK_CANCEL) {
1800 fail:
1801 io_req_task_queue_fail(req, err);
1802 return;
1803 }
1804 if (!io_assign_file(req, issue_flags)) {
1805 err = -EBADF;
1806 work->flags |= IO_WQ_WORK_CANCEL;
1807 goto fail;
1808 }
1809
1810 if (req->flags & REQ_F_FORCE_ASYNC) {
1811 bool opcode_poll = def->pollin || def->pollout;
1812
1813 if (opcode_poll && file_can_poll(req->file)) {
1814 needs_poll = true;
1815 issue_flags |= IO_URING_F_NONBLOCK;
1816 }
1817 }
1818
1819 do {
1820 ret = io_issue_sqe(req, issue_flags);
1821 if (ret != -EAGAIN)
1822 break;
1823 /*
1824 * We can get EAGAIN for iopolled IO even though we're
1825 * forcing a sync submission from here, since we can't
1826 * wait for request slots on the block side.
1827 */
1828 if (!needs_poll) {
1829 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1830 break;
1831 cond_resched();
1832 continue;
1833 }
1834
1835 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1836 return;
1837 /* aborted or ready, in either case retry blocking */
1838 needs_poll = false;
1839 issue_flags &= ~IO_URING_F_NONBLOCK;
1840 } while (1);
1841
1842 /* avoid locking problems by failing it from a clean context */
1843 if (ret < 0)
1844 io_req_task_queue_fail(req, ret);
1845 }
1846
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1847 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1848 unsigned int issue_flags)
1849 {
1850 struct io_ring_ctx *ctx = req->ctx;
1851 struct file *file = NULL;
1852 unsigned long file_ptr;
1853
1854 io_ring_submit_lock(ctx, issue_flags);
1855
1856 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1857 goto out;
1858 fd = array_index_nospec(fd, ctx->nr_user_files);
1859 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1860 file = (struct file *) (file_ptr & FFS_MASK);
1861 file_ptr &= ~FFS_MASK;
1862 /* mask in overlapping REQ_F and FFS bits */
1863 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1864 io_req_set_rsrc_node(req, ctx, 0);
1865 out:
1866 io_ring_submit_unlock(ctx, issue_flags);
1867 return file;
1868 }
1869
io_file_get_normal(struct io_kiocb * req,int fd)1870 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1871 {
1872 struct file *file = fget(fd);
1873
1874 trace_io_uring_file_get(req, fd);
1875
1876 /* we don't allow fixed io_uring files */
1877 if (file && io_is_uring_fops(file))
1878 io_req_track_inflight(req);
1879 return file;
1880 }
1881
io_queue_async(struct io_kiocb * req,int ret)1882 static void io_queue_async(struct io_kiocb *req, int ret)
1883 __must_hold(&req->ctx->uring_lock)
1884 {
1885 struct io_kiocb *linked_timeout;
1886
1887 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1888 io_req_complete_failed(req, ret);
1889 return;
1890 }
1891
1892 linked_timeout = io_prep_linked_timeout(req);
1893
1894 switch (io_arm_poll_handler(req, 0)) {
1895 case IO_APOLL_READY:
1896 io_kbuf_recycle(req, 0);
1897 io_req_task_queue(req);
1898 break;
1899 case IO_APOLL_ABORTED:
1900 io_kbuf_recycle(req, 0);
1901 io_queue_iowq(req, NULL);
1902 break;
1903 case IO_APOLL_OK:
1904 break;
1905 }
1906
1907 if (linked_timeout)
1908 io_queue_linked_timeout(linked_timeout);
1909 }
1910
io_queue_sqe(struct io_kiocb * req)1911 static inline void io_queue_sqe(struct io_kiocb *req)
1912 __must_hold(&req->ctx->uring_lock)
1913 {
1914 int ret;
1915
1916 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1917
1918 /*
1919 * We async punt it if the file wasn't marked NOWAIT, or if the file
1920 * doesn't support non-blocking read/write attempts
1921 */
1922 if (likely(!ret))
1923 io_arm_ltimeout(req);
1924 else
1925 io_queue_async(req, ret);
1926 }
1927
io_queue_sqe_fallback(struct io_kiocb * req)1928 static void io_queue_sqe_fallback(struct io_kiocb *req)
1929 __must_hold(&req->ctx->uring_lock)
1930 {
1931 if (unlikely(req->flags & REQ_F_FAIL)) {
1932 /*
1933 * We don't submit, fail them all, for that replace hardlinks
1934 * with normal links. Extra REQ_F_LINK is tolerated.
1935 */
1936 req->flags &= ~REQ_F_HARDLINK;
1937 req->flags |= REQ_F_LINK;
1938 io_req_complete_failed(req, req->cqe.res);
1939 } else if (unlikely(req->ctx->drain_active)) {
1940 io_drain_req(req);
1941 } else {
1942 int ret = io_req_prep_async(req);
1943
1944 if (unlikely(ret))
1945 io_req_complete_failed(req, ret);
1946 else
1947 io_queue_iowq(req, NULL);
1948 }
1949 }
1950
1951 /*
1952 * Check SQE restrictions (opcode and flags).
1953 *
1954 * Returns 'true' if SQE is allowed, 'false' otherwise.
1955 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1956 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1957 struct io_kiocb *req,
1958 unsigned int sqe_flags)
1959 {
1960 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1961 return false;
1962
1963 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1964 ctx->restrictions.sqe_flags_required)
1965 return false;
1966
1967 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1968 ctx->restrictions.sqe_flags_required))
1969 return false;
1970
1971 return true;
1972 }
1973
io_init_req_drain(struct io_kiocb * req)1974 static void io_init_req_drain(struct io_kiocb *req)
1975 {
1976 struct io_ring_ctx *ctx = req->ctx;
1977 struct io_kiocb *head = ctx->submit_state.link.head;
1978
1979 ctx->drain_active = true;
1980 if (head) {
1981 /*
1982 * If we need to drain a request in the middle of a link, drain
1983 * the head request and the next request/link after the current
1984 * link. Considering sequential execution of links,
1985 * REQ_F_IO_DRAIN will be maintained for every request of our
1986 * link.
1987 */
1988 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1989 ctx->drain_next = true;
1990 }
1991 }
1992
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)1993 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1994 const struct io_uring_sqe *sqe)
1995 __must_hold(&ctx->uring_lock)
1996 {
1997 const struct io_op_def *def;
1998 unsigned int sqe_flags;
1999 int personality;
2000 u8 opcode;
2001
2002 /* req is partially pre-initialised, see io_preinit_req() */
2003 req->opcode = opcode = READ_ONCE(sqe->opcode);
2004 /* same numerical values with corresponding REQ_F_*, safe to copy */
2005 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2006 req->cqe.user_data = READ_ONCE(sqe->user_data);
2007 req->file = NULL;
2008 req->rsrc_node = NULL;
2009 req->task = current;
2010
2011 if (unlikely(opcode >= IORING_OP_LAST)) {
2012 req->opcode = 0;
2013 return -EINVAL;
2014 }
2015 def = &io_op_defs[opcode];
2016 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2017 /* enforce forwards compatibility on users */
2018 if (sqe_flags & ~SQE_VALID_FLAGS)
2019 return -EINVAL;
2020 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2021 if (!def->buffer_select)
2022 return -EOPNOTSUPP;
2023 req->buf_index = READ_ONCE(sqe->buf_group);
2024 }
2025 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2026 ctx->drain_disabled = true;
2027 if (sqe_flags & IOSQE_IO_DRAIN) {
2028 if (ctx->drain_disabled)
2029 return -EOPNOTSUPP;
2030 io_init_req_drain(req);
2031 }
2032 }
2033 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2034 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2035 return -EACCES;
2036 /* knock it to the slow queue path, will be drained there */
2037 if (ctx->drain_active)
2038 req->flags |= REQ_F_FORCE_ASYNC;
2039 /* if there is no link, we're at "next" request and need to drain */
2040 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2041 ctx->drain_next = false;
2042 ctx->drain_active = true;
2043 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2044 }
2045 }
2046
2047 if (!def->ioprio && sqe->ioprio)
2048 return -EINVAL;
2049 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2050 return -EINVAL;
2051
2052 if (def->needs_file) {
2053 struct io_submit_state *state = &ctx->submit_state;
2054
2055 req->cqe.fd = READ_ONCE(sqe->fd);
2056
2057 /*
2058 * Plug now if we have more than 2 IO left after this, and the
2059 * target is potentially a read/write to block based storage.
2060 */
2061 if (state->need_plug && def->plug) {
2062 state->plug_started = true;
2063 state->need_plug = false;
2064 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2065 }
2066 }
2067
2068 personality = READ_ONCE(sqe->personality);
2069 if (personality) {
2070 int ret;
2071
2072 req->creds = xa_load(&ctx->personalities, personality);
2073 if (!req->creds)
2074 return -EINVAL;
2075 get_cred(req->creds);
2076 ret = security_uring_override_creds(req->creds);
2077 if (ret) {
2078 put_cred(req->creds);
2079 return ret;
2080 }
2081 req->flags |= REQ_F_CREDS;
2082 }
2083
2084 return def->prep(req, sqe);
2085 }
2086
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2087 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2088 struct io_kiocb *req, int ret)
2089 {
2090 struct io_ring_ctx *ctx = req->ctx;
2091 struct io_submit_link *link = &ctx->submit_state.link;
2092 struct io_kiocb *head = link->head;
2093
2094 trace_io_uring_req_failed(sqe, req, ret);
2095
2096 /*
2097 * Avoid breaking links in the middle as it renders links with SQPOLL
2098 * unusable. Instead of failing eagerly, continue assembling the link if
2099 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2100 * should find the flag and handle the rest.
2101 */
2102 req_fail_link_node(req, ret);
2103 if (head && !(head->flags & REQ_F_FAIL))
2104 req_fail_link_node(head, -ECANCELED);
2105
2106 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2107 if (head) {
2108 link->last->link = req;
2109 link->head = NULL;
2110 req = head;
2111 }
2112 io_queue_sqe_fallback(req);
2113 return ret;
2114 }
2115
2116 if (head)
2117 link->last->link = req;
2118 else
2119 link->head = req;
2120 link->last = req;
2121 return 0;
2122 }
2123
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2124 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2125 const struct io_uring_sqe *sqe)
2126 __must_hold(&ctx->uring_lock)
2127 {
2128 struct io_submit_link *link = &ctx->submit_state.link;
2129 int ret;
2130
2131 ret = io_init_req(ctx, req, sqe);
2132 if (unlikely(ret))
2133 return io_submit_fail_init(sqe, req, ret);
2134
2135 /* don't need @sqe from now on */
2136 trace_io_uring_submit_sqe(req, true);
2137
2138 /*
2139 * If we already have a head request, queue this one for async
2140 * submittal once the head completes. If we don't have a head but
2141 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2142 * submitted sync once the chain is complete. If none of those
2143 * conditions are true (normal request), then just queue it.
2144 */
2145 if (unlikely(link->head)) {
2146 ret = io_req_prep_async(req);
2147 if (unlikely(ret))
2148 return io_submit_fail_init(sqe, req, ret);
2149
2150 trace_io_uring_link(req, link->head);
2151 link->last->link = req;
2152 link->last = req;
2153
2154 if (req->flags & IO_REQ_LINK_FLAGS)
2155 return 0;
2156 /* last request of the link, flush it */
2157 req = link->head;
2158 link->head = NULL;
2159 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2160 goto fallback;
2161
2162 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2163 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2164 if (req->flags & IO_REQ_LINK_FLAGS) {
2165 link->head = req;
2166 link->last = req;
2167 } else {
2168 fallback:
2169 io_queue_sqe_fallback(req);
2170 }
2171 return 0;
2172 }
2173
2174 io_queue_sqe(req);
2175 return 0;
2176 }
2177
2178 /*
2179 * Batched submission is done, ensure local IO is flushed out.
2180 */
io_submit_state_end(struct io_ring_ctx * ctx)2181 static void io_submit_state_end(struct io_ring_ctx *ctx)
2182 {
2183 struct io_submit_state *state = &ctx->submit_state;
2184
2185 if (unlikely(state->link.head))
2186 io_queue_sqe_fallback(state->link.head);
2187 /* flush only after queuing links as they can generate completions */
2188 io_submit_flush_completions(ctx);
2189 if (state->plug_started)
2190 blk_finish_plug(&state->plug);
2191 }
2192
2193 /*
2194 * Start submission side cache.
2195 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2196 static void io_submit_state_start(struct io_submit_state *state,
2197 unsigned int max_ios)
2198 {
2199 state->plug_started = false;
2200 state->need_plug = max_ios > 2;
2201 state->submit_nr = max_ios;
2202 /* set only head, no need to init link_last in advance */
2203 state->link.head = NULL;
2204 }
2205
io_commit_sqring(struct io_ring_ctx * ctx)2206 static void io_commit_sqring(struct io_ring_ctx *ctx)
2207 {
2208 struct io_rings *rings = ctx->rings;
2209
2210 /*
2211 * Ensure any loads from the SQEs are done at this point,
2212 * since once we write the new head, the application could
2213 * write new data to them.
2214 */
2215 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2216 }
2217
2218 /*
2219 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2220 * that is mapped by userspace. This means that care needs to be taken to
2221 * ensure that reads are stable, as we cannot rely on userspace always
2222 * being a good citizen. If members of the sqe are validated and then later
2223 * used, it's important that those reads are done through READ_ONCE() to
2224 * prevent a re-load down the line.
2225 */
io_get_sqe(struct io_ring_ctx * ctx)2226 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2227 {
2228 unsigned head, mask = ctx->sq_entries - 1;
2229 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2230
2231 /*
2232 * The cached sq head (or cq tail) serves two purposes:
2233 *
2234 * 1) allows us to batch the cost of updating the user visible
2235 * head updates.
2236 * 2) allows the kernel side to track the head on its own, even
2237 * though the application is the one updating it.
2238 */
2239 head = READ_ONCE(ctx->sq_array[sq_idx]);
2240 if (likely(head < ctx->sq_entries)) {
2241 /* double index for 128-byte SQEs, twice as long */
2242 if (ctx->flags & IORING_SETUP_SQE128)
2243 head <<= 1;
2244 return &ctx->sq_sqes[head];
2245 }
2246
2247 /* drop invalid entries */
2248 ctx->cq_extra--;
2249 WRITE_ONCE(ctx->rings->sq_dropped,
2250 READ_ONCE(ctx->rings->sq_dropped) + 1);
2251 return NULL;
2252 }
2253
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2254 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2255 __must_hold(&ctx->uring_lock)
2256 {
2257 unsigned int entries = io_sqring_entries(ctx);
2258 unsigned int left;
2259 int ret;
2260
2261 if (unlikely(!entries))
2262 return 0;
2263 /* make sure SQ entry isn't read before tail */
2264 ret = left = min3(nr, ctx->sq_entries, entries);
2265 io_get_task_refs(left);
2266 io_submit_state_start(&ctx->submit_state, left);
2267
2268 do {
2269 const struct io_uring_sqe *sqe;
2270 struct io_kiocb *req;
2271
2272 if (unlikely(!io_alloc_req_refill(ctx)))
2273 break;
2274 req = io_alloc_req(ctx);
2275 sqe = io_get_sqe(ctx);
2276 if (unlikely(!sqe)) {
2277 io_req_add_to_cache(req, ctx);
2278 break;
2279 }
2280
2281 /*
2282 * Continue submitting even for sqe failure if the
2283 * ring was setup with IORING_SETUP_SUBMIT_ALL
2284 */
2285 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2286 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2287 left--;
2288 break;
2289 }
2290 } while (--left);
2291
2292 if (unlikely(left)) {
2293 ret -= left;
2294 /* try again if it submitted nothing and can't allocate a req */
2295 if (!ret && io_req_cache_empty(ctx))
2296 ret = -EAGAIN;
2297 current->io_uring->cached_refs += left;
2298 }
2299
2300 io_submit_state_end(ctx);
2301 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2302 io_commit_sqring(ctx);
2303 return ret;
2304 }
2305
2306 struct io_wait_queue {
2307 struct wait_queue_entry wq;
2308 struct io_ring_ctx *ctx;
2309 unsigned cq_tail;
2310 unsigned nr_timeouts;
2311 };
2312
io_has_work(struct io_ring_ctx * ctx)2313 static inline bool io_has_work(struct io_ring_ctx *ctx)
2314 {
2315 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2316 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2317 !llist_empty(&ctx->work_llist));
2318 }
2319
io_should_wake(struct io_wait_queue * iowq)2320 static inline bool io_should_wake(struct io_wait_queue *iowq)
2321 {
2322 struct io_ring_ctx *ctx = iowq->ctx;
2323 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2324
2325 /*
2326 * Wake up if we have enough events, or if a timeout occurred since we
2327 * started waiting. For timeouts, we always want to return to userspace,
2328 * regardless of event count.
2329 */
2330 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2331 }
2332
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2333 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2334 int wake_flags, void *key)
2335 {
2336 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2337 wq);
2338 struct io_ring_ctx *ctx = iowq->ctx;
2339
2340 /*
2341 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2342 * the task, and the next invocation will do it.
2343 */
2344 if (io_should_wake(iowq) || io_has_work(ctx))
2345 return autoremove_wake_function(curr, mode, wake_flags, key);
2346 return -1;
2347 }
2348
io_run_task_work_sig(struct io_ring_ctx * ctx)2349 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2350 {
2351 if (io_run_task_work_ctx(ctx) > 0)
2352 return 1;
2353 if (task_sigpending(current))
2354 return -EINTR;
2355 return 0;
2356 }
2357
2358 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t timeout)2359 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2360 struct io_wait_queue *iowq,
2361 ktime_t timeout)
2362 {
2363 int ret;
2364 unsigned long check_cq;
2365
2366 /* make sure we run task_work before checking for signals */
2367 ret = io_run_task_work_sig(ctx);
2368 if (ret || io_should_wake(iowq))
2369 return ret;
2370
2371 check_cq = READ_ONCE(ctx->check_cq);
2372 if (unlikely(check_cq)) {
2373 /* let the caller flush overflows, retry */
2374 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2375 return 1;
2376 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2377 return -EBADR;
2378 }
2379 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2380 return -ETIME;
2381 return 1;
2382 }
2383
2384 /*
2385 * Wait until events become available, if we don't already have some. The
2386 * application must reap them itself, as they reside on the shared cq ring.
2387 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2388 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2389 const sigset_t __user *sig, size_t sigsz,
2390 struct __kernel_timespec __user *uts)
2391 {
2392 struct io_wait_queue iowq;
2393 struct io_rings *rings = ctx->rings;
2394 ktime_t timeout = KTIME_MAX;
2395 int ret;
2396
2397 if (!io_allowed_run_tw(ctx))
2398 return -EEXIST;
2399
2400 do {
2401 /* always run at least 1 task work to process local work */
2402 ret = io_run_task_work_ctx(ctx);
2403 if (ret < 0)
2404 return ret;
2405 io_cqring_overflow_flush(ctx);
2406
2407 /* if user messes with these they will just get an early return */
2408 if (__io_cqring_events_user(ctx) >= min_events)
2409 return 0;
2410 } while (ret > 0);
2411
2412 if (sig) {
2413 #ifdef CONFIG_COMPAT
2414 if (in_compat_syscall())
2415 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2416 sigsz);
2417 else
2418 #endif
2419 ret = set_user_sigmask(sig, sigsz);
2420
2421 if (ret)
2422 return ret;
2423 }
2424
2425 if (uts) {
2426 struct timespec64 ts;
2427
2428 if (get_timespec64(&ts, uts))
2429 return -EFAULT;
2430 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2431 }
2432
2433 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2434 iowq.wq.private = current;
2435 INIT_LIST_HEAD(&iowq.wq.entry);
2436 iowq.ctx = ctx;
2437 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2438 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2439
2440 trace_io_uring_cqring_wait(ctx, min_events);
2441 do {
2442 /* if we can't even flush overflow, don't wait for more */
2443 if (!io_cqring_overflow_flush(ctx)) {
2444 ret = -EBUSY;
2445 break;
2446 }
2447 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2448 TASK_INTERRUPTIBLE);
2449 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2450 cond_resched();
2451 } while (ret > 0);
2452
2453 finish_wait(&ctx->cq_wait, &iowq.wq);
2454 restore_saved_sigmask_unless(ret == -EINTR);
2455
2456 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2457 }
2458
io_mem_free(void * ptr)2459 static void io_mem_free(void *ptr)
2460 {
2461 struct page *page;
2462
2463 if (!ptr)
2464 return;
2465
2466 page = virt_to_head_page(ptr);
2467 if (put_page_testzero(page))
2468 free_compound_page(page);
2469 }
2470
io_mem_alloc(size_t size)2471 static void *io_mem_alloc(size_t size)
2472 {
2473 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2474
2475 return (void *) __get_free_pages(gfp, get_order(size));
2476 }
2477
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2478 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2479 unsigned int cq_entries, size_t *sq_offset)
2480 {
2481 struct io_rings *rings;
2482 size_t off, sq_array_size;
2483
2484 off = struct_size(rings, cqes, cq_entries);
2485 if (off == SIZE_MAX)
2486 return SIZE_MAX;
2487 if (ctx->flags & IORING_SETUP_CQE32) {
2488 if (check_shl_overflow(off, 1, &off))
2489 return SIZE_MAX;
2490 }
2491
2492 #ifdef CONFIG_SMP
2493 off = ALIGN(off, SMP_CACHE_BYTES);
2494 if (off == 0)
2495 return SIZE_MAX;
2496 #endif
2497
2498 if (sq_offset)
2499 *sq_offset = off;
2500
2501 sq_array_size = array_size(sizeof(u32), sq_entries);
2502 if (sq_array_size == SIZE_MAX)
2503 return SIZE_MAX;
2504
2505 if (check_add_overflow(off, sq_array_size, &off))
2506 return SIZE_MAX;
2507
2508 return off;
2509 }
2510
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2511 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2512 unsigned int eventfd_async)
2513 {
2514 struct io_ev_fd *ev_fd;
2515 __s32 __user *fds = arg;
2516 int fd;
2517
2518 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2519 lockdep_is_held(&ctx->uring_lock));
2520 if (ev_fd)
2521 return -EBUSY;
2522
2523 if (copy_from_user(&fd, fds, sizeof(*fds)))
2524 return -EFAULT;
2525
2526 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2527 if (!ev_fd)
2528 return -ENOMEM;
2529
2530 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2531 if (IS_ERR(ev_fd->cq_ev_fd)) {
2532 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2533 kfree(ev_fd);
2534 return ret;
2535 }
2536
2537 spin_lock(&ctx->completion_lock);
2538 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2539 spin_unlock(&ctx->completion_lock);
2540
2541 ev_fd->eventfd_async = eventfd_async;
2542 ctx->has_evfd = true;
2543 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2544 atomic_set(&ev_fd->refs, 1);
2545 atomic_set(&ev_fd->ops, 0);
2546 return 0;
2547 }
2548
io_eventfd_unregister(struct io_ring_ctx * ctx)2549 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2550 {
2551 struct io_ev_fd *ev_fd;
2552
2553 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2554 lockdep_is_held(&ctx->uring_lock));
2555 if (ev_fd) {
2556 ctx->has_evfd = false;
2557 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2558 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2559 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2560 return 0;
2561 }
2562
2563 return -ENXIO;
2564 }
2565
io_req_caches_free(struct io_ring_ctx * ctx)2566 static void io_req_caches_free(struct io_ring_ctx *ctx)
2567 {
2568 int nr = 0;
2569
2570 mutex_lock(&ctx->uring_lock);
2571 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2572
2573 while (!io_req_cache_empty(ctx)) {
2574 struct io_kiocb *req = io_alloc_req(ctx);
2575
2576 kmem_cache_free(req_cachep, req);
2577 nr++;
2578 }
2579 if (nr)
2580 percpu_ref_put_many(&ctx->refs, nr);
2581 mutex_unlock(&ctx->uring_lock);
2582 }
2583
io_ring_ctx_free(struct io_ring_ctx * ctx)2584 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2585 {
2586 io_sq_thread_finish(ctx);
2587 io_rsrc_refs_drop(ctx);
2588 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2589 io_wait_rsrc_data(ctx->buf_data);
2590 io_wait_rsrc_data(ctx->file_data);
2591
2592 mutex_lock(&ctx->uring_lock);
2593 if (ctx->buf_data)
2594 __io_sqe_buffers_unregister(ctx);
2595 if (ctx->file_data)
2596 __io_sqe_files_unregister(ctx);
2597 if (ctx->rings)
2598 __io_cqring_overflow_flush(ctx, true);
2599 io_eventfd_unregister(ctx);
2600 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2601 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2602 mutex_unlock(&ctx->uring_lock);
2603 io_destroy_buffers(ctx);
2604 if (ctx->sq_creds)
2605 put_cred(ctx->sq_creds);
2606 if (ctx->submitter_task)
2607 put_task_struct(ctx->submitter_task);
2608
2609 /* there are no registered resources left, nobody uses it */
2610 if (ctx->rsrc_node)
2611 io_rsrc_node_destroy(ctx->rsrc_node);
2612 if (ctx->rsrc_backup_node)
2613 io_rsrc_node_destroy(ctx->rsrc_backup_node);
2614 flush_delayed_work(&ctx->rsrc_put_work);
2615 flush_delayed_work(&ctx->fallback_work);
2616
2617 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2618 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2619
2620 #if defined(CONFIG_UNIX)
2621 if (ctx->ring_sock) {
2622 ctx->ring_sock->file = NULL; /* so that iput() is called */
2623 sock_release(ctx->ring_sock);
2624 }
2625 #endif
2626 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2627
2628 if (ctx->mm_account) {
2629 mmdrop(ctx->mm_account);
2630 ctx->mm_account = NULL;
2631 }
2632 io_mem_free(ctx->rings);
2633 io_mem_free(ctx->sq_sqes);
2634
2635 percpu_ref_exit(&ctx->refs);
2636 free_uid(ctx->user);
2637 io_req_caches_free(ctx);
2638 if (ctx->hash_map)
2639 io_wq_put_hash(ctx->hash_map);
2640 kfree(ctx->cancel_table.hbs);
2641 kfree(ctx->cancel_table_locked.hbs);
2642 kfree(ctx->dummy_ubuf);
2643 kfree(ctx->io_bl);
2644 xa_destroy(&ctx->io_bl_xa);
2645 kfree(ctx);
2646 }
2647
io_uring_poll(struct file * file,poll_table * wait)2648 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2649 {
2650 struct io_ring_ctx *ctx = file->private_data;
2651 __poll_t mask = 0;
2652
2653 poll_wait(file, &ctx->cq_wait, wait);
2654 /*
2655 * synchronizes with barrier from wq_has_sleeper call in
2656 * io_commit_cqring
2657 */
2658 smp_rmb();
2659 if (!io_sqring_full(ctx))
2660 mask |= EPOLLOUT | EPOLLWRNORM;
2661
2662 /*
2663 * Don't flush cqring overflow list here, just do a simple check.
2664 * Otherwise there could possible be ABBA deadlock:
2665 * CPU0 CPU1
2666 * ---- ----
2667 * lock(&ctx->uring_lock);
2668 * lock(&ep->mtx);
2669 * lock(&ctx->uring_lock);
2670 * lock(&ep->mtx);
2671 *
2672 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2673 * pushs them to do the flush.
2674 */
2675
2676 if (io_cqring_events(ctx) || io_has_work(ctx))
2677 mask |= EPOLLIN | EPOLLRDNORM;
2678
2679 return mask;
2680 }
2681
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)2682 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2683 {
2684 const struct cred *creds;
2685
2686 creds = xa_erase(&ctx->personalities, id);
2687 if (creds) {
2688 put_cred(creds);
2689 return 0;
2690 }
2691
2692 return -EINVAL;
2693 }
2694
2695 struct io_tctx_exit {
2696 struct callback_head task_work;
2697 struct completion completion;
2698 struct io_ring_ctx *ctx;
2699 };
2700
io_tctx_exit_cb(struct callback_head * cb)2701 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2702 {
2703 struct io_uring_task *tctx = current->io_uring;
2704 struct io_tctx_exit *work;
2705
2706 work = container_of(cb, struct io_tctx_exit, task_work);
2707 /*
2708 * When @in_idle, we're in cancellation and it's racy to remove the
2709 * node. It'll be removed by the end of cancellation, just ignore it.
2710 * tctx can be NULL if the queueing of this task_work raced with
2711 * work cancelation off the exec path.
2712 */
2713 if (tctx && !atomic_read(&tctx->in_idle))
2714 io_uring_del_tctx_node((unsigned long)work->ctx);
2715 complete(&work->completion);
2716 }
2717
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2718 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2719 {
2720 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2721
2722 return req->ctx == data;
2723 }
2724
io_ring_exit_work(struct work_struct * work)2725 static __cold void io_ring_exit_work(struct work_struct *work)
2726 {
2727 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2728 unsigned long timeout = jiffies + HZ * 60 * 5;
2729 unsigned long interval = HZ / 20;
2730 struct io_tctx_exit exit;
2731 struct io_tctx_node *node;
2732 int ret;
2733
2734 /*
2735 * If we're doing polled IO and end up having requests being
2736 * submitted async (out-of-line), then completions can come in while
2737 * we're waiting for refs to drop. We need to reap these manually,
2738 * as nobody else will be looking for them.
2739 */
2740 do {
2741 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2742 io_move_task_work_from_local(ctx);
2743
2744 while (io_uring_try_cancel_requests(ctx, NULL, true))
2745 cond_resched();
2746
2747 if (ctx->sq_data) {
2748 struct io_sq_data *sqd = ctx->sq_data;
2749 struct task_struct *tsk;
2750
2751 io_sq_thread_park(sqd);
2752 tsk = sqd->thread;
2753 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2754 io_wq_cancel_cb(tsk->io_uring->io_wq,
2755 io_cancel_ctx_cb, ctx, true);
2756 io_sq_thread_unpark(sqd);
2757 }
2758
2759 io_req_caches_free(ctx);
2760
2761 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2762 /* there is little hope left, don't run it too often */
2763 interval = HZ * 60;
2764 }
2765 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2766
2767 init_completion(&exit.completion);
2768 init_task_work(&exit.task_work, io_tctx_exit_cb);
2769 exit.ctx = ctx;
2770 /*
2771 * Some may use context even when all refs and requests have been put,
2772 * and they are free to do so while still holding uring_lock or
2773 * completion_lock, see io_req_task_submit(). Apart from other work,
2774 * this lock/unlock section also waits them to finish.
2775 */
2776 mutex_lock(&ctx->uring_lock);
2777 while (!list_empty(&ctx->tctx_list)) {
2778 WARN_ON_ONCE(time_after(jiffies, timeout));
2779
2780 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2781 ctx_node);
2782 /* don't spin on a single task if cancellation failed */
2783 list_rotate_left(&ctx->tctx_list);
2784 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2785 if (WARN_ON_ONCE(ret))
2786 continue;
2787
2788 mutex_unlock(&ctx->uring_lock);
2789 wait_for_completion(&exit.completion);
2790 mutex_lock(&ctx->uring_lock);
2791 }
2792 mutex_unlock(&ctx->uring_lock);
2793 spin_lock(&ctx->completion_lock);
2794 spin_unlock(&ctx->completion_lock);
2795
2796 io_ring_ctx_free(ctx);
2797 }
2798
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2799 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2800 {
2801 unsigned long index;
2802 struct creds *creds;
2803
2804 mutex_lock(&ctx->uring_lock);
2805 percpu_ref_kill(&ctx->refs);
2806 if (ctx->rings)
2807 __io_cqring_overflow_flush(ctx, true);
2808 xa_for_each(&ctx->personalities, index, creds)
2809 io_unregister_personality(ctx, index);
2810 if (ctx->rings)
2811 io_poll_remove_all(ctx, NULL, true);
2812 mutex_unlock(&ctx->uring_lock);
2813
2814 /*
2815 * If we failed setting up the ctx, we might not have any rings
2816 * and therefore did not submit any requests
2817 */
2818 if (ctx->rings)
2819 io_kill_timeouts(ctx, NULL, true);
2820
2821 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2822 /*
2823 * Use system_unbound_wq to avoid spawning tons of event kworkers
2824 * if we're exiting a ton of rings at the same time. It just adds
2825 * noise and overhead, there's no discernable change in runtime
2826 * over using system_wq.
2827 */
2828 queue_work(system_unbound_wq, &ctx->exit_work);
2829 }
2830
io_uring_release(struct inode * inode,struct file * file)2831 static int io_uring_release(struct inode *inode, struct file *file)
2832 {
2833 struct io_ring_ctx *ctx = file->private_data;
2834
2835 file->private_data = NULL;
2836 io_ring_ctx_wait_and_kill(ctx);
2837 return 0;
2838 }
2839
2840 struct io_task_cancel {
2841 struct task_struct *task;
2842 bool all;
2843 };
2844
io_cancel_task_cb(struct io_wq_work * work,void * data)2845 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2846 {
2847 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2848 struct io_task_cancel *cancel = data;
2849
2850 return io_match_task_safe(req, cancel->task, cancel->all);
2851 }
2852
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)2853 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2854 struct task_struct *task,
2855 bool cancel_all)
2856 {
2857 struct io_defer_entry *de;
2858 LIST_HEAD(list);
2859
2860 spin_lock(&ctx->completion_lock);
2861 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2862 if (io_match_task_safe(de->req, task, cancel_all)) {
2863 list_cut_position(&list, &ctx->defer_list, &de->list);
2864 break;
2865 }
2866 }
2867 spin_unlock(&ctx->completion_lock);
2868 if (list_empty(&list))
2869 return false;
2870
2871 while (!list_empty(&list)) {
2872 de = list_first_entry(&list, struct io_defer_entry, list);
2873 list_del_init(&de->list);
2874 io_req_complete_failed(de->req, -ECANCELED);
2875 kfree(de);
2876 }
2877 return true;
2878 }
2879
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)2880 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2881 {
2882 struct io_tctx_node *node;
2883 enum io_wq_cancel cret;
2884 bool ret = false;
2885
2886 mutex_lock(&ctx->uring_lock);
2887 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2888 struct io_uring_task *tctx = node->task->io_uring;
2889
2890 /*
2891 * io_wq will stay alive while we hold uring_lock, because it's
2892 * killed after ctx nodes, which requires to take the lock.
2893 */
2894 if (!tctx || !tctx->io_wq)
2895 continue;
2896 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2897 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2898 }
2899 mutex_unlock(&ctx->uring_lock);
2900
2901 return ret;
2902 }
2903
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)2904 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2905 struct task_struct *task,
2906 bool cancel_all)
2907 {
2908 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2909 struct io_uring_task *tctx = task ? task->io_uring : NULL;
2910 enum io_wq_cancel cret;
2911 bool ret = false;
2912
2913 /* failed during ring init, it couldn't have issued any requests */
2914 if (!ctx->rings)
2915 return false;
2916
2917 if (!task) {
2918 ret |= io_uring_try_cancel_iowq(ctx);
2919 } else if (tctx && tctx->io_wq) {
2920 /*
2921 * Cancels requests of all rings, not only @ctx, but
2922 * it's fine as the task is in exit/exec.
2923 */
2924 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2925 &cancel, true);
2926 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2927 }
2928
2929 /* SQPOLL thread does its own polling */
2930 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2931 (ctx->sq_data && ctx->sq_data->thread == current)) {
2932 while (!wq_list_empty(&ctx->iopoll_list)) {
2933 io_iopoll_try_reap_events(ctx);
2934 ret = true;
2935 }
2936 }
2937
2938 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2939 ret |= io_run_local_work(ctx) > 0;
2940 ret |= io_cancel_defer_files(ctx, task, cancel_all);
2941 mutex_lock(&ctx->uring_lock);
2942 ret |= io_poll_remove_all(ctx, task, cancel_all);
2943 mutex_unlock(&ctx->uring_lock);
2944 ret |= io_kill_timeouts(ctx, task, cancel_all);
2945 if (task)
2946 ret |= io_run_task_work() > 0;
2947 return ret;
2948 }
2949
tctx_inflight(struct io_uring_task * tctx,bool tracked)2950 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2951 {
2952 if (tracked)
2953 return atomic_read(&tctx->inflight_tracked);
2954 return percpu_counter_sum(&tctx->inflight);
2955 }
2956
2957 /*
2958 * Find any io_uring ctx that this task has registered or done IO on, and cancel
2959 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2960 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)2961 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2962 {
2963 struct io_uring_task *tctx = current->io_uring;
2964 struct io_ring_ctx *ctx;
2965 s64 inflight;
2966 DEFINE_WAIT(wait);
2967
2968 WARN_ON_ONCE(sqd && sqd->thread != current);
2969
2970 if (!current->io_uring)
2971 return;
2972 if (tctx->io_wq)
2973 io_wq_exit_start(tctx->io_wq);
2974
2975 atomic_inc(&tctx->in_idle);
2976 do {
2977 bool loop = false;
2978
2979 io_uring_drop_tctx_refs(current);
2980 /* read completions before cancelations */
2981 inflight = tctx_inflight(tctx, !cancel_all);
2982 if (!inflight)
2983 break;
2984
2985 if (!sqd) {
2986 struct io_tctx_node *node;
2987 unsigned long index;
2988
2989 xa_for_each(&tctx->xa, index, node) {
2990 /* sqpoll task will cancel all its requests */
2991 if (node->ctx->sq_data)
2992 continue;
2993 loop |= io_uring_try_cancel_requests(node->ctx,
2994 current, cancel_all);
2995 }
2996 } else {
2997 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
2998 loop |= io_uring_try_cancel_requests(ctx,
2999 current,
3000 cancel_all);
3001 }
3002
3003 if (loop) {
3004 cond_resched();
3005 continue;
3006 }
3007
3008 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3009 io_run_task_work();
3010 io_uring_drop_tctx_refs(current);
3011
3012 /*
3013 * If we've seen completions, retry without waiting. This
3014 * avoids a race where a completion comes in before we did
3015 * prepare_to_wait().
3016 */
3017 if (inflight == tctx_inflight(tctx, !cancel_all))
3018 schedule();
3019 finish_wait(&tctx->wait, &wait);
3020 } while (1);
3021
3022 io_uring_clean_tctx(tctx);
3023 if (cancel_all) {
3024 /*
3025 * We shouldn't run task_works after cancel, so just leave
3026 * ->in_idle set for normal exit.
3027 */
3028 atomic_dec(&tctx->in_idle);
3029 /* for exec all current's requests should be gone, kill tctx */
3030 __io_uring_free(current);
3031 }
3032 }
3033
__io_uring_cancel(bool cancel_all)3034 void __io_uring_cancel(bool cancel_all)
3035 {
3036 io_uring_cancel_generic(cancel_all, NULL);
3037 }
3038
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3039 static void *io_uring_validate_mmap_request(struct file *file,
3040 loff_t pgoff, size_t sz)
3041 {
3042 struct io_ring_ctx *ctx = file->private_data;
3043 loff_t offset = pgoff << PAGE_SHIFT;
3044 struct page *page;
3045 void *ptr;
3046
3047 switch (offset) {
3048 case IORING_OFF_SQ_RING:
3049 case IORING_OFF_CQ_RING:
3050 ptr = ctx->rings;
3051 break;
3052 case IORING_OFF_SQES:
3053 ptr = ctx->sq_sqes;
3054 break;
3055 default:
3056 return ERR_PTR(-EINVAL);
3057 }
3058
3059 page = virt_to_head_page(ptr);
3060 if (sz > page_size(page))
3061 return ERR_PTR(-EINVAL);
3062
3063 return ptr;
3064 }
3065
3066 #ifdef CONFIG_MMU
3067
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3068 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3069 {
3070 size_t sz = vma->vm_end - vma->vm_start;
3071 unsigned long pfn;
3072 void *ptr;
3073
3074 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3075 if (IS_ERR(ptr))
3076 return PTR_ERR(ptr);
3077
3078 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3079 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3080 }
3081
3082 #else /* !CONFIG_MMU */
3083
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3084 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3085 {
3086 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3087 }
3088
io_uring_nommu_mmap_capabilities(struct file * file)3089 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3090 {
3091 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3092 }
3093
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3094 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3095 unsigned long addr, unsigned long len,
3096 unsigned long pgoff, unsigned long flags)
3097 {
3098 void *ptr;
3099
3100 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3101 if (IS_ERR(ptr))
3102 return PTR_ERR(ptr);
3103
3104 return (unsigned long) ptr;
3105 }
3106
3107 #endif /* !CONFIG_MMU */
3108
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3109 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3110 {
3111 if (flags & IORING_ENTER_EXT_ARG) {
3112 struct io_uring_getevents_arg arg;
3113
3114 if (argsz != sizeof(arg))
3115 return -EINVAL;
3116 if (copy_from_user(&arg, argp, sizeof(arg)))
3117 return -EFAULT;
3118 }
3119 return 0;
3120 }
3121
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3122 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3123 struct __kernel_timespec __user **ts,
3124 const sigset_t __user **sig)
3125 {
3126 struct io_uring_getevents_arg arg;
3127
3128 /*
3129 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3130 * is just a pointer to the sigset_t.
3131 */
3132 if (!(flags & IORING_ENTER_EXT_ARG)) {
3133 *sig = (const sigset_t __user *) argp;
3134 *ts = NULL;
3135 return 0;
3136 }
3137
3138 /*
3139 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3140 * timespec and sigset_t pointers if good.
3141 */
3142 if (*argsz != sizeof(arg))
3143 return -EINVAL;
3144 if (copy_from_user(&arg, argp, sizeof(arg)))
3145 return -EFAULT;
3146 if (arg.pad)
3147 return -EINVAL;
3148 *sig = u64_to_user_ptr(arg.sigmask);
3149 *argsz = arg.sigmask_sz;
3150 *ts = u64_to_user_ptr(arg.ts);
3151 return 0;
3152 }
3153
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3154 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3155 u32, min_complete, u32, flags, const void __user *, argp,
3156 size_t, argsz)
3157 {
3158 struct io_ring_ctx *ctx;
3159 struct fd f;
3160 long ret;
3161
3162 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3163 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3164 IORING_ENTER_REGISTERED_RING)))
3165 return -EINVAL;
3166
3167 /*
3168 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3169 * need only dereference our task private array to find it.
3170 */
3171 if (flags & IORING_ENTER_REGISTERED_RING) {
3172 struct io_uring_task *tctx = current->io_uring;
3173
3174 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3175 return -EINVAL;
3176 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3177 f.file = tctx->registered_rings[fd];
3178 f.flags = 0;
3179 if (unlikely(!f.file))
3180 return -EBADF;
3181 } else {
3182 f = fdget(fd);
3183 if (unlikely(!f.file))
3184 return -EBADF;
3185 ret = -EOPNOTSUPP;
3186 if (unlikely(!io_is_uring_fops(f.file)))
3187 goto out;
3188 }
3189
3190 ctx = f.file->private_data;
3191 ret = -EBADFD;
3192 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3193 goto out;
3194
3195 /*
3196 * For SQ polling, the thread will do all submissions and completions.
3197 * Just return the requested submit count, and wake the thread if
3198 * we were asked to.
3199 */
3200 ret = 0;
3201 if (ctx->flags & IORING_SETUP_SQPOLL) {
3202 io_cqring_overflow_flush(ctx);
3203
3204 if (unlikely(ctx->sq_data->thread == NULL)) {
3205 ret = -EOWNERDEAD;
3206 goto out;
3207 }
3208 if (flags & IORING_ENTER_SQ_WAKEUP)
3209 wake_up(&ctx->sq_data->wait);
3210 if (flags & IORING_ENTER_SQ_WAIT) {
3211 ret = io_sqpoll_wait_sq(ctx);
3212 if (ret)
3213 goto out;
3214 }
3215 ret = to_submit;
3216 } else if (to_submit) {
3217 ret = io_uring_add_tctx_node(ctx);
3218 if (unlikely(ret))
3219 goto out;
3220
3221 mutex_lock(&ctx->uring_lock);
3222 ret = io_submit_sqes(ctx, to_submit);
3223 if (ret != to_submit) {
3224 mutex_unlock(&ctx->uring_lock);
3225 goto out;
3226 }
3227 if (flags & IORING_ENTER_GETEVENTS) {
3228 if (ctx->syscall_iopoll)
3229 goto iopoll_locked;
3230 /*
3231 * Ignore errors, we'll soon call io_cqring_wait() and
3232 * it should handle ownership problems if any.
3233 */
3234 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3235 (void)io_run_local_work_locked(ctx);
3236 }
3237 mutex_unlock(&ctx->uring_lock);
3238 }
3239
3240 if (flags & IORING_ENTER_GETEVENTS) {
3241 int ret2;
3242
3243 if (ctx->syscall_iopoll) {
3244 /*
3245 * We disallow the app entering submit/complete with
3246 * polling, but we still need to lock the ring to
3247 * prevent racing with polled issue that got punted to
3248 * a workqueue.
3249 */
3250 mutex_lock(&ctx->uring_lock);
3251 iopoll_locked:
3252 ret2 = io_validate_ext_arg(flags, argp, argsz);
3253 if (likely(!ret2)) {
3254 min_complete = min(min_complete,
3255 ctx->cq_entries);
3256 ret2 = io_iopoll_check(ctx, min_complete);
3257 }
3258 mutex_unlock(&ctx->uring_lock);
3259 } else {
3260 const sigset_t __user *sig;
3261 struct __kernel_timespec __user *ts;
3262
3263 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3264 if (likely(!ret2)) {
3265 min_complete = min(min_complete,
3266 ctx->cq_entries);
3267 ret2 = io_cqring_wait(ctx, min_complete, sig,
3268 argsz, ts);
3269 }
3270 }
3271
3272 if (!ret) {
3273 ret = ret2;
3274
3275 /*
3276 * EBADR indicates that one or more CQE were dropped.
3277 * Once the user has been informed we can clear the bit
3278 * as they are obviously ok with those drops.
3279 */
3280 if (unlikely(ret2 == -EBADR))
3281 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3282 &ctx->check_cq);
3283 }
3284 }
3285 out:
3286 fdput(f);
3287 return ret;
3288 }
3289
3290 static const struct file_operations io_uring_fops = {
3291 .release = io_uring_release,
3292 .mmap = io_uring_mmap,
3293 #ifndef CONFIG_MMU
3294 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3295 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3296 #endif
3297 .poll = io_uring_poll,
3298 #ifdef CONFIG_PROC_FS
3299 .show_fdinfo = io_uring_show_fdinfo,
3300 #endif
3301 };
3302
io_is_uring_fops(struct file * file)3303 bool io_is_uring_fops(struct file *file)
3304 {
3305 return file->f_op == &io_uring_fops;
3306 }
3307
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3308 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3309 struct io_uring_params *p)
3310 {
3311 struct io_rings *rings;
3312 size_t size, sq_array_offset;
3313
3314 /* make sure these are sane, as we already accounted them */
3315 ctx->sq_entries = p->sq_entries;
3316 ctx->cq_entries = p->cq_entries;
3317
3318 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3319 if (size == SIZE_MAX)
3320 return -EOVERFLOW;
3321
3322 rings = io_mem_alloc(size);
3323 if (!rings)
3324 return -ENOMEM;
3325
3326 ctx->rings = rings;
3327 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3328 rings->sq_ring_mask = p->sq_entries - 1;
3329 rings->cq_ring_mask = p->cq_entries - 1;
3330 rings->sq_ring_entries = p->sq_entries;
3331 rings->cq_ring_entries = p->cq_entries;
3332
3333 if (p->flags & IORING_SETUP_SQE128)
3334 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3335 else
3336 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3337 if (size == SIZE_MAX) {
3338 io_mem_free(ctx->rings);
3339 ctx->rings = NULL;
3340 return -EOVERFLOW;
3341 }
3342
3343 ctx->sq_sqes = io_mem_alloc(size);
3344 if (!ctx->sq_sqes) {
3345 io_mem_free(ctx->rings);
3346 ctx->rings = NULL;
3347 return -ENOMEM;
3348 }
3349
3350 return 0;
3351 }
3352
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)3353 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3354 {
3355 int ret, fd;
3356
3357 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3358 if (fd < 0)
3359 return fd;
3360
3361 ret = __io_uring_add_tctx_node(ctx);
3362 if (ret) {
3363 put_unused_fd(fd);
3364 return ret;
3365 }
3366 fd_install(fd, file);
3367 return fd;
3368 }
3369
3370 /*
3371 * Allocate an anonymous fd, this is what constitutes the application
3372 * visible backing of an io_uring instance. The application mmaps this
3373 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3374 * we have to tie this fd to a socket for file garbage collection purposes.
3375 */
io_uring_get_file(struct io_ring_ctx * ctx)3376 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3377 {
3378 struct file *file;
3379 #if defined(CONFIG_UNIX)
3380 int ret;
3381
3382 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3383 &ctx->ring_sock);
3384 if (ret)
3385 return ERR_PTR(ret);
3386 #endif
3387
3388 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3389 O_RDWR | O_CLOEXEC, NULL);
3390 #if defined(CONFIG_UNIX)
3391 if (IS_ERR(file)) {
3392 sock_release(ctx->ring_sock);
3393 ctx->ring_sock = NULL;
3394 } else {
3395 ctx->ring_sock->file = file;
3396 }
3397 #endif
3398 return file;
3399 }
3400
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3401 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3402 struct io_uring_params __user *params)
3403 {
3404 struct io_ring_ctx *ctx;
3405 struct file *file;
3406 int ret;
3407
3408 if (!entries)
3409 return -EINVAL;
3410 if (entries > IORING_MAX_ENTRIES) {
3411 if (!(p->flags & IORING_SETUP_CLAMP))
3412 return -EINVAL;
3413 entries = IORING_MAX_ENTRIES;
3414 }
3415
3416 /*
3417 * Use twice as many entries for the CQ ring. It's possible for the
3418 * application to drive a higher depth than the size of the SQ ring,
3419 * since the sqes are only used at submission time. This allows for
3420 * some flexibility in overcommitting a bit. If the application has
3421 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3422 * of CQ ring entries manually.
3423 */
3424 p->sq_entries = roundup_pow_of_two(entries);
3425 if (p->flags & IORING_SETUP_CQSIZE) {
3426 /*
3427 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3428 * to a power-of-two, if it isn't already. We do NOT impose
3429 * any cq vs sq ring sizing.
3430 */
3431 if (!p->cq_entries)
3432 return -EINVAL;
3433 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3434 if (!(p->flags & IORING_SETUP_CLAMP))
3435 return -EINVAL;
3436 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3437 }
3438 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3439 if (p->cq_entries < p->sq_entries)
3440 return -EINVAL;
3441 } else {
3442 p->cq_entries = 2 * p->sq_entries;
3443 }
3444
3445 ctx = io_ring_ctx_alloc(p);
3446 if (!ctx)
3447 return -ENOMEM;
3448
3449 /*
3450 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3451 * space applications don't need to do io completion events
3452 * polling again, they can rely on io_sq_thread to do polling
3453 * work, which can reduce cpu usage and uring_lock contention.
3454 */
3455 if (ctx->flags & IORING_SETUP_IOPOLL &&
3456 !(ctx->flags & IORING_SETUP_SQPOLL))
3457 ctx->syscall_iopoll = 1;
3458
3459 ctx->compat = in_compat_syscall();
3460 if (!capable(CAP_IPC_LOCK))
3461 ctx->user = get_uid(current_user());
3462
3463 /*
3464 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3465 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3466 */
3467 ret = -EINVAL;
3468 if (ctx->flags & IORING_SETUP_SQPOLL) {
3469 /* IPI related flags don't make sense with SQPOLL */
3470 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3471 IORING_SETUP_TASKRUN_FLAG |
3472 IORING_SETUP_DEFER_TASKRUN))
3473 goto err;
3474 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3475 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3476 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3477 } else {
3478 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3479 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3480 goto err;
3481 ctx->notify_method = TWA_SIGNAL;
3482 }
3483
3484 /*
3485 * For DEFER_TASKRUN we require the completion task to be the same as the
3486 * submission task. This implies that there is only one submitter, so enforce
3487 * that.
3488 */
3489 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3490 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3491 goto err;
3492 }
3493
3494 /*
3495 * This is just grabbed for accounting purposes. When a process exits,
3496 * the mm is exited and dropped before the files, hence we need to hang
3497 * on to this mm purely for the purposes of being able to unaccount
3498 * memory (locked/pinned vm). It's not used for anything else.
3499 */
3500 mmgrab(current->mm);
3501 ctx->mm_account = current->mm;
3502
3503 ret = io_allocate_scq_urings(ctx, p);
3504 if (ret)
3505 goto err;
3506
3507 ret = io_sq_offload_create(ctx, p);
3508 if (ret)
3509 goto err;
3510 /* always set a rsrc node */
3511 ret = io_rsrc_node_switch_start(ctx);
3512 if (ret)
3513 goto err;
3514 io_rsrc_node_switch(ctx, NULL);
3515
3516 memset(&p->sq_off, 0, sizeof(p->sq_off));
3517 p->sq_off.head = offsetof(struct io_rings, sq.head);
3518 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3519 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3520 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3521 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3522 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3523 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3524
3525 memset(&p->cq_off, 0, sizeof(p->cq_off));
3526 p->cq_off.head = offsetof(struct io_rings, cq.head);
3527 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3528 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3529 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3530 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3531 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3532 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3533
3534 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3535 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3536 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3537 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3538 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3539 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3540 IORING_FEAT_LINKED_FILE;
3541
3542 if (copy_to_user(params, p, sizeof(*p))) {
3543 ret = -EFAULT;
3544 goto err;
3545 }
3546
3547 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3548 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3549 ctx->submitter_task = get_task_struct(current);
3550
3551 file = io_uring_get_file(ctx);
3552 if (IS_ERR(file)) {
3553 ret = PTR_ERR(file);
3554 goto err;
3555 }
3556
3557 /*
3558 * Install ring fd as the very last thing, so we don't risk someone
3559 * having closed it before we finish setup
3560 */
3561 ret = io_uring_install_fd(ctx, file);
3562 if (ret < 0) {
3563 /* fput will clean it up */
3564 fput(file);
3565 return ret;
3566 }
3567
3568 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3569 return ret;
3570 err:
3571 io_ring_ctx_wait_and_kill(ctx);
3572 return ret;
3573 }
3574
3575 /*
3576 * Sets up an aio uring context, and returns the fd. Applications asks for a
3577 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3578 * params structure passed in.
3579 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3580 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3581 {
3582 struct io_uring_params p;
3583 int i;
3584
3585 if (copy_from_user(&p, params, sizeof(p)))
3586 return -EFAULT;
3587 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3588 if (p.resv[i])
3589 return -EINVAL;
3590 }
3591
3592 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3593 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3594 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3595 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3596 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3597 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3598 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3599 return -EINVAL;
3600
3601 return io_uring_create(entries, &p, params);
3602 }
3603
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3604 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3605 struct io_uring_params __user *, params)
3606 {
3607 return io_uring_setup(entries, params);
3608 }
3609
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)3610 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3611 unsigned nr_args)
3612 {
3613 struct io_uring_probe *p;
3614 size_t size;
3615 int i, ret;
3616
3617 size = struct_size(p, ops, nr_args);
3618 if (size == SIZE_MAX)
3619 return -EOVERFLOW;
3620 p = kzalloc(size, GFP_KERNEL);
3621 if (!p)
3622 return -ENOMEM;
3623
3624 ret = -EFAULT;
3625 if (copy_from_user(p, arg, size))
3626 goto out;
3627 ret = -EINVAL;
3628 if (memchr_inv(p, 0, size))
3629 goto out;
3630
3631 p->last_op = IORING_OP_LAST - 1;
3632 if (nr_args > IORING_OP_LAST)
3633 nr_args = IORING_OP_LAST;
3634
3635 for (i = 0; i < nr_args; i++) {
3636 p->ops[i].op = i;
3637 if (!io_op_defs[i].not_supported)
3638 p->ops[i].flags = IO_URING_OP_SUPPORTED;
3639 }
3640 p->ops_len = i;
3641
3642 ret = 0;
3643 if (copy_to_user(arg, p, size))
3644 ret = -EFAULT;
3645 out:
3646 kfree(p);
3647 return ret;
3648 }
3649
io_register_personality(struct io_ring_ctx * ctx)3650 static int io_register_personality(struct io_ring_ctx *ctx)
3651 {
3652 const struct cred *creds;
3653 u32 id;
3654 int ret;
3655
3656 creds = get_current_cred();
3657
3658 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3659 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3660 if (ret < 0) {
3661 put_cred(creds);
3662 return ret;
3663 }
3664 return id;
3665 }
3666
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)3667 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3668 void __user *arg, unsigned int nr_args)
3669 {
3670 struct io_uring_restriction *res;
3671 size_t size;
3672 int i, ret;
3673
3674 /* Restrictions allowed only if rings started disabled */
3675 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3676 return -EBADFD;
3677
3678 /* We allow only a single restrictions registration */
3679 if (ctx->restrictions.registered)
3680 return -EBUSY;
3681
3682 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3683 return -EINVAL;
3684
3685 size = array_size(nr_args, sizeof(*res));
3686 if (size == SIZE_MAX)
3687 return -EOVERFLOW;
3688
3689 res = memdup_user(arg, size);
3690 if (IS_ERR(res))
3691 return PTR_ERR(res);
3692
3693 ret = 0;
3694
3695 for (i = 0; i < nr_args; i++) {
3696 switch (res[i].opcode) {
3697 case IORING_RESTRICTION_REGISTER_OP:
3698 if (res[i].register_op >= IORING_REGISTER_LAST) {
3699 ret = -EINVAL;
3700 goto out;
3701 }
3702
3703 __set_bit(res[i].register_op,
3704 ctx->restrictions.register_op);
3705 break;
3706 case IORING_RESTRICTION_SQE_OP:
3707 if (res[i].sqe_op >= IORING_OP_LAST) {
3708 ret = -EINVAL;
3709 goto out;
3710 }
3711
3712 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3713 break;
3714 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3715 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3716 break;
3717 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3718 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3719 break;
3720 default:
3721 ret = -EINVAL;
3722 goto out;
3723 }
3724 }
3725
3726 out:
3727 /* Reset all restrictions if an error happened */
3728 if (ret != 0)
3729 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3730 else
3731 ctx->restrictions.registered = true;
3732
3733 kfree(res);
3734 return ret;
3735 }
3736
io_register_enable_rings(struct io_ring_ctx * ctx)3737 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3738 {
3739 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3740 return -EBADFD;
3741
3742 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3743 ctx->submitter_task = get_task_struct(current);
3744
3745 if (ctx->restrictions.registered)
3746 ctx->restricted = 1;
3747
3748 ctx->flags &= ~IORING_SETUP_R_DISABLED;
3749 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3750 wake_up(&ctx->sq_data->wait);
3751 return 0;
3752 }
3753
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)3754 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3755 void __user *arg, unsigned len)
3756 {
3757 struct io_uring_task *tctx = current->io_uring;
3758 cpumask_var_t new_mask;
3759 int ret;
3760
3761 if (!tctx || !tctx->io_wq)
3762 return -EINVAL;
3763
3764 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3765 return -ENOMEM;
3766
3767 cpumask_clear(new_mask);
3768 if (len > cpumask_size())
3769 len = cpumask_size();
3770
3771 if (in_compat_syscall()) {
3772 ret = compat_get_bitmap(cpumask_bits(new_mask),
3773 (const compat_ulong_t __user *)arg,
3774 len * 8 /* CHAR_BIT */);
3775 } else {
3776 ret = copy_from_user(new_mask, arg, len);
3777 }
3778
3779 if (ret) {
3780 free_cpumask_var(new_mask);
3781 return -EFAULT;
3782 }
3783
3784 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3785 free_cpumask_var(new_mask);
3786 return ret;
3787 }
3788
io_unregister_iowq_aff(struct io_ring_ctx * ctx)3789 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3790 {
3791 struct io_uring_task *tctx = current->io_uring;
3792
3793 if (!tctx || !tctx->io_wq)
3794 return -EINVAL;
3795
3796 return io_wq_cpu_affinity(tctx->io_wq, NULL);
3797 }
3798
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)3799 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3800 void __user *arg)
3801 __must_hold(&ctx->uring_lock)
3802 {
3803 struct io_tctx_node *node;
3804 struct io_uring_task *tctx = NULL;
3805 struct io_sq_data *sqd = NULL;
3806 __u32 new_count[2];
3807 int i, ret;
3808
3809 if (copy_from_user(new_count, arg, sizeof(new_count)))
3810 return -EFAULT;
3811 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3812 if (new_count[i] > INT_MAX)
3813 return -EINVAL;
3814
3815 if (ctx->flags & IORING_SETUP_SQPOLL) {
3816 sqd = ctx->sq_data;
3817 if (sqd) {
3818 /*
3819 * Observe the correct sqd->lock -> ctx->uring_lock
3820 * ordering. Fine to drop uring_lock here, we hold
3821 * a ref to the ctx.
3822 */
3823 refcount_inc(&sqd->refs);
3824 mutex_unlock(&ctx->uring_lock);
3825 mutex_lock(&sqd->lock);
3826 mutex_lock(&ctx->uring_lock);
3827 if (sqd->thread)
3828 tctx = sqd->thread->io_uring;
3829 }
3830 } else {
3831 tctx = current->io_uring;
3832 }
3833
3834 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3835
3836 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3837 if (new_count[i])
3838 ctx->iowq_limits[i] = new_count[i];
3839 ctx->iowq_limits_set = true;
3840
3841 if (tctx && tctx->io_wq) {
3842 ret = io_wq_max_workers(tctx->io_wq, new_count);
3843 if (ret)
3844 goto err;
3845 } else {
3846 memset(new_count, 0, sizeof(new_count));
3847 }
3848
3849 if (sqd) {
3850 mutex_unlock(&sqd->lock);
3851 io_put_sq_data(sqd);
3852 }
3853
3854 if (copy_to_user(arg, new_count, sizeof(new_count)))
3855 return -EFAULT;
3856
3857 /* that's it for SQPOLL, only the SQPOLL task creates requests */
3858 if (sqd)
3859 return 0;
3860
3861 /* now propagate the restriction to all registered users */
3862 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3863 struct io_uring_task *tctx = node->task->io_uring;
3864
3865 if (WARN_ON_ONCE(!tctx->io_wq))
3866 continue;
3867
3868 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3869 new_count[i] = ctx->iowq_limits[i];
3870 /* ignore errors, it always returns zero anyway */
3871 (void)io_wq_max_workers(tctx->io_wq, new_count);
3872 }
3873 return 0;
3874 err:
3875 if (sqd) {
3876 mutex_unlock(&sqd->lock);
3877 io_put_sq_data(sqd);
3878 }
3879 return ret;
3880 }
3881
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)3882 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3883 void __user *arg, unsigned nr_args)
3884 __releases(ctx->uring_lock)
3885 __acquires(ctx->uring_lock)
3886 {
3887 int ret;
3888
3889 /*
3890 * We don't quiesce the refs for register anymore and so it can't be
3891 * dying as we're holding a file ref here.
3892 */
3893 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3894 return -ENXIO;
3895
3896 if (ctx->submitter_task && ctx->submitter_task != current)
3897 return -EEXIST;
3898
3899 if (ctx->restricted) {
3900 if (opcode >= IORING_REGISTER_LAST)
3901 return -EINVAL;
3902 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3903 if (!test_bit(opcode, ctx->restrictions.register_op))
3904 return -EACCES;
3905 }
3906
3907 switch (opcode) {
3908 case IORING_REGISTER_BUFFERS:
3909 ret = -EFAULT;
3910 if (!arg)
3911 break;
3912 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3913 break;
3914 case IORING_UNREGISTER_BUFFERS:
3915 ret = -EINVAL;
3916 if (arg || nr_args)
3917 break;
3918 ret = io_sqe_buffers_unregister(ctx);
3919 break;
3920 case IORING_REGISTER_FILES:
3921 ret = -EFAULT;
3922 if (!arg)
3923 break;
3924 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3925 break;
3926 case IORING_UNREGISTER_FILES:
3927 ret = -EINVAL;
3928 if (arg || nr_args)
3929 break;
3930 ret = io_sqe_files_unregister(ctx);
3931 break;
3932 case IORING_REGISTER_FILES_UPDATE:
3933 ret = io_register_files_update(ctx, arg, nr_args);
3934 break;
3935 case IORING_REGISTER_EVENTFD:
3936 ret = -EINVAL;
3937 if (nr_args != 1)
3938 break;
3939 ret = io_eventfd_register(ctx, arg, 0);
3940 break;
3941 case IORING_REGISTER_EVENTFD_ASYNC:
3942 ret = -EINVAL;
3943 if (nr_args != 1)
3944 break;
3945 ret = io_eventfd_register(ctx, arg, 1);
3946 break;
3947 case IORING_UNREGISTER_EVENTFD:
3948 ret = -EINVAL;
3949 if (arg || nr_args)
3950 break;
3951 ret = io_eventfd_unregister(ctx);
3952 break;
3953 case IORING_REGISTER_PROBE:
3954 ret = -EINVAL;
3955 if (!arg || nr_args > 256)
3956 break;
3957 ret = io_probe(ctx, arg, nr_args);
3958 break;
3959 case IORING_REGISTER_PERSONALITY:
3960 ret = -EINVAL;
3961 if (arg || nr_args)
3962 break;
3963 ret = io_register_personality(ctx);
3964 break;
3965 case IORING_UNREGISTER_PERSONALITY:
3966 ret = -EINVAL;
3967 if (arg)
3968 break;
3969 ret = io_unregister_personality(ctx, nr_args);
3970 break;
3971 case IORING_REGISTER_ENABLE_RINGS:
3972 ret = -EINVAL;
3973 if (arg || nr_args)
3974 break;
3975 ret = io_register_enable_rings(ctx);
3976 break;
3977 case IORING_REGISTER_RESTRICTIONS:
3978 ret = io_register_restrictions(ctx, arg, nr_args);
3979 break;
3980 case IORING_REGISTER_FILES2:
3981 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3982 break;
3983 case IORING_REGISTER_FILES_UPDATE2:
3984 ret = io_register_rsrc_update(ctx, arg, nr_args,
3985 IORING_RSRC_FILE);
3986 break;
3987 case IORING_REGISTER_BUFFERS2:
3988 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3989 break;
3990 case IORING_REGISTER_BUFFERS_UPDATE:
3991 ret = io_register_rsrc_update(ctx, arg, nr_args,
3992 IORING_RSRC_BUFFER);
3993 break;
3994 case IORING_REGISTER_IOWQ_AFF:
3995 ret = -EINVAL;
3996 if (!arg || !nr_args)
3997 break;
3998 ret = io_register_iowq_aff(ctx, arg, nr_args);
3999 break;
4000 case IORING_UNREGISTER_IOWQ_AFF:
4001 ret = -EINVAL;
4002 if (arg || nr_args)
4003 break;
4004 ret = io_unregister_iowq_aff(ctx);
4005 break;
4006 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4007 ret = -EINVAL;
4008 if (!arg || nr_args != 2)
4009 break;
4010 ret = io_register_iowq_max_workers(ctx, arg);
4011 break;
4012 case IORING_REGISTER_RING_FDS:
4013 ret = io_ringfd_register(ctx, arg, nr_args);
4014 break;
4015 case IORING_UNREGISTER_RING_FDS:
4016 ret = io_ringfd_unregister(ctx, arg, nr_args);
4017 break;
4018 case IORING_REGISTER_PBUF_RING:
4019 ret = -EINVAL;
4020 if (!arg || nr_args != 1)
4021 break;
4022 ret = io_register_pbuf_ring(ctx, arg);
4023 break;
4024 case IORING_UNREGISTER_PBUF_RING:
4025 ret = -EINVAL;
4026 if (!arg || nr_args != 1)
4027 break;
4028 ret = io_unregister_pbuf_ring(ctx, arg);
4029 break;
4030 case IORING_REGISTER_SYNC_CANCEL:
4031 ret = -EINVAL;
4032 if (!arg || nr_args != 1)
4033 break;
4034 ret = io_sync_cancel(ctx, arg);
4035 break;
4036 case IORING_REGISTER_FILE_ALLOC_RANGE:
4037 ret = -EINVAL;
4038 if (!arg || nr_args)
4039 break;
4040 ret = io_register_file_alloc_range(ctx, arg);
4041 break;
4042 default:
4043 ret = -EINVAL;
4044 break;
4045 }
4046
4047 return ret;
4048 }
4049
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4050 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4051 void __user *, arg, unsigned int, nr_args)
4052 {
4053 struct io_ring_ctx *ctx;
4054 long ret = -EBADF;
4055 struct fd f;
4056
4057 f = fdget(fd);
4058 if (!f.file)
4059 return -EBADF;
4060
4061 ret = -EOPNOTSUPP;
4062 if (!io_is_uring_fops(f.file))
4063 goto out_fput;
4064
4065 ctx = f.file->private_data;
4066
4067 io_run_task_work_ctx(ctx);
4068
4069 mutex_lock(&ctx->uring_lock);
4070 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4071 mutex_unlock(&ctx->uring_lock);
4072 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4073 out_fput:
4074 fdput(f);
4075 return ret;
4076 }
4077
io_uring_init(void)4078 static int __init io_uring_init(void)
4079 {
4080 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4081 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4082 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4083 } while (0)
4084
4085 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4086 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4087 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4088 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4089 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4090 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4091 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4092 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4093 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4094 BUILD_BUG_SQE_ELEM(8, __u64, off);
4095 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4096 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4097 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4098 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4099 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4100 BUILD_BUG_SQE_ELEM(24, __u32, len);
4101 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4102 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4103 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4104 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4105 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4106 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4107 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4108 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4109 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4110 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4111 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4112 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4113 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4114 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4115 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4116 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4117 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4118 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4119 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4120 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4121 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4122 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4123 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4124 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4125 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4126 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4127 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4128 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4129 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4130 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4131 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4132
4133 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4134 sizeof(struct io_uring_rsrc_update));
4135 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4136 sizeof(struct io_uring_rsrc_update2));
4137
4138 /* ->buf_index is u16 */
4139 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4140 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4141 offsetof(struct io_uring_buf_ring, tail));
4142
4143 /* should fit into one byte */
4144 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4145 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4146 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4147
4148 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4149
4150 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4151
4152 io_uring_optable_init();
4153
4154 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4155 SLAB_ACCOUNT);
4156 return 0;
4157 };
4158 __initcall(io_uring_init);
4159