1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49 struct hugetlbfs_fs_context {
50 struct hstate *hstate;
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
53 long max_hpages;
54 long nr_inodes;
55 long min_hpages;
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
58 kuid_t uid;
59 kgid_t gid;
60 umode_t mode;
61 };
62
63 int sysctl_hugetlb_shm_group;
64
65 enum hugetlb_param {
66 Opt_gid,
67 Opt_min_size,
68 Opt_mode,
69 Opt_nr_inodes,
70 Opt_pagesize,
71 Opt_size,
72 Opt_uid,
73 };
74
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
78 fsparam_u32oct("mode", Opt_mode),
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
83 {}
84 };
85
86 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 struct inode *inode, pgoff_t index)
89 {
90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 index);
92 }
93
hugetlb_drop_vma_policy(struct vm_area_struct * vma)94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 mpol_cond_put(vma->vm_policy);
97 }
98 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 struct inode *inode, pgoff_t index)
101 {
102 }
103
hugetlb_drop_vma_policy(struct vm_area_struct * vma)104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108
109 /*
110 * Mask used when checking the page offset value passed in via system
111 * calls. This value will be converted to a loff_t which is signed.
112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113 * value. The extra bit (- 1 in the shift value) is to take the sign
114 * bit into account.
115 */
116 #define PGOFF_LOFFT_MAX \
117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 struct inode *inode = file_inode(file);
122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 loff_t len, vma_len;
124 int ret;
125 struct hstate *h = hstate_file(file);
126
127 /*
128 * vma address alignment (but not the pgoff alignment) has
129 * already been checked by prepare_hugepage_range. If you add
130 * any error returns here, do so after setting VM_HUGETLB, so
131 * is_vm_hugetlb_page tests below unmap_region go the right
132 * way when do_mmap unwinds (may be important on powerpc
133 * and ia64).
134 */
135 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
136 vma->vm_ops = &hugetlb_vm_ops;
137
138 ret = seal_check_future_write(info->seals, vma);
139 if (ret)
140 return ret;
141
142 /*
143 * page based offset in vm_pgoff could be sufficiently large to
144 * overflow a loff_t when converted to byte offset. This can
145 * only happen on architectures where sizeof(loff_t) ==
146 * sizeof(unsigned long). So, only check in those instances.
147 */
148 if (sizeof(unsigned long) == sizeof(loff_t)) {
149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 return -EINVAL;
151 }
152
153 /* must be huge page aligned */
154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 return -EINVAL;
156
157 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 /* check for overflow */
160 if (len < vma_len)
161 return -EINVAL;
162
163 inode_lock(inode);
164 file_accessed(file);
165
166 ret = -ENOMEM;
167 if (!hugetlb_reserve_pages(inode,
168 vma->vm_pgoff >> huge_page_order(h),
169 len >> huge_page_shift(h), vma,
170 vma->vm_flags))
171 goto out;
172
173 ret = 0;
174 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 i_size_write(inode, len);
176 out:
177 inode_unlock(inode);
178
179 return ret;
180 }
181
182 /*
183 * Called under mmap_write_lock(mm).
184 */
185
186 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
192
193 info.flags = 0;
194 info.length = len;
195 info.low_limit = current->mm->mmap_base;
196 info.high_limit = arch_get_mmap_end(addr, len, flags);
197 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 info.align_offset = 0;
199 return vm_unmapped_area(&info);
200 }
201
202 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 struct hstate *h = hstate_file(file);
207 struct vm_unmapped_area_info info;
208
209 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 info.length = len;
211 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 info.align_offset = 0;
215 addr = vm_unmapped_area(&info);
216
217 /*
218 * A failed mmap() very likely causes application failure,
219 * so fall back to the bottom-up function here. This scenario
220 * can happen with large stack limits and large mmap()
221 * allocations.
222 */
223 if (unlikely(offset_in_page(addr))) {
224 VM_BUG_ON(addr != -ENOMEM);
225 info.flags = 0;
226 info.low_limit = current->mm->mmap_base;
227 info.high_limit = arch_get_mmap_end(addr, len, flags);
228 addr = vm_unmapped_area(&info);
229 }
230
231 return addr;
232 }
233
234 unsigned long
generic_hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 unsigned long len, unsigned long pgoff,
237 unsigned long flags)
238 {
239 struct mm_struct *mm = current->mm;
240 struct vm_area_struct *vma;
241 struct hstate *h = hstate_file(file);
242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243
244 if (len & ~huge_page_mask(h))
245 return -EINVAL;
246 if (len > TASK_SIZE)
247 return -ENOMEM;
248
249 if (flags & MAP_FIXED) {
250 if (prepare_hugepage_range(file, addr, len))
251 return -EINVAL;
252 return addr;
253 }
254
255 if (addr) {
256 addr = ALIGN(addr, huge_page_size(h));
257 vma = find_vma(mm, addr);
258 if (mmap_end - len >= addr &&
259 (!vma || addr + len <= vm_start_gap(vma)))
260 return addr;
261 }
262
263 /*
264 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 * If architectures have special needs, they should define their own
266 * version of hugetlb_get_unmapped_area.
267 */
268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 pgoff, flags);
271 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 pgoff, flags);
273 }
274
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 unsigned long len, unsigned long pgoff,
279 unsigned long flags)
280 {
281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284
285 /*
286 * Support for read() - Find the page attached to f_mapping and copy out the
287 * data. This provides functionality similar to filemap_read().
288 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
290 {
291 struct file *file = iocb->ki_filp;
292 struct hstate *h = hstate_file(file);
293 struct address_space *mapping = file->f_mapping;
294 struct inode *inode = mapping->host;
295 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
296 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
297 unsigned long end_index;
298 loff_t isize;
299 ssize_t retval = 0;
300
301 while (iov_iter_count(to)) {
302 struct page *page;
303 size_t nr, copied;
304
305 /* nr is the maximum number of bytes to copy from this page */
306 nr = huge_page_size(h);
307 isize = i_size_read(inode);
308 if (!isize)
309 break;
310 end_index = (isize - 1) >> huge_page_shift(h);
311 if (index > end_index)
312 break;
313 if (index == end_index) {
314 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
315 if (nr <= offset)
316 break;
317 }
318 nr = nr - offset;
319
320 /* Find the page */
321 page = find_lock_page(mapping, index);
322 if (unlikely(page == NULL)) {
323 /*
324 * We have a HOLE, zero out the user-buffer for the
325 * length of the hole or request.
326 */
327 copied = iov_iter_zero(nr, to);
328 } else {
329 unlock_page(page);
330
331 if (PageHWPoison(page)) {
332 put_page(page);
333 retval = -EIO;
334 break;
335 }
336
337 /*
338 * We have the page, copy it to user space buffer.
339 */
340 copied = copy_page_to_iter(page, offset, nr, to);
341 put_page(page);
342 }
343 offset += copied;
344 retval += copied;
345 if (copied != nr && iov_iter_count(to)) {
346 if (!retval)
347 retval = -EFAULT;
348 break;
349 }
350 index += offset >> huge_page_shift(h);
351 offset &= ~huge_page_mask(h);
352 }
353 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
354 return retval;
355 }
356
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)357 static int hugetlbfs_write_begin(struct file *file,
358 struct address_space *mapping,
359 loff_t pos, unsigned len,
360 struct page **pagep, void **fsdata)
361 {
362 return -EINVAL;
363 }
364
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)365 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
366 loff_t pos, unsigned len, unsigned copied,
367 struct page *page, void *fsdata)
368 {
369 BUG();
370 return -EINVAL;
371 }
372
hugetlb_delete_from_page_cache(struct page * page)373 static void hugetlb_delete_from_page_cache(struct page *page)
374 {
375 ClearPageDirty(page);
376 ClearPageUptodate(page);
377 delete_from_page_cache(page);
378 }
379
380 /*
381 * Called with i_mmap_rwsem held for inode based vma maps. This makes
382 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
383 * mutex for the page in the mapping. So, we can not race with page being
384 * faulted into the vma.
385 */
hugetlb_vma_maps_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)386 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
387 unsigned long addr, struct page *page)
388 {
389 pte_t *ptep, pte;
390
391 ptep = huge_pte_offset(vma->vm_mm, addr,
392 huge_page_size(hstate_vma(vma)));
393
394 if (!ptep)
395 return false;
396
397 pte = huge_ptep_get(ptep);
398 if (huge_pte_none(pte) || !pte_present(pte))
399 return false;
400
401 if (pte_page(pte) == page)
402 return true;
403
404 return false;
405 }
406
407 /*
408 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
409 * No, because the interval tree returns us only those vmas
410 * which overlap the truncated area starting at pgoff,
411 * and no vma on a 32-bit arch can span beyond the 4GB.
412 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)413 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
414 {
415 if (vma->vm_pgoff < start)
416 return (start - vma->vm_pgoff) << PAGE_SHIFT;
417 else
418 return 0;
419 }
420
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)421 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
422 {
423 unsigned long t_end;
424
425 if (!end)
426 return vma->vm_end;
427
428 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
429 if (t_end > vma->vm_end)
430 t_end = vma->vm_end;
431 return t_end;
432 }
433
434 /*
435 * Called with hugetlb fault mutex held. Therefore, no more mappings to
436 * this folio can be created while executing the routine.
437 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)438 static void hugetlb_unmap_file_folio(struct hstate *h,
439 struct address_space *mapping,
440 struct folio *folio, pgoff_t index)
441 {
442 struct rb_root_cached *root = &mapping->i_mmap;
443 struct hugetlb_vma_lock *vma_lock;
444 struct page *page = &folio->page;
445 struct vm_area_struct *vma;
446 unsigned long v_start;
447 unsigned long v_end;
448 pgoff_t start, end;
449
450 start = index * pages_per_huge_page(h);
451 end = (index + 1) * pages_per_huge_page(h);
452
453 i_mmap_lock_write(mapping);
454 retry:
455 vma_lock = NULL;
456 vma_interval_tree_foreach(vma, root, start, end - 1) {
457 v_start = vma_offset_start(vma, start);
458 v_end = vma_offset_end(vma, end);
459
460 if (!hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
461 continue;
462
463 if (!hugetlb_vma_trylock_write(vma)) {
464 vma_lock = vma->vm_private_data;
465 /*
466 * If we can not get vma lock, we need to drop
467 * immap_sema and take locks in order. First,
468 * take a ref on the vma_lock structure so that
469 * we can be guaranteed it will not go away when
470 * dropping immap_sema.
471 */
472 kref_get(&vma_lock->refs);
473 break;
474 }
475
476 unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
477 NULL, ZAP_FLAG_DROP_MARKER);
478 hugetlb_vma_unlock_write(vma);
479 }
480
481 i_mmap_unlock_write(mapping);
482
483 if (vma_lock) {
484 /*
485 * Wait on vma_lock. We know it is still valid as we have
486 * a reference. We must 'open code' vma locking as we do
487 * not know if vma_lock is still attached to vma.
488 */
489 down_write(&vma_lock->rw_sema);
490 i_mmap_lock_write(mapping);
491
492 vma = vma_lock->vma;
493 if (!vma) {
494 /*
495 * If lock is no longer attached to vma, then just
496 * unlock, drop our reference and retry looking for
497 * other vmas.
498 */
499 up_write(&vma_lock->rw_sema);
500 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
501 goto retry;
502 }
503
504 /*
505 * vma_lock is still attached to vma. Check to see if vma
506 * still maps page and if so, unmap.
507 */
508 v_start = vma_offset_start(vma, start);
509 v_end = vma_offset_end(vma, end);
510 if (hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
511 unmap_hugepage_range(vma, vma->vm_start + v_start,
512 v_end, NULL,
513 ZAP_FLAG_DROP_MARKER);
514
515 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
516 hugetlb_vma_unlock_write(vma);
517
518 goto retry;
519 }
520 }
521
522 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)523 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
524 zap_flags_t zap_flags)
525 {
526 struct vm_area_struct *vma;
527
528 /*
529 * end == 0 indicates that the entire range after start should be
530 * unmapped. Note, end is exclusive, whereas the interval tree takes
531 * an inclusive "last".
532 */
533 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
534 unsigned long v_start;
535 unsigned long v_end;
536
537 if (!hugetlb_vma_trylock_write(vma))
538 continue;
539
540 v_start = vma_offset_start(vma, start);
541 v_end = vma_offset_end(vma, end);
542
543 unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
544 NULL, zap_flags);
545
546 /*
547 * Note that vma lock only exists for shared/non-private
548 * vmas. Therefore, lock is not held when calling
549 * unmap_hugepage_range for private vmas.
550 */
551 hugetlb_vma_unlock_write(vma);
552 }
553 }
554
555 /*
556 * Called with hugetlb fault mutex held.
557 * Returns true if page was actually removed, false otherwise.
558 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)559 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
560 struct address_space *mapping,
561 struct folio *folio, pgoff_t index,
562 bool truncate_op)
563 {
564 bool ret = false;
565
566 /*
567 * If folio is mapped, it was faulted in after being
568 * unmapped in caller. Unmap (again) while holding
569 * the fault mutex. The mutex will prevent faults
570 * until we finish removing the folio.
571 */
572 if (unlikely(folio_mapped(folio)))
573 hugetlb_unmap_file_folio(h, mapping, folio, index);
574
575 folio_lock(folio);
576 /*
577 * We must remove the folio from page cache before removing
578 * the region/ reserve map (hugetlb_unreserve_pages). In
579 * rare out of memory conditions, removal of the region/reserve
580 * map could fail. Correspondingly, the subpool and global
581 * reserve usage count can need to be adjusted.
582 */
583 VM_BUG_ON(HPageRestoreReserve(&folio->page));
584 hugetlb_delete_from_page_cache(&folio->page);
585 ret = true;
586 if (!truncate_op) {
587 if (unlikely(hugetlb_unreserve_pages(inode, index,
588 index + 1, 1)))
589 hugetlb_fix_reserve_counts(inode);
590 }
591
592 folio_unlock(folio);
593 return ret;
594 }
595
596 /*
597 * remove_inode_hugepages handles two distinct cases: truncation and hole
598 * punch. There are subtle differences in operation for each case.
599 *
600 * truncation is indicated by end of range being LLONG_MAX
601 * In this case, we first scan the range and release found pages.
602 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
603 * maps and global counts. Page faults can race with truncation.
604 * During faults, hugetlb_no_page() checks i_size before page allocation,
605 * and again after obtaining page table lock. It will 'back out'
606 * allocations in the truncated range.
607 * hole punch is indicated if end is not LLONG_MAX
608 * In the hole punch case we scan the range and release found pages.
609 * Only when releasing a page is the associated region/reserve map
610 * deleted. The region/reserve map for ranges without associated
611 * pages are not modified. Page faults can race with hole punch.
612 * This is indicated if we find a mapped page.
613 * Note: If the passed end of range value is beyond the end of file, but
614 * not LLONG_MAX this routine still performs a hole punch operation.
615 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)616 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
617 loff_t lend)
618 {
619 struct hstate *h = hstate_inode(inode);
620 struct address_space *mapping = &inode->i_data;
621 const pgoff_t start = lstart >> huge_page_shift(h);
622 const pgoff_t end = lend >> huge_page_shift(h);
623 struct folio_batch fbatch;
624 pgoff_t next, index;
625 int i, freed = 0;
626 bool truncate_op = (lend == LLONG_MAX);
627
628 folio_batch_init(&fbatch);
629 next = start;
630 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
631 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
632 struct folio *folio = fbatch.folios[i];
633 u32 hash = 0;
634
635 index = folio->index;
636 hash = hugetlb_fault_mutex_hash(mapping, index);
637 mutex_lock(&hugetlb_fault_mutex_table[hash]);
638
639 /*
640 * Remove folio that was part of folio_batch.
641 */
642 if (remove_inode_single_folio(h, inode, mapping, folio,
643 index, truncate_op))
644 freed++;
645
646 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647 }
648 folio_batch_release(&fbatch);
649 cond_resched();
650 }
651
652 if (truncate_op)
653 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
654 }
655
hugetlbfs_evict_inode(struct inode * inode)656 static void hugetlbfs_evict_inode(struct inode *inode)
657 {
658 struct resv_map *resv_map;
659
660 remove_inode_hugepages(inode, 0, LLONG_MAX);
661
662 /*
663 * Get the resv_map from the address space embedded in the inode.
664 * This is the address space which points to any resv_map allocated
665 * at inode creation time. If this is a device special inode,
666 * i_mapping may not point to the original address space.
667 */
668 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
669 /* Only regular and link inodes have associated reserve maps */
670 if (resv_map)
671 resv_map_release(&resv_map->refs);
672 clear_inode(inode);
673 }
674
hugetlb_vmtruncate(struct inode * inode,loff_t offset)675 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
676 {
677 pgoff_t pgoff;
678 struct address_space *mapping = inode->i_mapping;
679 struct hstate *h = hstate_inode(inode);
680
681 BUG_ON(offset & ~huge_page_mask(h));
682 pgoff = offset >> PAGE_SHIFT;
683
684 i_size_write(inode, offset);
685 i_mmap_lock_write(mapping);
686 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
687 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
688 ZAP_FLAG_DROP_MARKER);
689 i_mmap_unlock_write(mapping);
690 remove_inode_hugepages(inode, offset, LLONG_MAX);
691 }
692
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)693 static void hugetlbfs_zero_partial_page(struct hstate *h,
694 struct address_space *mapping,
695 loff_t start,
696 loff_t end)
697 {
698 pgoff_t idx = start >> huge_page_shift(h);
699 struct folio *folio;
700
701 folio = filemap_lock_folio(mapping, idx);
702 if (!folio)
703 return;
704
705 start = start & ~huge_page_mask(h);
706 end = end & ~huge_page_mask(h);
707 if (!end)
708 end = huge_page_size(h);
709
710 folio_zero_segment(folio, (size_t)start, (size_t)end);
711
712 folio_unlock(folio);
713 folio_put(folio);
714 }
715
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)716 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
717 {
718 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
719 struct address_space *mapping = inode->i_mapping;
720 struct hstate *h = hstate_inode(inode);
721 loff_t hpage_size = huge_page_size(h);
722 loff_t hole_start, hole_end;
723
724 /*
725 * hole_start and hole_end indicate the full pages within the hole.
726 */
727 hole_start = round_up(offset, hpage_size);
728 hole_end = round_down(offset + len, hpage_size);
729
730 inode_lock(inode);
731
732 /* protected by i_rwsem */
733 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
734 inode_unlock(inode);
735 return -EPERM;
736 }
737
738 i_mmap_lock_write(mapping);
739
740 /* If range starts before first full page, zero partial page. */
741 if (offset < hole_start)
742 hugetlbfs_zero_partial_page(h, mapping,
743 offset, min(offset + len, hole_start));
744
745 /* Unmap users of full pages in the hole. */
746 if (hole_end > hole_start) {
747 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
748 hugetlb_vmdelete_list(&mapping->i_mmap,
749 hole_start >> PAGE_SHIFT,
750 hole_end >> PAGE_SHIFT, 0);
751 }
752
753 /* If range extends beyond last full page, zero partial page. */
754 if ((offset + len) > hole_end && (offset + len) > hole_start)
755 hugetlbfs_zero_partial_page(h, mapping,
756 hole_end, offset + len);
757
758 i_mmap_unlock_write(mapping);
759
760 /* Remove full pages from the file. */
761 if (hole_end > hole_start)
762 remove_inode_hugepages(inode, hole_start, hole_end);
763
764 inode_unlock(inode);
765
766 return 0;
767 }
768
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)769 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
770 loff_t len)
771 {
772 struct inode *inode = file_inode(file);
773 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
774 struct address_space *mapping = inode->i_mapping;
775 struct hstate *h = hstate_inode(inode);
776 struct vm_area_struct pseudo_vma;
777 struct mm_struct *mm = current->mm;
778 loff_t hpage_size = huge_page_size(h);
779 unsigned long hpage_shift = huge_page_shift(h);
780 pgoff_t start, index, end;
781 int error;
782 u32 hash;
783
784 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
785 return -EOPNOTSUPP;
786
787 if (mode & FALLOC_FL_PUNCH_HOLE)
788 return hugetlbfs_punch_hole(inode, offset, len);
789
790 /*
791 * Default preallocate case.
792 * For this range, start is rounded down and end is rounded up
793 * as well as being converted to page offsets.
794 */
795 start = offset >> hpage_shift;
796 end = (offset + len + hpage_size - 1) >> hpage_shift;
797
798 inode_lock(inode);
799
800 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
801 error = inode_newsize_ok(inode, offset + len);
802 if (error)
803 goto out;
804
805 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
806 error = -EPERM;
807 goto out;
808 }
809
810 /*
811 * Initialize a pseudo vma as this is required by the huge page
812 * allocation routines. If NUMA is configured, use page index
813 * as input to create an allocation policy.
814 */
815 vma_init(&pseudo_vma, mm);
816 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
817 pseudo_vma.vm_file = file;
818
819 for (index = start; index < end; index++) {
820 /*
821 * This is supposed to be the vaddr where the page is being
822 * faulted in, but we have no vaddr here.
823 */
824 struct page *page;
825 unsigned long addr;
826
827 cond_resched();
828
829 /*
830 * fallocate(2) manpage permits EINTR; we may have been
831 * interrupted because we are using up too much memory.
832 */
833 if (signal_pending(current)) {
834 error = -EINTR;
835 break;
836 }
837
838 /* Set numa allocation policy based on index */
839 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
840
841 /* addr is the offset within the file (zero based) */
842 addr = index * hpage_size;
843
844 /* mutex taken here, fault path and hole punch */
845 hash = hugetlb_fault_mutex_hash(mapping, index);
846 mutex_lock(&hugetlb_fault_mutex_table[hash]);
847
848 /* See if already present in mapping to avoid alloc/free */
849 page = find_get_page(mapping, index);
850 if (page) {
851 put_page(page);
852 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
853 hugetlb_drop_vma_policy(&pseudo_vma);
854 continue;
855 }
856
857 /*
858 * Allocate page without setting the avoid_reserve argument.
859 * There certainly are no reserves associated with the
860 * pseudo_vma. However, there could be shared mappings with
861 * reserves for the file at the inode level. If we fallocate
862 * pages in these areas, we need to consume the reserves
863 * to keep reservation accounting consistent.
864 */
865 page = alloc_huge_page(&pseudo_vma, addr, 0);
866 hugetlb_drop_vma_policy(&pseudo_vma);
867 if (IS_ERR(page)) {
868 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
869 error = PTR_ERR(page);
870 goto out;
871 }
872 clear_huge_page(page, addr, pages_per_huge_page(h));
873 __SetPageUptodate(page);
874 error = hugetlb_add_to_page_cache(page, mapping, index);
875 if (unlikely(error)) {
876 restore_reserve_on_error(h, &pseudo_vma, addr, page);
877 put_page(page);
878 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
879 goto out;
880 }
881
882 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
883
884 SetHPageMigratable(page);
885 /*
886 * unlock_page because locked by hugetlb_add_to_page_cache()
887 * put_page() due to reference from alloc_huge_page()
888 */
889 unlock_page(page);
890 put_page(page);
891 }
892
893 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
894 i_size_write(inode, offset + len);
895 inode->i_ctime = current_time(inode);
896 out:
897 inode_unlock(inode);
898 return error;
899 }
900
hugetlbfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)901 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
902 struct dentry *dentry, struct iattr *attr)
903 {
904 struct inode *inode = d_inode(dentry);
905 struct hstate *h = hstate_inode(inode);
906 int error;
907 unsigned int ia_valid = attr->ia_valid;
908 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
909
910 error = setattr_prepare(&init_user_ns, dentry, attr);
911 if (error)
912 return error;
913
914 if (ia_valid & ATTR_SIZE) {
915 loff_t oldsize = inode->i_size;
916 loff_t newsize = attr->ia_size;
917
918 if (newsize & ~huge_page_mask(h))
919 return -EINVAL;
920 /* protected by i_rwsem */
921 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
922 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
923 return -EPERM;
924 hugetlb_vmtruncate(inode, newsize);
925 }
926
927 setattr_copy(&init_user_ns, inode, attr);
928 mark_inode_dirty(inode);
929 return 0;
930 }
931
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)932 static struct inode *hugetlbfs_get_root(struct super_block *sb,
933 struct hugetlbfs_fs_context *ctx)
934 {
935 struct inode *inode;
936
937 inode = new_inode(sb);
938 if (inode) {
939 inode->i_ino = get_next_ino();
940 inode->i_mode = S_IFDIR | ctx->mode;
941 inode->i_uid = ctx->uid;
942 inode->i_gid = ctx->gid;
943 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
944 inode->i_op = &hugetlbfs_dir_inode_operations;
945 inode->i_fop = &simple_dir_operations;
946 /* directory inodes start off with i_nlink == 2 (for "." entry) */
947 inc_nlink(inode);
948 lockdep_annotate_inode_mutex_key(inode);
949 }
950 return inode;
951 }
952
953 /*
954 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
955 * be taken from reclaim -- unlike regular filesystems. This needs an
956 * annotation because huge_pmd_share() does an allocation under hugetlb's
957 * i_mmap_rwsem.
958 */
959 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
960
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)961 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
962 struct inode *dir,
963 umode_t mode, dev_t dev)
964 {
965 struct inode *inode;
966 struct resv_map *resv_map = NULL;
967
968 /*
969 * Reserve maps are only needed for inodes that can have associated
970 * page allocations.
971 */
972 if (S_ISREG(mode) || S_ISLNK(mode)) {
973 resv_map = resv_map_alloc();
974 if (!resv_map)
975 return NULL;
976 }
977
978 inode = new_inode(sb);
979 if (inode) {
980 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
981
982 inode->i_ino = get_next_ino();
983 inode_init_owner(&init_user_ns, inode, dir, mode);
984 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
985 &hugetlbfs_i_mmap_rwsem_key);
986 inode->i_mapping->a_ops = &hugetlbfs_aops;
987 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
988 inode->i_mapping->private_data = resv_map;
989 info->seals = F_SEAL_SEAL;
990 switch (mode & S_IFMT) {
991 default:
992 init_special_inode(inode, mode, dev);
993 break;
994 case S_IFREG:
995 inode->i_op = &hugetlbfs_inode_operations;
996 inode->i_fop = &hugetlbfs_file_operations;
997 break;
998 case S_IFDIR:
999 inode->i_op = &hugetlbfs_dir_inode_operations;
1000 inode->i_fop = &simple_dir_operations;
1001
1002 /* directory inodes start off with i_nlink == 2 (for "." entry) */
1003 inc_nlink(inode);
1004 break;
1005 case S_IFLNK:
1006 inode->i_op = &page_symlink_inode_operations;
1007 inode_nohighmem(inode);
1008 break;
1009 }
1010 lockdep_annotate_inode_mutex_key(inode);
1011 } else {
1012 if (resv_map)
1013 kref_put(&resv_map->refs, resv_map_release);
1014 }
1015
1016 return inode;
1017 }
1018
1019 /*
1020 * File creation. Allocate an inode, and we're done..
1021 */
hugetlbfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1022 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
1023 struct dentry *dentry, umode_t mode, dev_t dev)
1024 {
1025 struct inode *inode;
1026
1027 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1028 if (!inode)
1029 return -ENOSPC;
1030 dir->i_ctime = dir->i_mtime = current_time(dir);
1031 d_instantiate(dentry, inode);
1032 dget(dentry);/* Extra count - pin the dentry in core */
1033 return 0;
1034 }
1035
hugetlbfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1036 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
1037 struct dentry *dentry, umode_t mode)
1038 {
1039 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
1040 mode | S_IFDIR, 0);
1041 if (!retval)
1042 inc_nlink(dir);
1043 return retval;
1044 }
1045
hugetlbfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1046 static int hugetlbfs_create(struct user_namespace *mnt_userns,
1047 struct inode *dir, struct dentry *dentry,
1048 umode_t mode, bool excl)
1049 {
1050 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1051 }
1052
hugetlbfs_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct file * file,umode_t mode)1053 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
1054 struct inode *dir, struct file *file,
1055 umode_t mode)
1056 {
1057 struct inode *inode;
1058
1059 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1060 if (!inode)
1061 return -ENOSPC;
1062 dir->i_ctime = dir->i_mtime = current_time(dir);
1063 d_tmpfile(file, inode);
1064 return finish_open_simple(file, 0);
1065 }
1066
hugetlbfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)1067 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
1068 struct inode *dir, struct dentry *dentry,
1069 const char *symname)
1070 {
1071 struct inode *inode;
1072 int error = -ENOSPC;
1073
1074 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1075 if (inode) {
1076 int l = strlen(symname)+1;
1077 error = page_symlink(inode, symname, l);
1078 if (!error) {
1079 d_instantiate(dentry, inode);
1080 dget(dentry);
1081 } else
1082 iput(inode);
1083 }
1084 dir->i_ctime = dir->i_mtime = current_time(dir);
1085
1086 return error;
1087 }
1088
1089 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1090 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1091 struct folio *dst, struct folio *src,
1092 enum migrate_mode mode)
1093 {
1094 int rc;
1095
1096 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1097 if (rc != MIGRATEPAGE_SUCCESS)
1098 return rc;
1099
1100 if (hugetlb_page_subpool(&src->page)) {
1101 hugetlb_set_page_subpool(&dst->page,
1102 hugetlb_page_subpool(&src->page));
1103 hugetlb_set_page_subpool(&src->page, NULL);
1104 }
1105
1106 if (mode != MIGRATE_SYNC_NO_COPY)
1107 folio_migrate_copy(dst, src);
1108 else
1109 folio_migrate_flags(dst, src);
1110
1111 return MIGRATEPAGE_SUCCESS;
1112 }
1113 #else
1114 #define hugetlbfs_migrate_folio NULL
1115 #endif
1116
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)1117 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1118 struct page *page)
1119 {
1120 return 0;
1121 }
1122
1123 /*
1124 * Display the mount options in /proc/mounts.
1125 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1126 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1127 {
1128 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1129 struct hugepage_subpool *spool = sbinfo->spool;
1130 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1131 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1132 char mod;
1133
1134 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1135 seq_printf(m, ",uid=%u",
1136 from_kuid_munged(&init_user_ns, sbinfo->uid));
1137 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1138 seq_printf(m, ",gid=%u",
1139 from_kgid_munged(&init_user_ns, sbinfo->gid));
1140 if (sbinfo->mode != 0755)
1141 seq_printf(m, ",mode=%o", sbinfo->mode);
1142 if (sbinfo->max_inodes != -1)
1143 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1144
1145 hpage_size /= 1024;
1146 mod = 'K';
1147 if (hpage_size >= 1024) {
1148 hpage_size /= 1024;
1149 mod = 'M';
1150 }
1151 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1152 if (spool) {
1153 if (spool->max_hpages != -1)
1154 seq_printf(m, ",size=%llu",
1155 (unsigned long long)spool->max_hpages << hpage_shift);
1156 if (spool->min_hpages != -1)
1157 seq_printf(m, ",min_size=%llu",
1158 (unsigned long long)spool->min_hpages << hpage_shift);
1159 }
1160 return 0;
1161 }
1162
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1163 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1164 {
1165 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1166 struct hstate *h = hstate_inode(d_inode(dentry));
1167
1168 buf->f_type = HUGETLBFS_MAGIC;
1169 buf->f_bsize = huge_page_size(h);
1170 if (sbinfo) {
1171 spin_lock(&sbinfo->stat_lock);
1172 /* If no limits set, just report 0 or -1 for max/free/used
1173 * blocks, like simple_statfs() */
1174 if (sbinfo->spool) {
1175 long free_pages;
1176
1177 spin_lock_irq(&sbinfo->spool->lock);
1178 buf->f_blocks = sbinfo->spool->max_hpages;
1179 free_pages = sbinfo->spool->max_hpages
1180 - sbinfo->spool->used_hpages;
1181 buf->f_bavail = buf->f_bfree = free_pages;
1182 spin_unlock_irq(&sbinfo->spool->lock);
1183 buf->f_files = sbinfo->max_inodes;
1184 buf->f_ffree = sbinfo->free_inodes;
1185 }
1186 spin_unlock(&sbinfo->stat_lock);
1187 }
1188 buf->f_namelen = NAME_MAX;
1189 return 0;
1190 }
1191
hugetlbfs_put_super(struct super_block * sb)1192 static void hugetlbfs_put_super(struct super_block *sb)
1193 {
1194 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1195
1196 if (sbi) {
1197 sb->s_fs_info = NULL;
1198
1199 if (sbi->spool)
1200 hugepage_put_subpool(sbi->spool);
1201
1202 kfree(sbi);
1203 }
1204 }
1205
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1206 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1207 {
1208 if (sbinfo->free_inodes >= 0) {
1209 spin_lock(&sbinfo->stat_lock);
1210 if (unlikely(!sbinfo->free_inodes)) {
1211 spin_unlock(&sbinfo->stat_lock);
1212 return 0;
1213 }
1214 sbinfo->free_inodes--;
1215 spin_unlock(&sbinfo->stat_lock);
1216 }
1217
1218 return 1;
1219 }
1220
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1221 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1222 {
1223 if (sbinfo->free_inodes >= 0) {
1224 spin_lock(&sbinfo->stat_lock);
1225 sbinfo->free_inodes++;
1226 spin_unlock(&sbinfo->stat_lock);
1227 }
1228 }
1229
1230
1231 static struct kmem_cache *hugetlbfs_inode_cachep;
1232
hugetlbfs_alloc_inode(struct super_block * sb)1233 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1234 {
1235 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1236 struct hugetlbfs_inode_info *p;
1237
1238 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1239 return NULL;
1240 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1241 if (unlikely(!p)) {
1242 hugetlbfs_inc_free_inodes(sbinfo);
1243 return NULL;
1244 }
1245
1246 /*
1247 * Any time after allocation, hugetlbfs_destroy_inode can be called
1248 * for the inode. mpol_free_shared_policy is unconditionally called
1249 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1250 * in case of a quick call to destroy.
1251 *
1252 * Note that the policy is initialized even if we are creating a
1253 * private inode. This simplifies hugetlbfs_destroy_inode.
1254 */
1255 mpol_shared_policy_init(&p->policy, NULL);
1256
1257 return &p->vfs_inode;
1258 }
1259
hugetlbfs_free_inode(struct inode * inode)1260 static void hugetlbfs_free_inode(struct inode *inode)
1261 {
1262 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1263 }
1264
hugetlbfs_destroy_inode(struct inode * inode)1265 static void hugetlbfs_destroy_inode(struct inode *inode)
1266 {
1267 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1268 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1269 }
1270
1271 static const struct address_space_operations hugetlbfs_aops = {
1272 .write_begin = hugetlbfs_write_begin,
1273 .write_end = hugetlbfs_write_end,
1274 .dirty_folio = noop_dirty_folio,
1275 .migrate_folio = hugetlbfs_migrate_folio,
1276 .error_remove_page = hugetlbfs_error_remove_page,
1277 };
1278
1279
init_once(void * foo)1280 static void init_once(void *foo)
1281 {
1282 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1283
1284 inode_init_once(&ei->vfs_inode);
1285 }
1286
1287 const struct file_operations hugetlbfs_file_operations = {
1288 .read_iter = hugetlbfs_read_iter,
1289 .mmap = hugetlbfs_file_mmap,
1290 .fsync = noop_fsync,
1291 .get_unmapped_area = hugetlb_get_unmapped_area,
1292 .llseek = default_llseek,
1293 .fallocate = hugetlbfs_fallocate,
1294 };
1295
1296 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1297 .create = hugetlbfs_create,
1298 .lookup = simple_lookup,
1299 .link = simple_link,
1300 .unlink = simple_unlink,
1301 .symlink = hugetlbfs_symlink,
1302 .mkdir = hugetlbfs_mkdir,
1303 .rmdir = simple_rmdir,
1304 .mknod = hugetlbfs_mknod,
1305 .rename = simple_rename,
1306 .setattr = hugetlbfs_setattr,
1307 .tmpfile = hugetlbfs_tmpfile,
1308 };
1309
1310 static const struct inode_operations hugetlbfs_inode_operations = {
1311 .setattr = hugetlbfs_setattr,
1312 };
1313
1314 static const struct super_operations hugetlbfs_ops = {
1315 .alloc_inode = hugetlbfs_alloc_inode,
1316 .free_inode = hugetlbfs_free_inode,
1317 .destroy_inode = hugetlbfs_destroy_inode,
1318 .evict_inode = hugetlbfs_evict_inode,
1319 .statfs = hugetlbfs_statfs,
1320 .put_super = hugetlbfs_put_super,
1321 .show_options = hugetlbfs_show_options,
1322 };
1323
1324 /*
1325 * Convert size option passed from command line to number of huge pages
1326 * in the pool specified by hstate. Size option could be in bytes
1327 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1328 */
1329 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1330 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1331 enum hugetlbfs_size_type val_type)
1332 {
1333 if (val_type == NO_SIZE)
1334 return -1;
1335
1336 if (val_type == SIZE_PERCENT) {
1337 size_opt <<= huge_page_shift(h);
1338 size_opt *= h->max_huge_pages;
1339 do_div(size_opt, 100);
1340 }
1341
1342 size_opt >>= huge_page_shift(h);
1343 return size_opt;
1344 }
1345
1346 /*
1347 * Parse one mount parameter.
1348 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1349 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1350 {
1351 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1352 struct fs_parse_result result;
1353 char *rest;
1354 unsigned long ps;
1355 int opt;
1356
1357 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1358 if (opt < 0)
1359 return opt;
1360
1361 switch (opt) {
1362 case Opt_uid:
1363 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1364 if (!uid_valid(ctx->uid))
1365 goto bad_val;
1366 return 0;
1367
1368 case Opt_gid:
1369 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1370 if (!gid_valid(ctx->gid))
1371 goto bad_val;
1372 return 0;
1373
1374 case Opt_mode:
1375 ctx->mode = result.uint_32 & 01777U;
1376 return 0;
1377
1378 case Opt_size:
1379 /* memparse() will accept a K/M/G without a digit */
1380 if (!isdigit(param->string[0]))
1381 goto bad_val;
1382 ctx->max_size_opt = memparse(param->string, &rest);
1383 ctx->max_val_type = SIZE_STD;
1384 if (*rest == '%')
1385 ctx->max_val_type = SIZE_PERCENT;
1386 return 0;
1387
1388 case Opt_nr_inodes:
1389 /* memparse() will accept a K/M/G without a digit */
1390 if (!isdigit(param->string[0]))
1391 goto bad_val;
1392 ctx->nr_inodes = memparse(param->string, &rest);
1393 return 0;
1394
1395 case Opt_pagesize:
1396 ps = memparse(param->string, &rest);
1397 ctx->hstate = size_to_hstate(ps);
1398 if (!ctx->hstate) {
1399 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1400 return -EINVAL;
1401 }
1402 return 0;
1403
1404 case Opt_min_size:
1405 /* memparse() will accept a K/M/G without a digit */
1406 if (!isdigit(param->string[0]))
1407 goto bad_val;
1408 ctx->min_size_opt = memparse(param->string, &rest);
1409 ctx->min_val_type = SIZE_STD;
1410 if (*rest == '%')
1411 ctx->min_val_type = SIZE_PERCENT;
1412 return 0;
1413
1414 default:
1415 return -EINVAL;
1416 }
1417
1418 bad_val:
1419 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1420 param->string, param->key);
1421 }
1422
1423 /*
1424 * Validate the parsed options.
1425 */
hugetlbfs_validate(struct fs_context * fc)1426 static int hugetlbfs_validate(struct fs_context *fc)
1427 {
1428 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1429
1430 /*
1431 * Use huge page pool size (in hstate) to convert the size
1432 * options to number of huge pages. If NO_SIZE, -1 is returned.
1433 */
1434 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1435 ctx->max_size_opt,
1436 ctx->max_val_type);
1437 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1438 ctx->min_size_opt,
1439 ctx->min_val_type);
1440
1441 /*
1442 * If max_size was specified, then min_size must be smaller
1443 */
1444 if (ctx->max_val_type > NO_SIZE &&
1445 ctx->min_hpages > ctx->max_hpages) {
1446 pr_err("Minimum size can not be greater than maximum size\n");
1447 return -EINVAL;
1448 }
1449
1450 return 0;
1451 }
1452
1453 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1454 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1455 {
1456 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1457 struct hugetlbfs_sb_info *sbinfo;
1458
1459 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1460 if (!sbinfo)
1461 return -ENOMEM;
1462 sb->s_fs_info = sbinfo;
1463 spin_lock_init(&sbinfo->stat_lock);
1464 sbinfo->hstate = ctx->hstate;
1465 sbinfo->max_inodes = ctx->nr_inodes;
1466 sbinfo->free_inodes = ctx->nr_inodes;
1467 sbinfo->spool = NULL;
1468 sbinfo->uid = ctx->uid;
1469 sbinfo->gid = ctx->gid;
1470 sbinfo->mode = ctx->mode;
1471
1472 /*
1473 * Allocate and initialize subpool if maximum or minimum size is
1474 * specified. Any needed reservations (for minimum size) are taken
1475 * when the subpool is created.
1476 */
1477 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1478 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1479 ctx->max_hpages,
1480 ctx->min_hpages);
1481 if (!sbinfo->spool)
1482 goto out_free;
1483 }
1484 sb->s_maxbytes = MAX_LFS_FILESIZE;
1485 sb->s_blocksize = huge_page_size(ctx->hstate);
1486 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1487 sb->s_magic = HUGETLBFS_MAGIC;
1488 sb->s_op = &hugetlbfs_ops;
1489 sb->s_time_gran = 1;
1490
1491 /*
1492 * Due to the special and limited functionality of hugetlbfs, it does
1493 * not work well as a stacking filesystem.
1494 */
1495 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1496 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1497 if (!sb->s_root)
1498 goto out_free;
1499 return 0;
1500 out_free:
1501 kfree(sbinfo->spool);
1502 kfree(sbinfo);
1503 return -ENOMEM;
1504 }
1505
hugetlbfs_get_tree(struct fs_context * fc)1506 static int hugetlbfs_get_tree(struct fs_context *fc)
1507 {
1508 int err = hugetlbfs_validate(fc);
1509 if (err)
1510 return err;
1511 return get_tree_nodev(fc, hugetlbfs_fill_super);
1512 }
1513
hugetlbfs_fs_context_free(struct fs_context * fc)1514 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1515 {
1516 kfree(fc->fs_private);
1517 }
1518
1519 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1520 .free = hugetlbfs_fs_context_free,
1521 .parse_param = hugetlbfs_parse_param,
1522 .get_tree = hugetlbfs_get_tree,
1523 };
1524
hugetlbfs_init_fs_context(struct fs_context * fc)1525 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1526 {
1527 struct hugetlbfs_fs_context *ctx;
1528
1529 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1530 if (!ctx)
1531 return -ENOMEM;
1532
1533 ctx->max_hpages = -1; /* No limit on size by default */
1534 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1535 ctx->uid = current_fsuid();
1536 ctx->gid = current_fsgid();
1537 ctx->mode = 0755;
1538 ctx->hstate = &default_hstate;
1539 ctx->min_hpages = -1; /* No default minimum size */
1540 ctx->max_val_type = NO_SIZE;
1541 ctx->min_val_type = NO_SIZE;
1542 fc->fs_private = ctx;
1543 fc->ops = &hugetlbfs_fs_context_ops;
1544 return 0;
1545 }
1546
1547 static struct file_system_type hugetlbfs_fs_type = {
1548 .name = "hugetlbfs",
1549 .init_fs_context = hugetlbfs_init_fs_context,
1550 .parameters = hugetlb_fs_parameters,
1551 .kill_sb = kill_litter_super,
1552 };
1553
1554 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1555
can_do_hugetlb_shm(void)1556 static int can_do_hugetlb_shm(void)
1557 {
1558 kgid_t shm_group;
1559 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1560 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1561 }
1562
get_hstate_idx(int page_size_log)1563 static int get_hstate_idx(int page_size_log)
1564 {
1565 struct hstate *h = hstate_sizelog(page_size_log);
1566
1567 if (!h)
1568 return -1;
1569 return hstate_index(h);
1570 }
1571
1572 /*
1573 * Note that size should be aligned to proper hugepage size in caller side,
1574 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1575 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1576 struct file *hugetlb_file_setup(const char *name, size_t size,
1577 vm_flags_t acctflag, int creat_flags,
1578 int page_size_log)
1579 {
1580 struct inode *inode;
1581 struct vfsmount *mnt;
1582 int hstate_idx;
1583 struct file *file;
1584
1585 hstate_idx = get_hstate_idx(page_size_log);
1586 if (hstate_idx < 0)
1587 return ERR_PTR(-ENODEV);
1588
1589 mnt = hugetlbfs_vfsmount[hstate_idx];
1590 if (!mnt)
1591 return ERR_PTR(-ENOENT);
1592
1593 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1594 struct ucounts *ucounts = current_ucounts();
1595
1596 if (user_shm_lock(size, ucounts)) {
1597 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1598 current->comm, current->pid);
1599 user_shm_unlock(size, ucounts);
1600 }
1601 return ERR_PTR(-EPERM);
1602 }
1603
1604 file = ERR_PTR(-ENOSPC);
1605 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1606 if (!inode)
1607 goto out;
1608 if (creat_flags == HUGETLB_SHMFS_INODE)
1609 inode->i_flags |= S_PRIVATE;
1610
1611 inode->i_size = size;
1612 clear_nlink(inode);
1613
1614 if (!hugetlb_reserve_pages(inode, 0,
1615 size >> huge_page_shift(hstate_inode(inode)), NULL,
1616 acctflag))
1617 file = ERR_PTR(-ENOMEM);
1618 else
1619 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1620 &hugetlbfs_file_operations);
1621 if (!IS_ERR(file))
1622 return file;
1623
1624 iput(inode);
1625 out:
1626 return file;
1627 }
1628
mount_one_hugetlbfs(struct hstate * h)1629 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1630 {
1631 struct fs_context *fc;
1632 struct vfsmount *mnt;
1633
1634 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1635 if (IS_ERR(fc)) {
1636 mnt = ERR_CAST(fc);
1637 } else {
1638 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1639 ctx->hstate = h;
1640 mnt = fc_mount(fc);
1641 put_fs_context(fc);
1642 }
1643 if (IS_ERR(mnt))
1644 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1645 huge_page_size(h) / SZ_1K);
1646 return mnt;
1647 }
1648
init_hugetlbfs_fs(void)1649 static int __init init_hugetlbfs_fs(void)
1650 {
1651 struct vfsmount *mnt;
1652 struct hstate *h;
1653 int error;
1654 int i;
1655
1656 if (!hugepages_supported()) {
1657 pr_info("disabling because there are no supported hugepage sizes\n");
1658 return -ENOTSUPP;
1659 }
1660
1661 error = -ENOMEM;
1662 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1663 sizeof(struct hugetlbfs_inode_info),
1664 0, SLAB_ACCOUNT, init_once);
1665 if (hugetlbfs_inode_cachep == NULL)
1666 goto out;
1667
1668 error = register_filesystem(&hugetlbfs_fs_type);
1669 if (error)
1670 goto out_free;
1671
1672 /* default hstate mount is required */
1673 mnt = mount_one_hugetlbfs(&default_hstate);
1674 if (IS_ERR(mnt)) {
1675 error = PTR_ERR(mnt);
1676 goto out_unreg;
1677 }
1678 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1679
1680 /* other hstates are optional */
1681 i = 0;
1682 for_each_hstate(h) {
1683 if (i == default_hstate_idx) {
1684 i++;
1685 continue;
1686 }
1687
1688 mnt = mount_one_hugetlbfs(h);
1689 if (IS_ERR(mnt))
1690 hugetlbfs_vfsmount[i] = NULL;
1691 else
1692 hugetlbfs_vfsmount[i] = mnt;
1693 i++;
1694 }
1695
1696 return 0;
1697
1698 out_unreg:
1699 (void)unregister_filesystem(&hugetlbfs_fs_type);
1700 out_free:
1701 kmem_cache_destroy(hugetlbfs_inode_cachep);
1702 out:
1703 return error;
1704 }
1705 fs_initcall(init_hugetlbfs_fs)
1706