1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag.h"
26 #include "xfs_ag_resv.h"
27 #include "xfs_quota.h"
28 #include "xfs_qm.h"
29 #include "scrub/scrub.h"
30 #include "scrub/common.h"
31 #include "scrub/trace.h"
32 #include "scrub/repair.h"
33 #include "scrub/bitmap.h"
34
35 /*
36 * Attempt to repair some metadata, if the metadata is corrupt and userspace
37 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
38 * and will set *fixed to true if it thinks it repaired anything.
39 */
40 int
xrep_attempt(struct xfs_scrub * sc)41 xrep_attempt(
42 struct xfs_scrub *sc)
43 {
44 int error = 0;
45
46 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
47
48 xchk_ag_btcur_free(&sc->sa);
49
50 /* Repair whatever's broken. */
51 ASSERT(sc->ops->repair);
52 error = sc->ops->repair(sc);
53 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
54 switch (error) {
55 case 0:
56 /*
57 * Repair succeeded. Commit the fixes and perform a second
58 * scrub so that we can tell userspace if we fixed the problem.
59 */
60 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
61 sc->flags |= XREP_ALREADY_FIXED;
62 return -EAGAIN;
63 case -EDEADLOCK:
64 case -EAGAIN:
65 /* Tell the caller to try again having grabbed all the locks. */
66 if (!(sc->flags & XCHK_TRY_HARDER)) {
67 sc->flags |= XCHK_TRY_HARDER;
68 return -EAGAIN;
69 }
70 /*
71 * We tried harder but still couldn't grab all the resources
72 * we needed to fix it. The corruption has not been fixed,
73 * so report back to userspace.
74 */
75 return -EFSCORRUPTED;
76 default:
77 return error;
78 }
79 }
80
81 /*
82 * Complain about unfixable problems in the filesystem. We don't log
83 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
84 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
85 * administrator isn't running xfs_scrub in no-repairs mode.
86 *
87 * Use this helper function because _ratelimited silently declares a static
88 * structure to track rate limiting information.
89 */
90 void
xrep_failure(struct xfs_mount * mp)91 xrep_failure(
92 struct xfs_mount *mp)
93 {
94 xfs_alert_ratelimited(mp,
95 "Corruption not fixed during online repair. Unmount and run xfs_repair.");
96 }
97
98 /*
99 * Repair probe -- userspace uses this to probe if we're willing to repair a
100 * given mountpoint.
101 */
102 int
xrep_probe(struct xfs_scrub * sc)103 xrep_probe(
104 struct xfs_scrub *sc)
105 {
106 int error = 0;
107
108 if (xchk_should_terminate(sc, &error))
109 return error;
110
111 return 0;
112 }
113
114 /*
115 * Roll a transaction, keeping the AG headers locked and reinitializing
116 * the btree cursors.
117 */
118 int
xrep_roll_ag_trans(struct xfs_scrub * sc)119 xrep_roll_ag_trans(
120 struct xfs_scrub *sc)
121 {
122 int error;
123
124 /* Keep the AG header buffers locked so we can keep going. */
125 if (sc->sa.agi_bp)
126 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
127 if (sc->sa.agf_bp)
128 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
129 if (sc->sa.agfl_bp)
130 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
131
132 /*
133 * Roll the transaction. We still own the buffer and the buffer lock
134 * regardless of whether or not the roll succeeds. If the roll fails,
135 * the buffers will be released during teardown on our way out of the
136 * kernel. If it succeeds, we join them to the new transaction and
137 * move on.
138 */
139 error = xfs_trans_roll(&sc->tp);
140 if (error)
141 return error;
142
143 /* Join AG headers to the new transaction. */
144 if (sc->sa.agi_bp)
145 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
146 if (sc->sa.agf_bp)
147 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
148 if (sc->sa.agfl_bp)
149 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
150
151 return 0;
152 }
153
154 /*
155 * Does the given AG have enough space to rebuild a btree? Neither AG
156 * reservation can be critical, and we must have enough space (factoring
157 * in AG reservations) to construct a whole btree.
158 */
159 bool
xrep_ag_has_space(struct xfs_perag * pag,xfs_extlen_t nr_blocks,enum xfs_ag_resv_type type)160 xrep_ag_has_space(
161 struct xfs_perag *pag,
162 xfs_extlen_t nr_blocks,
163 enum xfs_ag_resv_type type)
164 {
165 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
166 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
167 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
168 }
169
170 /*
171 * Figure out how many blocks to reserve for an AG repair. We calculate the
172 * worst case estimate for the number of blocks we'd need to rebuild one of
173 * any type of per-AG btree.
174 */
175 xfs_extlen_t
xrep_calc_ag_resblks(struct xfs_scrub * sc)176 xrep_calc_ag_resblks(
177 struct xfs_scrub *sc)
178 {
179 struct xfs_mount *mp = sc->mp;
180 struct xfs_scrub_metadata *sm = sc->sm;
181 struct xfs_perag *pag;
182 struct xfs_buf *bp;
183 xfs_agino_t icount = NULLAGINO;
184 xfs_extlen_t aglen = NULLAGBLOCK;
185 xfs_extlen_t usedlen;
186 xfs_extlen_t freelen;
187 xfs_extlen_t bnobt_sz;
188 xfs_extlen_t inobt_sz;
189 xfs_extlen_t rmapbt_sz;
190 xfs_extlen_t refcbt_sz;
191 int error;
192
193 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
194 return 0;
195
196 pag = xfs_perag_get(mp, sm->sm_agno);
197 if (pag->pagi_init) {
198 /* Use in-core icount if possible. */
199 icount = pag->pagi_count;
200 } else {
201 /* Try to get the actual counters from disk. */
202 error = xfs_ialloc_read_agi(pag, NULL, &bp);
203 if (!error) {
204 icount = pag->pagi_count;
205 xfs_buf_relse(bp);
206 }
207 }
208
209 /* Now grab the block counters from the AGF. */
210 error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
211 if (error) {
212 aglen = pag->block_count;
213 freelen = aglen;
214 usedlen = aglen;
215 } else {
216 struct xfs_agf *agf = bp->b_addr;
217
218 aglen = be32_to_cpu(agf->agf_length);
219 freelen = be32_to_cpu(agf->agf_freeblks);
220 usedlen = aglen - freelen;
221 xfs_buf_relse(bp);
222 }
223
224 /* If the icount is impossible, make some worst-case assumptions. */
225 if (icount == NULLAGINO ||
226 !xfs_verify_agino(pag, icount)) {
227 icount = pag->agino_max - pag->agino_min + 1;
228 }
229
230 /* If the block counts are impossible, make worst-case assumptions. */
231 if (aglen == NULLAGBLOCK ||
232 aglen != pag->block_count ||
233 freelen >= aglen) {
234 aglen = pag->block_count;
235 freelen = aglen;
236 usedlen = aglen;
237 }
238 xfs_perag_put(pag);
239
240 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
241 freelen, usedlen);
242
243 /*
244 * Figure out how many blocks we'd need worst case to rebuild
245 * each type of btree. Note that we can only rebuild the
246 * bnobt/cntbt or inobt/finobt as pairs.
247 */
248 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
249 if (xfs_has_sparseinodes(mp))
250 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
251 XFS_INODES_PER_HOLEMASK_BIT);
252 else
253 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
254 XFS_INODES_PER_CHUNK);
255 if (xfs_has_finobt(mp))
256 inobt_sz *= 2;
257 if (xfs_has_reflink(mp))
258 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
259 else
260 refcbt_sz = 0;
261 if (xfs_has_rmapbt(mp)) {
262 /*
263 * Guess how many blocks we need to rebuild the rmapbt.
264 * For non-reflink filesystems we can't have more records than
265 * used blocks. However, with reflink it's possible to have
266 * more than one rmap record per AG block. We don't know how
267 * many rmaps there could be in the AG, so we start off with
268 * what we hope is an generous over-estimation.
269 */
270 if (xfs_has_reflink(mp))
271 rmapbt_sz = xfs_rmapbt_calc_size(mp,
272 (unsigned long long)aglen * 2);
273 else
274 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
275 } else {
276 rmapbt_sz = 0;
277 }
278
279 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
280 inobt_sz, rmapbt_sz, refcbt_sz);
281
282 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
283 }
284
285 /* Allocate a block in an AG. */
286 int
xrep_alloc_ag_block(struct xfs_scrub * sc,const struct xfs_owner_info * oinfo,xfs_fsblock_t * fsbno,enum xfs_ag_resv_type resv)287 xrep_alloc_ag_block(
288 struct xfs_scrub *sc,
289 const struct xfs_owner_info *oinfo,
290 xfs_fsblock_t *fsbno,
291 enum xfs_ag_resv_type resv)
292 {
293 struct xfs_alloc_arg args = {0};
294 xfs_agblock_t bno;
295 int error;
296
297 switch (resv) {
298 case XFS_AG_RESV_AGFL:
299 case XFS_AG_RESV_RMAPBT:
300 error = xfs_alloc_get_freelist(sc->sa.pag, sc->tp,
301 sc->sa.agf_bp, &bno, 1);
302 if (error)
303 return error;
304 if (bno == NULLAGBLOCK)
305 return -ENOSPC;
306 xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 1, false);
307 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno);
308 if (resv == XFS_AG_RESV_RMAPBT)
309 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno);
310 return 0;
311 default:
312 break;
313 }
314
315 args.tp = sc->tp;
316 args.mp = sc->mp;
317 args.oinfo = *oinfo;
318 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.pag->pag_agno, 0);
319 args.minlen = 1;
320 args.maxlen = 1;
321 args.prod = 1;
322 args.type = XFS_ALLOCTYPE_THIS_AG;
323 args.resv = resv;
324
325 error = xfs_alloc_vextent(&args);
326 if (error)
327 return error;
328 if (args.fsbno == NULLFSBLOCK)
329 return -ENOSPC;
330 ASSERT(args.len == 1);
331 *fsbno = args.fsbno;
332
333 return 0;
334 }
335
336 /* Initialize a new AG btree root block with zero entries. */
337 int
xrep_init_btblock(struct xfs_scrub * sc,xfs_fsblock_t fsb,struct xfs_buf ** bpp,xfs_btnum_t btnum,const struct xfs_buf_ops * ops)338 xrep_init_btblock(
339 struct xfs_scrub *sc,
340 xfs_fsblock_t fsb,
341 struct xfs_buf **bpp,
342 xfs_btnum_t btnum,
343 const struct xfs_buf_ops *ops)
344 {
345 struct xfs_trans *tp = sc->tp;
346 struct xfs_mount *mp = sc->mp;
347 struct xfs_buf *bp;
348 int error;
349
350 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
351 XFS_FSB_TO_AGBNO(mp, fsb), btnum);
352
353 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno);
354 error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
355 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
356 &bp);
357 if (error)
358 return error;
359 xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
360 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno);
361 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
362 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
363 bp->b_ops = ops;
364 *bpp = bp;
365
366 return 0;
367 }
368
369 /*
370 * Reconstructing per-AG Btrees
371 *
372 * When a space btree is corrupt, we don't bother trying to fix it. Instead,
373 * we scan secondary space metadata to derive the records that should be in
374 * the damaged btree, initialize a fresh btree root, and insert the records.
375 * Note that for rebuilding the rmapbt we scan all the primary data to
376 * generate the new records.
377 *
378 * However, that leaves the matter of removing all the metadata describing the
379 * old broken structure. For primary metadata we use the rmap data to collect
380 * every extent with a matching rmap owner (bitmap); we then iterate all other
381 * metadata structures with the same rmap owner to collect the extents that
382 * cannot be removed (sublist). We then subtract sublist from bitmap to
383 * derive the blocks that were used by the old btree. These blocks can be
384 * reaped.
385 *
386 * For rmapbt reconstructions we must use different tactics for extent
387 * collection. First we iterate all primary metadata (this excludes the old
388 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
389 * records are collected as bitmap. The bnobt records are collected as
390 * sublist. As with the other btrees we subtract sublist from bitmap, and the
391 * result (since the rmapbt lives in the free space) are the blocks from the
392 * old rmapbt.
393 *
394 * Disposal of Blocks from Old per-AG Btrees
395 *
396 * Now that we've constructed a new btree to replace the damaged one, we want
397 * to dispose of the blocks that (we think) the old btree was using.
398 * Previously, we used the rmapbt to collect the extents (bitmap) with the
399 * rmap owner corresponding to the tree we rebuilt, collected extents for any
400 * blocks with the same rmap owner that are owned by another data structure
401 * (sublist), and subtracted sublist from bitmap. In theory the extents
402 * remaining in bitmap are the old btree's blocks.
403 *
404 * Unfortunately, it's possible that the btree was crosslinked with other
405 * blocks on disk. The rmap data can tell us if there are multiple owners, so
406 * if the rmapbt says there is an owner of this block other than @oinfo, then
407 * the block is crosslinked. Remove the reverse mapping and continue.
408 *
409 * If there is one rmap record, we can free the block, which removes the
410 * reverse mapping but doesn't add the block to the free space. Our repair
411 * strategy is to hope the other metadata objects crosslinked on this block
412 * will be rebuilt (atop different blocks), thereby removing all the cross
413 * links.
414 *
415 * If there are no rmap records at all, we also free the block. If the btree
416 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
417 * supposed to be a rmap record and everything is ok. For other btrees there
418 * had to have been an rmap entry for the block to have ended up on @bitmap,
419 * so if it's gone now there's something wrong and the fs will shut down.
420 *
421 * Note: If there are multiple rmap records with only the same rmap owner as
422 * the btree we're trying to rebuild and the block is indeed owned by another
423 * data structure with the same rmap owner, then the block will be in sublist
424 * and therefore doesn't need disposal. If there are multiple rmap records
425 * with only the same rmap owner but the block is not owned by something with
426 * the same rmap owner, the block will be freed.
427 *
428 * The caller is responsible for locking the AG headers for the entire rebuild
429 * operation so that nothing else can sneak in and change the AG state while
430 * we're not looking. We also assume that the caller already invalidated any
431 * buffers associated with @bitmap.
432 */
433
434 /*
435 * Invalidate buffers for per-AG btree blocks we're dumping. This function
436 * is not intended for use with file data repairs; we have bunmapi for that.
437 */
438 int
xrep_invalidate_blocks(struct xfs_scrub * sc,struct xbitmap * bitmap)439 xrep_invalidate_blocks(
440 struct xfs_scrub *sc,
441 struct xbitmap *bitmap)
442 {
443 struct xbitmap_range *bmr;
444 struct xbitmap_range *n;
445 struct xfs_buf *bp;
446 xfs_fsblock_t fsbno;
447
448 /*
449 * For each block in each extent, see if there's an incore buffer for
450 * exactly that block; if so, invalidate it. The buffer cache only
451 * lets us look for one buffer at a time, so we have to look one block
452 * at a time. Avoid invalidating AG headers and post-EOFS blocks
453 * because we never own those; and if we can't TRYLOCK the buffer we
454 * assume it's owned by someone else.
455 */
456 for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
457 int error;
458
459 /* Skip AG headers and post-EOFS blocks */
460 if (!xfs_verify_fsbno(sc->mp, fsbno))
461 continue;
462 error = xfs_buf_incore(sc->mp->m_ddev_targp,
463 XFS_FSB_TO_DADDR(sc->mp, fsbno),
464 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK, &bp);
465 if (error)
466 continue;
467
468 xfs_trans_bjoin(sc->tp, bp);
469 xfs_trans_binval(sc->tp, bp);
470 }
471
472 return 0;
473 }
474
475 /* Ensure the freelist is the correct size. */
476 int
xrep_fix_freelist(struct xfs_scrub * sc,bool can_shrink)477 xrep_fix_freelist(
478 struct xfs_scrub *sc,
479 bool can_shrink)
480 {
481 struct xfs_alloc_arg args = {0};
482
483 args.mp = sc->mp;
484 args.tp = sc->tp;
485 args.agno = sc->sa.pag->pag_agno;
486 args.alignment = 1;
487 args.pag = sc->sa.pag;
488
489 return xfs_alloc_fix_freelist(&args,
490 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
491 }
492
493 /*
494 * Put a block back on the AGFL.
495 */
496 STATIC int
xrep_put_freelist(struct xfs_scrub * sc,xfs_agblock_t agbno)497 xrep_put_freelist(
498 struct xfs_scrub *sc,
499 xfs_agblock_t agbno)
500 {
501 int error;
502
503 /* Make sure there's space on the freelist. */
504 error = xrep_fix_freelist(sc, true);
505 if (error)
506 return error;
507
508 /*
509 * Since we're "freeing" a lost block onto the AGFL, we have to
510 * create an rmap for the block prior to merging it or else other
511 * parts will break.
512 */
513 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
514 &XFS_RMAP_OINFO_AG);
515 if (error)
516 return error;
517
518 /* Put the block on the AGFL. */
519 error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
520 sc->sa.agfl_bp, agbno, 0);
521 if (error)
522 return error;
523 xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
524 XFS_EXTENT_BUSY_SKIP_DISCARD);
525
526 return 0;
527 }
528
529 /* Dispose of a single block. */
530 STATIC int
xrep_reap_block(struct xfs_scrub * sc,xfs_fsblock_t fsbno,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type resv)531 xrep_reap_block(
532 struct xfs_scrub *sc,
533 xfs_fsblock_t fsbno,
534 const struct xfs_owner_info *oinfo,
535 enum xfs_ag_resv_type resv)
536 {
537 struct xfs_btree_cur *cur;
538 struct xfs_buf *agf_bp = NULL;
539 xfs_agblock_t agbno;
540 bool has_other_rmap;
541 int error;
542
543 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
544 ASSERT(XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
545
546 /*
547 * If we are repairing per-inode metadata, we need to read in the AGF
548 * buffer. Otherwise, we're repairing a per-AG structure, so reuse
549 * the AGF buffer that the setup functions already grabbed.
550 */
551 if (sc->ip) {
552 error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
553 if (error)
554 return error;
555 } else {
556 agf_bp = sc->sa.agf_bp;
557 }
558 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag);
559
560 /* Can we find any other rmappings? */
561 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
562 xfs_btree_del_cursor(cur, error);
563 if (error)
564 goto out_free;
565
566 /*
567 * If there are other rmappings, this block is cross linked and must
568 * not be freed. Remove the reverse mapping and move on. Otherwise,
569 * we were the only owner of the block, so free the extent, which will
570 * also remove the rmap.
571 *
572 * XXX: XFS doesn't support detecting the case where a single block
573 * metadata structure is crosslinked with a multi-block structure
574 * because the buffer cache doesn't detect aliasing problems, so we
575 * can't fix 100% of crosslinking problems (yet). The verifiers will
576 * blow on writeout, the filesystem will shut down, and the admin gets
577 * to run xfs_repair.
578 */
579 if (has_other_rmap)
580 error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno,
581 1, oinfo);
582 else if (resv == XFS_AG_RESV_AGFL)
583 error = xrep_put_freelist(sc, agbno);
584 else
585 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
586 if (agf_bp != sc->sa.agf_bp)
587 xfs_trans_brelse(sc->tp, agf_bp);
588 if (error)
589 return error;
590
591 if (sc->ip)
592 return xfs_trans_roll_inode(&sc->tp, sc->ip);
593 return xrep_roll_ag_trans(sc);
594
595 out_free:
596 if (agf_bp != sc->sa.agf_bp)
597 xfs_trans_brelse(sc->tp, agf_bp);
598 return error;
599 }
600
601 /* Dispose of every block of every extent in the bitmap. */
602 int
xrep_reap_extents(struct xfs_scrub * sc,struct xbitmap * bitmap,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type)603 xrep_reap_extents(
604 struct xfs_scrub *sc,
605 struct xbitmap *bitmap,
606 const struct xfs_owner_info *oinfo,
607 enum xfs_ag_resv_type type)
608 {
609 struct xbitmap_range *bmr;
610 struct xbitmap_range *n;
611 xfs_fsblock_t fsbno;
612 int error = 0;
613
614 ASSERT(xfs_has_rmapbt(sc->mp));
615
616 for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
617 ASSERT(sc->ip != NULL ||
618 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
619 trace_xrep_dispose_btree_extent(sc->mp,
620 XFS_FSB_TO_AGNO(sc->mp, fsbno),
621 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
622
623 error = xrep_reap_block(sc, fsbno, oinfo, type);
624 if (error)
625 break;
626 }
627
628 return error;
629 }
630
631 /*
632 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
633 *
634 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
635 * the AG headers by using the rmap data to rummage through the AG looking for
636 * btree roots. This is not guaranteed to work if the AG is heavily damaged
637 * or the rmap data are corrupt.
638 *
639 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
640 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
641 * AGI is being rebuilt. It must maintain these locks until it's safe for
642 * other threads to change the btrees' shapes. The caller provides
643 * information about the btrees to look for by passing in an array of
644 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
645 * The (root, height) fields will be set on return if anything is found. The
646 * last element of the array should have a NULL buf_ops to mark the end of the
647 * array.
648 *
649 * For every rmapbt record matching any of the rmap owners in btree_info,
650 * read each block referenced by the rmap record. If the block is a btree
651 * block from this filesystem matching any of the magic numbers and has a
652 * level higher than what we've already seen, remember the block and the
653 * height of the tree required to have such a block. When the call completes,
654 * we return the highest block we've found for each btree description; those
655 * should be the roots.
656 */
657
658 struct xrep_findroot {
659 struct xfs_scrub *sc;
660 struct xfs_buf *agfl_bp;
661 struct xfs_agf *agf;
662 struct xrep_find_ag_btree *btree_info;
663 };
664
665 /* See if our block is in the AGFL. */
666 STATIC int
xrep_findroot_agfl_walk(struct xfs_mount * mp,xfs_agblock_t bno,void * priv)667 xrep_findroot_agfl_walk(
668 struct xfs_mount *mp,
669 xfs_agblock_t bno,
670 void *priv)
671 {
672 xfs_agblock_t *agbno = priv;
673
674 return (*agbno == bno) ? -ECANCELED : 0;
675 }
676
677 /* Does this block match the btree information passed in? */
678 STATIC int
xrep_findroot_block(struct xrep_findroot * ri,struct xrep_find_ag_btree * fab,uint64_t owner,xfs_agblock_t agbno,bool * done_with_block)679 xrep_findroot_block(
680 struct xrep_findroot *ri,
681 struct xrep_find_ag_btree *fab,
682 uint64_t owner,
683 xfs_agblock_t agbno,
684 bool *done_with_block)
685 {
686 struct xfs_mount *mp = ri->sc->mp;
687 struct xfs_buf *bp;
688 struct xfs_btree_block *btblock;
689 xfs_daddr_t daddr;
690 int block_level;
691 int error = 0;
692
693 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
694
695 /*
696 * Blocks in the AGFL have stale contents that might just happen to
697 * have a matching magic and uuid. We don't want to pull these blocks
698 * in as part of a tree root, so we have to filter out the AGFL stuff
699 * here. If the AGFL looks insane we'll just refuse to repair.
700 */
701 if (owner == XFS_RMAP_OWN_AG) {
702 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
703 xrep_findroot_agfl_walk, &agbno);
704 if (error == -ECANCELED)
705 return 0;
706 if (error)
707 return error;
708 }
709
710 /*
711 * Read the buffer into memory so that we can see if it's a match for
712 * our btree type. We have no clue if it is beforehand, and we want to
713 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
714 * will cause needless disk reads in subsequent calls to this function)
715 * and logging metadata verifier failures.
716 *
717 * Therefore, pass in NULL buffer ops. If the buffer was already in
718 * memory from some other caller it will already have b_ops assigned.
719 * If it was in memory from a previous unsuccessful findroot_block
720 * call, the buffer won't have b_ops but it should be clean and ready
721 * for us to try to verify if the read call succeeds. The same applies
722 * if the buffer wasn't in memory at all.
723 *
724 * Note: If we never match a btree type with this buffer, it will be
725 * left in memory with NULL b_ops. This shouldn't be a problem unless
726 * the buffer gets written.
727 */
728 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
729 mp->m_bsize, 0, &bp, NULL);
730 if (error)
731 return error;
732
733 /* Ensure the block magic matches the btree type we're looking for. */
734 btblock = XFS_BUF_TO_BLOCK(bp);
735 ASSERT(fab->buf_ops->magic[1] != 0);
736 if (btblock->bb_magic != fab->buf_ops->magic[1])
737 goto out;
738
739 /*
740 * If the buffer already has ops applied and they're not the ones for
741 * this btree type, we know this block doesn't match the btree and we
742 * can bail out.
743 *
744 * If the buffer ops match ours, someone else has already validated
745 * the block for us, so we can move on to checking if this is a root
746 * block candidate.
747 *
748 * If the buffer does not have ops, nobody has successfully validated
749 * the contents and the buffer cannot be dirty. If the magic, uuid,
750 * and structure match this btree type then we'll move on to checking
751 * if it's a root block candidate. If there is no match, bail out.
752 */
753 if (bp->b_ops) {
754 if (bp->b_ops != fab->buf_ops)
755 goto out;
756 } else {
757 ASSERT(!xfs_trans_buf_is_dirty(bp));
758 if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
759 &mp->m_sb.sb_meta_uuid))
760 goto out;
761 /*
762 * Read verifiers can reference b_ops, so we set the pointer
763 * here. If the verifier fails we'll reset the buffer state
764 * to what it was before we touched the buffer.
765 */
766 bp->b_ops = fab->buf_ops;
767 fab->buf_ops->verify_read(bp);
768 if (bp->b_error) {
769 bp->b_ops = NULL;
770 bp->b_error = 0;
771 goto out;
772 }
773
774 /*
775 * Some read verifiers will (re)set b_ops, so we must be
776 * careful not to change b_ops after running the verifier.
777 */
778 }
779
780 /*
781 * This block passes the magic/uuid and verifier tests for this btree
782 * type. We don't need the caller to try the other tree types.
783 */
784 *done_with_block = true;
785
786 /*
787 * Compare this btree block's level to the height of the current
788 * candidate root block.
789 *
790 * If the level matches the root we found previously, throw away both
791 * blocks because there can't be two candidate roots.
792 *
793 * If level is lower in the tree than the root we found previously,
794 * ignore this block.
795 */
796 block_level = xfs_btree_get_level(btblock);
797 if (block_level + 1 == fab->height) {
798 fab->root = NULLAGBLOCK;
799 goto out;
800 } else if (block_level < fab->height) {
801 goto out;
802 }
803
804 /*
805 * This is the highest block in the tree that we've found so far.
806 * Update the btree height to reflect what we've learned from this
807 * block.
808 */
809 fab->height = block_level + 1;
810
811 /*
812 * If this block doesn't have sibling pointers, then it's the new root
813 * block candidate. Otherwise, the root will be found farther up the
814 * tree.
815 */
816 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
817 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
818 fab->root = agbno;
819 else
820 fab->root = NULLAGBLOCK;
821
822 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
823 be32_to_cpu(btblock->bb_magic), fab->height - 1);
824 out:
825 xfs_trans_brelse(ri->sc->tp, bp);
826 return error;
827 }
828
829 /*
830 * Do any of the blocks in this rmap record match one of the btrees we're
831 * looking for?
832 */
833 STATIC int
xrep_findroot_rmap(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)834 xrep_findroot_rmap(
835 struct xfs_btree_cur *cur,
836 const struct xfs_rmap_irec *rec,
837 void *priv)
838 {
839 struct xrep_findroot *ri = priv;
840 struct xrep_find_ag_btree *fab;
841 xfs_agblock_t b;
842 bool done;
843 int error = 0;
844
845 /* Ignore anything that isn't AG metadata. */
846 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
847 return 0;
848
849 /* Otherwise scan each block + btree type. */
850 for (b = 0; b < rec->rm_blockcount; b++) {
851 done = false;
852 for (fab = ri->btree_info; fab->buf_ops; fab++) {
853 if (rec->rm_owner != fab->rmap_owner)
854 continue;
855 error = xrep_findroot_block(ri, fab,
856 rec->rm_owner, rec->rm_startblock + b,
857 &done);
858 if (error)
859 return error;
860 if (done)
861 break;
862 }
863 }
864
865 return 0;
866 }
867
868 /* Find the roots of the per-AG btrees described in btree_info. */
869 int
xrep_find_ag_btree_roots(struct xfs_scrub * sc,struct xfs_buf * agf_bp,struct xrep_find_ag_btree * btree_info,struct xfs_buf * agfl_bp)870 xrep_find_ag_btree_roots(
871 struct xfs_scrub *sc,
872 struct xfs_buf *agf_bp,
873 struct xrep_find_ag_btree *btree_info,
874 struct xfs_buf *agfl_bp)
875 {
876 struct xfs_mount *mp = sc->mp;
877 struct xrep_findroot ri;
878 struct xrep_find_ag_btree *fab;
879 struct xfs_btree_cur *cur;
880 int error;
881
882 ASSERT(xfs_buf_islocked(agf_bp));
883 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
884
885 ri.sc = sc;
886 ri.btree_info = btree_info;
887 ri.agf = agf_bp->b_addr;
888 ri.agfl_bp = agfl_bp;
889 for (fab = btree_info; fab->buf_ops; fab++) {
890 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
891 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
892 fab->root = NULLAGBLOCK;
893 fab->height = 0;
894 }
895
896 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
897 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
898 xfs_btree_del_cursor(cur, error);
899
900 return error;
901 }
902
903 /* Force a quotacheck the next time we mount. */
904 void
xrep_force_quotacheck(struct xfs_scrub * sc,xfs_dqtype_t type)905 xrep_force_quotacheck(
906 struct xfs_scrub *sc,
907 xfs_dqtype_t type)
908 {
909 uint flag;
910
911 flag = xfs_quota_chkd_flag(type);
912 if (!(flag & sc->mp->m_qflags))
913 return;
914
915 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock);
916 sc->mp->m_qflags &= ~flag;
917 spin_lock(&sc->mp->m_sb_lock);
918 sc->mp->m_sb.sb_qflags &= ~flag;
919 spin_unlock(&sc->mp->m_sb_lock);
920 xfs_log_sb(sc->tp);
921 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
922 }
923
924 /*
925 * Attach dquots to this inode, or schedule quotacheck to fix them.
926 *
927 * This function ensures that the appropriate dquots are attached to an inode.
928 * We cannot allow the dquot code to allocate an on-disk dquot block here
929 * because we're already in transaction context with the inode locked. The
930 * on-disk dquot should already exist anyway. If the quota code signals
931 * corruption or missing quota information, schedule quotacheck, which will
932 * repair corruptions in the quota metadata.
933 */
934 int
xrep_ino_dqattach(struct xfs_scrub * sc)935 xrep_ino_dqattach(
936 struct xfs_scrub *sc)
937 {
938 int error;
939
940 error = xfs_qm_dqattach_locked(sc->ip, false);
941 switch (error) {
942 case -EFSBADCRC:
943 case -EFSCORRUPTED:
944 case -ENOENT:
945 xfs_err_ratelimited(sc->mp,
946 "inode %llu repair encountered quota error %d, quotacheck forced.",
947 (unsigned long long)sc->ip->i_ino, error);
948 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
949 xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
950 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
951 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
952 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
953 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
954 fallthrough;
955 case -ESRCH:
956 error = 0;
957 break;
958 default:
959 break;
960 }
961
962 return error;
963 }
964