1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "disk-io.h"
9 #include "reflink.h"
10 #include "transaction.h"
11 #include "subpage.h"
12
13 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
14
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)15 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
16 struct inode *inode,
17 u64 endoff,
18 const u64 destoff,
19 const u64 olen,
20 int no_time_update)
21 {
22 struct btrfs_root *root = BTRFS_I(inode)->root;
23 int ret;
24
25 inode_inc_iversion(inode);
26 if (!no_time_update) {
27 inode->i_mtime = current_time(inode);
28 inode->i_ctime = inode->i_mtime;
29 }
30 /*
31 * We round up to the block size at eof when determining which
32 * extents to clone above, but shouldn't round up the file size.
33 */
34 if (endoff > destoff + olen)
35 endoff = destoff + olen;
36 if (endoff > inode->i_size) {
37 i_size_write(inode, endoff);
38 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
39 }
40
41 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
42 if (ret) {
43 btrfs_abort_transaction(trans, ret);
44 btrfs_end_transaction(trans);
45 goto out;
46 }
47 ret = btrfs_end_transaction(trans);
48 out:
49 return ret;
50 }
51
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)52 static int copy_inline_to_page(struct btrfs_inode *inode,
53 const u64 file_offset,
54 char *inline_data,
55 const u64 size,
56 const u64 datal,
57 const u8 comp_type)
58 {
59 struct btrfs_fs_info *fs_info = inode->root->fs_info;
60 const u32 block_size = fs_info->sectorsize;
61 const u64 range_end = file_offset + block_size - 1;
62 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
63 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
64 struct extent_changeset *data_reserved = NULL;
65 struct page *page = NULL;
66 struct address_space *mapping = inode->vfs_inode.i_mapping;
67 int ret;
68
69 ASSERT(IS_ALIGNED(file_offset, block_size));
70
71 /*
72 * We have flushed and locked the ranges of the source and destination
73 * inodes, we also have locked the inodes, so we are safe to do a
74 * reservation here. Also we must not do the reservation while holding
75 * a transaction open, otherwise we would deadlock.
76 */
77 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
78 block_size);
79 if (ret)
80 goto out;
81
82 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
83 btrfs_alloc_write_mask(mapping));
84 if (!page) {
85 ret = -ENOMEM;
86 goto out_unlock;
87 }
88
89 ret = set_page_extent_mapped(page);
90 if (ret < 0)
91 goto out_unlock;
92
93 clear_extent_bit(&inode->io_tree, file_offset, range_end,
94 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
95 NULL);
96 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
97 if (ret)
98 goto out_unlock;
99
100 /*
101 * After dirtying the page our caller will need to start a transaction,
102 * and if we are low on metadata free space, that can cause flushing of
103 * delalloc for all inodes in order to get metadata space released.
104 * However we are holding the range locked for the whole duration of
105 * the clone/dedupe operation, so we may deadlock if that happens and no
106 * other task releases enough space. So mark this inode as not being
107 * possible to flush to avoid such deadlock. We will clear that flag
108 * when we finish cloning all extents, since a transaction is started
109 * after finding each extent to clone.
110 */
111 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
112
113 if (comp_type == BTRFS_COMPRESS_NONE) {
114 memcpy_to_page(page, offset_in_page(file_offset), data_start,
115 datal);
116 } else {
117 ret = btrfs_decompress(comp_type, data_start, page,
118 offset_in_page(file_offset),
119 inline_size, datal);
120 if (ret)
121 goto out_unlock;
122 flush_dcache_page(page);
123 }
124
125 /*
126 * If our inline data is smaller then the block/page size, then the
127 * remaining of the block/page is equivalent to zeroes. We had something
128 * like the following done:
129 *
130 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
131 * $ sync # (or fsync)
132 * $ xfs_io -c "falloc 0 4K" file
133 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
134 *
135 * So what's in the range [500, 4095] corresponds to zeroes.
136 */
137 if (datal < block_size)
138 memzero_page(page, datal, block_size - datal);
139
140 btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
141 btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
142 btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
143 out_unlock:
144 if (page) {
145 unlock_page(page);
146 put_page(page);
147 }
148 if (ret)
149 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150 block_size, true);
151 btrfs_delalloc_release_extents(inode, block_size);
152 out:
153 extent_changeset_free(data_reserved);
154
155 return ret;
156 }
157
158 /*
159 * Deal with cloning of inline extents. We try to copy the inline extent from
160 * the source inode to destination inode when possible. When not possible we
161 * copy the inline extent's data into the respective page of the inode.
162 */
clone_copy_inline_extent(struct inode * dst,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)163 static int clone_copy_inline_extent(struct inode *dst,
164 struct btrfs_path *path,
165 struct btrfs_key *new_key,
166 const u64 drop_start,
167 const u64 datal,
168 const u64 size,
169 const u8 comp_type,
170 char *inline_data,
171 struct btrfs_trans_handle **trans_out)
172 {
173 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174 struct btrfs_root *root = BTRFS_I(dst)->root;
175 const u64 aligned_end = ALIGN(new_key->offset + datal,
176 fs_info->sectorsize);
177 struct btrfs_trans_handle *trans = NULL;
178 struct btrfs_drop_extents_args drop_args = { 0 };
179 int ret;
180 struct btrfs_key key;
181
182 if (new_key->offset > 0) {
183 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184 inline_data, size, datal, comp_type);
185 goto out;
186 }
187
188 key.objectid = btrfs_ino(BTRFS_I(dst));
189 key.type = BTRFS_EXTENT_DATA_KEY;
190 key.offset = 0;
191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192 if (ret < 0) {
193 return ret;
194 } else if (ret > 0) {
195 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196 ret = btrfs_next_leaf(root, path);
197 if (ret < 0)
198 return ret;
199 else if (ret > 0)
200 goto copy_inline_extent;
201 }
202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204 key.type == BTRFS_EXTENT_DATA_KEY) {
205 /*
206 * There's an implicit hole at file offset 0, copy the
207 * inline extent's data to the page.
208 */
209 ASSERT(key.offset > 0);
210 goto copy_to_page;
211 }
212 } else if (i_size_read(dst) <= datal) {
213 struct btrfs_file_extent_item *ei;
214
215 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
216 struct btrfs_file_extent_item);
217 /*
218 * If it's an inline extent replace it with the source inline
219 * extent, otherwise copy the source inline extent data into
220 * the respective page at the destination inode.
221 */
222 if (btrfs_file_extent_type(path->nodes[0], ei) ==
223 BTRFS_FILE_EXTENT_INLINE)
224 goto copy_inline_extent;
225
226 goto copy_to_page;
227 }
228
229 copy_inline_extent:
230 /*
231 * We have no extent items, or we have an extent at offset 0 which may
232 * or may not be inlined. All these cases are dealt the same way.
233 */
234 if (i_size_read(dst) > datal) {
235 /*
236 * At the destination offset 0 we have either a hole, a regular
237 * extent or an inline extent larger then the one we want to
238 * clone. Deal with all these cases by copying the inline extent
239 * data into the respective page at the destination inode.
240 */
241 goto copy_to_page;
242 }
243
244 /*
245 * Release path before starting a new transaction so we don't hold locks
246 * that would confuse lockdep.
247 */
248 btrfs_release_path(path);
249 /*
250 * If we end up here it means were copy the inline extent into a leaf
251 * of the destination inode. We know we will drop or adjust at most one
252 * extent item in the destination root.
253 *
254 * 1 unit - adjusting old extent (we may have to split it)
255 * 1 unit - add new extent
256 * 1 unit - inode update
257 */
258 trans = btrfs_start_transaction(root, 3);
259 if (IS_ERR(trans)) {
260 ret = PTR_ERR(trans);
261 trans = NULL;
262 goto out;
263 }
264 drop_args.path = path;
265 drop_args.start = drop_start;
266 drop_args.end = aligned_end;
267 drop_args.drop_cache = true;
268 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269 if (ret)
270 goto out;
271 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272 if (ret)
273 goto out;
274
275 write_extent_buffer(path->nodes[0], inline_data,
276 btrfs_item_ptr_offset(path->nodes[0],
277 path->slots[0]),
278 size);
279 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280 btrfs_set_inode_full_sync(BTRFS_I(dst));
281 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282 out:
283 if (!ret && !trans) {
284 /*
285 * No transaction here means we copied the inline extent into a
286 * page of the destination inode.
287 *
288 * 1 unit to update inode item
289 */
290 trans = btrfs_start_transaction(root, 1);
291 if (IS_ERR(trans)) {
292 ret = PTR_ERR(trans);
293 trans = NULL;
294 }
295 }
296 if (ret && trans) {
297 btrfs_abort_transaction(trans, ret);
298 btrfs_end_transaction(trans);
299 }
300 if (!ret)
301 *trans_out = trans;
302
303 return ret;
304
305 copy_to_page:
306 /*
307 * Release our path because we don't need it anymore and also because
308 * copy_inline_to_page() needs to reserve data and metadata, which may
309 * need to flush delalloc when we are low on available space and
310 * therefore cause a deadlock if writeback of an inline extent needs to
311 * write to the same leaf or an ordered extent completion needs to write
312 * to the same leaf.
313 */
314 btrfs_release_path(path);
315
316 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
317 inline_data, size, datal, comp_type);
318 goto out;
319 }
320
321 /**
322 * btrfs_clone() - clone a range from inode file to another
323 *
324 * @src: Inode to clone from
325 * @inode: Inode to clone to
326 * @off: Offset within source to start clone from
327 * @olen: Original length, passed by user, of range to clone
328 * @olen_aligned: Block-aligned value of olen
329 * @destoff: Offset within @inode to start clone
330 * @no_time_update: Whether to update mtime/ctime on the target inode
331 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)332 static int btrfs_clone(struct inode *src, struct inode *inode,
333 const u64 off, const u64 olen, const u64 olen_aligned,
334 const u64 destoff, int no_time_update)
335 {
336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
337 struct btrfs_path *path = NULL;
338 struct extent_buffer *leaf;
339 struct btrfs_trans_handle *trans;
340 char *buf = NULL;
341 struct btrfs_key key;
342 u32 nritems;
343 int slot;
344 int ret;
345 const u64 len = olen_aligned;
346 u64 last_dest_end = destoff;
347 u64 prev_extent_end = off;
348
349 ret = -ENOMEM;
350 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
351 if (!buf)
352 return ret;
353
354 path = btrfs_alloc_path();
355 if (!path) {
356 kvfree(buf);
357 return ret;
358 }
359
360 path->reada = READA_FORWARD;
361 /* Clone data */
362 key.objectid = btrfs_ino(BTRFS_I(src));
363 key.type = BTRFS_EXTENT_DATA_KEY;
364 key.offset = off;
365
366 while (1) {
367 struct btrfs_file_extent_item *extent;
368 u64 extent_gen;
369 int type;
370 u32 size;
371 struct btrfs_key new_key;
372 u64 disko = 0, diskl = 0;
373 u64 datao = 0, datal = 0;
374 u8 comp;
375 u64 drop_start;
376
377 /* Note the key will change type as we walk through the tree */
378 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
379 0, 0);
380 if (ret < 0)
381 goto out;
382 /*
383 * First search, if no extent item that starts at offset off was
384 * found but the previous item is an extent item, it's possible
385 * it might overlap our target range, therefore process it.
386 */
387 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
388 btrfs_item_key_to_cpu(path->nodes[0], &key,
389 path->slots[0] - 1);
390 if (key.type == BTRFS_EXTENT_DATA_KEY)
391 path->slots[0]--;
392 }
393
394 nritems = btrfs_header_nritems(path->nodes[0]);
395 process_slot:
396 if (path->slots[0] >= nritems) {
397 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
398 if (ret < 0)
399 goto out;
400 if (ret > 0)
401 break;
402 nritems = btrfs_header_nritems(path->nodes[0]);
403 }
404 leaf = path->nodes[0];
405 slot = path->slots[0];
406
407 btrfs_item_key_to_cpu(leaf, &key, slot);
408 if (key.type > BTRFS_EXTENT_DATA_KEY ||
409 key.objectid != btrfs_ino(BTRFS_I(src)))
410 break;
411
412 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
413
414 extent = btrfs_item_ptr(leaf, slot,
415 struct btrfs_file_extent_item);
416 extent_gen = btrfs_file_extent_generation(leaf, extent);
417 comp = btrfs_file_extent_compression(leaf, extent);
418 type = btrfs_file_extent_type(leaf, extent);
419 if (type == BTRFS_FILE_EXTENT_REG ||
420 type == BTRFS_FILE_EXTENT_PREALLOC) {
421 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
422 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
423 datao = btrfs_file_extent_offset(leaf, extent);
424 datal = btrfs_file_extent_num_bytes(leaf, extent);
425 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
426 /* Take upper bound, may be compressed */
427 datal = btrfs_file_extent_ram_bytes(leaf, extent);
428 }
429
430 /*
431 * The first search might have left us at an extent item that
432 * ends before our target range's start, can happen if we have
433 * holes and NO_HOLES feature enabled.
434 *
435 * Subsequent searches may leave us on a file range we have
436 * processed before - this happens due to a race with ordered
437 * extent completion for a file range that is outside our source
438 * range, but that range was part of a file extent item that
439 * also covered a leading part of our source range.
440 */
441 if (key.offset + datal <= prev_extent_end) {
442 path->slots[0]++;
443 goto process_slot;
444 } else if (key.offset >= off + len) {
445 break;
446 }
447
448 prev_extent_end = key.offset + datal;
449 size = btrfs_item_size(leaf, slot);
450 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
451 size);
452
453 btrfs_release_path(path);
454
455 memcpy(&new_key, &key, sizeof(new_key));
456 new_key.objectid = btrfs_ino(BTRFS_I(inode));
457 if (off <= key.offset)
458 new_key.offset = key.offset + destoff - off;
459 else
460 new_key.offset = destoff;
461
462 /*
463 * Deal with a hole that doesn't have an extent item that
464 * represents it (NO_HOLES feature enabled).
465 * This hole is either in the middle of the cloning range or at
466 * the beginning (fully overlaps it or partially overlaps it).
467 */
468 if (new_key.offset != last_dest_end)
469 drop_start = last_dest_end;
470 else
471 drop_start = new_key.offset;
472
473 if (type == BTRFS_FILE_EXTENT_REG ||
474 type == BTRFS_FILE_EXTENT_PREALLOC) {
475 struct btrfs_replace_extent_info clone_info;
476
477 /*
478 * a | --- range to clone ---| b
479 * | ------------- extent ------------- |
480 */
481
482 /* Subtract range b */
483 if (key.offset + datal > off + len)
484 datal = off + len - key.offset;
485
486 /* Subtract range a */
487 if (off > key.offset) {
488 datao += off - key.offset;
489 datal -= off - key.offset;
490 }
491
492 clone_info.disk_offset = disko;
493 clone_info.disk_len = diskl;
494 clone_info.data_offset = datao;
495 clone_info.data_len = datal;
496 clone_info.file_offset = new_key.offset;
497 clone_info.extent_buf = buf;
498 clone_info.is_new_extent = false;
499 clone_info.update_times = !no_time_update;
500 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
501 drop_start, new_key.offset + datal - 1,
502 &clone_info, &trans);
503 if (ret)
504 goto out;
505 } else {
506 ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
507 /*
508 * Inline extents always have to start at file offset 0
509 * and can never be bigger then the sector size. We can
510 * never clone only parts of an inline extent, since all
511 * reflink operations must start at a sector size aligned
512 * offset, and the length must be aligned too or end at
513 * the i_size (which implies the whole inlined data).
514 */
515 ASSERT(key.offset == 0);
516 ASSERT(datal <= fs_info->sectorsize);
517 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
518 WARN_ON(key.offset != 0) ||
519 WARN_ON(datal > fs_info->sectorsize)) {
520 ret = -EUCLEAN;
521 goto out;
522 }
523
524 ret = clone_copy_inline_extent(inode, path, &new_key,
525 drop_start, datal, size,
526 comp, buf, &trans);
527 if (ret)
528 goto out;
529 }
530
531 btrfs_release_path(path);
532
533 /*
534 * Whenever we share an extent we update the last_reflink_trans
535 * of each inode to the current transaction. This is needed to
536 * make sure fsync does not log multiple checksum items with
537 * overlapping ranges (because some extent items might refer
538 * only to sections of the original extent). For the destination
539 * inode we do this regardless of the generation of the extents
540 * or even if they are inline extents or explicit holes, to make
541 * sure a full fsync does not skip them. For the source inode,
542 * we only need to update last_reflink_trans in case it's a new
543 * extent that is not a hole or an inline extent, to deal with
544 * the checksums problem on fsync.
545 */
546 if (extent_gen == trans->transid && disko > 0)
547 BTRFS_I(src)->last_reflink_trans = trans->transid;
548
549 BTRFS_I(inode)->last_reflink_trans = trans->transid;
550
551 last_dest_end = ALIGN(new_key.offset + datal,
552 fs_info->sectorsize);
553 ret = clone_finish_inode_update(trans, inode, last_dest_end,
554 destoff, olen, no_time_update);
555 if (ret)
556 goto out;
557 if (new_key.offset + datal >= destoff + len)
558 break;
559
560 btrfs_release_path(path);
561 key.offset = prev_extent_end;
562
563 if (fatal_signal_pending(current)) {
564 ret = -EINTR;
565 goto out;
566 }
567
568 cond_resched();
569 }
570 ret = 0;
571
572 if (last_dest_end < destoff + len) {
573 /*
574 * We have an implicit hole that fully or partially overlaps our
575 * cloning range at its end. This means that we either have the
576 * NO_HOLES feature enabled or the implicit hole happened due to
577 * mixing buffered and direct IO writes against this file.
578 */
579 btrfs_release_path(path);
580
581 /*
582 * When using NO_HOLES and we are cloning a range that covers
583 * only a hole (no extents) into a range beyond the current
584 * i_size, punching a hole in the target range will not create
585 * an extent map defining a hole, because the range starts at or
586 * beyond current i_size. If the file previously had an i_size
587 * greater than the new i_size set by this clone operation, we
588 * need to make sure the next fsync is a full fsync, so that it
589 * detects and logs a hole covering a range from the current
590 * i_size to the new i_size. If the clone range covers extents,
591 * besides a hole, then we know the full sync flag was already
592 * set by previous calls to btrfs_replace_file_extents() that
593 * replaced file extent items.
594 */
595 if (last_dest_end >= i_size_read(inode))
596 btrfs_set_inode_full_sync(BTRFS_I(inode));
597
598 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
599 last_dest_end, destoff + len - 1, NULL, &trans);
600 if (ret)
601 goto out;
602
603 ret = clone_finish_inode_update(trans, inode, destoff + len,
604 destoff, olen, no_time_update);
605 }
606
607 out:
608 btrfs_free_path(path);
609 kvfree(buf);
610 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
611
612 return ret;
613 }
614
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)615 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
616 struct inode *inode2, u64 loff2, u64 len)
617 {
618 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
619 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
620 }
621
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)622 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
623 struct inode *inode2, u64 loff2, u64 len)
624 {
625 u64 range1_end = loff1 + len - 1;
626 u64 range2_end = loff2 + len - 1;
627
628 if (inode1 < inode2) {
629 swap(inode1, inode2);
630 swap(loff1, loff2);
631 swap(range1_end, range2_end);
632 } else if (inode1 == inode2 && loff2 < loff1) {
633 swap(loff1, loff2);
634 swap(range1_end, range2_end);
635 }
636
637 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
638 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
639
640 btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
641 btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
642 }
643
btrfs_double_mmap_lock(struct inode * inode1,struct inode * inode2)644 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
645 {
646 if (inode1 < inode2)
647 swap(inode1, inode2);
648 down_write(&BTRFS_I(inode1)->i_mmap_lock);
649 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
650 }
651
btrfs_double_mmap_unlock(struct inode * inode1,struct inode * inode2)652 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
653 {
654 up_write(&BTRFS_I(inode1)->i_mmap_lock);
655 up_write(&BTRFS_I(inode2)->i_mmap_lock);
656 }
657
btrfs_extent_same_range(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)658 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
659 struct inode *dst, u64 dst_loff)
660 {
661 struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
662 const u64 bs = fs_info->sb->s_blocksize;
663 int ret;
664
665 /*
666 * Lock destination range to serialize with concurrent readahead() and
667 * source range to serialize with relocation.
668 */
669 btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
670 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
671 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
672
673 btrfs_btree_balance_dirty(fs_info);
674
675 return ret;
676 }
677
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)678 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
679 struct inode *dst, u64 dst_loff)
680 {
681 int ret = 0;
682 u64 i, tail_len, chunk_count;
683 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
684
685 spin_lock(&root_dst->root_item_lock);
686 if (root_dst->send_in_progress) {
687 btrfs_warn_rl(root_dst->fs_info,
688 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
689 root_dst->root_key.objectid,
690 root_dst->send_in_progress);
691 spin_unlock(&root_dst->root_item_lock);
692 return -EAGAIN;
693 }
694 root_dst->dedupe_in_progress++;
695 spin_unlock(&root_dst->root_item_lock);
696
697 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
698 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
699
700 for (i = 0; i < chunk_count; i++) {
701 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
702 dst, dst_loff);
703 if (ret)
704 goto out;
705
706 loff += BTRFS_MAX_DEDUPE_LEN;
707 dst_loff += BTRFS_MAX_DEDUPE_LEN;
708 }
709
710 if (tail_len > 0)
711 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
712 out:
713 spin_lock(&root_dst->root_item_lock);
714 root_dst->dedupe_in_progress--;
715 spin_unlock(&root_dst->root_item_lock);
716
717 return ret;
718 }
719
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)720 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
721 u64 off, u64 olen, u64 destoff)
722 {
723 struct inode *inode = file_inode(file);
724 struct inode *src = file_inode(file_src);
725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
726 int ret;
727 int wb_ret;
728 u64 len = olen;
729 u64 bs = fs_info->sb->s_blocksize;
730
731 /*
732 * VFS's generic_remap_file_range_prep() protects us from cloning the
733 * eof block into the middle of a file, which would result in corruption
734 * if the file size is not blocksize aligned. So we don't need to check
735 * for that case here.
736 */
737 if (off + len == src->i_size)
738 len = ALIGN(src->i_size, bs) - off;
739
740 if (destoff > inode->i_size) {
741 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
742
743 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
744 if (ret)
745 return ret;
746 /*
747 * We may have truncated the last block if the inode's size is
748 * not sector size aligned, so we need to wait for writeback to
749 * complete before proceeding further, otherwise we can race
750 * with cloning and attempt to increment a reference to an
751 * extent that no longer exists (writeback completed right after
752 * we found the previous extent covering eof and before we
753 * attempted to increment its reference count).
754 */
755 ret = btrfs_wait_ordered_range(inode, wb_start,
756 destoff - wb_start);
757 if (ret)
758 return ret;
759 }
760
761 /*
762 * Lock destination range to serialize with concurrent readahead() and
763 * source range to serialize with relocation.
764 */
765 btrfs_double_extent_lock(src, off, inode, destoff, len);
766 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
767 btrfs_double_extent_unlock(src, off, inode, destoff, len);
768
769 /*
770 * We may have copied an inline extent into a page of the destination
771 * range, so wait for writeback to complete before truncating pages
772 * from the page cache. This is a rare case.
773 */
774 wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
775 ret = ret ? ret : wb_ret;
776 /*
777 * Truncate page cache pages so that future reads will see the cloned
778 * data immediately and not the previous data.
779 */
780 truncate_inode_pages_range(&inode->i_data,
781 round_down(destoff, PAGE_SIZE),
782 round_up(destoff + len, PAGE_SIZE) - 1);
783
784 btrfs_btree_balance_dirty(fs_info);
785
786 return ret;
787 }
788
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)789 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
790 struct file *file_out, loff_t pos_out,
791 loff_t *len, unsigned int remap_flags)
792 {
793 struct inode *inode_in = file_inode(file_in);
794 struct inode *inode_out = file_inode(file_out);
795 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
796 u64 wb_len;
797 int ret;
798
799 if (!(remap_flags & REMAP_FILE_DEDUP)) {
800 struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
801
802 if (btrfs_root_readonly(root_out))
803 return -EROFS;
804
805 ASSERT(inode_in->i_sb == inode_out->i_sb);
806 }
807
808 /* Don't make the dst file partly checksummed */
809 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
810 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
811 return -EINVAL;
812 }
813
814 /*
815 * Now that the inodes are locked, we need to start writeback ourselves
816 * and can not rely on the writeback from the VFS's generic helper
817 * generic_remap_file_range_prep() because:
818 *
819 * 1) For compression we must call filemap_fdatawrite_range() range
820 * twice (btrfs_fdatawrite_range() does it for us), and the generic
821 * helper only calls it once;
822 *
823 * 2) filemap_fdatawrite_range(), called by the generic helper only
824 * waits for the writeback to complete, i.e. for IO to be done, and
825 * not for the ordered extents to complete. We need to wait for them
826 * to complete so that new file extent items are in the fs tree.
827 */
828 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
829 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
830 else
831 wb_len = ALIGN(*len, bs);
832
833 /*
834 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
835 *
836 * Btrfs' back references do not have a block level granularity, they
837 * work at the whole extent level.
838 * NOCOW buffered write without data space reserved may not be able
839 * to fall back to CoW due to lack of data space, thus could cause
840 * data loss.
841 *
842 * Here we take a shortcut by flushing the whole inode, so that all
843 * nocow write should reach disk as nocow before we increase the
844 * reference of the extent. We could do better by only flushing NOCOW
845 * data, but that needs extra accounting.
846 *
847 * Also we don't need to check ASYNC_EXTENT, as async extent will be
848 * CoWed anyway, not affecting nocow part.
849 */
850 ret = filemap_flush(inode_in->i_mapping);
851 if (ret < 0)
852 return ret;
853
854 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
855 wb_len);
856 if (ret < 0)
857 return ret;
858 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
859 wb_len);
860 if (ret < 0)
861 return ret;
862
863 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
864 len, remap_flags);
865 }
866
file_sync_write(const struct file * file)867 static bool file_sync_write(const struct file *file)
868 {
869 if (file->f_flags & (__O_SYNC | O_DSYNC))
870 return true;
871 if (IS_SYNC(file_inode(file)))
872 return true;
873
874 return false;
875 }
876
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)877 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
878 struct file *dst_file, loff_t destoff, loff_t len,
879 unsigned int remap_flags)
880 {
881 struct inode *src_inode = file_inode(src_file);
882 struct inode *dst_inode = file_inode(dst_file);
883 bool same_inode = dst_inode == src_inode;
884 int ret;
885
886 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
887 return -EINVAL;
888
889 if (same_inode) {
890 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
891 } else {
892 lock_two_nondirectories(src_inode, dst_inode);
893 btrfs_double_mmap_lock(src_inode, dst_inode);
894 }
895
896 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
897 &len, remap_flags);
898 if (ret < 0 || len == 0)
899 goto out_unlock;
900
901 if (remap_flags & REMAP_FILE_DEDUP)
902 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
903 else
904 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
905
906 out_unlock:
907 if (same_inode) {
908 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
909 } else {
910 btrfs_double_mmap_unlock(src_inode, dst_inode);
911 unlock_two_nondirectories(src_inode, dst_inode);
912 }
913
914 /*
915 * If either the source or the destination file was opened with O_SYNC,
916 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
917 * source files/ranges, so that after a successful return (0) followed
918 * by a power failure results in the reflinked data to be readable from
919 * both files/ranges.
920 */
921 if (ret == 0 && len > 0 &&
922 (file_sync_write(src_file) || file_sync_write(dst_file))) {
923 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
924 if (ret == 0)
925 ret = btrfs_sync_file(dst_file, destoff,
926 destoff + len - 1, 0);
927 }
928
929 return ret < 0 ? ret : len;
930 }
931