1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70 }
71
72 /*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
77 struct async_submit_bio {
78 struct inode *inode;
79 struct bio *bio;
80 extent_submit_bio_start_t *submit_bio_start;
81 int mirror_num;
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
85 struct btrfs_work work;
86 blk_status_t status;
87 };
88
89 /*
90 * Compute the csum of a btree block and store the result to provided buffer.
91 */
csum_tree_block(struct extent_buffer * buf,u8 * result)92 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93 {
94 struct btrfs_fs_info *fs_info = buf->fs_info;
95 const int num_pages = num_extent_pages(buf);
96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 char *kaddr;
99 int i;
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 first_page_part - BTRFS_CSUM_SIZE);
106
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 }
111 memset(result, 0, BTRFS_CSUM_SIZE);
112 crypto_shash_final(shash, result);
113 }
114
115 /*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)121 static int verify_parent_transid(struct extent_io_tree *io_tree,
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
124 {
125 struct extent_state *cached_state = NULL;
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
131 if (atomic)
132 return -EAGAIN;
133
134 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
135 if (extent_buffer_uptodate(eb) &&
136 btrfs_header_generation(eb) == parent_transid) {
137 ret = 0;
138 goto out;
139 }
140 btrfs_err_rl(eb->fs_info,
141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 eb->start, eb->read_mirror,
143 parent_transid, btrfs_header_generation(eb));
144 ret = 1;
145 clear_extent_buffer_uptodate(eb);
146 out:
147 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 &cached_state);
149 return ret;
150 }
151
btrfs_supported_super_csum(u16 csum_type)152 static bool btrfs_supported_super_csum(u16 csum_type)
153 {
154 switch (csum_type) {
155 case BTRFS_CSUM_TYPE_CRC32:
156 case BTRFS_CSUM_TYPE_XXHASH:
157 case BTRFS_CSUM_TYPE_SHA256:
158 case BTRFS_CSUM_TYPE_BLAKE2:
159 return true;
160 default:
161 return false;
162 }
163 }
164
165 /*
166 * Return 0 if the superblock checksum type matches the checksum value of that
167 * algorithm. Pass the raw disk superblock data.
168 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)169 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 const struct btrfs_super_block *disk_sb)
171 {
172 char result[BTRFS_CSUM_SIZE];
173 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
174
175 shash->tfm = fs_info->csum_shash;
176
177 /*
178 * The super_block structure does not span the whole
179 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
180 * filled with zeros and is included in the checksum.
181 */
182 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
183 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
184
185 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
186 return 1;
187
188 return 0;
189 }
190
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)191 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
192 struct btrfs_key *first_key, u64 parent_transid)
193 {
194 struct btrfs_fs_info *fs_info = eb->fs_info;
195 int found_level;
196 struct btrfs_key found_key;
197 int ret;
198
199 found_level = btrfs_header_level(eb);
200 if (found_level != level) {
201 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
202 KERN_ERR "BTRFS: tree level check failed\n");
203 btrfs_err(fs_info,
204 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
205 eb->start, level, found_level);
206 return -EIO;
207 }
208
209 if (!first_key)
210 return 0;
211
212 /*
213 * For live tree block (new tree blocks in current transaction),
214 * we need proper lock context to avoid race, which is impossible here.
215 * So we only checks tree blocks which is read from disk, whose
216 * generation <= fs_info->last_trans_committed.
217 */
218 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
219 return 0;
220
221 /* We have @first_key, so this @eb must have at least one item */
222 if (btrfs_header_nritems(eb) == 0) {
223 btrfs_err(fs_info,
224 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
225 eb->start);
226 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
227 return -EUCLEAN;
228 }
229
230 if (found_level)
231 btrfs_node_key_to_cpu(eb, &found_key, 0);
232 else
233 btrfs_item_key_to_cpu(eb, &found_key, 0);
234 ret = btrfs_comp_cpu_keys(first_key, &found_key);
235
236 if (ret) {
237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 KERN_ERR "BTRFS: tree first key check failed\n");
239 btrfs_err(fs_info,
240 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
241 eb->start, parent_transid, first_key->objectid,
242 first_key->type, first_key->offset,
243 found_key.objectid, found_key.type,
244 found_key.offset);
245 }
246 return ret;
247 }
248
249 /*
250 * helper to read a given tree block, doing retries as required when
251 * the checksums don't match and we have alternate mirrors to try.
252 *
253 * @parent_transid: expected transid, skip check if 0
254 * @level: expected level, mandatory check
255 * @first_key: expected key of first slot, skip check if NULL
256 */
btrfs_read_extent_buffer(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)257 int btrfs_read_extent_buffer(struct extent_buffer *eb,
258 u64 parent_transid, int level,
259 struct btrfs_key *first_key)
260 {
261 struct btrfs_fs_info *fs_info = eb->fs_info;
262 struct extent_io_tree *io_tree;
263 int failed = 0;
264 int ret;
265 int num_copies = 0;
266 int mirror_num = 0;
267 int failed_mirror = 0;
268
269 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
270 while (1) {
271 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
272 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
273 if (!ret) {
274 if (verify_parent_transid(io_tree, eb,
275 parent_transid, 0))
276 ret = -EIO;
277 else if (btrfs_verify_level_key(eb, level,
278 first_key, parent_transid))
279 ret = -EUCLEAN;
280 else
281 break;
282 }
283
284 num_copies = btrfs_num_copies(fs_info,
285 eb->start, eb->len);
286 if (num_copies == 1)
287 break;
288
289 if (!failed_mirror) {
290 failed = 1;
291 failed_mirror = eb->read_mirror;
292 }
293
294 mirror_num++;
295 if (mirror_num == failed_mirror)
296 mirror_num++;
297
298 if (mirror_num > num_copies)
299 break;
300 }
301
302 if (failed && !ret && failed_mirror)
303 btrfs_repair_eb_io_failure(eb, failed_mirror);
304
305 return ret;
306 }
307
csum_one_extent_buffer(struct extent_buffer * eb)308 static int csum_one_extent_buffer(struct extent_buffer *eb)
309 {
310 struct btrfs_fs_info *fs_info = eb->fs_info;
311 u8 result[BTRFS_CSUM_SIZE];
312 int ret;
313
314 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
315 offsetof(struct btrfs_header, fsid),
316 BTRFS_FSID_SIZE) == 0);
317 csum_tree_block(eb, result);
318
319 if (btrfs_header_level(eb))
320 ret = btrfs_check_node(eb);
321 else
322 ret = btrfs_check_leaf_full(eb);
323
324 if (ret < 0)
325 goto error;
326
327 /*
328 * Also check the generation, the eb reached here must be newer than
329 * last committed. Or something seriously wrong happened.
330 */
331 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
332 ret = -EUCLEAN;
333 btrfs_err(fs_info,
334 "block=%llu bad generation, have %llu expect > %llu",
335 eb->start, btrfs_header_generation(eb),
336 fs_info->last_trans_committed);
337 goto error;
338 }
339 write_extent_buffer(eb, result, 0, fs_info->csum_size);
340
341 return 0;
342
343 error:
344 btrfs_print_tree(eb, 0);
345 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
346 eb->start);
347 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
348 return ret;
349 }
350
351 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)352 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
353 struct bio_vec *bvec)
354 {
355 struct page *page = bvec->bv_page;
356 u64 bvec_start = page_offset(page) + bvec->bv_offset;
357 u64 cur;
358 int ret = 0;
359
360 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
361 cur += fs_info->nodesize) {
362 struct extent_buffer *eb;
363 bool uptodate;
364
365 eb = find_extent_buffer(fs_info, cur);
366 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
367 fs_info->nodesize);
368
369 /* A dirty eb shouldn't disappear from buffer_radix */
370 if (WARN_ON(!eb))
371 return -EUCLEAN;
372
373 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
374 free_extent_buffer(eb);
375 return -EUCLEAN;
376 }
377 if (WARN_ON(!uptodate)) {
378 free_extent_buffer(eb);
379 return -EUCLEAN;
380 }
381
382 ret = csum_one_extent_buffer(eb);
383 free_extent_buffer(eb);
384 if (ret < 0)
385 return ret;
386 }
387 return ret;
388 }
389
390 /*
391 * Checksum a dirty tree block before IO. This has extra checks to make sure
392 * we only fill in the checksum field in the first page of a multi-page block.
393 * For subpage extent buffers we need bvec to also read the offset in the page.
394 */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)395 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
396 {
397 struct page *page = bvec->bv_page;
398 u64 start = page_offset(page);
399 u64 found_start;
400 struct extent_buffer *eb;
401
402 if (fs_info->nodesize < PAGE_SIZE)
403 return csum_dirty_subpage_buffers(fs_info, bvec);
404
405 eb = (struct extent_buffer *)page->private;
406 if (page != eb->pages[0])
407 return 0;
408
409 found_start = btrfs_header_bytenr(eb);
410
411 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
412 WARN_ON(found_start != 0);
413 return 0;
414 }
415
416 /*
417 * Please do not consolidate these warnings into a single if.
418 * It is useful to know what went wrong.
419 */
420 if (WARN_ON(found_start != start))
421 return -EUCLEAN;
422 if (WARN_ON(!PageUptodate(page)))
423 return -EUCLEAN;
424
425 return csum_one_extent_buffer(eb);
426 }
427
check_tree_block_fsid(struct extent_buffer * eb)428 static int check_tree_block_fsid(struct extent_buffer *eb)
429 {
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
432 u8 fsid[BTRFS_FSID_SIZE];
433 u8 *metadata_uuid;
434
435 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE);
437 /*
438 * Checking the incompat flag is only valid for the current fs. For
439 * seed devices it's forbidden to have their uuid changed so reading
440 * ->fsid in this case is fine
441 */
442 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
443 metadata_uuid = fs_devices->metadata_uuid;
444 else
445 metadata_uuid = fs_devices->fsid;
446
447 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
448 return 0;
449
450 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
451 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
452 return 0;
453
454 return 1;
455 }
456
457 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)458 static int validate_extent_buffer(struct extent_buffer *eb)
459 {
460 struct btrfs_fs_info *fs_info = eb->fs_info;
461 u64 found_start;
462 const u32 csum_size = fs_info->csum_size;
463 u8 found_level;
464 u8 result[BTRFS_CSUM_SIZE];
465 const u8 *header_csum;
466 int ret = 0;
467
468 found_start = btrfs_header_bytenr(eb);
469 if (found_start != eb->start) {
470 btrfs_err_rl(fs_info,
471 "bad tree block start, mirror %u want %llu have %llu",
472 eb->read_mirror, eb->start, found_start);
473 ret = -EIO;
474 goto out;
475 }
476 if (check_tree_block_fsid(eb)) {
477 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
478 eb->start, eb->read_mirror);
479 ret = -EIO;
480 goto out;
481 }
482 found_level = btrfs_header_level(eb);
483 if (found_level >= BTRFS_MAX_LEVEL) {
484 btrfs_err(fs_info,
485 "bad tree block level, mirror %u level %d on logical %llu",
486 eb->read_mirror, btrfs_header_level(eb), eb->start);
487 ret = -EIO;
488 goto out;
489 }
490
491 csum_tree_block(eb, result);
492 header_csum = page_address(eb->pages[0]) +
493 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
494
495 if (memcmp(result, header_csum, csum_size) != 0) {
496 btrfs_warn_rl(fs_info,
497 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
498 eb->start, eb->read_mirror,
499 CSUM_FMT_VALUE(csum_size, header_csum),
500 CSUM_FMT_VALUE(csum_size, result),
501 btrfs_header_level(eb));
502 ret = -EUCLEAN;
503 goto out;
504 }
505
506 /*
507 * If this is a leaf block and it is corrupt, set the corrupt bit so
508 * that we don't try and read the other copies of this block, just
509 * return -EIO.
510 */
511 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
512 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
513 ret = -EIO;
514 }
515
516 if (found_level > 0 && btrfs_check_node(eb))
517 ret = -EIO;
518
519 if (!ret)
520 set_extent_buffer_uptodate(eb);
521 else
522 btrfs_err(fs_info,
523 "read time tree block corruption detected on logical %llu mirror %u",
524 eb->start, eb->read_mirror);
525 out:
526 return ret;
527 }
528
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)529 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
530 int mirror)
531 {
532 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
533 struct extent_buffer *eb;
534 bool reads_done;
535 int ret = 0;
536
537 /*
538 * We don't allow bio merge for subpage metadata read, so we should
539 * only get one eb for each endio hook.
540 */
541 ASSERT(end == start + fs_info->nodesize - 1);
542 ASSERT(PagePrivate(page));
543
544 eb = find_extent_buffer(fs_info, start);
545 /*
546 * When we are reading one tree block, eb must have been inserted into
547 * the radix tree. If not, something is wrong.
548 */
549 ASSERT(eb);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 /* Subpage read must finish in page read */
553 ASSERT(reads_done);
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560 ret = validate_extent_buffer(eb);
561 if (ret < 0)
562 goto err;
563
564 set_extent_buffer_uptodate(eb);
565
566 free_extent_buffer(eb);
567 return ret;
568 err:
569 /*
570 * end_bio_extent_readpage decrements io_pages in case of error,
571 * make sure it has something to decrement.
572 */
573 atomic_inc(&eb->io_pages);
574 clear_extent_buffer_uptodate(eb);
575 free_extent_buffer(eb);
576 return ret;
577 }
578
btrfs_validate_metadata_buffer(struct btrfs_bio * bbio,struct page * page,u64 start,u64 end,int mirror)579 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
580 struct page *page, u64 start, u64 end,
581 int mirror)
582 {
583 struct extent_buffer *eb;
584 int ret = 0;
585 int reads_done;
586
587 ASSERT(page->private);
588
589 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
590 return validate_subpage_buffer(page, start, end, mirror);
591
592 eb = (struct extent_buffer *)page->private;
593
594 /*
595 * The pending IO might have been the only thing that kept this buffer
596 * in memory. Make sure we have a ref for all this other checks
597 */
598 atomic_inc(&eb->refs);
599
600 reads_done = atomic_dec_and_test(&eb->io_pages);
601 if (!reads_done)
602 goto err;
603
604 eb->read_mirror = mirror;
605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606 ret = -EIO;
607 goto err;
608 }
609 ret = validate_extent_buffer(eb);
610 err:
611 if (ret) {
612 /*
613 * our io error hook is going to dec the io pages
614 * again, we have to make sure it has something
615 * to decrement
616 */
617 atomic_inc(&eb->io_pages);
618 clear_extent_buffer_uptodate(eb);
619 }
620 free_extent_buffer(eb);
621
622 return ret;
623 }
624
run_one_async_start(struct btrfs_work * work)625 static void run_one_async_start(struct btrfs_work *work)
626 {
627 struct async_submit_bio *async;
628 blk_status_t ret;
629
630 async = container_of(work, struct async_submit_bio, work);
631 ret = async->submit_bio_start(async->inode, async->bio,
632 async->dio_file_offset);
633 if (ret)
634 async->status = ret;
635 }
636
637 /*
638 * In order to insert checksums into the metadata in large chunks, we wait
639 * until bio submission time. All the pages in the bio are checksummed and
640 * sums are attached onto the ordered extent record.
641 *
642 * At IO completion time the csums attached on the ordered extent record are
643 * inserted into the tree.
644 */
run_one_async_done(struct btrfs_work * work)645 static void run_one_async_done(struct btrfs_work *work)
646 {
647 struct async_submit_bio *async =
648 container_of(work, struct async_submit_bio, work);
649 struct inode *inode = async->inode;
650 struct btrfs_bio *bbio = btrfs_bio(async->bio);
651
652 /* If an error occurred we just want to clean up the bio and move on */
653 if (async->status) {
654 btrfs_bio_end_io(bbio, async->status);
655 return;
656 }
657
658 /*
659 * All of the bios that pass through here are from async helpers.
660 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
661 * This changes nothing when cgroups aren't in use.
662 */
663 async->bio->bi_opf |= REQ_CGROUP_PUNT;
664 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
665 }
666
run_one_async_free(struct btrfs_work * work)667 static void run_one_async_free(struct btrfs_work *work)
668 {
669 struct async_submit_bio *async;
670
671 async = container_of(work, struct async_submit_bio, work);
672 kfree(async);
673 }
674
675 /*
676 * Submit bio to an async queue.
677 *
678 * Retrun:
679 * - true if the work has been succesfuly submitted
680 * - false in case of error
681 */
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)682 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
683 u64 dio_file_offset,
684 extent_submit_bio_start_t *submit_bio_start)
685 {
686 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
687 struct async_submit_bio *async;
688
689 async = kmalloc(sizeof(*async), GFP_NOFS);
690 if (!async)
691 return false;
692
693 async->inode = inode;
694 async->bio = bio;
695 async->mirror_num = mirror_num;
696 async->submit_bio_start = submit_bio_start;
697
698 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
699 run_one_async_free);
700
701 async->dio_file_offset = dio_file_offset;
702
703 async->status = 0;
704
705 if (op_is_sync(bio->bi_opf))
706 btrfs_queue_work(fs_info->hipri_workers, &async->work);
707 else
708 btrfs_queue_work(fs_info->workers, &async->work);
709 return true;
710 }
711
btree_csum_one_bio(struct bio * bio)712 static blk_status_t btree_csum_one_bio(struct bio *bio)
713 {
714 struct bio_vec *bvec;
715 struct btrfs_root *root;
716 int ret = 0;
717 struct bvec_iter_all iter_all;
718
719 ASSERT(!bio_flagged(bio, BIO_CLONED));
720 bio_for_each_segment_all(bvec, bio, iter_all) {
721 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
722 ret = csum_dirty_buffer(root->fs_info, bvec);
723 if (ret)
724 break;
725 }
726
727 return errno_to_blk_status(ret);
728 }
729
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)730 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
731 u64 dio_file_offset)
732 {
733 /*
734 * when we're called for a write, we're already in the async
735 * submission context. Just jump into btrfs_submit_bio.
736 */
737 return btree_csum_one_bio(bio);
738 }
739
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)740 static bool should_async_write(struct btrfs_fs_info *fs_info,
741 struct btrfs_inode *bi)
742 {
743 if (btrfs_is_zoned(fs_info))
744 return false;
745 if (atomic_read(&bi->sync_writers))
746 return false;
747 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
748 return false;
749 return true;
750 }
751
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num)752 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
753 {
754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
755 struct btrfs_bio *bbio = btrfs_bio(bio);
756 blk_status_t ret;
757
758 bio->bi_opf |= REQ_META;
759
760 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
761 btrfs_submit_bio(fs_info, bio, mirror_num);
762 return;
763 }
764
765 /*
766 * Kthread helpers are used to submit writes so that checksumming can
767 * happen in parallel across all CPUs.
768 */
769 if (should_async_write(fs_info, BTRFS_I(inode)) &&
770 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
771 return;
772
773 ret = btree_csum_one_bio(bio);
774 if (ret) {
775 btrfs_bio_end_io(bbio, ret);
776 return;
777 }
778
779 btrfs_submit_bio(fs_info, bio, mirror_num);
780 }
781
782 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)783 static int btree_migrate_folio(struct address_space *mapping,
784 struct folio *dst, struct folio *src, enum migrate_mode mode)
785 {
786 /*
787 * we can't safely write a btree page from here,
788 * we haven't done the locking hook
789 */
790 if (folio_test_dirty(src))
791 return -EAGAIN;
792 /*
793 * Buffers may be managed in a filesystem specific way.
794 * We must have no buffers or drop them.
795 */
796 if (folio_get_private(src) &&
797 !filemap_release_folio(src, GFP_KERNEL))
798 return -EAGAIN;
799 return migrate_folio(mapping, dst, src, mode);
800 }
801 #else
802 #define btree_migrate_folio NULL
803 #endif
804
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)805 static int btree_writepages(struct address_space *mapping,
806 struct writeback_control *wbc)
807 {
808 struct btrfs_fs_info *fs_info;
809 int ret;
810
811 if (wbc->sync_mode == WB_SYNC_NONE) {
812
813 if (wbc->for_kupdate)
814 return 0;
815
816 fs_info = BTRFS_I(mapping->host)->root->fs_info;
817 /* this is a bit racy, but that's ok */
818 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
819 BTRFS_DIRTY_METADATA_THRESH,
820 fs_info->dirty_metadata_batch);
821 if (ret < 0)
822 return 0;
823 }
824 return btree_write_cache_pages(mapping, wbc);
825 }
826
btree_release_folio(struct folio * folio,gfp_t gfp_flags)827 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
828 {
829 if (folio_test_writeback(folio) || folio_test_dirty(folio))
830 return false;
831
832 return try_release_extent_buffer(&folio->page);
833 }
834
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)835 static void btree_invalidate_folio(struct folio *folio, size_t offset,
836 size_t length)
837 {
838 struct extent_io_tree *tree;
839 tree = &BTRFS_I(folio->mapping->host)->io_tree;
840 extent_invalidate_folio(tree, folio, offset);
841 btree_release_folio(folio, GFP_NOFS);
842 if (folio_get_private(folio)) {
843 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
844 "folio private not zero on folio %llu",
845 (unsigned long long)folio_pos(folio));
846 folio_detach_private(folio);
847 }
848 }
849
850 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)851 static bool btree_dirty_folio(struct address_space *mapping,
852 struct folio *folio)
853 {
854 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
855 struct btrfs_subpage *subpage;
856 struct extent_buffer *eb;
857 int cur_bit = 0;
858 u64 page_start = folio_pos(folio);
859
860 if (fs_info->sectorsize == PAGE_SIZE) {
861 eb = folio_get_private(folio);
862 BUG_ON(!eb);
863 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
864 BUG_ON(!atomic_read(&eb->refs));
865 btrfs_assert_tree_write_locked(eb);
866 return filemap_dirty_folio(mapping, folio);
867 }
868 subpage = folio_get_private(folio);
869
870 ASSERT(subpage->dirty_bitmap);
871 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
872 unsigned long flags;
873 u64 cur;
874 u16 tmp = (1 << cur_bit);
875
876 spin_lock_irqsave(&subpage->lock, flags);
877 if (!(tmp & subpage->dirty_bitmap)) {
878 spin_unlock_irqrestore(&subpage->lock, flags);
879 cur_bit++;
880 continue;
881 }
882 spin_unlock_irqrestore(&subpage->lock, flags);
883 cur = page_start + cur_bit * fs_info->sectorsize;
884
885 eb = find_extent_buffer(fs_info, cur);
886 ASSERT(eb);
887 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
888 ASSERT(atomic_read(&eb->refs));
889 btrfs_assert_tree_write_locked(eb);
890 free_extent_buffer(eb);
891
892 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
893 }
894 return filemap_dirty_folio(mapping, folio);
895 }
896 #else
897 #define btree_dirty_folio filemap_dirty_folio
898 #endif
899
900 static const struct address_space_operations btree_aops = {
901 .writepages = btree_writepages,
902 .release_folio = btree_release_folio,
903 .invalidate_folio = btree_invalidate_folio,
904 .migrate_folio = btree_migrate_folio,
905 .dirty_folio = btree_dirty_folio,
906 };
907
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)908 struct extent_buffer *btrfs_find_create_tree_block(
909 struct btrfs_fs_info *fs_info,
910 u64 bytenr, u64 owner_root,
911 int level)
912 {
913 if (btrfs_is_testing(fs_info))
914 return alloc_test_extent_buffer(fs_info, bytenr);
915 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
916 }
917
918 /*
919 * Read tree block at logical address @bytenr and do variant basic but critical
920 * verification.
921 *
922 * @owner_root: the objectid of the root owner for this block.
923 * @parent_transid: expected transid of this tree block, skip check if 0
924 * @level: expected level, mandatory check
925 * @first_key: expected key in slot 0, skip check if NULL
926 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)927 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
928 u64 owner_root, u64 parent_transid,
929 int level, struct btrfs_key *first_key)
930 {
931 struct extent_buffer *buf = NULL;
932 int ret;
933
934 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
935 if (IS_ERR(buf))
936 return buf;
937
938 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
939 if (ret) {
940 free_extent_buffer_stale(buf);
941 return ERR_PTR(ret);
942 }
943 if (btrfs_check_eb_owner(buf, owner_root)) {
944 free_extent_buffer_stale(buf);
945 return ERR_PTR(-EUCLEAN);
946 }
947 return buf;
948
949 }
950
btrfs_clean_tree_block(struct extent_buffer * buf)951 void btrfs_clean_tree_block(struct extent_buffer *buf)
952 {
953 struct btrfs_fs_info *fs_info = buf->fs_info;
954 if (btrfs_header_generation(buf) ==
955 fs_info->running_transaction->transid) {
956 btrfs_assert_tree_write_locked(buf);
957
958 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
959 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
960 -buf->len,
961 fs_info->dirty_metadata_batch);
962 clear_extent_buffer_dirty(buf);
963 }
964 }
965 }
966
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)967 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
968 u64 objectid)
969 {
970 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
971
972 memset(&root->root_key, 0, sizeof(root->root_key));
973 memset(&root->root_item, 0, sizeof(root->root_item));
974 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
975 root->fs_info = fs_info;
976 root->root_key.objectid = objectid;
977 root->node = NULL;
978 root->commit_root = NULL;
979 root->state = 0;
980 RB_CLEAR_NODE(&root->rb_node);
981
982 root->last_trans = 0;
983 root->free_objectid = 0;
984 root->nr_delalloc_inodes = 0;
985 root->nr_ordered_extents = 0;
986 root->inode_tree = RB_ROOT;
987 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
988
989 btrfs_init_root_block_rsv(root);
990
991 INIT_LIST_HEAD(&root->dirty_list);
992 INIT_LIST_HEAD(&root->root_list);
993 INIT_LIST_HEAD(&root->delalloc_inodes);
994 INIT_LIST_HEAD(&root->delalloc_root);
995 INIT_LIST_HEAD(&root->ordered_extents);
996 INIT_LIST_HEAD(&root->ordered_root);
997 INIT_LIST_HEAD(&root->reloc_dirty_list);
998 INIT_LIST_HEAD(&root->logged_list[0]);
999 INIT_LIST_HEAD(&root->logged_list[1]);
1000 spin_lock_init(&root->inode_lock);
1001 spin_lock_init(&root->delalloc_lock);
1002 spin_lock_init(&root->ordered_extent_lock);
1003 spin_lock_init(&root->accounting_lock);
1004 spin_lock_init(&root->log_extents_lock[0]);
1005 spin_lock_init(&root->log_extents_lock[1]);
1006 spin_lock_init(&root->qgroup_meta_rsv_lock);
1007 mutex_init(&root->objectid_mutex);
1008 mutex_init(&root->log_mutex);
1009 mutex_init(&root->ordered_extent_mutex);
1010 mutex_init(&root->delalloc_mutex);
1011 init_waitqueue_head(&root->qgroup_flush_wait);
1012 init_waitqueue_head(&root->log_writer_wait);
1013 init_waitqueue_head(&root->log_commit_wait[0]);
1014 init_waitqueue_head(&root->log_commit_wait[1]);
1015 INIT_LIST_HEAD(&root->log_ctxs[0]);
1016 INIT_LIST_HEAD(&root->log_ctxs[1]);
1017 atomic_set(&root->log_commit[0], 0);
1018 atomic_set(&root->log_commit[1], 0);
1019 atomic_set(&root->log_writers, 0);
1020 atomic_set(&root->log_batch, 0);
1021 refcount_set(&root->refs, 1);
1022 atomic_set(&root->snapshot_force_cow, 0);
1023 atomic_set(&root->nr_swapfiles, 0);
1024 root->log_transid = 0;
1025 root->log_transid_committed = -1;
1026 root->last_log_commit = 0;
1027 root->anon_dev = 0;
1028 if (!dummy) {
1029 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1030 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1031 extent_io_tree_init(fs_info, &root->log_csum_range,
1032 IO_TREE_LOG_CSUM_RANGE, NULL);
1033 }
1034
1035 spin_lock_init(&root->root_item_lock);
1036 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1037 #ifdef CONFIG_BTRFS_DEBUG
1038 INIT_LIST_HEAD(&root->leak_list);
1039 spin_lock(&fs_info->fs_roots_radix_lock);
1040 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1041 spin_unlock(&fs_info->fs_roots_radix_lock);
1042 #endif
1043 }
1044
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1045 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1046 u64 objectid, gfp_t flags)
1047 {
1048 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1049 if (root)
1050 __setup_root(root, fs_info, objectid);
1051 return root;
1052 }
1053
1054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1055 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1056 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1057 {
1058 struct btrfs_root *root;
1059
1060 if (!fs_info)
1061 return ERR_PTR(-EINVAL);
1062
1063 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1064 if (!root)
1065 return ERR_PTR(-ENOMEM);
1066
1067 /* We don't use the stripesize in selftest, set it as sectorsize */
1068 root->alloc_bytenr = 0;
1069
1070 return root;
1071 }
1072 #endif
1073
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)1074 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1075 {
1076 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1077 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1078
1079 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1080 }
1081
global_root_key_cmp(const void * k,const struct rb_node * node)1082 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1083 {
1084 const struct btrfs_key *key = k;
1085 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1086
1087 return btrfs_comp_cpu_keys(key, &root->root_key);
1088 }
1089
btrfs_global_root_insert(struct btrfs_root * root)1090 int btrfs_global_root_insert(struct btrfs_root *root)
1091 {
1092 struct btrfs_fs_info *fs_info = root->fs_info;
1093 struct rb_node *tmp;
1094
1095 write_lock(&fs_info->global_root_lock);
1096 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1097 write_unlock(&fs_info->global_root_lock);
1098 ASSERT(!tmp);
1099
1100 return tmp ? -EEXIST : 0;
1101 }
1102
btrfs_global_root_delete(struct btrfs_root * root)1103 void btrfs_global_root_delete(struct btrfs_root *root)
1104 {
1105 struct btrfs_fs_info *fs_info = root->fs_info;
1106
1107 write_lock(&fs_info->global_root_lock);
1108 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1109 write_unlock(&fs_info->global_root_lock);
1110 }
1111
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)1112 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1113 struct btrfs_key *key)
1114 {
1115 struct rb_node *node;
1116 struct btrfs_root *root = NULL;
1117
1118 read_lock(&fs_info->global_root_lock);
1119 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1120 if (node)
1121 root = container_of(node, struct btrfs_root, rb_node);
1122 read_unlock(&fs_info->global_root_lock);
1123
1124 return root;
1125 }
1126
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)1127 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1128 {
1129 struct btrfs_block_group *block_group;
1130 u64 ret;
1131
1132 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1133 return 0;
1134
1135 if (bytenr)
1136 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1137 else
1138 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1139 ASSERT(block_group);
1140 if (!block_group)
1141 return 0;
1142 ret = block_group->global_root_id;
1143 btrfs_put_block_group(block_group);
1144
1145 return ret;
1146 }
1147
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)1148 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1149 {
1150 struct btrfs_key key = {
1151 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1152 .type = BTRFS_ROOT_ITEM_KEY,
1153 .offset = btrfs_global_root_id(fs_info, bytenr),
1154 };
1155
1156 return btrfs_global_root(fs_info, &key);
1157 }
1158
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)1159 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1160 {
1161 struct btrfs_key key = {
1162 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1163 .type = BTRFS_ROOT_ITEM_KEY,
1164 .offset = btrfs_global_root_id(fs_info, bytenr),
1165 };
1166
1167 return btrfs_global_root(fs_info, &key);
1168 }
1169
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1170 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1171 u64 objectid)
1172 {
1173 struct btrfs_fs_info *fs_info = trans->fs_info;
1174 struct extent_buffer *leaf;
1175 struct btrfs_root *tree_root = fs_info->tree_root;
1176 struct btrfs_root *root;
1177 struct btrfs_key key;
1178 unsigned int nofs_flag;
1179 int ret = 0;
1180
1181 /*
1182 * We're holding a transaction handle, so use a NOFS memory allocation
1183 * context to avoid deadlock if reclaim happens.
1184 */
1185 nofs_flag = memalloc_nofs_save();
1186 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1187 memalloc_nofs_restore(nofs_flag);
1188 if (!root)
1189 return ERR_PTR(-ENOMEM);
1190
1191 root->root_key.objectid = objectid;
1192 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1193 root->root_key.offset = 0;
1194
1195 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1196 BTRFS_NESTING_NORMAL);
1197 if (IS_ERR(leaf)) {
1198 ret = PTR_ERR(leaf);
1199 leaf = NULL;
1200 goto fail_unlock;
1201 }
1202
1203 root->node = leaf;
1204 btrfs_mark_buffer_dirty(leaf);
1205
1206 root->commit_root = btrfs_root_node(root);
1207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1208
1209 btrfs_set_root_flags(&root->root_item, 0);
1210 btrfs_set_root_limit(&root->root_item, 0);
1211 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1212 btrfs_set_root_generation(&root->root_item, trans->transid);
1213 btrfs_set_root_level(&root->root_item, 0);
1214 btrfs_set_root_refs(&root->root_item, 1);
1215 btrfs_set_root_used(&root->root_item, leaf->len);
1216 btrfs_set_root_last_snapshot(&root->root_item, 0);
1217 btrfs_set_root_dirid(&root->root_item, 0);
1218 if (is_fstree(objectid))
1219 generate_random_guid(root->root_item.uuid);
1220 else
1221 export_guid(root->root_item.uuid, &guid_null);
1222 btrfs_set_root_drop_level(&root->root_item, 0);
1223
1224 btrfs_tree_unlock(leaf);
1225
1226 key.objectid = objectid;
1227 key.type = BTRFS_ROOT_ITEM_KEY;
1228 key.offset = 0;
1229 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1230 if (ret)
1231 goto fail;
1232
1233 return root;
1234
1235 fail_unlock:
1236 if (leaf)
1237 btrfs_tree_unlock(leaf);
1238 fail:
1239 btrfs_put_root(root);
1240
1241 return ERR_PTR(ret);
1242 }
1243
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1244 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info)
1246 {
1247 struct btrfs_root *root;
1248
1249 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1250 if (!root)
1251 return ERR_PTR(-ENOMEM);
1252
1253 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1256
1257 return root;
1258 }
1259
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1260 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1261 struct btrfs_root *root)
1262 {
1263 struct extent_buffer *leaf;
1264
1265 /*
1266 * DON'T set SHAREABLE bit for log trees.
1267 *
1268 * Log trees are not exposed to user space thus can't be snapshotted,
1269 * and they go away before a real commit is actually done.
1270 *
1271 * They do store pointers to file data extents, and those reference
1272 * counts still get updated (along with back refs to the log tree).
1273 */
1274
1275 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1276 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1277 if (IS_ERR(leaf))
1278 return PTR_ERR(leaf);
1279
1280 root->node = leaf;
1281
1282 btrfs_mark_buffer_dirty(root->node);
1283 btrfs_tree_unlock(root->node);
1284
1285 return 0;
1286 }
1287
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1288 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1289 struct btrfs_fs_info *fs_info)
1290 {
1291 struct btrfs_root *log_root;
1292
1293 log_root = alloc_log_tree(trans, fs_info);
1294 if (IS_ERR(log_root))
1295 return PTR_ERR(log_root);
1296
1297 if (!btrfs_is_zoned(fs_info)) {
1298 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1299
1300 if (ret) {
1301 btrfs_put_root(log_root);
1302 return ret;
1303 }
1304 }
1305
1306 WARN_ON(fs_info->log_root_tree);
1307 fs_info->log_root_tree = log_root;
1308 return 0;
1309 }
1310
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1311 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1312 struct btrfs_root *root)
1313 {
1314 struct btrfs_fs_info *fs_info = root->fs_info;
1315 struct btrfs_root *log_root;
1316 struct btrfs_inode_item *inode_item;
1317 int ret;
1318
1319 log_root = alloc_log_tree(trans, fs_info);
1320 if (IS_ERR(log_root))
1321 return PTR_ERR(log_root);
1322
1323 ret = btrfs_alloc_log_tree_node(trans, log_root);
1324 if (ret) {
1325 btrfs_put_root(log_root);
1326 return ret;
1327 }
1328
1329 log_root->last_trans = trans->transid;
1330 log_root->root_key.offset = root->root_key.objectid;
1331
1332 inode_item = &log_root->root_item.inode;
1333 btrfs_set_stack_inode_generation(inode_item, 1);
1334 btrfs_set_stack_inode_size(inode_item, 3);
1335 btrfs_set_stack_inode_nlink(inode_item, 1);
1336 btrfs_set_stack_inode_nbytes(inode_item,
1337 fs_info->nodesize);
1338 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1339
1340 btrfs_set_root_node(&log_root->root_item, log_root->node);
1341
1342 WARN_ON(root->log_root);
1343 root->log_root = log_root;
1344 root->log_transid = 0;
1345 root->log_transid_committed = -1;
1346 root->last_log_commit = 0;
1347 return 0;
1348 }
1349
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1350 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1351 struct btrfs_path *path,
1352 struct btrfs_key *key)
1353 {
1354 struct btrfs_root *root;
1355 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1356 u64 generation;
1357 int ret;
1358 int level;
1359
1360 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1361 if (!root)
1362 return ERR_PTR(-ENOMEM);
1363
1364 ret = btrfs_find_root(tree_root, key, path,
1365 &root->root_item, &root->root_key);
1366 if (ret) {
1367 if (ret > 0)
1368 ret = -ENOENT;
1369 goto fail;
1370 }
1371
1372 generation = btrfs_root_generation(&root->root_item);
1373 level = btrfs_root_level(&root->root_item);
1374 root->node = read_tree_block(fs_info,
1375 btrfs_root_bytenr(&root->root_item),
1376 key->objectid, generation, level, NULL);
1377 if (IS_ERR(root->node)) {
1378 ret = PTR_ERR(root->node);
1379 root->node = NULL;
1380 goto fail;
1381 }
1382 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1383 ret = -EIO;
1384 goto fail;
1385 }
1386
1387 /*
1388 * For real fs, and not log/reloc trees, root owner must
1389 * match its root node owner
1390 */
1391 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1392 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1393 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1394 root->root_key.objectid != btrfs_header_owner(root->node)) {
1395 btrfs_crit(fs_info,
1396 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1397 root->root_key.objectid, root->node->start,
1398 btrfs_header_owner(root->node),
1399 root->root_key.objectid);
1400 ret = -EUCLEAN;
1401 goto fail;
1402 }
1403 root->commit_root = btrfs_root_node(root);
1404 return root;
1405 fail:
1406 btrfs_put_root(root);
1407 return ERR_PTR(ret);
1408 }
1409
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1410 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1411 struct btrfs_key *key)
1412 {
1413 struct btrfs_root *root;
1414 struct btrfs_path *path;
1415
1416 path = btrfs_alloc_path();
1417 if (!path)
1418 return ERR_PTR(-ENOMEM);
1419 root = read_tree_root_path(tree_root, path, key);
1420 btrfs_free_path(path);
1421
1422 return root;
1423 }
1424
1425 /*
1426 * Initialize subvolume root in-memory structure
1427 *
1428 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1429 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1430 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1431 {
1432 int ret;
1433 unsigned int nofs_flag;
1434
1435 /*
1436 * We might be called under a transaction (e.g. indirect backref
1437 * resolution) which could deadlock if it triggers memory reclaim
1438 */
1439 nofs_flag = memalloc_nofs_save();
1440 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1441 memalloc_nofs_restore(nofs_flag);
1442 if (ret)
1443 goto fail;
1444
1445 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1446 !btrfs_is_data_reloc_root(root)) {
1447 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1448 btrfs_check_and_init_root_item(&root->root_item);
1449 }
1450
1451 /*
1452 * Don't assign anonymous block device to roots that are not exposed to
1453 * userspace, the id pool is limited to 1M
1454 */
1455 if (is_fstree(root->root_key.objectid) &&
1456 btrfs_root_refs(&root->root_item) > 0) {
1457 if (!anon_dev) {
1458 ret = get_anon_bdev(&root->anon_dev);
1459 if (ret)
1460 goto fail;
1461 } else {
1462 root->anon_dev = anon_dev;
1463 }
1464 }
1465
1466 mutex_lock(&root->objectid_mutex);
1467 ret = btrfs_init_root_free_objectid(root);
1468 if (ret) {
1469 mutex_unlock(&root->objectid_mutex);
1470 goto fail;
1471 }
1472
1473 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1474
1475 mutex_unlock(&root->objectid_mutex);
1476
1477 return 0;
1478 fail:
1479 /* The caller is responsible to call btrfs_free_fs_root */
1480 return ret;
1481 }
1482
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1483 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1484 u64 root_id)
1485 {
1486 struct btrfs_root *root;
1487
1488 spin_lock(&fs_info->fs_roots_radix_lock);
1489 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1490 (unsigned long)root_id);
1491 if (root)
1492 root = btrfs_grab_root(root);
1493 spin_unlock(&fs_info->fs_roots_radix_lock);
1494 return root;
1495 }
1496
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1497 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1498 u64 objectid)
1499 {
1500 struct btrfs_key key = {
1501 .objectid = objectid,
1502 .type = BTRFS_ROOT_ITEM_KEY,
1503 .offset = 0,
1504 };
1505
1506 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1507 return btrfs_grab_root(fs_info->tree_root);
1508 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1509 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1510 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1511 return btrfs_grab_root(fs_info->chunk_root);
1512 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1513 return btrfs_grab_root(fs_info->dev_root);
1514 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1515 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1516 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1517 return btrfs_grab_root(fs_info->quota_root) ?
1518 fs_info->quota_root : ERR_PTR(-ENOENT);
1519 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1520 return btrfs_grab_root(fs_info->uuid_root) ?
1521 fs_info->uuid_root : ERR_PTR(-ENOENT);
1522 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1523 return btrfs_grab_root(fs_info->block_group_root) ?
1524 fs_info->block_group_root : ERR_PTR(-ENOENT);
1525 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1526 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1527
1528 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1529 }
1530 return NULL;
1531 }
1532
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1533 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1534 struct btrfs_root *root)
1535 {
1536 int ret;
1537
1538 ret = radix_tree_preload(GFP_NOFS);
1539 if (ret)
1540 return ret;
1541
1542 spin_lock(&fs_info->fs_roots_radix_lock);
1543 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1544 (unsigned long)root->root_key.objectid,
1545 root);
1546 if (ret == 0) {
1547 btrfs_grab_root(root);
1548 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1549 }
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 radix_tree_preload_end();
1552
1553 return ret;
1554 }
1555
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1556 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1557 {
1558 #ifdef CONFIG_BTRFS_DEBUG
1559 struct btrfs_root *root;
1560
1561 while (!list_empty(&fs_info->allocated_roots)) {
1562 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1563
1564 root = list_first_entry(&fs_info->allocated_roots,
1565 struct btrfs_root, leak_list);
1566 btrfs_err(fs_info, "leaked root %s refcount %d",
1567 btrfs_root_name(&root->root_key, buf),
1568 refcount_read(&root->refs));
1569 while (refcount_read(&root->refs) > 1)
1570 btrfs_put_root(root);
1571 btrfs_put_root(root);
1572 }
1573 #endif
1574 }
1575
free_global_roots(struct btrfs_fs_info * fs_info)1576 static void free_global_roots(struct btrfs_fs_info *fs_info)
1577 {
1578 struct btrfs_root *root;
1579 struct rb_node *node;
1580
1581 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1582 root = rb_entry(node, struct btrfs_root, rb_node);
1583 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1584 btrfs_put_root(root);
1585 }
1586 }
1587
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1588 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1589 {
1590 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1591 percpu_counter_destroy(&fs_info->delalloc_bytes);
1592 percpu_counter_destroy(&fs_info->ordered_bytes);
1593 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1594 btrfs_free_csum_hash(fs_info);
1595 btrfs_free_stripe_hash_table(fs_info);
1596 btrfs_free_ref_cache(fs_info);
1597 kfree(fs_info->balance_ctl);
1598 kfree(fs_info->delayed_root);
1599 free_global_roots(fs_info);
1600 btrfs_put_root(fs_info->tree_root);
1601 btrfs_put_root(fs_info->chunk_root);
1602 btrfs_put_root(fs_info->dev_root);
1603 btrfs_put_root(fs_info->quota_root);
1604 btrfs_put_root(fs_info->uuid_root);
1605 btrfs_put_root(fs_info->fs_root);
1606 btrfs_put_root(fs_info->data_reloc_root);
1607 btrfs_put_root(fs_info->block_group_root);
1608 btrfs_check_leaked_roots(fs_info);
1609 btrfs_extent_buffer_leak_debug_check(fs_info);
1610 kfree(fs_info->super_copy);
1611 kfree(fs_info->super_for_commit);
1612 kfree(fs_info->subpage_info);
1613 kvfree(fs_info);
1614 }
1615
1616
1617 /*
1618 * Get an in-memory reference of a root structure.
1619 *
1620 * For essential trees like root/extent tree, we grab it from fs_info directly.
1621 * For subvolume trees, we check the cached filesystem roots first. If not
1622 * found, then read it from disk and add it to cached fs roots.
1623 *
1624 * Caller should release the root by calling btrfs_put_root() after the usage.
1625 *
1626 * NOTE: Reloc and log trees can't be read by this function as they share the
1627 * same root objectid.
1628 *
1629 * @objectid: root id
1630 * @anon_dev: preallocated anonymous block device number for new roots,
1631 * pass 0 for new allocation.
1632 * @check_ref: whether to check root item references, If true, return -ENOENT
1633 * for orphan roots
1634 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1635 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1636 u64 objectid, dev_t anon_dev,
1637 bool check_ref)
1638 {
1639 struct btrfs_root *root;
1640 struct btrfs_path *path;
1641 struct btrfs_key key;
1642 int ret;
1643
1644 root = btrfs_get_global_root(fs_info, objectid);
1645 if (root)
1646 return root;
1647 again:
1648 root = btrfs_lookup_fs_root(fs_info, objectid);
1649 if (root) {
1650 /* Shouldn't get preallocated anon_dev for cached roots */
1651 ASSERT(!anon_dev);
1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1653 btrfs_put_root(root);
1654 return ERR_PTR(-ENOENT);
1655 }
1656 return root;
1657 }
1658
1659 key.objectid = objectid;
1660 key.type = BTRFS_ROOT_ITEM_KEY;
1661 key.offset = (u64)-1;
1662 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1663 if (IS_ERR(root))
1664 return root;
1665
1666 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1667 ret = -ENOENT;
1668 goto fail;
1669 }
1670
1671 ret = btrfs_init_fs_root(root, anon_dev);
1672 if (ret)
1673 goto fail;
1674
1675 path = btrfs_alloc_path();
1676 if (!path) {
1677 ret = -ENOMEM;
1678 goto fail;
1679 }
1680 key.objectid = BTRFS_ORPHAN_OBJECTID;
1681 key.type = BTRFS_ORPHAN_ITEM_KEY;
1682 key.offset = objectid;
1683
1684 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1685 btrfs_free_path(path);
1686 if (ret < 0)
1687 goto fail;
1688 if (ret == 0)
1689 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1690
1691 ret = btrfs_insert_fs_root(fs_info, root);
1692 if (ret) {
1693 if (ret == -EEXIST) {
1694 btrfs_put_root(root);
1695 goto again;
1696 }
1697 goto fail;
1698 }
1699 return root;
1700 fail:
1701 /*
1702 * If our caller provided us an anonymous device, then it's his
1703 * responsibility to free it in case we fail. So we have to set our
1704 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1705 * and once again by our caller.
1706 */
1707 if (anon_dev)
1708 root->anon_dev = 0;
1709 btrfs_put_root(root);
1710 return ERR_PTR(ret);
1711 }
1712
1713 /*
1714 * Get in-memory reference of a root structure
1715 *
1716 * @objectid: tree objectid
1717 * @check_ref: if set, verify that the tree exists and the item has at least
1718 * one reference
1719 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1720 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1721 u64 objectid, bool check_ref)
1722 {
1723 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1724 }
1725
1726 /*
1727 * Get in-memory reference of a root structure, created as new, optionally pass
1728 * the anonymous block device id
1729 *
1730 * @objectid: tree objectid
1731 * @anon_dev: if zero, allocate a new anonymous block device or use the
1732 * parameter value
1733 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1734 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1735 u64 objectid, dev_t anon_dev)
1736 {
1737 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1738 }
1739
1740 /*
1741 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1742 * @fs_info: the fs_info
1743 * @objectid: the objectid we need to lookup
1744 *
1745 * This is exclusively used for backref walking, and exists specifically because
1746 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1747 * creation time, which means we may have to read the tree_root in order to look
1748 * up a fs root that is not in memory. If the root is not in memory we will
1749 * read the tree root commit root and look up the fs root from there. This is a
1750 * temporary root, it will not be inserted into the radix tree as it doesn't
1751 * have the most uptodate information, it'll simply be discarded once the
1752 * backref code is finished using the root.
1753 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1754 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1755 struct btrfs_path *path,
1756 u64 objectid)
1757 {
1758 struct btrfs_root *root;
1759 struct btrfs_key key;
1760
1761 ASSERT(path->search_commit_root && path->skip_locking);
1762
1763 /*
1764 * This can return -ENOENT if we ask for a root that doesn't exist, but
1765 * since this is called via the backref walking code we won't be looking
1766 * up a root that doesn't exist, unless there's corruption. So if root
1767 * != NULL just return it.
1768 */
1769 root = btrfs_get_global_root(fs_info, objectid);
1770 if (root)
1771 return root;
1772
1773 root = btrfs_lookup_fs_root(fs_info, objectid);
1774 if (root)
1775 return root;
1776
1777 key.objectid = objectid;
1778 key.type = BTRFS_ROOT_ITEM_KEY;
1779 key.offset = (u64)-1;
1780 root = read_tree_root_path(fs_info->tree_root, path, &key);
1781 btrfs_release_path(path);
1782
1783 return root;
1784 }
1785
cleaner_kthread(void * arg)1786 static int cleaner_kthread(void *arg)
1787 {
1788 struct btrfs_fs_info *fs_info = arg;
1789 int again;
1790
1791 while (1) {
1792 again = 0;
1793
1794 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1795
1796 /* Make the cleaner go to sleep early. */
1797 if (btrfs_need_cleaner_sleep(fs_info))
1798 goto sleep;
1799
1800 /*
1801 * Do not do anything if we might cause open_ctree() to block
1802 * before we have finished mounting the filesystem.
1803 */
1804 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1805 goto sleep;
1806
1807 if (!mutex_trylock(&fs_info->cleaner_mutex))
1808 goto sleep;
1809
1810 /*
1811 * Avoid the problem that we change the status of the fs
1812 * during the above check and trylock.
1813 */
1814 if (btrfs_need_cleaner_sleep(fs_info)) {
1815 mutex_unlock(&fs_info->cleaner_mutex);
1816 goto sleep;
1817 }
1818
1819 btrfs_run_delayed_iputs(fs_info);
1820
1821 again = btrfs_clean_one_deleted_snapshot(fs_info);
1822 mutex_unlock(&fs_info->cleaner_mutex);
1823
1824 /*
1825 * The defragger has dealt with the R/O remount and umount,
1826 * needn't do anything special here.
1827 */
1828 btrfs_run_defrag_inodes(fs_info);
1829
1830 /*
1831 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1832 * with relocation (btrfs_relocate_chunk) and relocation
1833 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1834 * after acquiring fs_info->reclaim_bgs_lock. So we
1835 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1836 * unused block groups.
1837 */
1838 btrfs_delete_unused_bgs(fs_info);
1839
1840 /*
1841 * Reclaim block groups in the reclaim_bgs list after we deleted
1842 * all unused block_groups. This possibly gives us some more free
1843 * space.
1844 */
1845 btrfs_reclaim_bgs(fs_info);
1846 sleep:
1847 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1848 if (kthread_should_park())
1849 kthread_parkme();
1850 if (kthread_should_stop())
1851 return 0;
1852 if (!again) {
1853 set_current_state(TASK_INTERRUPTIBLE);
1854 schedule();
1855 __set_current_state(TASK_RUNNING);
1856 }
1857 }
1858 }
1859
transaction_kthread(void * arg)1860 static int transaction_kthread(void *arg)
1861 {
1862 struct btrfs_root *root = arg;
1863 struct btrfs_fs_info *fs_info = root->fs_info;
1864 struct btrfs_trans_handle *trans;
1865 struct btrfs_transaction *cur;
1866 u64 transid;
1867 time64_t delta;
1868 unsigned long delay;
1869 bool cannot_commit;
1870
1871 do {
1872 cannot_commit = false;
1873 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1874 mutex_lock(&fs_info->transaction_kthread_mutex);
1875
1876 spin_lock(&fs_info->trans_lock);
1877 cur = fs_info->running_transaction;
1878 if (!cur) {
1879 spin_unlock(&fs_info->trans_lock);
1880 goto sleep;
1881 }
1882
1883 delta = ktime_get_seconds() - cur->start_time;
1884 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1885 cur->state < TRANS_STATE_COMMIT_START &&
1886 delta < fs_info->commit_interval) {
1887 spin_unlock(&fs_info->trans_lock);
1888 delay -= msecs_to_jiffies((delta - 1) * 1000);
1889 delay = min(delay,
1890 msecs_to_jiffies(fs_info->commit_interval * 1000));
1891 goto sleep;
1892 }
1893 transid = cur->transid;
1894 spin_unlock(&fs_info->trans_lock);
1895
1896 /* If the file system is aborted, this will always fail. */
1897 trans = btrfs_attach_transaction(root);
1898 if (IS_ERR(trans)) {
1899 if (PTR_ERR(trans) != -ENOENT)
1900 cannot_commit = true;
1901 goto sleep;
1902 }
1903 if (transid == trans->transid) {
1904 btrfs_commit_transaction(trans);
1905 } else {
1906 btrfs_end_transaction(trans);
1907 }
1908 sleep:
1909 wake_up_process(fs_info->cleaner_kthread);
1910 mutex_unlock(&fs_info->transaction_kthread_mutex);
1911
1912 if (BTRFS_FS_ERROR(fs_info))
1913 btrfs_cleanup_transaction(fs_info);
1914 if (!kthread_should_stop() &&
1915 (!btrfs_transaction_blocked(fs_info) ||
1916 cannot_commit))
1917 schedule_timeout_interruptible(delay);
1918 } while (!kthread_should_stop());
1919 return 0;
1920 }
1921
1922 /*
1923 * This will find the highest generation in the array of root backups. The
1924 * index of the highest array is returned, or -EINVAL if we can't find
1925 * anything.
1926 *
1927 * We check to make sure the array is valid by comparing the
1928 * generation of the latest root in the array with the generation
1929 * in the super block. If they don't match we pitch it.
1930 */
find_newest_super_backup(struct btrfs_fs_info * info)1931 static int find_newest_super_backup(struct btrfs_fs_info *info)
1932 {
1933 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1934 u64 cur;
1935 struct btrfs_root_backup *root_backup;
1936 int i;
1937
1938 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1939 root_backup = info->super_copy->super_roots + i;
1940 cur = btrfs_backup_tree_root_gen(root_backup);
1941 if (cur == newest_gen)
1942 return i;
1943 }
1944
1945 return -EINVAL;
1946 }
1947
1948 /*
1949 * copy all the root pointers into the super backup array.
1950 * this will bump the backup pointer by one when it is
1951 * done
1952 */
backup_super_roots(struct btrfs_fs_info * info)1953 static void backup_super_roots(struct btrfs_fs_info *info)
1954 {
1955 const int next_backup = info->backup_root_index;
1956 struct btrfs_root_backup *root_backup;
1957
1958 root_backup = info->super_for_commit->super_roots + next_backup;
1959
1960 /*
1961 * make sure all of our padding and empty slots get zero filled
1962 * regardless of which ones we use today
1963 */
1964 memset(root_backup, 0, sizeof(*root_backup));
1965
1966 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1967
1968 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1969 btrfs_set_backup_tree_root_gen(root_backup,
1970 btrfs_header_generation(info->tree_root->node));
1971
1972 btrfs_set_backup_tree_root_level(root_backup,
1973 btrfs_header_level(info->tree_root->node));
1974
1975 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1976 btrfs_set_backup_chunk_root_gen(root_backup,
1977 btrfs_header_generation(info->chunk_root->node));
1978 btrfs_set_backup_chunk_root_level(root_backup,
1979 btrfs_header_level(info->chunk_root->node));
1980
1981 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1982 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1983 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1984
1985 btrfs_set_backup_extent_root(root_backup,
1986 extent_root->node->start);
1987 btrfs_set_backup_extent_root_gen(root_backup,
1988 btrfs_header_generation(extent_root->node));
1989 btrfs_set_backup_extent_root_level(root_backup,
1990 btrfs_header_level(extent_root->node));
1991
1992 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1993 btrfs_set_backup_csum_root_gen(root_backup,
1994 btrfs_header_generation(csum_root->node));
1995 btrfs_set_backup_csum_root_level(root_backup,
1996 btrfs_header_level(csum_root->node));
1997 }
1998
1999 /*
2000 * we might commit during log recovery, which happens before we set
2001 * the fs_root. Make sure it is valid before we fill it in.
2002 */
2003 if (info->fs_root && info->fs_root->node) {
2004 btrfs_set_backup_fs_root(root_backup,
2005 info->fs_root->node->start);
2006 btrfs_set_backup_fs_root_gen(root_backup,
2007 btrfs_header_generation(info->fs_root->node));
2008 btrfs_set_backup_fs_root_level(root_backup,
2009 btrfs_header_level(info->fs_root->node));
2010 }
2011
2012 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2013 btrfs_set_backup_dev_root_gen(root_backup,
2014 btrfs_header_generation(info->dev_root->node));
2015 btrfs_set_backup_dev_root_level(root_backup,
2016 btrfs_header_level(info->dev_root->node));
2017
2018 btrfs_set_backup_total_bytes(root_backup,
2019 btrfs_super_total_bytes(info->super_copy));
2020 btrfs_set_backup_bytes_used(root_backup,
2021 btrfs_super_bytes_used(info->super_copy));
2022 btrfs_set_backup_num_devices(root_backup,
2023 btrfs_super_num_devices(info->super_copy));
2024
2025 /*
2026 * if we don't copy this out to the super_copy, it won't get remembered
2027 * for the next commit
2028 */
2029 memcpy(&info->super_copy->super_roots,
2030 &info->super_for_commit->super_roots,
2031 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2032 }
2033
2034 /*
2035 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2036 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2037 *
2038 * fs_info - filesystem whose backup roots need to be read
2039 * priority - priority of backup root required
2040 *
2041 * Returns backup root index on success and -EINVAL otherwise.
2042 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2043 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2044 {
2045 int backup_index = find_newest_super_backup(fs_info);
2046 struct btrfs_super_block *super = fs_info->super_copy;
2047 struct btrfs_root_backup *root_backup;
2048
2049 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2050 if (priority == 0)
2051 return backup_index;
2052
2053 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2054 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2055 } else {
2056 return -EINVAL;
2057 }
2058
2059 root_backup = super->super_roots + backup_index;
2060
2061 btrfs_set_super_generation(super,
2062 btrfs_backup_tree_root_gen(root_backup));
2063 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2064 btrfs_set_super_root_level(super,
2065 btrfs_backup_tree_root_level(root_backup));
2066 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2067
2068 /*
2069 * Fixme: the total bytes and num_devices need to match or we should
2070 * need a fsck
2071 */
2072 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2073 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2074
2075 return backup_index;
2076 }
2077
2078 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2079 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2080 {
2081 btrfs_destroy_workqueue(fs_info->fixup_workers);
2082 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2083 btrfs_destroy_workqueue(fs_info->hipri_workers);
2084 btrfs_destroy_workqueue(fs_info->workers);
2085 if (fs_info->endio_workers)
2086 destroy_workqueue(fs_info->endio_workers);
2087 if (fs_info->endio_raid56_workers)
2088 destroy_workqueue(fs_info->endio_raid56_workers);
2089 if (fs_info->rmw_workers)
2090 destroy_workqueue(fs_info->rmw_workers);
2091 if (fs_info->compressed_write_workers)
2092 destroy_workqueue(fs_info->compressed_write_workers);
2093 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2094 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2095 btrfs_destroy_workqueue(fs_info->delayed_workers);
2096 btrfs_destroy_workqueue(fs_info->caching_workers);
2097 btrfs_destroy_workqueue(fs_info->flush_workers);
2098 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2099 if (fs_info->discard_ctl.discard_workers)
2100 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2101 /*
2102 * Now that all other work queues are destroyed, we can safely destroy
2103 * the queues used for metadata I/O, since tasks from those other work
2104 * queues can do metadata I/O operations.
2105 */
2106 if (fs_info->endio_meta_workers)
2107 destroy_workqueue(fs_info->endio_meta_workers);
2108 }
2109
free_root_extent_buffers(struct btrfs_root * root)2110 static void free_root_extent_buffers(struct btrfs_root *root)
2111 {
2112 if (root) {
2113 free_extent_buffer(root->node);
2114 free_extent_buffer(root->commit_root);
2115 root->node = NULL;
2116 root->commit_root = NULL;
2117 }
2118 }
2119
free_global_root_pointers(struct btrfs_fs_info * fs_info)2120 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2121 {
2122 struct btrfs_root *root, *tmp;
2123
2124 rbtree_postorder_for_each_entry_safe(root, tmp,
2125 &fs_info->global_root_tree,
2126 rb_node)
2127 free_root_extent_buffers(root);
2128 }
2129
2130 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2131 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2132 {
2133 free_root_extent_buffers(info->tree_root);
2134
2135 free_global_root_pointers(info);
2136 free_root_extent_buffers(info->dev_root);
2137 free_root_extent_buffers(info->quota_root);
2138 free_root_extent_buffers(info->uuid_root);
2139 free_root_extent_buffers(info->fs_root);
2140 free_root_extent_buffers(info->data_reloc_root);
2141 free_root_extent_buffers(info->block_group_root);
2142 if (free_chunk_root)
2143 free_root_extent_buffers(info->chunk_root);
2144 }
2145
btrfs_put_root(struct btrfs_root * root)2146 void btrfs_put_root(struct btrfs_root *root)
2147 {
2148 if (!root)
2149 return;
2150
2151 if (refcount_dec_and_test(&root->refs)) {
2152 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2153 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2154 if (root->anon_dev)
2155 free_anon_bdev(root->anon_dev);
2156 btrfs_drew_lock_destroy(&root->snapshot_lock);
2157 free_root_extent_buffers(root);
2158 #ifdef CONFIG_BTRFS_DEBUG
2159 spin_lock(&root->fs_info->fs_roots_radix_lock);
2160 list_del_init(&root->leak_list);
2161 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2162 #endif
2163 kfree(root);
2164 }
2165 }
2166
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2167 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2168 {
2169 int ret;
2170 struct btrfs_root *gang[8];
2171 int i;
2172
2173 while (!list_empty(&fs_info->dead_roots)) {
2174 gang[0] = list_entry(fs_info->dead_roots.next,
2175 struct btrfs_root, root_list);
2176 list_del(&gang[0]->root_list);
2177
2178 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2179 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2180 btrfs_put_root(gang[0]);
2181 }
2182
2183 while (1) {
2184 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2185 (void **)gang, 0,
2186 ARRAY_SIZE(gang));
2187 if (!ret)
2188 break;
2189 for (i = 0; i < ret; i++)
2190 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2191 }
2192 }
2193
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2194 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2195 {
2196 mutex_init(&fs_info->scrub_lock);
2197 atomic_set(&fs_info->scrubs_running, 0);
2198 atomic_set(&fs_info->scrub_pause_req, 0);
2199 atomic_set(&fs_info->scrubs_paused, 0);
2200 atomic_set(&fs_info->scrub_cancel_req, 0);
2201 init_waitqueue_head(&fs_info->scrub_pause_wait);
2202 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2203 }
2204
btrfs_init_balance(struct btrfs_fs_info * fs_info)2205 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2206 {
2207 spin_lock_init(&fs_info->balance_lock);
2208 mutex_init(&fs_info->balance_mutex);
2209 atomic_set(&fs_info->balance_pause_req, 0);
2210 atomic_set(&fs_info->balance_cancel_req, 0);
2211 fs_info->balance_ctl = NULL;
2212 init_waitqueue_head(&fs_info->balance_wait_q);
2213 atomic_set(&fs_info->reloc_cancel_req, 0);
2214 }
2215
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2216 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2217 {
2218 struct inode *inode = fs_info->btree_inode;
2219 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2220 fs_info->tree_root);
2221
2222 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2223 set_nlink(inode, 1);
2224 /*
2225 * we set the i_size on the btree inode to the max possible int.
2226 * the real end of the address space is determined by all of
2227 * the devices in the system
2228 */
2229 inode->i_size = OFFSET_MAX;
2230 inode->i_mapping->a_ops = &btree_aops;
2231
2232 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2233 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2234 IO_TREE_BTREE_INODE_IO, NULL);
2235 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2236
2237 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2238 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2239 BTRFS_I(inode)->location.type = 0;
2240 BTRFS_I(inode)->location.offset = 0;
2241 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2242 __insert_inode_hash(inode, hash);
2243 }
2244
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2245 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2246 {
2247 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2248 init_rwsem(&fs_info->dev_replace.rwsem);
2249 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2250 }
2251
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2252 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2253 {
2254 spin_lock_init(&fs_info->qgroup_lock);
2255 mutex_init(&fs_info->qgroup_ioctl_lock);
2256 fs_info->qgroup_tree = RB_ROOT;
2257 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2258 fs_info->qgroup_seq = 1;
2259 fs_info->qgroup_ulist = NULL;
2260 fs_info->qgroup_rescan_running = false;
2261 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2262 mutex_init(&fs_info->qgroup_rescan_lock);
2263 }
2264
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)2265 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2266 {
2267 u32 max_active = fs_info->thread_pool_size;
2268 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2269
2270 fs_info->workers =
2271 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2272 fs_info->hipri_workers =
2273 btrfs_alloc_workqueue(fs_info, "worker-high",
2274 flags | WQ_HIGHPRI, max_active, 16);
2275
2276 fs_info->delalloc_workers =
2277 btrfs_alloc_workqueue(fs_info, "delalloc",
2278 flags, max_active, 2);
2279
2280 fs_info->flush_workers =
2281 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2282 flags, max_active, 0);
2283
2284 fs_info->caching_workers =
2285 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2286
2287 fs_info->fixup_workers =
2288 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2289
2290 fs_info->endio_workers =
2291 alloc_workqueue("btrfs-endio", flags, max_active);
2292 fs_info->endio_meta_workers =
2293 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2294 fs_info->endio_raid56_workers =
2295 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2296 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2297 fs_info->endio_write_workers =
2298 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2299 max_active, 2);
2300 fs_info->compressed_write_workers =
2301 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2302 fs_info->endio_freespace_worker =
2303 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2304 max_active, 0);
2305 fs_info->delayed_workers =
2306 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2307 max_active, 0);
2308 fs_info->qgroup_rescan_workers =
2309 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2310 fs_info->discard_ctl.discard_workers =
2311 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2312
2313 if (!(fs_info->workers && fs_info->hipri_workers &&
2314 fs_info->delalloc_workers && fs_info->flush_workers &&
2315 fs_info->endio_workers && fs_info->endio_meta_workers &&
2316 fs_info->compressed_write_workers &&
2317 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2318 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2319 fs_info->caching_workers && fs_info->fixup_workers &&
2320 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2321 fs_info->discard_ctl.discard_workers)) {
2322 return -ENOMEM;
2323 }
2324
2325 return 0;
2326 }
2327
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2328 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2329 {
2330 struct crypto_shash *csum_shash;
2331 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2332
2333 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2334
2335 if (IS_ERR(csum_shash)) {
2336 btrfs_err(fs_info, "error allocating %s hash for checksum",
2337 csum_driver);
2338 return PTR_ERR(csum_shash);
2339 }
2340
2341 fs_info->csum_shash = csum_shash;
2342
2343 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2344 btrfs_super_csum_name(csum_type),
2345 crypto_shash_driver_name(csum_shash));
2346 return 0;
2347 }
2348
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2349 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2350 struct btrfs_fs_devices *fs_devices)
2351 {
2352 int ret;
2353 struct btrfs_root *log_tree_root;
2354 struct btrfs_super_block *disk_super = fs_info->super_copy;
2355 u64 bytenr = btrfs_super_log_root(disk_super);
2356 int level = btrfs_super_log_root_level(disk_super);
2357
2358 if (fs_devices->rw_devices == 0) {
2359 btrfs_warn(fs_info, "log replay required on RO media");
2360 return -EIO;
2361 }
2362
2363 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2364 GFP_KERNEL);
2365 if (!log_tree_root)
2366 return -ENOMEM;
2367
2368 log_tree_root->node = read_tree_block(fs_info, bytenr,
2369 BTRFS_TREE_LOG_OBJECTID,
2370 fs_info->generation + 1, level,
2371 NULL);
2372 if (IS_ERR(log_tree_root->node)) {
2373 btrfs_warn(fs_info, "failed to read log tree");
2374 ret = PTR_ERR(log_tree_root->node);
2375 log_tree_root->node = NULL;
2376 btrfs_put_root(log_tree_root);
2377 return ret;
2378 }
2379 if (!extent_buffer_uptodate(log_tree_root->node)) {
2380 btrfs_err(fs_info, "failed to read log tree");
2381 btrfs_put_root(log_tree_root);
2382 return -EIO;
2383 }
2384
2385 /* returns with log_tree_root freed on success */
2386 ret = btrfs_recover_log_trees(log_tree_root);
2387 if (ret) {
2388 btrfs_handle_fs_error(fs_info, ret,
2389 "Failed to recover log tree");
2390 btrfs_put_root(log_tree_root);
2391 return ret;
2392 }
2393
2394 if (sb_rdonly(fs_info->sb)) {
2395 ret = btrfs_commit_super(fs_info);
2396 if (ret)
2397 return ret;
2398 }
2399
2400 return 0;
2401 }
2402
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2403 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2404 struct btrfs_path *path, u64 objectid,
2405 const char *name)
2406 {
2407 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2408 struct btrfs_root *root;
2409 u64 max_global_id = 0;
2410 int ret;
2411 struct btrfs_key key = {
2412 .objectid = objectid,
2413 .type = BTRFS_ROOT_ITEM_KEY,
2414 .offset = 0,
2415 };
2416 bool found = false;
2417
2418 /* If we have IGNOREDATACSUMS skip loading these roots. */
2419 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2420 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2421 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2422 return 0;
2423 }
2424
2425 while (1) {
2426 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2427 if (ret < 0)
2428 break;
2429
2430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2431 ret = btrfs_next_leaf(tree_root, path);
2432 if (ret) {
2433 if (ret > 0)
2434 ret = 0;
2435 break;
2436 }
2437 }
2438 ret = 0;
2439
2440 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2441 if (key.objectid != objectid)
2442 break;
2443 btrfs_release_path(path);
2444
2445 /*
2446 * Just worry about this for extent tree, it'll be the same for
2447 * everybody.
2448 */
2449 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2450 max_global_id = max(max_global_id, key.offset);
2451
2452 found = true;
2453 root = read_tree_root_path(tree_root, path, &key);
2454 if (IS_ERR(root)) {
2455 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2456 ret = PTR_ERR(root);
2457 break;
2458 }
2459 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2460 ret = btrfs_global_root_insert(root);
2461 if (ret) {
2462 btrfs_put_root(root);
2463 break;
2464 }
2465 key.offset++;
2466 }
2467 btrfs_release_path(path);
2468
2469 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2470 fs_info->nr_global_roots = max_global_id + 1;
2471
2472 if (!found || ret) {
2473 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2474 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2475
2476 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2477 ret = ret ? ret : -ENOENT;
2478 else
2479 ret = 0;
2480 btrfs_err(fs_info, "failed to load root %s", name);
2481 }
2482 return ret;
2483 }
2484
load_global_roots(struct btrfs_root * tree_root)2485 static int load_global_roots(struct btrfs_root *tree_root)
2486 {
2487 struct btrfs_path *path;
2488 int ret = 0;
2489
2490 path = btrfs_alloc_path();
2491 if (!path)
2492 return -ENOMEM;
2493
2494 ret = load_global_roots_objectid(tree_root, path,
2495 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2496 if (ret)
2497 goto out;
2498 ret = load_global_roots_objectid(tree_root, path,
2499 BTRFS_CSUM_TREE_OBJECTID, "csum");
2500 if (ret)
2501 goto out;
2502 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2503 goto out;
2504 ret = load_global_roots_objectid(tree_root, path,
2505 BTRFS_FREE_SPACE_TREE_OBJECTID,
2506 "free space");
2507 out:
2508 btrfs_free_path(path);
2509 return ret;
2510 }
2511
btrfs_read_roots(struct btrfs_fs_info * fs_info)2512 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2513 {
2514 struct btrfs_root *tree_root = fs_info->tree_root;
2515 struct btrfs_root *root;
2516 struct btrfs_key location;
2517 int ret;
2518
2519 BUG_ON(!fs_info->tree_root);
2520
2521 ret = load_global_roots(tree_root);
2522 if (ret)
2523 return ret;
2524
2525 location.type = BTRFS_ROOT_ITEM_KEY;
2526 location.offset = 0;
2527
2528 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2529 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2530 root = btrfs_read_tree_root(tree_root, &location);
2531 if (IS_ERR(root)) {
2532 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2533 ret = PTR_ERR(root);
2534 goto out;
2535 }
2536 } else {
2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 fs_info->block_group_root = root;
2539 }
2540 }
2541
2542 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2543 root = btrfs_read_tree_root(tree_root, &location);
2544 if (IS_ERR(root)) {
2545 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2546 ret = PTR_ERR(root);
2547 goto out;
2548 }
2549 } else {
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 fs_info->dev_root = root;
2552 }
2553 /* Initialize fs_info for all devices in any case */
2554 ret = btrfs_init_devices_late(fs_info);
2555 if (ret)
2556 goto out;
2557
2558 /*
2559 * This tree can share blocks with some other fs tree during relocation
2560 * and we need a proper setup by btrfs_get_fs_root
2561 */
2562 root = btrfs_get_fs_root(tree_root->fs_info,
2563 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2564 if (IS_ERR(root)) {
2565 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2566 ret = PTR_ERR(root);
2567 goto out;
2568 }
2569 } else {
2570 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2571 fs_info->data_reloc_root = root;
2572 }
2573
2574 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2575 root = btrfs_read_tree_root(tree_root, &location);
2576 if (!IS_ERR(root)) {
2577 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2578 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2579 fs_info->quota_root = root;
2580 }
2581
2582 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2583 root = btrfs_read_tree_root(tree_root, &location);
2584 if (IS_ERR(root)) {
2585 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2586 ret = PTR_ERR(root);
2587 if (ret != -ENOENT)
2588 goto out;
2589 }
2590 } else {
2591 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2592 fs_info->uuid_root = root;
2593 }
2594
2595 return 0;
2596 out:
2597 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2598 location.objectid, ret);
2599 return ret;
2600 }
2601
2602 /*
2603 * Real super block validation
2604 * NOTE: super csum type and incompat features will not be checked here.
2605 *
2606 * @sb: super block to check
2607 * @mirror_num: the super block number to check its bytenr:
2608 * 0 the primary (1st) sb
2609 * 1, 2 2nd and 3rd backup copy
2610 * -1 skip bytenr check
2611 */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2612 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2613 struct btrfs_super_block *sb, int mirror_num)
2614 {
2615 u64 nodesize = btrfs_super_nodesize(sb);
2616 u64 sectorsize = btrfs_super_sectorsize(sb);
2617 int ret = 0;
2618
2619 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2620 btrfs_err(fs_info, "no valid FS found");
2621 ret = -EINVAL;
2622 }
2623 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2624 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2625 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2626 ret = -EINVAL;
2627 }
2628 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2629 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2630 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2631 ret = -EINVAL;
2632 }
2633 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2634 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2635 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2636 ret = -EINVAL;
2637 }
2638 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2639 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2640 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2641 ret = -EINVAL;
2642 }
2643
2644 /*
2645 * Check sectorsize and nodesize first, other check will need it.
2646 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2647 */
2648 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2649 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2650 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2651 ret = -EINVAL;
2652 }
2653
2654 /*
2655 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2656 *
2657 * We can support 16K sectorsize with 64K page size without problem,
2658 * but such sectorsize/pagesize combination doesn't make much sense.
2659 * 4K will be our future standard, PAGE_SIZE is supported from the very
2660 * beginning.
2661 */
2662 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2663 btrfs_err(fs_info,
2664 "sectorsize %llu not yet supported for page size %lu",
2665 sectorsize, PAGE_SIZE);
2666 ret = -EINVAL;
2667 }
2668
2669 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2670 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2671 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2672 ret = -EINVAL;
2673 }
2674 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2675 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2676 le32_to_cpu(sb->__unused_leafsize), nodesize);
2677 ret = -EINVAL;
2678 }
2679
2680 /* Root alignment check */
2681 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2682 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2683 btrfs_super_root(sb));
2684 ret = -EINVAL;
2685 }
2686 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2687 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2688 btrfs_super_chunk_root(sb));
2689 ret = -EINVAL;
2690 }
2691 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2692 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2693 btrfs_super_log_root(sb));
2694 ret = -EINVAL;
2695 }
2696
2697 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2698 BTRFS_FSID_SIZE)) {
2699 btrfs_err(fs_info,
2700 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2701 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2702 ret = -EINVAL;
2703 }
2704
2705 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2706 memcmp(fs_info->fs_devices->metadata_uuid,
2707 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2708 btrfs_err(fs_info,
2709 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2710 fs_info->super_copy->metadata_uuid,
2711 fs_info->fs_devices->metadata_uuid);
2712 ret = -EINVAL;
2713 }
2714
2715 /*
2716 * Artificial requirement for block-group-tree to force newer features
2717 * (free-space-tree, no-holes) so the test matrix is smaller.
2718 */
2719 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2720 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2721 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2722 btrfs_err(fs_info,
2723 "block-group-tree feature requires fres-space-tree and no-holes");
2724 ret = -EINVAL;
2725 }
2726
2727 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2728 BTRFS_FSID_SIZE) != 0) {
2729 btrfs_err(fs_info,
2730 "dev_item UUID does not match metadata fsid: %pU != %pU",
2731 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2732 ret = -EINVAL;
2733 }
2734
2735 /*
2736 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2737 * done later
2738 */
2739 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2740 btrfs_err(fs_info, "bytes_used is too small %llu",
2741 btrfs_super_bytes_used(sb));
2742 ret = -EINVAL;
2743 }
2744 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2745 btrfs_err(fs_info, "invalid stripesize %u",
2746 btrfs_super_stripesize(sb));
2747 ret = -EINVAL;
2748 }
2749 if (btrfs_super_num_devices(sb) > (1UL << 31))
2750 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2751 btrfs_super_num_devices(sb));
2752 if (btrfs_super_num_devices(sb) == 0) {
2753 btrfs_err(fs_info, "number of devices is 0");
2754 ret = -EINVAL;
2755 }
2756
2757 if (mirror_num >= 0 &&
2758 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2759 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2760 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2761 ret = -EINVAL;
2762 }
2763
2764 /*
2765 * Obvious sys_chunk_array corruptions, it must hold at least one key
2766 * and one chunk
2767 */
2768 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2769 btrfs_err(fs_info, "system chunk array too big %u > %u",
2770 btrfs_super_sys_array_size(sb),
2771 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2772 ret = -EINVAL;
2773 }
2774 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2775 + sizeof(struct btrfs_chunk)) {
2776 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2777 btrfs_super_sys_array_size(sb),
2778 sizeof(struct btrfs_disk_key)
2779 + sizeof(struct btrfs_chunk));
2780 ret = -EINVAL;
2781 }
2782
2783 /*
2784 * The generation is a global counter, we'll trust it more than the others
2785 * but it's still possible that it's the one that's wrong.
2786 */
2787 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2788 btrfs_warn(fs_info,
2789 "suspicious: generation < chunk_root_generation: %llu < %llu",
2790 btrfs_super_generation(sb),
2791 btrfs_super_chunk_root_generation(sb));
2792 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2793 && btrfs_super_cache_generation(sb) != (u64)-1)
2794 btrfs_warn(fs_info,
2795 "suspicious: generation < cache_generation: %llu < %llu",
2796 btrfs_super_generation(sb),
2797 btrfs_super_cache_generation(sb));
2798
2799 return ret;
2800 }
2801
2802 /*
2803 * Validation of super block at mount time.
2804 * Some checks already done early at mount time, like csum type and incompat
2805 * flags will be skipped.
2806 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2807 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2808 {
2809 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2810 }
2811
2812 /*
2813 * Validation of super block at write time.
2814 * Some checks like bytenr check will be skipped as their values will be
2815 * overwritten soon.
2816 * Extra checks like csum type and incompat flags will be done here.
2817 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2818 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2819 struct btrfs_super_block *sb)
2820 {
2821 int ret;
2822
2823 ret = btrfs_validate_super(fs_info, sb, -1);
2824 if (ret < 0)
2825 goto out;
2826 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2827 ret = -EUCLEAN;
2828 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2829 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2830 goto out;
2831 }
2832 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2833 ret = -EUCLEAN;
2834 btrfs_err(fs_info,
2835 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2836 btrfs_super_incompat_flags(sb),
2837 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2838 goto out;
2839 }
2840 out:
2841 if (ret < 0)
2842 btrfs_err(fs_info,
2843 "super block corruption detected before writing it to disk");
2844 return ret;
2845 }
2846
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2847 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2848 {
2849 int ret = 0;
2850
2851 root->node = read_tree_block(root->fs_info, bytenr,
2852 root->root_key.objectid, gen, level, NULL);
2853 if (IS_ERR(root->node)) {
2854 ret = PTR_ERR(root->node);
2855 root->node = NULL;
2856 return ret;
2857 }
2858 if (!extent_buffer_uptodate(root->node)) {
2859 free_extent_buffer(root->node);
2860 root->node = NULL;
2861 return -EIO;
2862 }
2863
2864 btrfs_set_root_node(&root->root_item, root->node);
2865 root->commit_root = btrfs_root_node(root);
2866 btrfs_set_root_refs(&root->root_item, 1);
2867 return ret;
2868 }
2869
load_important_roots(struct btrfs_fs_info * fs_info)2870 static int load_important_roots(struct btrfs_fs_info *fs_info)
2871 {
2872 struct btrfs_super_block *sb = fs_info->super_copy;
2873 u64 gen, bytenr;
2874 int level, ret;
2875
2876 bytenr = btrfs_super_root(sb);
2877 gen = btrfs_super_generation(sb);
2878 level = btrfs_super_root_level(sb);
2879 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2880 if (ret) {
2881 btrfs_warn(fs_info, "couldn't read tree root");
2882 return ret;
2883 }
2884 return 0;
2885 }
2886
init_tree_roots(struct btrfs_fs_info * fs_info)2887 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2888 {
2889 int backup_index = find_newest_super_backup(fs_info);
2890 struct btrfs_super_block *sb = fs_info->super_copy;
2891 struct btrfs_root *tree_root = fs_info->tree_root;
2892 bool handle_error = false;
2893 int ret = 0;
2894 int i;
2895
2896 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2897 if (handle_error) {
2898 if (!IS_ERR(tree_root->node))
2899 free_extent_buffer(tree_root->node);
2900 tree_root->node = NULL;
2901
2902 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2903 break;
2904
2905 free_root_pointers(fs_info, 0);
2906
2907 /*
2908 * Don't use the log in recovery mode, it won't be
2909 * valid
2910 */
2911 btrfs_set_super_log_root(sb, 0);
2912
2913 /* We can't trust the free space cache either */
2914 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2915
2916 ret = read_backup_root(fs_info, i);
2917 backup_index = ret;
2918 if (ret < 0)
2919 return ret;
2920 }
2921
2922 ret = load_important_roots(fs_info);
2923 if (ret) {
2924 handle_error = true;
2925 continue;
2926 }
2927
2928 /*
2929 * No need to hold btrfs_root::objectid_mutex since the fs
2930 * hasn't been fully initialised and we are the only user
2931 */
2932 ret = btrfs_init_root_free_objectid(tree_root);
2933 if (ret < 0) {
2934 handle_error = true;
2935 continue;
2936 }
2937
2938 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2939
2940 ret = btrfs_read_roots(fs_info);
2941 if (ret < 0) {
2942 handle_error = true;
2943 continue;
2944 }
2945
2946 /* All successful */
2947 fs_info->generation = btrfs_header_generation(tree_root->node);
2948 fs_info->last_trans_committed = fs_info->generation;
2949 fs_info->last_reloc_trans = 0;
2950
2951 /* Always begin writing backup roots after the one being used */
2952 if (backup_index < 0) {
2953 fs_info->backup_root_index = 0;
2954 } else {
2955 fs_info->backup_root_index = backup_index + 1;
2956 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2957 }
2958 break;
2959 }
2960
2961 return ret;
2962 }
2963
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2964 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2965 {
2966 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2967 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2968 INIT_LIST_HEAD(&fs_info->trans_list);
2969 INIT_LIST_HEAD(&fs_info->dead_roots);
2970 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2971 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2972 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2973 spin_lock_init(&fs_info->delalloc_root_lock);
2974 spin_lock_init(&fs_info->trans_lock);
2975 spin_lock_init(&fs_info->fs_roots_radix_lock);
2976 spin_lock_init(&fs_info->delayed_iput_lock);
2977 spin_lock_init(&fs_info->defrag_inodes_lock);
2978 spin_lock_init(&fs_info->super_lock);
2979 spin_lock_init(&fs_info->buffer_lock);
2980 spin_lock_init(&fs_info->unused_bgs_lock);
2981 spin_lock_init(&fs_info->treelog_bg_lock);
2982 spin_lock_init(&fs_info->zone_active_bgs_lock);
2983 spin_lock_init(&fs_info->relocation_bg_lock);
2984 rwlock_init(&fs_info->tree_mod_log_lock);
2985 rwlock_init(&fs_info->global_root_lock);
2986 mutex_init(&fs_info->unused_bg_unpin_mutex);
2987 mutex_init(&fs_info->reclaim_bgs_lock);
2988 mutex_init(&fs_info->reloc_mutex);
2989 mutex_init(&fs_info->delalloc_root_mutex);
2990 mutex_init(&fs_info->zoned_meta_io_lock);
2991 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2992 seqlock_init(&fs_info->profiles_lock);
2993
2994 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2995 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2996 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2997 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2998 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2999 BTRFS_LOCKDEP_TRANS_COMMIT_START);
3000 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3001 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3002 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3003 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3004 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3005 BTRFS_LOCKDEP_TRANS_COMPLETED);
3006
3007 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3008 INIT_LIST_HEAD(&fs_info->space_info);
3009 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3010 INIT_LIST_HEAD(&fs_info->unused_bgs);
3011 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3012 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3013 #ifdef CONFIG_BTRFS_DEBUG
3014 INIT_LIST_HEAD(&fs_info->allocated_roots);
3015 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3016 spin_lock_init(&fs_info->eb_leak_lock);
3017 #endif
3018 extent_map_tree_init(&fs_info->mapping_tree);
3019 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3020 BTRFS_BLOCK_RSV_GLOBAL);
3021 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3022 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3023 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3024 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3025 BTRFS_BLOCK_RSV_DELOPS);
3026 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3027 BTRFS_BLOCK_RSV_DELREFS);
3028
3029 atomic_set(&fs_info->async_delalloc_pages, 0);
3030 atomic_set(&fs_info->defrag_running, 0);
3031 atomic_set(&fs_info->nr_delayed_iputs, 0);
3032 atomic64_set(&fs_info->tree_mod_seq, 0);
3033 fs_info->global_root_tree = RB_ROOT;
3034 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3035 fs_info->metadata_ratio = 0;
3036 fs_info->defrag_inodes = RB_ROOT;
3037 atomic64_set(&fs_info->free_chunk_space, 0);
3038 fs_info->tree_mod_log = RB_ROOT;
3039 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3040 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3041 btrfs_init_ref_verify(fs_info);
3042
3043 fs_info->thread_pool_size = min_t(unsigned long,
3044 num_online_cpus() + 2, 8);
3045
3046 INIT_LIST_HEAD(&fs_info->ordered_roots);
3047 spin_lock_init(&fs_info->ordered_root_lock);
3048
3049 btrfs_init_scrub(fs_info);
3050 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3051 fs_info->check_integrity_print_mask = 0;
3052 #endif
3053 btrfs_init_balance(fs_info);
3054 btrfs_init_async_reclaim_work(fs_info);
3055
3056 rwlock_init(&fs_info->block_group_cache_lock);
3057 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3058
3059 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3060 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3061
3062 mutex_init(&fs_info->ordered_operations_mutex);
3063 mutex_init(&fs_info->tree_log_mutex);
3064 mutex_init(&fs_info->chunk_mutex);
3065 mutex_init(&fs_info->transaction_kthread_mutex);
3066 mutex_init(&fs_info->cleaner_mutex);
3067 mutex_init(&fs_info->ro_block_group_mutex);
3068 init_rwsem(&fs_info->commit_root_sem);
3069 init_rwsem(&fs_info->cleanup_work_sem);
3070 init_rwsem(&fs_info->subvol_sem);
3071 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3072
3073 btrfs_init_dev_replace_locks(fs_info);
3074 btrfs_init_qgroup(fs_info);
3075 btrfs_discard_init(fs_info);
3076
3077 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3078 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3079
3080 init_waitqueue_head(&fs_info->transaction_throttle);
3081 init_waitqueue_head(&fs_info->transaction_wait);
3082 init_waitqueue_head(&fs_info->transaction_blocked_wait);
3083 init_waitqueue_head(&fs_info->async_submit_wait);
3084 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3085
3086 /* Usable values until the real ones are cached from the superblock */
3087 fs_info->nodesize = 4096;
3088 fs_info->sectorsize = 4096;
3089 fs_info->sectorsize_bits = ilog2(4096);
3090 fs_info->stripesize = 4096;
3091
3092 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3093
3094 spin_lock_init(&fs_info->swapfile_pins_lock);
3095 fs_info->swapfile_pins = RB_ROOT;
3096
3097 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3098 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3099 }
3100
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)3101 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3102 {
3103 int ret;
3104
3105 fs_info->sb = sb;
3106 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3107 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3108
3109 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3110 if (ret)
3111 return ret;
3112
3113 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3114 if (ret)
3115 return ret;
3116
3117 fs_info->dirty_metadata_batch = PAGE_SIZE *
3118 (1 + ilog2(nr_cpu_ids));
3119
3120 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3121 if (ret)
3122 return ret;
3123
3124 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3125 GFP_KERNEL);
3126 if (ret)
3127 return ret;
3128
3129 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3130 GFP_KERNEL);
3131 if (!fs_info->delayed_root)
3132 return -ENOMEM;
3133 btrfs_init_delayed_root(fs_info->delayed_root);
3134
3135 if (sb_rdonly(sb))
3136 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3137
3138 return btrfs_alloc_stripe_hash_table(fs_info);
3139 }
3140
btrfs_uuid_rescan_kthread(void * data)3141 static int btrfs_uuid_rescan_kthread(void *data)
3142 {
3143 struct btrfs_fs_info *fs_info = data;
3144 int ret;
3145
3146 /*
3147 * 1st step is to iterate through the existing UUID tree and
3148 * to delete all entries that contain outdated data.
3149 * 2nd step is to add all missing entries to the UUID tree.
3150 */
3151 ret = btrfs_uuid_tree_iterate(fs_info);
3152 if (ret < 0) {
3153 if (ret != -EINTR)
3154 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3155 ret);
3156 up(&fs_info->uuid_tree_rescan_sem);
3157 return ret;
3158 }
3159 return btrfs_uuid_scan_kthread(data);
3160 }
3161
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3162 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3163 {
3164 struct task_struct *task;
3165
3166 down(&fs_info->uuid_tree_rescan_sem);
3167 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3168 if (IS_ERR(task)) {
3169 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3170 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3171 up(&fs_info->uuid_tree_rescan_sem);
3172 return PTR_ERR(task);
3173 }
3174
3175 return 0;
3176 }
3177
3178 /*
3179 * Some options only have meaning at mount time and shouldn't persist across
3180 * remounts, or be displayed. Clear these at the end of mount and remount
3181 * code paths.
3182 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3183 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3184 {
3185 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3186 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3187 }
3188
3189 /*
3190 * Mounting logic specific to read-write file systems. Shared by open_ctree
3191 * and btrfs_remount when remounting from read-only to read-write.
3192 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3193 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3194 {
3195 int ret;
3196 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3197 bool clear_free_space_tree = false;
3198
3199 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3200 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3201 clear_free_space_tree = true;
3202 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3203 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3204 btrfs_warn(fs_info, "free space tree is invalid");
3205 clear_free_space_tree = true;
3206 }
3207
3208 if (clear_free_space_tree) {
3209 btrfs_info(fs_info, "clearing free space tree");
3210 ret = btrfs_clear_free_space_tree(fs_info);
3211 if (ret) {
3212 btrfs_warn(fs_info,
3213 "failed to clear free space tree: %d", ret);
3214 goto out;
3215 }
3216 }
3217
3218 /*
3219 * btrfs_find_orphan_roots() is responsible for finding all the dead
3220 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3221 * them into the fs_info->fs_roots_radix tree. This must be done before
3222 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3223 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3224 * item before the root's tree is deleted - this means that if we unmount
3225 * or crash before the deletion completes, on the next mount we will not
3226 * delete what remains of the tree because the orphan item does not
3227 * exists anymore, which is what tells us we have a pending deletion.
3228 */
3229 ret = btrfs_find_orphan_roots(fs_info);
3230 if (ret)
3231 goto out;
3232
3233 ret = btrfs_cleanup_fs_roots(fs_info);
3234 if (ret)
3235 goto out;
3236
3237 down_read(&fs_info->cleanup_work_sem);
3238 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3239 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3240 up_read(&fs_info->cleanup_work_sem);
3241 goto out;
3242 }
3243 up_read(&fs_info->cleanup_work_sem);
3244
3245 mutex_lock(&fs_info->cleaner_mutex);
3246 ret = btrfs_recover_relocation(fs_info);
3247 mutex_unlock(&fs_info->cleaner_mutex);
3248 if (ret < 0) {
3249 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3250 goto out;
3251 }
3252
3253 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3254 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3255 btrfs_info(fs_info, "creating free space tree");
3256 ret = btrfs_create_free_space_tree(fs_info);
3257 if (ret) {
3258 btrfs_warn(fs_info,
3259 "failed to create free space tree: %d", ret);
3260 goto out;
3261 }
3262 }
3263
3264 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3265 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3266 if (ret)
3267 goto out;
3268 }
3269
3270 ret = btrfs_resume_balance_async(fs_info);
3271 if (ret)
3272 goto out;
3273
3274 ret = btrfs_resume_dev_replace_async(fs_info);
3275 if (ret) {
3276 btrfs_warn(fs_info, "failed to resume dev_replace");
3277 goto out;
3278 }
3279
3280 btrfs_qgroup_rescan_resume(fs_info);
3281
3282 if (!fs_info->uuid_root) {
3283 btrfs_info(fs_info, "creating UUID tree");
3284 ret = btrfs_create_uuid_tree(fs_info);
3285 if (ret) {
3286 btrfs_warn(fs_info,
3287 "failed to create the UUID tree %d", ret);
3288 goto out;
3289 }
3290 }
3291
3292 out:
3293 return ret;
3294 }
3295
3296 /*
3297 * Do various sanity and dependency checks of different features.
3298 *
3299 * This is the place for less strict checks (like for subpage or artificial
3300 * feature dependencies).
3301 *
3302 * For strict checks or possible corruption detection, see
3303 * btrfs_validate_super().
3304 *
3305 * This should be called after btrfs_parse_options(), as some mount options
3306 * (space cache related) can modify on-disk format like free space tree and
3307 * screw up certain feature dependencies.
3308 */
btrfs_check_features(struct btrfs_fs_info * fs_info,struct super_block * sb)3309 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3310 {
3311 struct btrfs_super_block *disk_super = fs_info->super_copy;
3312 u64 incompat = btrfs_super_incompat_flags(disk_super);
3313 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3314 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3315
3316 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3317 btrfs_err(fs_info,
3318 "cannot mount because of unknown incompat features (0x%llx)",
3319 incompat);
3320 return -EINVAL;
3321 }
3322
3323 /* Runtime limitation for mixed block groups. */
3324 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3325 (fs_info->sectorsize != fs_info->nodesize)) {
3326 btrfs_err(fs_info,
3327 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3328 fs_info->nodesize, fs_info->sectorsize);
3329 return -EINVAL;
3330 }
3331
3332 /* Mixed backref is an always-enabled feature. */
3333 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3334
3335 /* Set compression related flags just in case. */
3336 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3337 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3338 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3339 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3340
3341 /*
3342 * An ancient flag, which should really be marked deprecated.
3343 * Such runtime limitation doesn't really need a incompat flag.
3344 */
3345 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3346 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3347
3348 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3349 btrfs_err(fs_info,
3350 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3351 compat_ro);
3352 return -EINVAL;
3353 }
3354
3355 /*
3356 * We have unsupported RO compat features, although RO mounted, we
3357 * should not cause any metadata writes, including log replay.
3358 * Or we could screw up whatever the new feature requires.
3359 */
3360 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3361 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3362 btrfs_err(fs_info,
3363 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3364 compat_ro);
3365 return -EINVAL;
3366 }
3367
3368 /*
3369 * Artificial limitations for block group tree, to force
3370 * block-group-tree to rely on no-holes and free-space-tree.
3371 */
3372 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3373 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3374 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3375 btrfs_err(fs_info,
3376 "block-group-tree feature requires no-holes and free-space-tree features");
3377 return -EINVAL;
3378 }
3379
3380 /*
3381 * Subpage runtime limitation on v1 cache.
3382 *
3383 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3384 * we're already defaulting to v2 cache, no need to bother v1 as it's
3385 * going to be deprecated anyway.
3386 */
3387 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3388 btrfs_warn(fs_info,
3389 "v1 space cache is not supported for page size %lu with sectorsize %u",
3390 PAGE_SIZE, fs_info->sectorsize);
3391 return -EINVAL;
3392 }
3393
3394 /* This can be called by remount, we need to protect the super block. */
3395 spin_lock(&fs_info->super_lock);
3396 btrfs_set_super_incompat_flags(disk_super, incompat);
3397 spin_unlock(&fs_info->super_lock);
3398
3399 return 0;
3400 }
3401
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3402 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3403 char *options)
3404 {
3405 u32 sectorsize;
3406 u32 nodesize;
3407 u32 stripesize;
3408 u64 generation;
3409 u64 features;
3410 u16 csum_type;
3411 struct btrfs_super_block *disk_super;
3412 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3413 struct btrfs_root *tree_root;
3414 struct btrfs_root *chunk_root;
3415 int ret;
3416 int err = -EINVAL;
3417 int level;
3418
3419 ret = init_mount_fs_info(fs_info, sb);
3420 if (ret) {
3421 err = ret;
3422 goto fail;
3423 }
3424
3425 /* These need to be init'ed before we start creating inodes and such. */
3426 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3427 GFP_KERNEL);
3428 fs_info->tree_root = tree_root;
3429 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3430 GFP_KERNEL);
3431 fs_info->chunk_root = chunk_root;
3432 if (!tree_root || !chunk_root) {
3433 err = -ENOMEM;
3434 goto fail;
3435 }
3436
3437 fs_info->btree_inode = new_inode(sb);
3438 if (!fs_info->btree_inode) {
3439 err = -ENOMEM;
3440 goto fail;
3441 }
3442 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3443 btrfs_init_btree_inode(fs_info);
3444
3445 invalidate_bdev(fs_devices->latest_dev->bdev);
3446
3447 /*
3448 * Read super block and check the signature bytes only
3449 */
3450 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3451 if (IS_ERR(disk_super)) {
3452 err = PTR_ERR(disk_super);
3453 goto fail_alloc;
3454 }
3455
3456 /*
3457 * Verify the type first, if that or the checksum value are
3458 * corrupted, we'll find out
3459 */
3460 csum_type = btrfs_super_csum_type(disk_super);
3461 if (!btrfs_supported_super_csum(csum_type)) {
3462 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3463 csum_type);
3464 err = -EINVAL;
3465 btrfs_release_disk_super(disk_super);
3466 goto fail_alloc;
3467 }
3468
3469 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3470
3471 ret = btrfs_init_csum_hash(fs_info, csum_type);
3472 if (ret) {
3473 err = ret;
3474 btrfs_release_disk_super(disk_super);
3475 goto fail_alloc;
3476 }
3477
3478 /*
3479 * We want to check superblock checksum, the type is stored inside.
3480 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3481 */
3482 if (btrfs_check_super_csum(fs_info, disk_super)) {
3483 btrfs_err(fs_info, "superblock checksum mismatch");
3484 err = -EINVAL;
3485 btrfs_release_disk_super(disk_super);
3486 goto fail_alloc;
3487 }
3488
3489 /*
3490 * super_copy is zeroed at allocation time and we never touch the
3491 * following bytes up to INFO_SIZE, the checksum is calculated from
3492 * the whole block of INFO_SIZE
3493 */
3494 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3495 btrfs_release_disk_super(disk_super);
3496
3497 disk_super = fs_info->super_copy;
3498
3499
3500 features = btrfs_super_flags(disk_super);
3501 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3502 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3503 btrfs_set_super_flags(disk_super, features);
3504 btrfs_info(fs_info,
3505 "found metadata UUID change in progress flag, clearing");
3506 }
3507
3508 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3509 sizeof(*fs_info->super_for_commit));
3510
3511 ret = btrfs_validate_mount_super(fs_info);
3512 if (ret) {
3513 btrfs_err(fs_info, "superblock contains fatal errors");
3514 err = -EINVAL;
3515 goto fail_alloc;
3516 }
3517
3518 if (!btrfs_super_root(disk_super))
3519 goto fail_alloc;
3520
3521 /* check FS state, whether FS is broken. */
3522 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3523 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3524
3525 /*
3526 * In the long term, we'll store the compression type in the super
3527 * block, and it'll be used for per file compression control.
3528 */
3529 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3530
3531
3532 /* Set up fs_info before parsing mount options */
3533 nodesize = btrfs_super_nodesize(disk_super);
3534 sectorsize = btrfs_super_sectorsize(disk_super);
3535 stripesize = sectorsize;
3536 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3537 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3538
3539 fs_info->nodesize = nodesize;
3540 fs_info->sectorsize = sectorsize;
3541 fs_info->sectorsize_bits = ilog2(sectorsize);
3542 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3543 fs_info->stripesize = stripesize;
3544
3545 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3546 if (ret) {
3547 err = ret;
3548 goto fail_alloc;
3549 }
3550
3551 ret = btrfs_check_features(fs_info, sb);
3552 if (ret < 0) {
3553 err = ret;
3554 goto fail_alloc;
3555 }
3556
3557 if (sectorsize < PAGE_SIZE) {
3558 struct btrfs_subpage_info *subpage_info;
3559
3560 /*
3561 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3562 * going to be deprecated.
3563 *
3564 * Force to use v2 cache for subpage case.
3565 */
3566 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3567 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3568 "forcing free space tree for sector size %u with page size %lu",
3569 sectorsize, PAGE_SIZE);
3570
3571 btrfs_warn(fs_info,
3572 "read-write for sector size %u with page size %lu is experimental",
3573 sectorsize, PAGE_SIZE);
3574 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3575 if (!subpage_info)
3576 goto fail_alloc;
3577 btrfs_init_subpage_info(subpage_info, sectorsize);
3578 fs_info->subpage_info = subpage_info;
3579 }
3580
3581 ret = btrfs_init_workqueues(fs_info);
3582 if (ret) {
3583 err = ret;
3584 goto fail_sb_buffer;
3585 }
3586
3587 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3588 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3589
3590 sb->s_blocksize = sectorsize;
3591 sb->s_blocksize_bits = blksize_bits(sectorsize);
3592 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3593
3594 mutex_lock(&fs_info->chunk_mutex);
3595 ret = btrfs_read_sys_array(fs_info);
3596 mutex_unlock(&fs_info->chunk_mutex);
3597 if (ret) {
3598 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3599 goto fail_sb_buffer;
3600 }
3601
3602 generation = btrfs_super_chunk_root_generation(disk_super);
3603 level = btrfs_super_chunk_root_level(disk_super);
3604 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3605 generation, level);
3606 if (ret) {
3607 btrfs_err(fs_info, "failed to read chunk root");
3608 goto fail_tree_roots;
3609 }
3610
3611 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3612 offsetof(struct btrfs_header, chunk_tree_uuid),
3613 BTRFS_UUID_SIZE);
3614
3615 ret = btrfs_read_chunk_tree(fs_info);
3616 if (ret) {
3617 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3618 goto fail_tree_roots;
3619 }
3620
3621 /*
3622 * At this point we know all the devices that make this filesystem,
3623 * including the seed devices but we don't know yet if the replace
3624 * target is required. So free devices that are not part of this
3625 * filesystem but skip the replace target device which is checked
3626 * below in btrfs_init_dev_replace().
3627 */
3628 btrfs_free_extra_devids(fs_devices);
3629 if (!fs_devices->latest_dev->bdev) {
3630 btrfs_err(fs_info, "failed to read devices");
3631 goto fail_tree_roots;
3632 }
3633
3634 ret = init_tree_roots(fs_info);
3635 if (ret)
3636 goto fail_tree_roots;
3637
3638 /*
3639 * Get zone type information of zoned block devices. This will also
3640 * handle emulation of a zoned filesystem if a regular device has the
3641 * zoned incompat feature flag set.
3642 */
3643 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3644 if (ret) {
3645 btrfs_err(fs_info,
3646 "zoned: failed to read device zone info: %d",
3647 ret);
3648 goto fail_block_groups;
3649 }
3650
3651 /*
3652 * If we have a uuid root and we're not being told to rescan we need to
3653 * check the generation here so we can set the
3654 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3655 * transaction during a balance or the log replay without updating the
3656 * uuid generation, and then if we crash we would rescan the uuid tree,
3657 * even though it was perfectly fine.
3658 */
3659 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3660 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3661 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3662
3663 ret = btrfs_verify_dev_extents(fs_info);
3664 if (ret) {
3665 btrfs_err(fs_info,
3666 "failed to verify dev extents against chunks: %d",
3667 ret);
3668 goto fail_block_groups;
3669 }
3670 ret = btrfs_recover_balance(fs_info);
3671 if (ret) {
3672 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3673 goto fail_block_groups;
3674 }
3675
3676 ret = btrfs_init_dev_stats(fs_info);
3677 if (ret) {
3678 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3679 goto fail_block_groups;
3680 }
3681
3682 ret = btrfs_init_dev_replace(fs_info);
3683 if (ret) {
3684 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3685 goto fail_block_groups;
3686 }
3687
3688 ret = btrfs_check_zoned_mode(fs_info);
3689 if (ret) {
3690 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3691 ret);
3692 goto fail_block_groups;
3693 }
3694
3695 ret = btrfs_sysfs_add_fsid(fs_devices);
3696 if (ret) {
3697 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3698 ret);
3699 goto fail_block_groups;
3700 }
3701
3702 ret = btrfs_sysfs_add_mounted(fs_info);
3703 if (ret) {
3704 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3705 goto fail_fsdev_sysfs;
3706 }
3707
3708 ret = btrfs_init_space_info(fs_info);
3709 if (ret) {
3710 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3711 goto fail_sysfs;
3712 }
3713
3714 ret = btrfs_read_block_groups(fs_info);
3715 if (ret) {
3716 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3717 goto fail_sysfs;
3718 }
3719
3720 btrfs_free_zone_cache(fs_info);
3721
3722 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3723 !btrfs_check_rw_degradable(fs_info, NULL)) {
3724 btrfs_warn(fs_info,
3725 "writable mount is not allowed due to too many missing devices");
3726 goto fail_sysfs;
3727 }
3728
3729 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3730 "btrfs-cleaner");
3731 if (IS_ERR(fs_info->cleaner_kthread))
3732 goto fail_sysfs;
3733
3734 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3735 tree_root,
3736 "btrfs-transaction");
3737 if (IS_ERR(fs_info->transaction_kthread))
3738 goto fail_cleaner;
3739
3740 if (!btrfs_test_opt(fs_info, NOSSD) &&
3741 !fs_info->fs_devices->rotating) {
3742 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3743 }
3744
3745 /*
3746 * Mount does not set all options immediately, we can do it now and do
3747 * not have to wait for transaction commit
3748 */
3749 btrfs_apply_pending_changes(fs_info);
3750
3751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3752 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3753 ret = btrfsic_mount(fs_info, fs_devices,
3754 btrfs_test_opt(fs_info,
3755 CHECK_INTEGRITY_DATA) ? 1 : 0,
3756 fs_info->check_integrity_print_mask);
3757 if (ret)
3758 btrfs_warn(fs_info,
3759 "failed to initialize integrity check module: %d",
3760 ret);
3761 }
3762 #endif
3763 ret = btrfs_read_qgroup_config(fs_info);
3764 if (ret)
3765 goto fail_trans_kthread;
3766
3767 if (btrfs_build_ref_tree(fs_info))
3768 btrfs_err(fs_info, "couldn't build ref tree");
3769
3770 /* do not make disk changes in broken FS or nologreplay is given */
3771 if (btrfs_super_log_root(disk_super) != 0 &&
3772 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3773 btrfs_info(fs_info, "start tree-log replay");
3774 ret = btrfs_replay_log(fs_info, fs_devices);
3775 if (ret) {
3776 err = ret;
3777 goto fail_qgroup;
3778 }
3779 }
3780
3781 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3782 if (IS_ERR(fs_info->fs_root)) {
3783 err = PTR_ERR(fs_info->fs_root);
3784 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3785 fs_info->fs_root = NULL;
3786 goto fail_qgroup;
3787 }
3788
3789 if (sb_rdonly(sb))
3790 goto clear_oneshot;
3791
3792 ret = btrfs_start_pre_rw_mount(fs_info);
3793 if (ret) {
3794 close_ctree(fs_info);
3795 return ret;
3796 }
3797 btrfs_discard_resume(fs_info);
3798
3799 if (fs_info->uuid_root &&
3800 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3801 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3802 btrfs_info(fs_info, "checking UUID tree");
3803 ret = btrfs_check_uuid_tree(fs_info);
3804 if (ret) {
3805 btrfs_warn(fs_info,
3806 "failed to check the UUID tree: %d", ret);
3807 close_ctree(fs_info);
3808 return ret;
3809 }
3810 }
3811
3812 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3813
3814 /* Kick the cleaner thread so it'll start deleting snapshots. */
3815 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3816 wake_up_process(fs_info->cleaner_kthread);
3817
3818 clear_oneshot:
3819 btrfs_clear_oneshot_options(fs_info);
3820 return 0;
3821
3822 fail_qgroup:
3823 btrfs_free_qgroup_config(fs_info);
3824 fail_trans_kthread:
3825 kthread_stop(fs_info->transaction_kthread);
3826 btrfs_cleanup_transaction(fs_info);
3827 btrfs_free_fs_roots(fs_info);
3828 fail_cleaner:
3829 kthread_stop(fs_info->cleaner_kthread);
3830
3831 /*
3832 * make sure we're done with the btree inode before we stop our
3833 * kthreads
3834 */
3835 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3836
3837 fail_sysfs:
3838 btrfs_sysfs_remove_mounted(fs_info);
3839
3840 fail_fsdev_sysfs:
3841 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3842
3843 fail_block_groups:
3844 btrfs_put_block_group_cache(fs_info);
3845
3846 fail_tree_roots:
3847 if (fs_info->data_reloc_root)
3848 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3849 free_root_pointers(fs_info, true);
3850 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3851
3852 fail_sb_buffer:
3853 btrfs_stop_all_workers(fs_info);
3854 btrfs_free_block_groups(fs_info);
3855 fail_alloc:
3856 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3857
3858 iput(fs_info->btree_inode);
3859 fail:
3860 btrfs_close_devices(fs_info->fs_devices);
3861 return err;
3862 }
3863 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3864
btrfs_end_super_write(struct bio * bio)3865 static void btrfs_end_super_write(struct bio *bio)
3866 {
3867 struct btrfs_device *device = bio->bi_private;
3868 struct bio_vec *bvec;
3869 struct bvec_iter_all iter_all;
3870 struct page *page;
3871
3872 bio_for_each_segment_all(bvec, bio, iter_all) {
3873 page = bvec->bv_page;
3874
3875 if (bio->bi_status) {
3876 btrfs_warn_rl_in_rcu(device->fs_info,
3877 "lost page write due to IO error on %s (%d)",
3878 rcu_str_deref(device->name),
3879 blk_status_to_errno(bio->bi_status));
3880 ClearPageUptodate(page);
3881 SetPageError(page);
3882 btrfs_dev_stat_inc_and_print(device,
3883 BTRFS_DEV_STAT_WRITE_ERRS);
3884 } else {
3885 SetPageUptodate(page);
3886 }
3887
3888 put_page(page);
3889 unlock_page(page);
3890 }
3891
3892 bio_put(bio);
3893 }
3894
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3895 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3896 int copy_num, bool drop_cache)
3897 {
3898 struct btrfs_super_block *super;
3899 struct page *page;
3900 u64 bytenr, bytenr_orig;
3901 struct address_space *mapping = bdev->bd_inode->i_mapping;
3902 int ret;
3903
3904 bytenr_orig = btrfs_sb_offset(copy_num);
3905 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3906 if (ret == -ENOENT)
3907 return ERR_PTR(-EINVAL);
3908 else if (ret)
3909 return ERR_PTR(ret);
3910
3911 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3912 return ERR_PTR(-EINVAL);
3913
3914 if (drop_cache) {
3915 /* This should only be called with the primary sb. */
3916 ASSERT(copy_num == 0);
3917
3918 /*
3919 * Drop the page of the primary superblock, so later read will
3920 * always read from the device.
3921 */
3922 invalidate_inode_pages2_range(mapping,
3923 bytenr >> PAGE_SHIFT,
3924 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3925 }
3926
3927 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3928 if (IS_ERR(page))
3929 return ERR_CAST(page);
3930
3931 super = page_address(page);
3932 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3933 btrfs_release_disk_super(super);
3934 return ERR_PTR(-ENODATA);
3935 }
3936
3937 if (btrfs_super_bytenr(super) != bytenr_orig) {
3938 btrfs_release_disk_super(super);
3939 return ERR_PTR(-EINVAL);
3940 }
3941
3942 return super;
3943 }
3944
3945
btrfs_read_dev_super(struct block_device * bdev)3946 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3947 {
3948 struct btrfs_super_block *super, *latest = NULL;
3949 int i;
3950 u64 transid = 0;
3951
3952 /* we would like to check all the supers, but that would make
3953 * a btrfs mount succeed after a mkfs from a different FS.
3954 * So, we need to add a special mount option to scan for
3955 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3956 */
3957 for (i = 0; i < 1; i++) {
3958 super = btrfs_read_dev_one_super(bdev, i, false);
3959 if (IS_ERR(super))
3960 continue;
3961
3962 if (!latest || btrfs_super_generation(super) > transid) {
3963 if (latest)
3964 btrfs_release_disk_super(super);
3965
3966 latest = super;
3967 transid = btrfs_super_generation(super);
3968 }
3969 }
3970
3971 return super;
3972 }
3973
3974 /*
3975 * Write superblock @sb to the @device. Do not wait for completion, all the
3976 * pages we use for writing are locked.
3977 *
3978 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3979 * the expected device size at commit time. Note that max_mirrors must be
3980 * same for write and wait phases.
3981 *
3982 * Return number of errors when page is not found or submission fails.
3983 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3984 static int write_dev_supers(struct btrfs_device *device,
3985 struct btrfs_super_block *sb, int max_mirrors)
3986 {
3987 struct btrfs_fs_info *fs_info = device->fs_info;
3988 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3989 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3990 int i;
3991 int errors = 0;
3992 int ret;
3993 u64 bytenr, bytenr_orig;
3994
3995 if (max_mirrors == 0)
3996 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3997
3998 shash->tfm = fs_info->csum_shash;
3999
4000 for (i = 0; i < max_mirrors; i++) {
4001 struct page *page;
4002 struct bio *bio;
4003 struct btrfs_super_block *disk_super;
4004
4005 bytenr_orig = btrfs_sb_offset(i);
4006 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4007 if (ret == -ENOENT) {
4008 continue;
4009 } else if (ret < 0) {
4010 btrfs_err(device->fs_info,
4011 "couldn't get super block location for mirror %d",
4012 i);
4013 errors++;
4014 continue;
4015 }
4016 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4017 device->commit_total_bytes)
4018 break;
4019
4020 btrfs_set_super_bytenr(sb, bytenr_orig);
4021
4022 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4023 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4024 sb->csum);
4025
4026 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4027 GFP_NOFS);
4028 if (!page) {
4029 btrfs_err(device->fs_info,
4030 "couldn't get super block page for bytenr %llu",
4031 bytenr);
4032 errors++;
4033 continue;
4034 }
4035
4036 /* Bump the refcount for wait_dev_supers() */
4037 get_page(page);
4038
4039 disk_super = page_address(page);
4040 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4041
4042 /*
4043 * Directly use bios here instead of relying on the page cache
4044 * to do I/O, so we don't lose the ability to do integrity
4045 * checking.
4046 */
4047 bio = bio_alloc(device->bdev, 1,
4048 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4049 GFP_NOFS);
4050 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4051 bio->bi_private = device;
4052 bio->bi_end_io = btrfs_end_super_write;
4053 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4054 offset_in_page(bytenr));
4055
4056 /*
4057 * We FUA only the first super block. The others we allow to
4058 * go down lazy and there's a short window where the on-disk
4059 * copies might still contain the older version.
4060 */
4061 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4062 bio->bi_opf |= REQ_FUA;
4063
4064 btrfsic_check_bio(bio);
4065 submit_bio(bio);
4066
4067 if (btrfs_advance_sb_log(device, i))
4068 errors++;
4069 }
4070 return errors < i ? 0 : -1;
4071 }
4072
4073 /*
4074 * Wait for write completion of superblocks done by write_dev_supers,
4075 * @max_mirrors same for write and wait phases.
4076 *
4077 * Return number of errors when page is not found or not marked up to
4078 * date.
4079 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)4080 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4081 {
4082 int i;
4083 int errors = 0;
4084 bool primary_failed = false;
4085 int ret;
4086 u64 bytenr;
4087
4088 if (max_mirrors == 0)
4089 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4090
4091 for (i = 0; i < max_mirrors; i++) {
4092 struct page *page;
4093
4094 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4095 if (ret == -ENOENT) {
4096 break;
4097 } else if (ret < 0) {
4098 errors++;
4099 if (i == 0)
4100 primary_failed = true;
4101 continue;
4102 }
4103 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4104 device->commit_total_bytes)
4105 break;
4106
4107 page = find_get_page(device->bdev->bd_inode->i_mapping,
4108 bytenr >> PAGE_SHIFT);
4109 if (!page) {
4110 errors++;
4111 if (i == 0)
4112 primary_failed = true;
4113 continue;
4114 }
4115 /* Page is submitted locked and unlocked once the IO completes */
4116 wait_on_page_locked(page);
4117 if (PageError(page)) {
4118 errors++;
4119 if (i == 0)
4120 primary_failed = true;
4121 }
4122
4123 /* Drop our reference */
4124 put_page(page);
4125
4126 /* Drop the reference from the writing run */
4127 put_page(page);
4128 }
4129
4130 /* log error, force error return */
4131 if (primary_failed) {
4132 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4133 device->devid);
4134 return -1;
4135 }
4136
4137 return errors < i ? 0 : -1;
4138 }
4139
4140 /*
4141 * endio for the write_dev_flush, this will wake anyone waiting
4142 * for the barrier when it is done
4143 */
btrfs_end_empty_barrier(struct bio * bio)4144 static void btrfs_end_empty_barrier(struct bio *bio)
4145 {
4146 bio_uninit(bio);
4147 complete(bio->bi_private);
4148 }
4149
4150 /*
4151 * Submit a flush request to the device if it supports it. Error handling is
4152 * done in the waiting counterpart.
4153 */
write_dev_flush(struct btrfs_device * device)4154 static void write_dev_flush(struct btrfs_device *device)
4155 {
4156 struct bio *bio = &device->flush_bio;
4157
4158 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4159 /*
4160 * When a disk has write caching disabled, we skip submission of a bio
4161 * with flush and sync requests before writing the superblock, since
4162 * it's not needed. However when the integrity checker is enabled, this
4163 * results in reports that there are metadata blocks referred by a
4164 * superblock that were not properly flushed. So don't skip the bio
4165 * submission only when the integrity checker is enabled for the sake
4166 * of simplicity, since this is a debug tool and not meant for use in
4167 * non-debug builds.
4168 */
4169 if (!bdev_write_cache(device->bdev))
4170 return;
4171 #endif
4172
4173 bio_init(bio, device->bdev, NULL, 0,
4174 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4175 bio->bi_end_io = btrfs_end_empty_barrier;
4176 init_completion(&device->flush_wait);
4177 bio->bi_private = &device->flush_wait;
4178
4179 btrfsic_check_bio(bio);
4180 submit_bio(bio);
4181 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4182 }
4183
4184 /*
4185 * If the flush bio has been submitted by write_dev_flush, wait for it.
4186 */
wait_dev_flush(struct btrfs_device * device)4187 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4188 {
4189 struct bio *bio = &device->flush_bio;
4190
4191 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4192 return BLK_STS_OK;
4193
4194 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4195 wait_for_completion_io(&device->flush_wait);
4196
4197 return bio->bi_status;
4198 }
4199
check_barrier_error(struct btrfs_fs_info * fs_info)4200 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4201 {
4202 if (!btrfs_check_rw_degradable(fs_info, NULL))
4203 return -EIO;
4204 return 0;
4205 }
4206
4207 /*
4208 * send an empty flush down to each device in parallel,
4209 * then wait for them
4210 */
barrier_all_devices(struct btrfs_fs_info * info)4211 static int barrier_all_devices(struct btrfs_fs_info *info)
4212 {
4213 struct list_head *head;
4214 struct btrfs_device *dev;
4215 int errors_wait = 0;
4216 blk_status_t ret;
4217
4218 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4219 /* send down all the barriers */
4220 head = &info->fs_devices->devices;
4221 list_for_each_entry(dev, head, dev_list) {
4222 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4223 continue;
4224 if (!dev->bdev)
4225 continue;
4226 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4227 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4228 continue;
4229
4230 write_dev_flush(dev);
4231 dev->last_flush_error = BLK_STS_OK;
4232 }
4233
4234 /* wait for all the barriers */
4235 list_for_each_entry(dev, head, dev_list) {
4236 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4237 continue;
4238 if (!dev->bdev) {
4239 errors_wait++;
4240 continue;
4241 }
4242 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4243 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4244 continue;
4245
4246 ret = wait_dev_flush(dev);
4247 if (ret) {
4248 dev->last_flush_error = ret;
4249 btrfs_dev_stat_inc_and_print(dev,
4250 BTRFS_DEV_STAT_FLUSH_ERRS);
4251 errors_wait++;
4252 }
4253 }
4254
4255 if (errors_wait) {
4256 /*
4257 * At some point we need the status of all disks
4258 * to arrive at the volume status. So error checking
4259 * is being pushed to a separate loop.
4260 */
4261 return check_barrier_error(info);
4262 }
4263 return 0;
4264 }
4265
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4266 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4267 {
4268 int raid_type;
4269 int min_tolerated = INT_MAX;
4270
4271 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4272 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4273 min_tolerated = min_t(int, min_tolerated,
4274 btrfs_raid_array[BTRFS_RAID_SINGLE].
4275 tolerated_failures);
4276
4277 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4278 if (raid_type == BTRFS_RAID_SINGLE)
4279 continue;
4280 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4281 continue;
4282 min_tolerated = min_t(int, min_tolerated,
4283 btrfs_raid_array[raid_type].
4284 tolerated_failures);
4285 }
4286
4287 if (min_tolerated == INT_MAX) {
4288 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4289 min_tolerated = 0;
4290 }
4291
4292 return min_tolerated;
4293 }
4294
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4295 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4296 {
4297 struct list_head *head;
4298 struct btrfs_device *dev;
4299 struct btrfs_super_block *sb;
4300 struct btrfs_dev_item *dev_item;
4301 int ret;
4302 int do_barriers;
4303 int max_errors;
4304 int total_errors = 0;
4305 u64 flags;
4306
4307 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4308
4309 /*
4310 * max_mirrors == 0 indicates we're from commit_transaction,
4311 * not from fsync where the tree roots in fs_info have not
4312 * been consistent on disk.
4313 */
4314 if (max_mirrors == 0)
4315 backup_super_roots(fs_info);
4316
4317 sb = fs_info->super_for_commit;
4318 dev_item = &sb->dev_item;
4319
4320 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4321 head = &fs_info->fs_devices->devices;
4322 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4323
4324 if (do_barriers) {
4325 ret = barrier_all_devices(fs_info);
4326 if (ret) {
4327 mutex_unlock(
4328 &fs_info->fs_devices->device_list_mutex);
4329 btrfs_handle_fs_error(fs_info, ret,
4330 "errors while submitting device barriers.");
4331 return ret;
4332 }
4333 }
4334
4335 list_for_each_entry(dev, head, dev_list) {
4336 if (!dev->bdev) {
4337 total_errors++;
4338 continue;
4339 }
4340 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4341 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4342 continue;
4343
4344 btrfs_set_stack_device_generation(dev_item, 0);
4345 btrfs_set_stack_device_type(dev_item, dev->type);
4346 btrfs_set_stack_device_id(dev_item, dev->devid);
4347 btrfs_set_stack_device_total_bytes(dev_item,
4348 dev->commit_total_bytes);
4349 btrfs_set_stack_device_bytes_used(dev_item,
4350 dev->commit_bytes_used);
4351 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4352 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4353 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4354 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4355 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4356 BTRFS_FSID_SIZE);
4357
4358 flags = btrfs_super_flags(sb);
4359 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4360
4361 ret = btrfs_validate_write_super(fs_info, sb);
4362 if (ret < 0) {
4363 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4364 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4365 "unexpected superblock corruption detected");
4366 return -EUCLEAN;
4367 }
4368
4369 ret = write_dev_supers(dev, sb, max_mirrors);
4370 if (ret)
4371 total_errors++;
4372 }
4373 if (total_errors > max_errors) {
4374 btrfs_err(fs_info, "%d errors while writing supers",
4375 total_errors);
4376 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4377
4378 /* FUA is masked off if unsupported and can't be the reason */
4379 btrfs_handle_fs_error(fs_info, -EIO,
4380 "%d errors while writing supers",
4381 total_errors);
4382 return -EIO;
4383 }
4384
4385 total_errors = 0;
4386 list_for_each_entry(dev, head, dev_list) {
4387 if (!dev->bdev)
4388 continue;
4389 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4390 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4391 continue;
4392
4393 ret = wait_dev_supers(dev, max_mirrors);
4394 if (ret)
4395 total_errors++;
4396 }
4397 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4398 if (total_errors > max_errors) {
4399 btrfs_handle_fs_error(fs_info, -EIO,
4400 "%d errors while writing supers",
4401 total_errors);
4402 return -EIO;
4403 }
4404 return 0;
4405 }
4406
4407 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4408 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4409 struct btrfs_root *root)
4410 {
4411 bool drop_ref = false;
4412
4413 spin_lock(&fs_info->fs_roots_radix_lock);
4414 radix_tree_delete(&fs_info->fs_roots_radix,
4415 (unsigned long)root->root_key.objectid);
4416 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4417 drop_ref = true;
4418 spin_unlock(&fs_info->fs_roots_radix_lock);
4419
4420 if (BTRFS_FS_ERROR(fs_info)) {
4421 ASSERT(root->log_root == NULL);
4422 if (root->reloc_root) {
4423 btrfs_put_root(root->reloc_root);
4424 root->reloc_root = NULL;
4425 }
4426 }
4427
4428 if (drop_ref)
4429 btrfs_put_root(root);
4430 }
4431
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4432 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4433 {
4434 u64 root_objectid = 0;
4435 struct btrfs_root *gang[8];
4436 int i = 0;
4437 int err = 0;
4438 unsigned int ret = 0;
4439
4440 while (1) {
4441 spin_lock(&fs_info->fs_roots_radix_lock);
4442 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4443 (void **)gang, root_objectid,
4444 ARRAY_SIZE(gang));
4445 if (!ret) {
4446 spin_unlock(&fs_info->fs_roots_radix_lock);
4447 break;
4448 }
4449 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4450
4451 for (i = 0; i < ret; i++) {
4452 /* Avoid to grab roots in dead_roots */
4453 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4454 gang[i] = NULL;
4455 continue;
4456 }
4457 /* grab all the search result for later use */
4458 gang[i] = btrfs_grab_root(gang[i]);
4459 }
4460 spin_unlock(&fs_info->fs_roots_radix_lock);
4461
4462 for (i = 0; i < ret; i++) {
4463 if (!gang[i])
4464 continue;
4465 root_objectid = gang[i]->root_key.objectid;
4466 err = btrfs_orphan_cleanup(gang[i]);
4467 if (err)
4468 break;
4469 btrfs_put_root(gang[i]);
4470 }
4471 root_objectid++;
4472 }
4473
4474 /* release the uncleaned roots due to error */
4475 for (; i < ret; i++) {
4476 if (gang[i])
4477 btrfs_put_root(gang[i]);
4478 }
4479 return err;
4480 }
4481
btrfs_commit_super(struct btrfs_fs_info * fs_info)4482 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4483 {
4484 struct btrfs_root *root = fs_info->tree_root;
4485 struct btrfs_trans_handle *trans;
4486
4487 mutex_lock(&fs_info->cleaner_mutex);
4488 btrfs_run_delayed_iputs(fs_info);
4489 mutex_unlock(&fs_info->cleaner_mutex);
4490 wake_up_process(fs_info->cleaner_kthread);
4491
4492 /* wait until ongoing cleanup work done */
4493 down_write(&fs_info->cleanup_work_sem);
4494 up_write(&fs_info->cleanup_work_sem);
4495
4496 trans = btrfs_join_transaction(root);
4497 if (IS_ERR(trans))
4498 return PTR_ERR(trans);
4499 return btrfs_commit_transaction(trans);
4500 }
4501
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4502 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4503 {
4504 struct btrfs_transaction *trans;
4505 struct btrfs_transaction *tmp;
4506 bool found = false;
4507
4508 if (list_empty(&fs_info->trans_list))
4509 return;
4510
4511 /*
4512 * This function is only called at the very end of close_ctree(),
4513 * thus no other running transaction, no need to take trans_lock.
4514 */
4515 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4516 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4517 struct extent_state *cached = NULL;
4518 u64 dirty_bytes = 0;
4519 u64 cur = 0;
4520 u64 found_start;
4521 u64 found_end;
4522
4523 found = true;
4524 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4525 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4526 dirty_bytes += found_end + 1 - found_start;
4527 cur = found_end + 1;
4528 }
4529 btrfs_warn(fs_info,
4530 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4531 trans->transid, dirty_bytes);
4532 btrfs_cleanup_one_transaction(trans, fs_info);
4533
4534 if (trans == fs_info->running_transaction)
4535 fs_info->running_transaction = NULL;
4536 list_del_init(&trans->list);
4537
4538 btrfs_put_transaction(trans);
4539 trace_btrfs_transaction_commit(fs_info);
4540 }
4541 ASSERT(!found);
4542 }
4543
close_ctree(struct btrfs_fs_info * fs_info)4544 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4545 {
4546 int ret;
4547
4548 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4549
4550 /*
4551 * If we had UNFINISHED_DROPS we could still be processing them, so
4552 * clear that bit and wake up relocation so it can stop.
4553 * We must do this before stopping the block group reclaim task, because
4554 * at btrfs_relocate_block_group() we wait for this bit, and after the
4555 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4556 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4557 * return 1.
4558 */
4559 btrfs_wake_unfinished_drop(fs_info);
4560
4561 /*
4562 * We may have the reclaim task running and relocating a data block group,
4563 * in which case it may create delayed iputs. So stop it before we park
4564 * the cleaner kthread otherwise we can get new delayed iputs after
4565 * parking the cleaner, and that can make the async reclaim task to hang
4566 * if it's waiting for delayed iputs to complete, since the cleaner is
4567 * parked and can not run delayed iputs - this will make us hang when
4568 * trying to stop the async reclaim task.
4569 */
4570 cancel_work_sync(&fs_info->reclaim_bgs_work);
4571 /*
4572 * We don't want the cleaner to start new transactions, add more delayed
4573 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4574 * because that frees the task_struct, and the transaction kthread might
4575 * still try to wake up the cleaner.
4576 */
4577 kthread_park(fs_info->cleaner_kthread);
4578
4579 /* wait for the qgroup rescan worker to stop */
4580 btrfs_qgroup_wait_for_completion(fs_info, false);
4581
4582 /* wait for the uuid_scan task to finish */
4583 down(&fs_info->uuid_tree_rescan_sem);
4584 /* avoid complains from lockdep et al., set sem back to initial state */
4585 up(&fs_info->uuid_tree_rescan_sem);
4586
4587 /* pause restriper - we want to resume on mount */
4588 btrfs_pause_balance(fs_info);
4589
4590 btrfs_dev_replace_suspend_for_unmount(fs_info);
4591
4592 btrfs_scrub_cancel(fs_info);
4593
4594 /* wait for any defraggers to finish */
4595 wait_event(fs_info->transaction_wait,
4596 (atomic_read(&fs_info->defrag_running) == 0));
4597
4598 /* clear out the rbtree of defraggable inodes */
4599 btrfs_cleanup_defrag_inodes(fs_info);
4600
4601 /*
4602 * After we parked the cleaner kthread, ordered extents may have
4603 * completed and created new delayed iputs. If one of the async reclaim
4604 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4605 * can hang forever trying to stop it, because if a delayed iput is
4606 * added after it ran btrfs_run_delayed_iputs() and before it called
4607 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4608 * no one else to run iputs.
4609 *
4610 * So wait for all ongoing ordered extents to complete and then run
4611 * delayed iputs. This works because once we reach this point no one
4612 * can either create new ordered extents nor create delayed iputs
4613 * through some other means.
4614 *
4615 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4616 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4617 * but the delayed iput for the respective inode is made only when doing
4618 * the final btrfs_put_ordered_extent() (which must happen at
4619 * btrfs_finish_ordered_io() when we are unmounting).
4620 */
4621 btrfs_flush_workqueue(fs_info->endio_write_workers);
4622 /* Ordered extents for free space inodes. */
4623 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4624 btrfs_run_delayed_iputs(fs_info);
4625
4626 cancel_work_sync(&fs_info->async_reclaim_work);
4627 cancel_work_sync(&fs_info->async_data_reclaim_work);
4628 cancel_work_sync(&fs_info->preempt_reclaim_work);
4629
4630 /* Cancel or finish ongoing discard work */
4631 btrfs_discard_cleanup(fs_info);
4632
4633 if (!sb_rdonly(fs_info->sb)) {
4634 /*
4635 * The cleaner kthread is stopped, so do one final pass over
4636 * unused block groups.
4637 */
4638 btrfs_delete_unused_bgs(fs_info);
4639
4640 /*
4641 * There might be existing delayed inode workers still running
4642 * and holding an empty delayed inode item. We must wait for
4643 * them to complete first because they can create a transaction.
4644 * This happens when someone calls btrfs_balance_delayed_items()
4645 * and then a transaction commit runs the same delayed nodes
4646 * before any delayed worker has done something with the nodes.
4647 * We must wait for any worker here and not at transaction
4648 * commit time since that could cause a deadlock.
4649 * This is a very rare case.
4650 */
4651 btrfs_flush_workqueue(fs_info->delayed_workers);
4652
4653 ret = btrfs_commit_super(fs_info);
4654 if (ret)
4655 btrfs_err(fs_info, "commit super ret %d", ret);
4656 }
4657
4658 if (BTRFS_FS_ERROR(fs_info))
4659 btrfs_error_commit_super(fs_info);
4660
4661 kthread_stop(fs_info->transaction_kthread);
4662 kthread_stop(fs_info->cleaner_kthread);
4663
4664 ASSERT(list_empty(&fs_info->delayed_iputs));
4665 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4666
4667 if (btrfs_check_quota_leak(fs_info)) {
4668 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4669 btrfs_err(fs_info, "qgroup reserved space leaked");
4670 }
4671
4672 btrfs_free_qgroup_config(fs_info);
4673 ASSERT(list_empty(&fs_info->delalloc_roots));
4674
4675 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4676 btrfs_info(fs_info, "at unmount delalloc count %lld",
4677 percpu_counter_sum(&fs_info->delalloc_bytes));
4678 }
4679
4680 if (percpu_counter_sum(&fs_info->ordered_bytes))
4681 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4682 percpu_counter_sum(&fs_info->ordered_bytes));
4683
4684 btrfs_sysfs_remove_mounted(fs_info);
4685 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4686
4687 btrfs_put_block_group_cache(fs_info);
4688
4689 /*
4690 * we must make sure there is not any read request to
4691 * submit after we stopping all workers.
4692 */
4693 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4694 btrfs_stop_all_workers(fs_info);
4695
4696 /* We shouldn't have any transaction open at this point */
4697 warn_about_uncommitted_trans(fs_info);
4698
4699 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4700 free_root_pointers(fs_info, true);
4701 btrfs_free_fs_roots(fs_info);
4702
4703 /*
4704 * We must free the block groups after dropping the fs_roots as we could
4705 * have had an IO error and have left over tree log blocks that aren't
4706 * cleaned up until the fs roots are freed. This makes the block group
4707 * accounting appear to be wrong because there's pending reserved bytes,
4708 * so make sure we do the block group cleanup afterwards.
4709 */
4710 btrfs_free_block_groups(fs_info);
4711
4712 iput(fs_info->btree_inode);
4713
4714 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4715 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4716 btrfsic_unmount(fs_info->fs_devices);
4717 #endif
4718
4719 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4720 btrfs_close_devices(fs_info->fs_devices);
4721 }
4722
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4723 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4724 int atomic)
4725 {
4726 int ret;
4727 struct inode *btree_inode = buf->pages[0]->mapping->host;
4728
4729 ret = extent_buffer_uptodate(buf);
4730 if (!ret)
4731 return ret;
4732
4733 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4734 parent_transid, atomic);
4735 if (ret == -EAGAIN)
4736 return ret;
4737 return !ret;
4738 }
4739
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4741 {
4742 struct btrfs_fs_info *fs_info = buf->fs_info;
4743 u64 transid = btrfs_header_generation(buf);
4744 int was_dirty;
4745
4746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4747 /*
4748 * This is a fast path so only do this check if we have sanity tests
4749 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4750 * outside of the sanity tests.
4751 */
4752 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4753 return;
4754 #endif
4755 btrfs_assert_tree_write_locked(buf);
4756 if (transid != fs_info->generation)
4757 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4758 buf->start, transid, fs_info->generation);
4759 was_dirty = set_extent_buffer_dirty(buf);
4760 if (!was_dirty)
4761 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4762 buf->len,
4763 fs_info->dirty_metadata_batch);
4764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4765 /*
4766 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4767 * but item data not updated.
4768 * So here we should only check item pointers, not item data.
4769 */
4770 if (btrfs_header_level(buf) == 0 &&
4771 btrfs_check_leaf_relaxed(buf)) {
4772 btrfs_print_leaf(buf);
4773 ASSERT(0);
4774 }
4775 #endif
4776 }
4777
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4778 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4779 int flush_delayed)
4780 {
4781 /*
4782 * looks as though older kernels can get into trouble with
4783 * this code, they end up stuck in balance_dirty_pages forever
4784 */
4785 int ret;
4786
4787 if (current->flags & PF_MEMALLOC)
4788 return;
4789
4790 if (flush_delayed)
4791 btrfs_balance_delayed_items(fs_info);
4792
4793 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4794 BTRFS_DIRTY_METADATA_THRESH,
4795 fs_info->dirty_metadata_batch);
4796 if (ret > 0) {
4797 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4798 }
4799 }
4800
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4801 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4802 {
4803 __btrfs_btree_balance_dirty(fs_info, 1);
4804 }
4805
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4806 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4807 {
4808 __btrfs_btree_balance_dirty(fs_info, 0);
4809 }
4810
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4811 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4812 {
4813 /* cleanup FS via transaction */
4814 btrfs_cleanup_transaction(fs_info);
4815
4816 mutex_lock(&fs_info->cleaner_mutex);
4817 btrfs_run_delayed_iputs(fs_info);
4818 mutex_unlock(&fs_info->cleaner_mutex);
4819
4820 down_write(&fs_info->cleanup_work_sem);
4821 up_write(&fs_info->cleanup_work_sem);
4822 }
4823
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4824 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4825 {
4826 struct btrfs_root *gang[8];
4827 u64 root_objectid = 0;
4828 int ret;
4829
4830 spin_lock(&fs_info->fs_roots_radix_lock);
4831 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4832 (void **)gang, root_objectid,
4833 ARRAY_SIZE(gang))) != 0) {
4834 int i;
4835
4836 for (i = 0; i < ret; i++)
4837 gang[i] = btrfs_grab_root(gang[i]);
4838 spin_unlock(&fs_info->fs_roots_radix_lock);
4839
4840 for (i = 0; i < ret; i++) {
4841 if (!gang[i])
4842 continue;
4843 root_objectid = gang[i]->root_key.objectid;
4844 btrfs_free_log(NULL, gang[i]);
4845 btrfs_put_root(gang[i]);
4846 }
4847 root_objectid++;
4848 spin_lock(&fs_info->fs_roots_radix_lock);
4849 }
4850 spin_unlock(&fs_info->fs_roots_radix_lock);
4851 btrfs_free_log_root_tree(NULL, fs_info);
4852 }
4853
btrfs_destroy_ordered_extents(struct btrfs_root * root)4854 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4855 {
4856 struct btrfs_ordered_extent *ordered;
4857
4858 spin_lock(&root->ordered_extent_lock);
4859 /*
4860 * This will just short circuit the ordered completion stuff which will
4861 * make sure the ordered extent gets properly cleaned up.
4862 */
4863 list_for_each_entry(ordered, &root->ordered_extents,
4864 root_extent_list)
4865 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4866 spin_unlock(&root->ordered_extent_lock);
4867 }
4868
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4869 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4870 {
4871 struct btrfs_root *root;
4872 struct list_head splice;
4873
4874 INIT_LIST_HEAD(&splice);
4875
4876 spin_lock(&fs_info->ordered_root_lock);
4877 list_splice_init(&fs_info->ordered_roots, &splice);
4878 while (!list_empty(&splice)) {
4879 root = list_first_entry(&splice, struct btrfs_root,
4880 ordered_root);
4881 list_move_tail(&root->ordered_root,
4882 &fs_info->ordered_roots);
4883
4884 spin_unlock(&fs_info->ordered_root_lock);
4885 btrfs_destroy_ordered_extents(root);
4886
4887 cond_resched();
4888 spin_lock(&fs_info->ordered_root_lock);
4889 }
4890 spin_unlock(&fs_info->ordered_root_lock);
4891
4892 /*
4893 * We need this here because if we've been flipped read-only we won't
4894 * get sync() from the umount, so we need to make sure any ordered
4895 * extents that haven't had their dirty pages IO start writeout yet
4896 * actually get run and error out properly.
4897 */
4898 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4899 }
4900
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4901 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4902 struct btrfs_fs_info *fs_info)
4903 {
4904 struct rb_node *node;
4905 struct btrfs_delayed_ref_root *delayed_refs;
4906 struct btrfs_delayed_ref_node *ref;
4907 int ret = 0;
4908
4909 delayed_refs = &trans->delayed_refs;
4910
4911 spin_lock(&delayed_refs->lock);
4912 if (atomic_read(&delayed_refs->num_entries) == 0) {
4913 spin_unlock(&delayed_refs->lock);
4914 btrfs_debug(fs_info, "delayed_refs has NO entry");
4915 return ret;
4916 }
4917
4918 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4919 struct btrfs_delayed_ref_head *head;
4920 struct rb_node *n;
4921 bool pin_bytes = false;
4922
4923 head = rb_entry(node, struct btrfs_delayed_ref_head,
4924 href_node);
4925 if (btrfs_delayed_ref_lock(delayed_refs, head))
4926 continue;
4927
4928 spin_lock(&head->lock);
4929 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4930 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4931 ref_node);
4932 ref->in_tree = 0;
4933 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4934 RB_CLEAR_NODE(&ref->ref_node);
4935 if (!list_empty(&ref->add_list))
4936 list_del(&ref->add_list);
4937 atomic_dec(&delayed_refs->num_entries);
4938 btrfs_put_delayed_ref(ref);
4939 }
4940 if (head->must_insert_reserved)
4941 pin_bytes = true;
4942 btrfs_free_delayed_extent_op(head->extent_op);
4943 btrfs_delete_ref_head(delayed_refs, head);
4944 spin_unlock(&head->lock);
4945 spin_unlock(&delayed_refs->lock);
4946 mutex_unlock(&head->mutex);
4947
4948 if (pin_bytes) {
4949 struct btrfs_block_group *cache;
4950
4951 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4952 BUG_ON(!cache);
4953
4954 spin_lock(&cache->space_info->lock);
4955 spin_lock(&cache->lock);
4956 cache->pinned += head->num_bytes;
4957 btrfs_space_info_update_bytes_pinned(fs_info,
4958 cache->space_info, head->num_bytes);
4959 cache->reserved -= head->num_bytes;
4960 cache->space_info->bytes_reserved -= head->num_bytes;
4961 spin_unlock(&cache->lock);
4962 spin_unlock(&cache->space_info->lock);
4963
4964 btrfs_put_block_group(cache);
4965
4966 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4967 head->bytenr + head->num_bytes - 1);
4968 }
4969 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4970 btrfs_put_delayed_ref_head(head);
4971 cond_resched();
4972 spin_lock(&delayed_refs->lock);
4973 }
4974 btrfs_qgroup_destroy_extent_records(trans);
4975
4976 spin_unlock(&delayed_refs->lock);
4977
4978 return ret;
4979 }
4980
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4981 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4982 {
4983 struct btrfs_inode *btrfs_inode;
4984 struct list_head splice;
4985
4986 INIT_LIST_HEAD(&splice);
4987
4988 spin_lock(&root->delalloc_lock);
4989 list_splice_init(&root->delalloc_inodes, &splice);
4990
4991 while (!list_empty(&splice)) {
4992 struct inode *inode = NULL;
4993 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4994 delalloc_inodes);
4995 __btrfs_del_delalloc_inode(root, btrfs_inode);
4996 spin_unlock(&root->delalloc_lock);
4997
4998 /*
4999 * Make sure we get a live inode and that it'll not disappear
5000 * meanwhile.
5001 */
5002 inode = igrab(&btrfs_inode->vfs_inode);
5003 if (inode) {
5004 invalidate_inode_pages2(inode->i_mapping);
5005 iput(inode);
5006 }
5007 spin_lock(&root->delalloc_lock);
5008 }
5009 spin_unlock(&root->delalloc_lock);
5010 }
5011
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)5012 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5013 {
5014 struct btrfs_root *root;
5015 struct list_head splice;
5016
5017 INIT_LIST_HEAD(&splice);
5018
5019 spin_lock(&fs_info->delalloc_root_lock);
5020 list_splice_init(&fs_info->delalloc_roots, &splice);
5021 while (!list_empty(&splice)) {
5022 root = list_first_entry(&splice, struct btrfs_root,
5023 delalloc_root);
5024 root = btrfs_grab_root(root);
5025 BUG_ON(!root);
5026 spin_unlock(&fs_info->delalloc_root_lock);
5027
5028 btrfs_destroy_delalloc_inodes(root);
5029 btrfs_put_root(root);
5030
5031 spin_lock(&fs_info->delalloc_root_lock);
5032 }
5033 spin_unlock(&fs_info->delalloc_root_lock);
5034 }
5035
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)5036 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5037 struct extent_io_tree *dirty_pages,
5038 int mark)
5039 {
5040 int ret;
5041 struct extent_buffer *eb;
5042 u64 start = 0;
5043 u64 end;
5044
5045 while (1) {
5046 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5047 mark, NULL);
5048 if (ret)
5049 break;
5050
5051 clear_extent_bits(dirty_pages, start, end, mark);
5052 while (start <= end) {
5053 eb = find_extent_buffer(fs_info, start);
5054 start += fs_info->nodesize;
5055 if (!eb)
5056 continue;
5057 wait_on_extent_buffer_writeback(eb);
5058
5059 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5060 &eb->bflags))
5061 clear_extent_buffer_dirty(eb);
5062 free_extent_buffer_stale(eb);
5063 }
5064 }
5065
5066 return ret;
5067 }
5068
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)5069 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5070 struct extent_io_tree *unpin)
5071 {
5072 u64 start;
5073 u64 end;
5074 int ret;
5075
5076 while (1) {
5077 struct extent_state *cached_state = NULL;
5078
5079 /*
5080 * The btrfs_finish_extent_commit() may get the same range as
5081 * ours between find_first_extent_bit and clear_extent_dirty.
5082 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5083 * the same extent range.
5084 */
5085 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5086 ret = find_first_extent_bit(unpin, 0, &start, &end,
5087 EXTENT_DIRTY, &cached_state);
5088 if (ret) {
5089 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5090 break;
5091 }
5092
5093 clear_extent_dirty(unpin, start, end, &cached_state);
5094 free_extent_state(cached_state);
5095 btrfs_error_unpin_extent_range(fs_info, start, end);
5096 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5097 cond_resched();
5098 }
5099
5100 return 0;
5101 }
5102
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)5103 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5104 {
5105 struct inode *inode;
5106
5107 inode = cache->io_ctl.inode;
5108 if (inode) {
5109 invalidate_inode_pages2(inode->i_mapping);
5110 BTRFS_I(inode)->generation = 0;
5111 cache->io_ctl.inode = NULL;
5112 iput(inode);
5113 }
5114 ASSERT(cache->io_ctl.pages == NULL);
5115 btrfs_put_block_group(cache);
5116 }
5117
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5118 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5119 struct btrfs_fs_info *fs_info)
5120 {
5121 struct btrfs_block_group *cache;
5122
5123 spin_lock(&cur_trans->dirty_bgs_lock);
5124 while (!list_empty(&cur_trans->dirty_bgs)) {
5125 cache = list_first_entry(&cur_trans->dirty_bgs,
5126 struct btrfs_block_group,
5127 dirty_list);
5128
5129 if (!list_empty(&cache->io_list)) {
5130 spin_unlock(&cur_trans->dirty_bgs_lock);
5131 list_del_init(&cache->io_list);
5132 btrfs_cleanup_bg_io(cache);
5133 spin_lock(&cur_trans->dirty_bgs_lock);
5134 }
5135
5136 list_del_init(&cache->dirty_list);
5137 spin_lock(&cache->lock);
5138 cache->disk_cache_state = BTRFS_DC_ERROR;
5139 spin_unlock(&cache->lock);
5140
5141 spin_unlock(&cur_trans->dirty_bgs_lock);
5142 btrfs_put_block_group(cache);
5143 btrfs_delayed_refs_rsv_release(fs_info, 1);
5144 spin_lock(&cur_trans->dirty_bgs_lock);
5145 }
5146 spin_unlock(&cur_trans->dirty_bgs_lock);
5147
5148 /*
5149 * Refer to the definition of io_bgs member for details why it's safe
5150 * to use it without any locking
5151 */
5152 while (!list_empty(&cur_trans->io_bgs)) {
5153 cache = list_first_entry(&cur_trans->io_bgs,
5154 struct btrfs_block_group,
5155 io_list);
5156
5157 list_del_init(&cache->io_list);
5158 spin_lock(&cache->lock);
5159 cache->disk_cache_state = BTRFS_DC_ERROR;
5160 spin_unlock(&cache->lock);
5161 btrfs_cleanup_bg_io(cache);
5162 }
5163 }
5164
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5165 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5166 struct btrfs_fs_info *fs_info)
5167 {
5168 struct btrfs_device *dev, *tmp;
5169
5170 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5171 ASSERT(list_empty(&cur_trans->dirty_bgs));
5172 ASSERT(list_empty(&cur_trans->io_bgs));
5173
5174 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5175 post_commit_list) {
5176 list_del_init(&dev->post_commit_list);
5177 }
5178
5179 btrfs_destroy_delayed_refs(cur_trans, fs_info);
5180
5181 cur_trans->state = TRANS_STATE_COMMIT_START;
5182 wake_up(&fs_info->transaction_blocked_wait);
5183
5184 cur_trans->state = TRANS_STATE_UNBLOCKED;
5185 wake_up(&fs_info->transaction_wait);
5186
5187 btrfs_destroy_delayed_inodes(fs_info);
5188
5189 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5190 EXTENT_DIRTY);
5191 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5192
5193 btrfs_free_redirty_list(cur_trans);
5194
5195 cur_trans->state =TRANS_STATE_COMPLETED;
5196 wake_up(&cur_trans->commit_wait);
5197 }
5198
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5199 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5200 {
5201 struct btrfs_transaction *t;
5202
5203 mutex_lock(&fs_info->transaction_kthread_mutex);
5204
5205 spin_lock(&fs_info->trans_lock);
5206 while (!list_empty(&fs_info->trans_list)) {
5207 t = list_first_entry(&fs_info->trans_list,
5208 struct btrfs_transaction, list);
5209 if (t->state >= TRANS_STATE_COMMIT_START) {
5210 refcount_inc(&t->use_count);
5211 spin_unlock(&fs_info->trans_lock);
5212 btrfs_wait_for_commit(fs_info, t->transid);
5213 btrfs_put_transaction(t);
5214 spin_lock(&fs_info->trans_lock);
5215 continue;
5216 }
5217 if (t == fs_info->running_transaction) {
5218 t->state = TRANS_STATE_COMMIT_DOING;
5219 spin_unlock(&fs_info->trans_lock);
5220 /*
5221 * We wait for 0 num_writers since we don't hold a trans
5222 * handle open currently for this transaction.
5223 */
5224 wait_event(t->writer_wait,
5225 atomic_read(&t->num_writers) == 0);
5226 } else {
5227 spin_unlock(&fs_info->trans_lock);
5228 }
5229 btrfs_cleanup_one_transaction(t, fs_info);
5230
5231 spin_lock(&fs_info->trans_lock);
5232 if (t == fs_info->running_transaction)
5233 fs_info->running_transaction = NULL;
5234 list_del_init(&t->list);
5235 spin_unlock(&fs_info->trans_lock);
5236
5237 btrfs_put_transaction(t);
5238 trace_btrfs_transaction_commit(fs_info);
5239 spin_lock(&fs_info->trans_lock);
5240 }
5241 spin_unlock(&fs_info->trans_lock);
5242 btrfs_destroy_all_ordered_extents(fs_info);
5243 btrfs_destroy_delayed_inodes(fs_info);
5244 btrfs_assert_delayed_root_empty(fs_info);
5245 btrfs_destroy_all_delalloc_inodes(fs_info);
5246 btrfs_drop_all_logs(fs_info);
5247 mutex_unlock(&fs_info->transaction_kthread_mutex);
5248
5249 return 0;
5250 }
5251
btrfs_init_root_free_objectid(struct btrfs_root * root)5252 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5253 {
5254 struct btrfs_path *path;
5255 int ret;
5256 struct extent_buffer *l;
5257 struct btrfs_key search_key;
5258 struct btrfs_key found_key;
5259 int slot;
5260
5261 path = btrfs_alloc_path();
5262 if (!path)
5263 return -ENOMEM;
5264
5265 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5266 search_key.type = -1;
5267 search_key.offset = (u64)-1;
5268 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5269 if (ret < 0)
5270 goto error;
5271 BUG_ON(ret == 0); /* Corruption */
5272 if (path->slots[0] > 0) {
5273 slot = path->slots[0] - 1;
5274 l = path->nodes[0];
5275 btrfs_item_key_to_cpu(l, &found_key, slot);
5276 root->free_objectid = max_t(u64, found_key.objectid + 1,
5277 BTRFS_FIRST_FREE_OBJECTID);
5278 } else {
5279 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5280 }
5281 ret = 0;
5282 error:
5283 btrfs_free_path(path);
5284 return ret;
5285 }
5286
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5287 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5288 {
5289 int ret;
5290 mutex_lock(&root->objectid_mutex);
5291
5292 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5293 btrfs_warn(root->fs_info,
5294 "the objectid of root %llu reaches its highest value",
5295 root->root_key.objectid);
5296 ret = -ENOSPC;
5297 goto out;
5298 }
5299
5300 *objectid = root->free_objectid++;
5301 ret = 0;
5302 out:
5303 mutex_unlock(&root->objectid_mutex);
5304 return ret;
5305 }
5306