1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 #include "internal.h"
43
44 /*
45 * How many user pages to map in one call to get_user_pages(). This determines
46 * the size of a structure in the slab cache
47 */
48 #define DIO_PAGES 64
49
50 /*
51 * Flags for dio_complete()
52 */
53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
55
56 /*
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68 /* dio_state only used in the submission path */
69
70 struct dio_submit {
71 struct bio *bio; /* bio under assembly */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 sector_t block_in_file; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available; /* At block_in_file. changes */
85 int reap_counter; /* rate limit reaping */
86 sector_t final_block_in_request;/* doesn't change */
87 int boundary; /* prev block is at a boundary */
88 get_block_t *get_block; /* block mapping function */
89 dio_submit_t *submit_io; /* IO submition function */
90
91 loff_t logical_offset_in_bio; /* current first logical block in bio */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95
96 /*
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
99 * dio_bio_add_page().
100 */
101 struct page *cur_page; /* The page */
102 unsigned cur_page_offset; /* Offset into it, in bytes */
103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block; /* Where it starts */
105 loff_t cur_page_fs_offset; /* Offset in file */
106
107 struct iov_iter *iter;
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
114 size_t from, to;
115 };
116
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 int flags; /* doesn't change */
120 blk_opf_t opf; /* request operation type and flags */
121 struct gendisk *bio_disk;
122 struct inode *inode;
123 loff_t i_size; /* i_size when submitted */
124 dio_iodone_t *end_io; /* IO completion function */
125
126 void *private; /* copy from map_bh.b_private */
127
128 /* BIO completion state */
129 spinlock_t bio_lock; /* protects BIO fields below */
130 int page_errors; /* errno from get_user_pages() */
131 int is_async; /* is IO async ? */
132 bool defer_completion; /* defer AIO completion to workqueue? */
133 bool should_dirty; /* if pages should be dirtied */
134 int io_error; /* IO error in completion path */
135 unsigned long refcount; /* direct_io_worker() and bios */
136 struct bio *bio_list; /* singly linked via bi_private */
137 struct task_struct *waiter; /* waiting task (NULL if none) */
138
139 /* AIO related stuff */
140 struct kiocb *iocb; /* kiocb */
141 ssize_t result; /* IO result */
142
143 /*
144 * pages[] (and any fields placed after it) are not zeroed out at
145 * allocation time. Don't add new fields after pages[] unless you
146 * wish that they not be zeroed.
147 */
148 union {
149 struct page *pages[DIO_PAGES]; /* page buffer */
150 struct work_struct complete_work;/* deferred AIO completion */
151 };
152 } ____cacheline_aligned_in_smp;
153
154 static struct kmem_cache *dio_cache __read_mostly;
155
156 /*
157 * How many pages are in the queue?
158 */
dio_pages_present(struct dio_submit * sdio)159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 return sdio->tail - sdio->head;
162 }
163
164 /*
165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
170 ssize_t ret;
171
172 ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 &sdio->from);
174
175 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
176 struct page *page = ZERO_PAGE(0);
177 /*
178 * A memory fault, but the filesystem has some outstanding
179 * mapped blocks. We need to use those blocks up to avoid
180 * leaking stale data in the file.
181 */
182 if (dio->page_errors == 0)
183 dio->page_errors = ret;
184 get_page(page);
185 dio->pages[0] = page;
186 sdio->head = 0;
187 sdio->tail = 1;
188 sdio->from = 0;
189 sdio->to = PAGE_SIZE;
190 return 0;
191 }
192
193 if (ret >= 0) {
194 ret += sdio->from;
195 sdio->head = 0;
196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 return 0;
199 }
200 return ret;
201 }
202
203 /*
204 * Get another userspace page. Returns an ERR_PTR on error. Pages are
205 * buffered inside the dio so that we can call get_user_pages() against a
206 * decent number of pages, less frequently. To provide nicer use of the
207 * L1 cache.
208 */
dio_get_page(struct dio * dio,struct dio_submit * sdio)209 static inline struct page *dio_get_page(struct dio *dio,
210 struct dio_submit *sdio)
211 {
212 if (dio_pages_present(sdio) == 0) {
213 int ret;
214
215 ret = dio_refill_pages(dio, sdio);
216 if (ret)
217 return ERR_PTR(ret);
218 BUG_ON(dio_pages_present(sdio) == 0);
219 }
220 return dio->pages[sdio->head];
221 }
222
223 /*
224 * dio_complete() - called when all DIO BIO I/O has been completed
225 *
226 * This drops i_dio_count, lets interested parties know that a DIO operation
227 * has completed, and calculates the resulting return code for the operation.
228 *
229 * It lets the filesystem know if it registered an interest earlier via
230 * get_block. Pass the private field of the map buffer_head so that
231 * filesystems can use it to hold additional state between get_block calls and
232 * dio_complete.
233 */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
235 {
236 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
237 loff_t offset = dio->iocb->ki_pos;
238 ssize_t transferred = 0;
239 int err;
240
241 /*
242 * AIO submission can race with bio completion to get here while
243 * expecting to have the last io completed by bio completion.
244 * In that case -EIOCBQUEUED is in fact not an error we want
245 * to preserve through this call.
246 */
247 if (ret == -EIOCBQUEUED)
248 ret = 0;
249
250 if (dio->result) {
251 transferred = dio->result;
252
253 /* Check for short read case */
254 if (dio_op == REQ_OP_READ &&
255 ((offset + transferred) > dio->i_size))
256 transferred = dio->i_size - offset;
257 /* ignore EFAULT if some IO has been done */
258 if (unlikely(ret == -EFAULT) && transferred)
259 ret = 0;
260 }
261
262 if (ret == 0)
263 ret = dio->page_errors;
264 if (ret == 0)
265 ret = dio->io_error;
266 if (ret == 0)
267 ret = transferred;
268
269 if (dio->end_io) {
270 // XXX: ki_pos??
271 err = dio->end_io(dio->iocb, offset, ret, dio->private);
272 if (err)
273 ret = err;
274 }
275
276 /*
277 * Try again to invalidate clean pages which might have been cached by
278 * non-direct readahead, or faulted in by get_user_pages() if the source
279 * of the write was an mmap'ed region of the file we're writing. Either
280 * one is a pretty crazy thing to do, so we don't support it 100%. If
281 * this invalidation fails, tough, the write still worked...
282 *
283 * And this page cache invalidation has to be after dio->end_io(), as
284 * some filesystems convert unwritten extents to real allocations in
285 * end_io() when necessary, otherwise a racing buffer read would cache
286 * zeros from unwritten extents.
287 */
288 if (flags & DIO_COMPLETE_INVALIDATE &&
289 ret > 0 && dio_op == REQ_OP_WRITE &&
290 dio->inode->i_mapping->nrpages) {
291 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
292 offset >> PAGE_SHIFT,
293 (offset + ret - 1) >> PAGE_SHIFT);
294 if (err)
295 dio_warn_stale_pagecache(dio->iocb->ki_filp);
296 }
297
298 inode_dio_end(dio->inode);
299
300 if (flags & DIO_COMPLETE_ASYNC) {
301 /*
302 * generic_write_sync expects ki_pos to have been updated
303 * already, but the submission path only does this for
304 * synchronous I/O.
305 */
306 dio->iocb->ki_pos += transferred;
307
308 if (ret > 0 && dio_op == REQ_OP_WRITE)
309 ret = generic_write_sync(dio->iocb, ret);
310 dio->iocb->ki_complete(dio->iocb, ret);
311 }
312
313 kmem_cache_free(dio_cache, dio);
314 return ret;
315 }
316
dio_aio_complete_work(struct work_struct * work)317 static void dio_aio_complete_work(struct work_struct *work)
318 {
319 struct dio *dio = container_of(work, struct dio, complete_work);
320
321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
322 }
323
324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
325
326 /*
327 * Asynchronous IO callback.
328 */
dio_bio_end_aio(struct bio * bio)329 static void dio_bio_end_aio(struct bio *bio)
330 {
331 struct dio *dio = bio->bi_private;
332 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
333 unsigned long remaining;
334 unsigned long flags;
335 bool defer_completion = false;
336
337 /* cleanup the bio */
338 dio_bio_complete(dio, bio);
339
340 spin_lock_irqsave(&dio->bio_lock, flags);
341 remaining = --dio->refcount;
342 if (remaining == 1 && dio->waiter)
343 wake_up_process(dio->waiter);
344 spin_unlock_irqrestore(&dio->bio_lock, flags);
345
346 if (remaining == 0) {
347 /*
348 * Defer completion when defer_completion is set or
349 * when the inode has pages mapped and this is AIO write.
350 * We need to invalidate those pages because there is a
351 * chance they contain stale data in the case buffered IO
352 * went in between AIO submission and completion into the
353 * same region.
354 */
355 if (dio->result)
356 defer_completion = dio->defer_completion ||
357 (dio_op == REQ_OP_WRITE &&
358 dio->inode->i_mapping->nrpages);
359 if (defer_completion) {
360 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 queue_work(dio->inode->i_sb->s_dio_done_wq,
362 &dio->complete_work);
363 } else {
364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365 }
366 }
367 }
368
369 /*
370 * The BIO completion handler simply queues the BIO up for the process-context
371 * handler.
372 *
373 * During I/O bi_private points at the dio. After I/O, bi_private is used to
374 * implement a singly-linked list of completed BIOs, at dio->bio_list.
375 */
dio_bio_end_io(struct bio * bio)376 static void dio_bio_end_io(struct bio *bio)
377 {
378 struct dio *dio = bio->bi_private;
379 unsigned long flags;
380
381 spin_lock_irqsave(&dio->bio_lock, flags);
382 bio->bi_private = dio->bio_list;
383 dio->bio_list = bio;
384 if (--dio->refcount == 1 && dio->waiter)
385 wake_up_process(dio->waiter);
386 spin_unlock_irqrestore(&dio->bio_lock, flags);
387 }
388
389 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
391 struct block_device *bdev,
392 sector_t first_sector, int nr_vecs)
393 {
394 struct bio *bio;
395
396 /*
397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
398 * we request a valid number of vectors.
399 */
400 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
401 bio->bi_iter.bi_sector = first_sector;
402 if (dio->is_async)
403 bio->bi_end_io = dio_bio_end_aio;
404 else
405 bio->bi_end_io = dio_bio_end_io;
406 sdio->bio = bio;
407 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
408 }
409
410 /*
411 * In the AIO read case we speculatively dirty the pages before starting IO.
412 * During IO completion, any of these pages which happen to have been written
413 * back will be redirtied by bio_check_pages_dirty().
414 *
415 * bios hold a dio reference between submit_bio and ->end_io.
416 */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)417 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
418 {
419 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
420 struct bio *bio = sdio->bio;
421 unsigned long flags;
422
423 bio->bi_private = dio;
424
425 spin_lock_irqsave(&dio->bio_lock, flags);
426 dio->refcount++;
427 spin_unlock_irqrestore(&dio->bio_lock, flags);
428
429 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
430 bio_set_pages_dirty(bio);
431
432 dio->bio_disk = bio->bi_bdev->bd_disk;
433
434 if (sdio->submit_io)
435 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
436 else
437 submit_bio(bio);
438
439 sdio->bio = NULL;
440 sdio->boundary = 0;
441 sdio->logical_offset_in_bio = 0;
442 }
443
444 /*
445 * Release any resources in case of a failure
446 */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)447 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
448 {
449 while (sdio->head < sdio->tail)
450 put_page(dio->pages[sdio->head++]);
451 }
452
453 /*
454 * Wait for the next BIO to complete. Remove it and return it. NULL is
455 * returned once all BIOs have been completed. This must only be called once
456 * all bios have been issued so that dio->refcount can only decrease. This
457 * requires that the caller hold a reference on the dio.
458 */
dio_await_one(struct dio * dio)459 static struct bio *dio_await_one(struct dio *dio)
460 {
461 unsigned long flags;
462 struct bio *bio = NULL;
463
464 spin_lock_irqsave(&dio->bio_lock, flags);
465
466 /*
467 * Wait as long as the list is empty and there are bios in flight. bio
468 * completion drops the count, maybe adds to the list, and wakes while
469 * holding the bio_lock so we don't need set_current_state()'s barrier
470 * and can call it after testing our condition.
471 */
472 while (dio->refcount > 1 && dio->bio_list == NULL) {
473 __set_current_state(TASK_UNINTERRUPTIBLE);
474 dio->waiter = current;
475 spin_unlock_irqrestore(&dio->bio_lock, flags);
476 blk_io_schedule();
477 /* wake up sets us TASK_RUNNING */
478 spin_lock_irqsave(&dio->bio_lock, flags);
479 dio->waiter = NULL;
480 }
481 if (dio->bio_list) {
482 bio = dio->bio_list;
483 dio->bio_list = bio->bi_private;
484 }
485 spin_unlock_irqrestore(&dio->bio_lock, flags);
486 return bio;
487 }
488
489 /*
490 * Process one completed BIO. No locks are held.
491 */
dio_bio_complete(struct dio * dio,struct bio * bio)492 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
493 {
494 blk_status_t err = bio->bi_status;
495 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
496 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
497
498 if (err) {
499 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
500 dio->io_error = -EAGAIN;
501 else
502 dio->io_error = -EIO;
503 }
504
505 if (dio->is_async && should_dirty) {
506 bio_check_pages_dirty(bio); /* transfers ownership */
507 } else {
508 bio_release_pages(bio, should_dirty);
509 bio_put(bio);
510 }
511 return err;
512 }
513
514 /*
515 * Wait on and process all in-flight BIOs. This must only be called once
516 * all bios have been issued so that the refcount can only decrease.
517 * This just waits for all bios to make it through dio_bio_complete. IO
518 * errors are propagated through dio->io_error and should be propagated via
519 * dio_complete().
520 */
dio_await_completion(struct dio * dio)521 static void dio_await_completion(struct dio *dio)
522 {
523 struct bio *bio;
524 do {
525 bio = dio_await_one(dio);
526 if (bio)
527 dio_bio_complete(dio, bio);
528 } while (bio);
529 }
530
531 /*
532 * A really large O_DIRECT read or write can generate a lot of BIOs. So
533 * to keep the memory consumption sane we periodically reap any completed BIOs
534 * during the BIO generation phase.
535 *
536 * This also helps to limit the peak amount of pinned userspace memory.
537 */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)538 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
539 {
540 int ret = 0;
541
542 if (sdio->reap_counter++ >= 64) {
543 while (dio->bio_list) {
544 unsigned long flags;
545 struct bio *bio;
546 int ret2;
547
548 spin_lock_irqsave(&dio->bio_lock, flags);
549 bio = dio->bio_list;
550 dio->bio_list = bio->bi_private;
551 spin_unlock_irqrestore(&dio->bio_lock, flags);
552 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
553 if (ret == 0)
554 ret = ret2;
555 }
556 sdio->reap_counter = 0;
557 }
558 return ret;
559 }
560
561 /*
562 * Create workqueue for deferred direct IO completions. We allocate the
563 * workqueue when it's first needed. This avoids creating workqueue for
564 * filesystems that don't need it and also allows us to create the workqueue
565 * late enough so the we can include s_id in the name of the workqueue.
566 */
sb_init_dio_done_wq(struct super_block * sb)567 int sb_init_dio_done_wq(struct super_block *sb)
568 {
569 struct workqueue_struct *old;
570 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
571 WQ_MEM_RECLAIM, 0,
572 sb->s_id);
573 if (!wq)
574 return -ENOMEM;
575 /*
576 * This has to be atomic as more DIOs can race to create the workqueue
577 */
578 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
579 /* Someone created workqueue before us? Free ours... */
580 if (old)
581 destroy_workqueue(wq);
582 return 0;
583 }
584
dio_set_defer_completion(struct dio * dio)585 static int dio_set_defer_completion(struct dio *dio)
586 {
587 struct super_block *sb = dio->inode->i_sb;
588
589 if (dio->defer_completion)
590 return 0;
591 dio->defer_completion = true;
592 if (!sb->s_dio_done_wq)
593 return sb_init_dio_done_wq(sb);
594 return 0;
595 }
596
597 /*
598 * Call into the fs to map some more disk blocks. We record the current number
599 * of available blocks at sdio->blocks_available. These are in units of the
600 * fs blocksize, i_blocksize(inode).
601 *
602 * The fs is allowed to map lots of blocks at once. If it wants to do that,
603 * it uses the passed inode-relative block number as the file offset, as usual.
604 *
605 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
606 * has remaining to do. The fs should not map more than this number of blocks.
607 *
608 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
609 * indicate how much contiguous disk space has been made available at
610 * bh->b_blocknr.
611 *
612 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
613 * This isn't very efficient...
614 *
615 * In the case of filesystem holes: the fs may return an arbitrarily-large
616 * hole by returning an appropriate value in b_size and by clearing
617 * buffer_mapped(). However the direct-io code will only process holes one
618 * block at a time - it will repeatedly call get_block() as it walks the hole.
619 */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)620 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
621 struct buffer_head *map_bh)
622 {
623 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
624 int ret;
625 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
626 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
627 unsigned long fs_count; /* Number of filesystem-sized blocks */
628 int create;
629 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
630 loff_t i_size;
631
632 /*
633 * If there was a memory error and we've overwritten all the
634 * mapped blocks then we can now return that memory error
635 */
636 ret = dio->page_errors;
637 if (ret == 0) {
638 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
639 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
640 fs_endblk = (sdio->final_block_in_request - 1) >>
641 sdio->blkfactor;
642 fs_count = fs_endblk - fs_startblk + 1;
643
644 map_bh->b_state = 0;
645 map_bh->b_size = fs_count << i_blkbits;
646
647 /*
648 * For writes that could fill holes inside i_size on a
649 * DIO_SKIP_HOLES filesystem we forbid block creations: only
650 * overwrites are permitted. We will return early to the caller
651 * once we see an unmapped buffer head returned, and the caller
652 * will fall back to buffered I/O.
653 *
654 * Otherwise the decision is left to the get_blocks method,
655 * which may decide to handle it or also return an unmapped
656 * buffer head.
657 */
658 create = dio_op == REQ_OP_WRITE;
659 if (dio->flags & DIO_SKIP_HOLES) {
660 i_size = i_size_read(dio->inode);
661 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
662 create = 0;
663 }
664
665 ret = (*sdio->get_block)(dio->inode, fs_startblk,
666 map_bh, create);
667
668 /* Store for completion */
669 dio->private = map_bh->b_private;
670
671 if (ret == 0 && buffer_defer_completion(map_bh))
672 ret = dio_set_defer_completion(dio);
673 }
674 return ret;
675 }
676
677 /*
678 * There is no bio. Make one now.
679 */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)680 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
681 sector_t start_sector, struct buffer_head *map_bh)
682 {
683 sector_t sector;
684 int ret, nr_pages;
685
686 ret = dio_bio_reap(dio, sdio);
687 if (ret)
688 goto out;
689 sector = start_sector << (sdio->blkbits - 9);
690 nr_pages = bio_max_segs(sdio->pages_in_io);
691 BUG_ON(nr_pages <= 0);
692 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
693 sdio->boundary = 0;
694 out:
695 return ret;
696 }
697
698 /*
699 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
700 * that was successful then update final_block_in_bio and take a ref against
701 * the just-added page.
702 *
703 * Return zero on success. Non-zero means the caller needs to start a new BIO.
704 */
dio_bio_add_page(struct dio_submit * sdio)705 static inline int dio_bio_add_page(struct dio_submit *sdio)
706 {
707 int ret;
708
709 ret = bio_add_page(sdio->bio, sdio->cur_page,
710 sdio->cur_page_len, sdio->cur_page_offset);
711 if (ret == sdio->cur_page_len) {
712 /*
713 * Decrement count only, if we are done with this page
714 */
715 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
716 sdio->pages_in_io--;
717 get_page(sdio->cur_page);
718 sdio->final_block_in_bio = sdio->cur_page_block +
719 (sdio->cur_page_len >> sdio->blkbits);
720 ret = 0;
721 } else {
722 ret = 1;
723 }
724 return ret;
725 }
726
727 /*
728 * Put cur_page under IO. The section of cur_page which is described by
729 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
730 * starts on-disk at cur_page_block.
731 *
732 * We take a ref against the page here (on behalf of its presence in the bio).
733 *
734 * The caller of this function is responsible for removing cur_page from the
735 * dio, and for dropping the refcount which came from that presence.
736 */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)737 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
738 struct buffer_head *map_bh)
739 {
740 int ret = 0;
741
742 if (sdio->bio) {
743 loff_t cur_offset = sdio->cur_page_fs_offset;
744 loff_t bio_next_offset = sdio->logical_offset_in_bio +
745 sdio->bio->bi_iter.bi_size;
746
747 /*
748 * See whether this new request is contiguous with the old.
749 *
750 * Btrfs cannot handle having logically non-contiguous requests
751 * submitted. For example if you have
752 *
753 * Logical: [0-4095][HOLE][8192-12287]
754 * Physical: [0-4095] [4096-8191]
755 *
756 * We cannot submit those pages together as one BIO. So if our
757 * current logical offset in the file does not equal what would
758 * be the next logical offset in the bio, submit the bio we
759 * have.
760 */
761 if (sdio->final_block_in_bio != sdio->cur_page_block ||
762 cur_offset != bio_next_offset)
763 dio_bio_submit(dio, sdio);
764 }
765
766 if (sdio->bio == NULL) {
767 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
768 if (ret)
769 goto out;
770 }
771
772 if (dio_bio_add_page(sdio) != 0) {
773 dio_bio_submit(dio, sdio);
774 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
775 if (ret == 0) {
776 ret = dio_bio_add_page(sdio);
777 BUG_ON(ret != 0);
778 }
779 }
780 out:
781 return ret;
782 }
783
784 /*
785 * An autonomous function to put a chunk of a page under deferred IO.
786 *
787 * The caller doesn't actually know (or care) whether this piece of page is in
788 * a BIO, or is under IO or whatever. We just take care of all possible
789 * situations here. The separation between the logic of do_direct_IO() and
790 * that of submit_page_section() is important for clarity. Please don't break.
791 *
792 * The chunk of page starts on-disk at blocknr.
793 *
794 * We perform deferred IO, by recording the last-submitted page inside our
795 * private part of the dio structure. If possible, we just expand the IO
796 * across that page here.
797 *
798 * If that doesn't work out then we put the old page into the bio and add this
799 * page to the dio instead.
800 */
801 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)802 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
803 unsigned offset, unsigned len, sector_t blocknr,
804 struct buffer_head *map_bh)
805 {
806 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
807 int ret = 0;
808 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
809
810 if (dio_op == REQ_OP_WRITE) {
811 /*
812 * Read accounting is performed in submit_bio()
813 */
814 task_io_account_write(len);
815 }
816
817 /*
818 * Can we just grow the current page's presence in the dio?
819 */
820 if (sdio->cur_page == page &&
821 sdio->cur_page_offset + sdio->cur_page_len == offset &&
822 sdio->cur_page_block +
823 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
824 sdio->cur_page_len += len;
825 goto out;
826 }
827
828 /*
829 * If there's a deferred page already there then send it.
830 */
831 if (sdio->cur_page) {
832 ret = dio_send_cur_page(dio, sdio, map_bh);
833 put_page(sdio->cur_page);
834 sdio->cur_page = NULL;
835 if (ret)
836 return ret;
837 }
838
839 get_page(page); /* It is in dio */
840 sdio->cur_page = page;
841 sdio->cur_page_offset = offset;
842 sdio->cur_page_len = len;
843 sdio->cur_page_block = blocknr;
844 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
845 out:
846 /*
847 * If boundary then we want to schedule the IO now to
848 * avoid metadata seeks.
849 */
850 if (boundary) {
851 ret = dio_send_cur_page(dio, sdio, map_bh);
852 if (sdio->bio)
853 dio_bio_submit(dio, sdio);
854 put_page(sdio->cur_page);
855 sdio->cur_page = NULL;
856 }
857 return ret;
858 }
859
860 /*
861 * If we are not writing the entire block and get_block() allocated
862 * the block for us, we need to fill-in the unused portion of the
863 * block with zeros. This happens only if user-buffer, fileoffset or
864 * io length is not filesystem block-size multiple.
865 *
866 * `end' is zero if we're doing the start of the IO, 1 at the end of the
867 * IO.
868 */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)869 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
870 int end, struct buffer_head *map_bh)
871 {
872 unsigned dio_blocks_per_fs_block;
873 unsigned this_chunk_blocks; /* In dio_blocks */
874 unsigned this_chunk_bytes;
875 struct page *page;
876
877 sdio->start_zero_done = 1;
878 if (!sdio->blkfactor || !buffer_new(map_bh))
879 return;
880
881 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
882 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
883
884 if (!this_chunk_blocks)
885 return;
886
887 /*
888 * We need to zero out part of an fs block. It is either at the
889 * beginning or the end of the fs block.
890 */
891 if (end)
892 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
893
894 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
895
896 page = ZERO_PAGE(0);
897 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
898 sdio->next_block_for_io, map_bh))
899 return;
900
901 sdio->next_block_for_io += this_chunk_blocks;
902 }
903
904 /*
905 * Walk the user pages, and the file, mapping blocks to disk and generating
906 * a sequence of (page,offset,len,block) mappings. These mappings are injected
907 * into submit_page_section(), which takes care of the next stage of submission
908 *
909 * Direct IO against a blockdev is different from a file. Because we can
910 * happily perform page-sized but 512-byte aligned IOs. It is important that
911 * blockdev IO be able to have fine alignment and large sizes.
912 *
913 * So what we do is to permit the ->get_block function to populate bh.b_size
914 * with the size of IO which is permitted at this offset and this i_blkbits.
915 *
916 * For best results, the blockdev should be set up with 512-byte i_blkbits and
917 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
918 * fine alignment but still allows this function to work in PAGE_SIZE units.
919 */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)920 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
921 struct buffer_head *map_bh)
922 {
923 const enum req_op dio_op = dio->opf & REQ_OP_MASK;
924 const unsigned blkbits = sdio->blkbits;
925 const unsigned i_blkbits = blkbits + sdio->blkfactor;
926 int ret = 0;
927
928 while (sdio->block_in_file < sdio->final_block_in_request) {
929 struct page *page;
930 size_t from, to;
931
932 page = dio_get_page(dio, sdio);
933 if (IS_ERR(page)) {
934 ret = PTR_ERR(page);
935 goto out;
936 }
937 from = sdio->head ? 0 : sdio->from;
938 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
939 sdio->head++;
940
941 while (from < to) {
942 unsigned this_chunk_bytes; /* # of bytes mapped */
943 unsigned this_chunk_blocks; /* # of blocks */
944 unsigned u;
945
946 if (sdio->blocks_available == 0) {
947 /*
948 * Need to go and map some more disk
949 */
950 unsigned long blkmask;
951 unsigned long dio_remainder;
952
953 ret = get_more_blocks(dio, sdio, map_bh);
954 if (ret) {
955 put_page(page);
956 goto out;
957 }
958 if (!buffer_mapped(map_bh))
959 goto do_holes;
960
961 sdio->blocks_available =
962 map_bh->b_size >> blkbits;
963 sdio->next_block_for_io =
964 map_bh->b_blocknr << sdio->blkfactor;
965 if (buffer_new(map_bh)) {
966 clean_bdev_aliases(
967 map_bh->b_bdev,
968 map_bh->b_blocknr,
969 map_bh->b_size >> i_blkbits);
970 }
971
972 if (!sdio->blkfactor)
973 goto do_holes;
974
975 blkmask = (1 << sdio->blkfactor) - 1;
976 dio_remainder = (sdio->block_in_file & blkmask);
977
978 /*
979 * If we are at the start of IO and that IO
980 * starts partway into a fs-block,
981 * dio_remainder will be non-zero. If the IO
982 * is a read then we can simply advance the IO
983 * cursor to the first block which is to be
984 * read. But if the IO is a write and the
985 * block was newly allocated we cannot do that;
986 * the start of the fs block must be zeroed out
987 * on-disk
988 */
989 if (!buffer_new(map_bh))
990 sdio->next_block_for_io += dio_remainder;
991 sdio->blocks_available -= dio_remainder;
992 }
993 do_holes:
994 /* Handle holes */
995 if (!buffer_mapped(map_bh)) {
996 loff_t i_size_aligned;
997
998 /* AKPM: eargh, -ENOTBLK is a hack */
999 if (dio_op == REQ_OP_WRITE) {
1000 put_page(page);
1001 return -ENOTBLK;
1002 }
1003
1004 /*
1005 * Be sure to account for a partial block as the
1006 * last block in the file
1007 */
1008 i_size_aligned = ALIGN(i_size_read(dio->inode),
1009 1 << blkbits);
1010 if (sdio->block_in_file >=
1011 i_size_aligned >> blkbits) {
1012 /* We hit eof */
1013 put_page(page);
1014 goto out;
1015 }
1016 zero_user(page, from, 1 << blkbits);
1017 sdio->block_in_file++;
1018 from += 1 << blkbits;
1019 dio->result += 1 << blkbits;
1020 goto next_block;
1021 }
1022
1023 /*
1024 * If we're performing IO which has an alignment which
1025 * is finer than the underlying fs, go check to see if
1026 * we must zero out the start of this block.
1027 */
1028 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1029 dio_zero_block(dio, sdio, 0, map_bh);
1030
1031 /*
1032 * Work out, in this_chunk_blocks, how much disk we
1033 * can add to this page
1034 */
1035 this_chunk_blocks = sdio->blocks_available;
1036 u = (to - from) >> blkbits;
1037 if (this_chunk_blocks > u)
1038 this_chunk_blocks = u;
1039 u = sdio->final_block_in_request - sdio->block_in_file;
1040 if (this_chunk_blocks > u)
1041 this_chunk_blocks = u;
1042 this_chunk_bytes = this_chunk_blocks << blkbits;
1043 BUG_ON(this_chunk_bytes == 0);
1044
1045 if (this_chunk_blocks == sdio->blocks_available)
1046 sdio->boundary = buffer_boundary(map_bh);
1047 ret = submit_page_section(dio, sdio, page,
1048 from,
1049 this_chunk_bytes,
1050 sdio->next_block_for_io,
1051 map_bh);
1052 if (ret) {
1053 put_page(page);
1054 goto out;
1055 }
1056 sdio->next_block_for_io += this_chunk_blocks;
1057
1058 sdio->block_in_file += this_chunk_blocks;
1059 from += this_chunk_bytes;
1060 dio->result += this_chunk_bytes;
1061 sdio->blocks_available -= this_chunk_blocks;
1062 next_block:
1063 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1064 if (sdio->block_in_file == sdio->final_block_in_request)
1065 break;
1066 }
1067
1068 /* Drop the ref which was taken in get_user_pages() */
1069 put_page(page);
1070 }
1071 out:
1072 return ret;
1073 }
1074
drop_refcount(struct dio * dio)1075 static inline int drop_refcount(struct dio *dio)
1076 {
1077 int ret2;
1078 unsigned long flags;
1079
1080 /*
1081 * Sync will always be dropping the final ref and completing the
1082 * operation. AIO can if it was a broken operation described above or
1083 * in fact if all the bios race to complete before we get here. In
1084 * that case dio_complete() translates the EIOCBQUEUED into the proper
1085 * return code that the caller will hand to ->complete().
1086 *
1087 * This is managed by the bio_lock instead of being an atomic_t so that
1088 * completion paths can drop their ref and use the remaining count to
1089 * decide to wake the submission path atomically.
1090 */
1091 spin_lock_irqsave(&dio->bio_lock, flags);
1092 ret2 = --dio->refcount;
1093 spin_unlock_irqrestore(&dio->bio_lock, flags);
1094 return ret2;
1095 }
1096
1097 /*
1098 * This is a library function for use by filesystem drivers.
1099 *
1100 * The locking rules are governed by the flags parameter:
1101 * - if the flags value contains DIO_LOCKING we use a fancy locking
1102 * scheme for dumb filesystems.
1103 * For writes this function is called under i_mutex and returns with
1104 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1105 * taken and dropped again before returning.
1106 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1107 * internal locking but rather rely on the filesystem to synchronize
1108 * direct I/O reads/writes versus each other and truncate.
1109 *
1110 * To help with locking against truncate we incremented the i_dio_count
1111 * counter before starting direct I/O, and decrement it once we are done.
1112 * Truncate can wait for it to reach zero to provide exclusion. It is
1113 * expected that filesystem provide exclusion between new direct I/O
1114 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1115 * but other filesystems need to take care of this on their own.
1116 *
1117 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1118 * is always inlined. Otherwise gcc is unable to split the structure into
1119 * individual fields and will generate much worse code. This is important
1120 * for the whole file.
1121 */
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1122 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1123 struct block_device *bdev, struct iov_iter *iter,
1124 get_block_t get_block, dio_iodone_t end_io,
1125 dio_submit_t submit_io, int flags)
1126 {
1127 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1128 unsigned blkbits = i_blkbits;
1129 unsigned blocksize_mask = (1 << blkbits) - 1;
1130 ssize_t retval = -EINVAL;
1131 const size_t count = iov_iter_count(iter);
1132 loff_t offset = iocb->ki_pos;
1133 const loff_t end = offset + count;
1134 struct dio *dio;
1135 struct dio_submit sdio = { 0, };
1136 struct buffer_head map_bh = { 0, };
1137 struct blk_plug plug;
1138 unsigned long align = offset | iov_iter_alignment(iter);
1139
1140 /*
1141 * Avoid references to bdev if not absolutely needed to give
1142 * the early prefetch in the caller enough time.
1143 */
1144
1145 /* watch out for a 0 len io from a tricksy fs */
1146 if (iov_iter_rw(iter) == READ && !count)
1147 return 0;
1148
1149 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1150 if (!dio)
1151 return -ENOMEM;
1152 /*
1153 * Believe it or not, zeroing out the page array caused a .5%
1154 * performance regression in a database benchmark. So, we take
1155 * care to only zero out what's needed.
1156 */
1157 memset(dio, 0, offsetof(struct dio, pages));
1158
1159 dio->flags = flags;
1160 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1161 /* will be released by direct_io_worker */
1162 inode_lock(inode);
1163 }
1164
1165 /* Once we sampled i_size check for reads beyond EOF */
1166 dio->i_size = i_size_read(inode);
1167 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1168 retval = 0;
1169 goto fail_dio;
1170 }
1171
1172 if (align & blocksize_mask) {
1173 if (bdev)
1174 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1175 blocksize_mask = (1 << blkbits) - 1;
1176 if (align & blocksize_mask)
1177 goto fail_dio;
1178 }
1179
1180 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1181 struct address_space *mapping = iocb->ki_filp->f_mapping;
1182
1183 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1184 if (retval)
1185 goto fail_dio;
1186 }
1187
1188 /*
1189 * For file extending writes updating i_size before data writeouts
1190 * complete can expose uninitialized blocks in dumb filesystems.
1191 * In that case we need to wait for I/O completion even if asked
1192 * for an asynchronous write.
1193 */
1194 if (is_sync_kiocb(iocb))
1195 dio->is_async = false;
1196 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1197 dio->is_async = false;
1198 else
1199 dio->is_async = true;
1200
1201 dio->inode = inode;
1202 if (iov_iter_rw(iter) == WRITE) {
1203 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1204 if (iocb->ki_flags & IOCB_NOWAIT)
1205 dio->opf |= REQ_NOWAIT;
1206 } else {
1207 dio->opf = REQ_OP_READ;
1208 }
1209
1210 /*
1211 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1212 * so that we can call ->fsync.
1213 */
1214 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1215 retval = 0;
1216 if (iocb_is_dsync(iocb))
1217 retval = dio_set_defer_completion(dio);
1218 else if (!dio->inode->i_sb->s_dio_done_wq) {
1219 /*
1220 * In case of AIO write racing with buffered read we
1221 * need to defer completion. We can't decide this now,
1222 * however the workqueue needs to be initialized here.
1223 */
1224 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1225 }
1226 if (retval)
1227 goto fail_dio;
1228 }
1229
1230 /*
1231 * Will be decremented at I/O completion time.
1232 */
1233 inode_dio_begin(inode);
1234
1235 retval = 0;
1236 sdio.blkbits = blkbits;
1237 sdio.blkfactor = i_blkbits - blkbits;
1238 sdio.block_in_file = offset >> blkbits;
1239
1240 sdio.get_block = get_block;
1241 dio->end_io = end_io;
1242 sdio.submit_io = submit_io;
1243 sdio.final_block_in_bio = -1;
1244 sdio.next_block_for_io = -1;
1245
1246 dio->iocb = iocb;
1247
1248 spin_lock_init(&dio->bio_lock);
1249 dio->refcount = 1;
1250
1251 dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1252 sdio.iter = iter;
1253 sdio.final_block_in_request = end >> blkbits;
1254
1255 /*
1256 * In case of non-aligned buffers, we may need 2 more
1257 * pages since we need to zero out first and last block.
1258 */
1259 if (unlikely(sdio.blkfactor))
1260 sdio.pages_in_io = 2;
1261
1262 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1263
1264 blk_start_plug(&plug);
1265
1266 retval = do_direct_IO(dio, &sdio, &map_bh);
1267 if (retval)
1268 dio_cleanup(dio, &sdio);
1269
1270 if (retval == -ENOTBLK) {
1271 /*
1272 * The remaining part of the request will be
1273 * handled by buffered I/O when we return
1274 */
1275 retval = 0;
1276 }
1277 /*
1278 * There may be some unwritten disk at the end of a part-written
1279 * fs-block-sized block. Go zero that now.
1280 */
1281 dio_zero_block(dio, &sdio, 1, &map_bh);
1282
1283 if (sdio.cur_page) {
1284 ssize_t ret2;
1285
1286 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1287 if (retval == 0)
1288 retval = ret2;
1289 put_page(sdio.cur_page);
1290 sdio.cur_page = NULL;
1291 }
1292 if (sdio.bio)
1293 dio_bio_submit(dio, &sdio);
1294
1295 blk_finish_plug(&plug);
1296
1297 /*
1298 * It is possible that, we return short IO due to end of file.
1299 * In that case, we need to release all the pages we got hold on.
1300 */
1301 dio_cleanup(dio, &sdio);
1302
1303 /*
1304 * All block lookups have been performed. For READ requests
1305 * we can let i_mutex go now that its achieved its purpose
1306 * of protecting us from looking up uninitialized blocks.
1307 */
1308 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1309 inode_unlock(dio->inode);
1310
1311 /*
1312 * The only time we want to leave bios in flight is when a successful
1313 * partial aio read or full aio write have been setup. In that case
1314 * bio completion will call aio_complete. The only time it's safe to
1315 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1316 * This had *better* be the only place that raises -EIOCBQUEUED.
1317 */
1318 BUG_ON(retval == -EIOCBQUEUED);
1319 if (dio->is_async && retval == 0 && dio->result &&
1320 (iov_iter_rw(iter) == READ || dio->result == count))
1321 retval = -EIOCBQUEUED;
1322 else
1323 dio_await_completion(dio);
1324
1325 if (drop_refcount(dio) == 0) {
1326 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1327 } else
1328 BUG_ON(retval != -EIOCBQUEUED);
1329
1330 return retval;
1331
1332 fail_dio:
1333 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1334 inode_unlock(inode);
1335
1336 kmem_cache_free(dio_cache, dio);
1337 return retval;
1338 }
1339 EXPORT_SYMBOL(__blockdev_direct_IO);
1340
dio_init(void)1341 static __init int dio_init(void)
1342 {
1343 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1344 return 0;
1345 }
1346 module_init(dio_init)
1347