1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48
49 #include "internal.h"
50
51 #define KIOCB_KEY 0
52
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
71
72 /*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76 #define AIO_PLUG_THRESHOLD 2
77
78 #define AIO_RING_PAGES 8
79
80 struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
84 };
85
86 struct kioctx_cpu {
87 unsigned reqs_available;
88 };
89
90 struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93 };
94
95 struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
98
99 struct percpu_ref reqs;
100
101 unsigned long user_id;
102
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
116 */
117 unsigned max_reqs;
118
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
121
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
128 struct rcu_work free_rwork; /* see free_ioctx() */
129
130 /*
131 * signals when all in-flight requests are done
132 */
133 struct ctx_rq_wait *rq_wait;
134
135 struct {
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
141 *
142 * We batch accesses to it with a percpu version.
143 */
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
156
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
162
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
165
166 unsigned id;
167 };
168
169 /*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
173 struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
178 };
179
180 struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool cancelled;
185 bool work_scheduled;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189 };
190
191 /*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197 struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219 };
220
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr; /* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
242 {}
243 };
244
aio_sysctl_init(void)245 static void __init aio_sysctl_init(void)
246 {
247 register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252
253 static struct kmem_cache *kiocb_cachep;
254 static struct kmem_cache *kioctx_cachep;
255
256 static struct vfsmount *aio_mnt;
257
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260
aio_private_file(struct kioctx * ctx,loff_t nr_pages)261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 struct file *file;
264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 if (IS_ERR(inode))
266 return ERR_CAST(inode);
267
268 inode->i_mapping->a_ops = &aio_ctx_aops;
269 inode->i_mapping->private_data = ctx;
270 inode->i_size = PAGE_SIZE * nr_pages;
271
272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 O_RDWR, &aio_ring_fops);
274 if (IS_ERR(file))
275 iput(inode);
276 return file;
277 }
278
aio_init_fs_context(struct fs_context * fc)279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 if (!init_pseudo(fc, AIO_RING_MAGIC))
282 return -ENOMEM;
283 fc->s_iflags |= SB_I_NOEXEC;
284 return 0;
285 }
286
287 /* aio_setup
288 * Creates the slab caches used by the aio routines, panic on
289 * failure as this is done early during the boot sequence.
290 */
aio_setup(void)291 static int __init aio_setup(void)
292 {
293 static struct file_system_type aio_fs = {
294 .name = "aio",
295 .init_fs_context = aio_init_fs_context,
296 .kill_sb = kill_anon_super,
297 };
298 aio_mnt = kern_mount(&aio_fs);
299 if (IS_ERR(aio_mnt))
300 panic("Failed to create aio fs mount.");
301
302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 aio_sysctl_init();
305 return 0;
306 }
307 __initcall(aio_setup);
308
put_aio_ring_file(struct kioctx * ctx)309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 struct file *aio_ring_file = ctx->aio_ring_file;
312 struct address_space *i_mapping;
313
314 if (aio_ring_file) {
315 truncate_setsize(file_inode(aio_ring_file), 0);
316
317 /* Prevent further access to the kioctx from migratepages */
318 i_mapping = aio_ring_file->f_mapping;
319 spin_lock(&i_mapping->private_lock);
320 i_mapping->private_data = NULL;
321 ctx->aio_ring_file = NULL;
322 spin_unlock(&i_mapping->private_lock);
323
324 fput(aio_ring_file);
325 }
326 }
327
aio_free_ring(struct kioctx * ctx)328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 int i;
331
332 /* Disconnect the kiotx from the ring file. This prevents future
333 * accesses to the kioctx from page migration.
334 */
335 put_aio_ring_file(ctx);
336
337 for (i = 0; i < ctx->nr_pages; i++) {
338 struct page *page;
339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 page_count(ctx->ring_pages[i]));
341 page = ctx->ring_pages[i];
342 if (!page)
343 continue;
344 ctx->ring_pages[i] = NULL;
345 put_page(page);
346 }
347
348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 kfree(ctx->ring_pages);
350 ctx->ring_pages = NULL;
351 }
352 }
353
aio_ring_mremap(struct vm_area_struct * vma)354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 struct file *file = vma->vm_file;
357 struct mm_struct *mm = vma->vm_mm;
358 struct kioctx_table *table;
359 int i, res = -EINVAL;
360
361 spin_lock(&mm->ioctx_lock);
362 rcu_read_lock();
363 table = rcu_dereference(mm->ioctx_table);
364 for (i = 0; i < table->nr; i++) {
365 struct kioctx *ctx;
366
367 ctx = rcu_dereference(table->table[i]);
368 if (ctx && ctx->aio_ring_file == file) {
369 if (!atomic_read(&ctx->dead)) {
370 ctx->user_id = ctx->mmap_base = vma->vm_start;
371 res = 0;
372 }
373 break;
374 }
375 }
376
377 rcu_read_unlock();
378 spin_unlock(&mm->ioctx_lock);
379 return res;
380 }
381
382 static const struct vm_operations_struct aio_ring_vm_ops = {
383 .mremap = aio_ring_mremap,
384 #if IS_ENABLED(CONFIG_MMU)
385 .fault = filemap_fault,
386 .map_pages = filemap_map_pages,
387 .page_mkwrite = filemap_page_mkwrite,
388 #endif
389 };
390
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)391 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
392 {
393 vma->vm_flags |= VM_DONTEXPAND;
394 vma->vm_ops = &aio_ring_vm_ops;
395 return 0;
396 }
397
398 static const struct file_operations aio_ring_fops = {
399 .mmap = aio_ring_mmap,
400 };
401
402 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)403 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
404 struct folio *src, enum migrate_mode mode)
405 {
406 struct kioctx *ctx;
407 unsigned long flags;
408 pgoff_t idx;
409 int rc;
410
411 /*
412 * We cannot support the _NO_COPY case here, because copy needs to
413 * happen under the ctx->completion_lock. That does not work with the
414 * migration workflow of MIGRATE_SYNC_NO_COPY.
415 */
416 if (mode == MIGRATE_SYNC_NO_COPY)
417 return -EINVAL;
418
419 rc = 0;
420
421 /* mapping->private_lock here protects against the kioctx teardown. */
422 spin_lock(&mapping->private_lock);
423 ctx = mapping->private_data;
424 if (!ctx) {
425 rc = -EINVAL;
426 goto out;
427 }
428
429 /* The ring_lock mutex. The prevents aio_read_events() from writing
430 * to the ring's head, and prevents page migration from mucking in
431 * a partially initialized kiotx.
432 */
433 if (!mutex_trylock(&ctx->ring_lock)) {
434 rc = -EAGAIN;
435 goto out;
436 }
437
438 idx = src->index;
439 if (idx < (pgoff_t)ctx->nr_pages) {
440 /* Make sure the old folio hasn't already been changed */
441 if (ctx->ring_pages[idx] != &src->page)
442 rc = -EAGAIN;
443 } else
444 rc = -EINVAL;
445
446 if (rc != 0)
447 goto out_unlock;
448
449 /* Writeback must be complete */
450 BUG_ON(folio_test_writeback(src));
451 folio_get(dst);
452
453 rc = folio_migrate_mapping(mapping, dst, src, 1);
454 if (rc != MIGRATEPAGE_SUCCESS) {
455 folio_put(dst);
456 goto out_unlock;
457 }
458
459 /* Take completion_lock to prevent other writes to the ring buffer
460 * while the old folio is copied to the new. This prevents new
461 * events from being lost.
462 */
463 spin_lock_irqsave(&ctx->completion_lock, flags);
464 folio_migrate_copy(dst, src);
465 BUG_ON(ctx->ring_pages[idx] != &src->page);
466 ctx->ring_pages[idx] = &dst->page;
467 spin_unlock_irqrestore(&ctx->completion_lock, flags);
468
469 /* The old folio is no longer accessible. */
470 folio_put(src);
471
472 out_unlock:
473 mutex_unlock(&ctx->ring_lock);
474 out:
475 spin_unlock(&mapping->private_lock);
476 return rc;
477 }
478 #else
479 #define aio_migrate_folio NULL
480 #endif
481
482 static const struct address_space_operations aio_ctx_aops = {
483 .dirty_folio = noop_dirty_folio,
484 .migrate_folio = aio_migrate_folio,
485 };
486
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)487 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
488 {
489 struct aio_ring *ring;
490 struct mm_struct *mm = current->mm;
491 unsigned long size, unused;
492 int nr_pages;
493 int i;
494 struct file *file;
495
496 /* Compensate for the ring buffer's head/tail overlap entry */
497 nr_events += 2; /* 1 is required, 2 for good luck */
498
499 size = sizeof(struct aio_ring);
500 size += sizeof(struct io_event) * nr_events;
501
502 nr_pages = PFN_UP(size);
503 if (nr_pages < 0)
504 return -EINVAL;
505
506 file = aio_private_file(ctx, nr_pages);
507 if (IS_ERR(file)) {
508 ctx->aio_ring_file = NULL;
509 return -ENOMEM;
510 }
511
512 ctx->aio_ring_file = file;
513 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
514 / sizeof(struct io_event);
515
516 ctx->ring_pages = ctx->internal_pages;
517 if (nr_pages > AIO_RING_PAGES) {
518 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
519 GFP_KERNEL);
520 if (!ctx->ring_pages) {
521 put_aio_ring_file(ctx);
522 return -ENOMEM;
523 }
524 }
525
526 for (i = 0; i < nr_pages; i++) {
527 struct page *page;
528 page = find_or_create_page(file->f_mapping,
529 i, GFP_HIGHUSER | __GFP_ZERO);
530 if (!page)
531 break;
532 pr_debug("pid(%d) page[%d]->count=%d\n",
533 current->pid, i, page_count(page));
534 SetPageUptodate(page);
535 unlock_page(page);
536
537 ctx->ring_pages[i] = page;
538 }
539 ctx->nr_pages = i;
540
541 if (unlikely(i != nr_pages)) {
542 aio_free_ring(ctx);
543 return -ENOMEM;
544 }
545
546 ctx->mmap_size = nr_pages * PAGE_SIZE;
547 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
548
549 if (mmap_write_lock_killable(mm)) {
550 ctx->mmap_size = 0;
551 aio_free_ring(ctx);
552 return -EINTR;
553 }
554
555 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
556 PROT_READ | PROT_WRITE,
557 MAP_SHARED, 0, &unused, NULL);
558 mmap_write_unlock(mm);
559 if (IS_ERR((void *)ctx->mmap_base)) {
560 ctx->mmap_size = 0;
561 aio_free_ring(ctx);
562 return -ENOMEM;
563 }
564
565 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
566
567 ctx->user_id = ctx->mmap_base;
568 ctx->nr_events = nr_events; /* trusted copy */
569
570 ring = kmap_atomic(ctx->ring_pages[0]);
571 ring->nr = nr_events; /* user copy */
572 ring->id = ~0U;
573 ring->head = ring->tail = 0;
574 ring->magic = AIO_RING_MAGIC;
575 ring->compat_features = AIO_RING_COMPAT_FEATURES;
576 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
577 ring->header_length = sizeof(struct aio_ring);
578 kunmap_atomic(ring);
579 flush_dcache_page(ctx->ring_pages[0]);
580
581 return 0;
582 }
583
584 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
585 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
586 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
587
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)588 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
589 {
590 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
591 struct kioctx *ctx = req->ki_ctx;
592 unsigned long flags;
593
594 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
595 return;
596
597 spin_lock_irqsave(&ctx->ctx_lock, flags);
598 list_add_tail(&req->ki_list, &ctx->active_reqs);
599 req->ki_cancel = cancel;
600 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
601 }
602 EXPORT_SYMBOL(kiocb_set_cancel_fn);
603
604 /*
605 * free_ioctx() should be RCU delayed to synchronize against the RCU
606 * protected lookup_ioctx() and also needs process context to call
607 * aio_free_ring(). Use rcu_work.
608 */
free_ioctx(struct work_struct * work)609 static void free_ioctx(struct work_struct *work)
610 {
611 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
612 free_rwork);
613 pr_debug("freeing %p\n", ctx);
614
615 aio_free_ring(ctx);
616 free_percpu(ctx->cpu);
617 percpu_ref_exit(&ctx->reqs);
618 percpu_ref_exit(&ctx->users);
619 kmem_cache_free(kioctx_cachep, ctx);
620 }
621
free_ioctx_reqs(struct percpu_ref * ref)622 static void free_ioctx_reqs(struct percpu_ref *ref)
623 {
624 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
625
626 /* At this point we know that there are no any in-flight requests */
627 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
628 complete(&ctx->rq_wait->comp);
629
630 /* Synchronize against RCU protected table->table[] dereferences */
631 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
632 queue_rcu_work(system_wq, &ctx->free_rwork);
633 }
634
635 /*
636 * When this function runs, the kioctx has been removed from the "hash table"
637 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
638 * now it's safe to cancel any that need to be.
639 */
free_ioctx_users(struct percpu_ref * ref)640 static void free_ioctx_users(struct percpu_ref *ref)
641 {
642 struct kioctx *ctx = container_of(ref, struct kioctx, users);
643 struct aio_kiocb *req;
644
645 spin_lock_irq(&ctx->ctx_lock);
646
647 while (!list_empty(&ctx->active_reqs)) {
648 req = list_first_entry(&ctx->active_reqs,
649 struct aio_kiocb, ki_list);
650 req->ki_cancel(&req->rw);
651 list_del_init(&req->ki_list);
652 }
653
654 spin_unlock_irq(&ctx->ctx_lock);
655
656 percpu_ref_kill(&ctx->reqs);
657 percpu_ref_put(&ctx->reqs);
658 }
659
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)660 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
661 {
662 unsigned i, new_nr;
663 struct kioctx_table *table, *old;
664 struct aio_ring *ring;
665
666 spin_lock(&mm->ioctx_lock);
667 table = rcu_dereference_raw(mm->ioctx_table);
668
669 while (1) {
670 if (table)
671 for (i = 0; i < table->nr; i++)
672 if (!rcu_access_pointer(table->table[i])) {
673 ctx->id = i;
674 rcu_assign_pointer(table->table[i], ctx);
675 spin_unlock(&mm->ioctx_lock);
676
677 /* While kioctx setup is in progress,
678 * we are protected from page migration
679 * changes ring_pages by ->ring_lock.
680 */
681 ring = kmap_atomic(ctx->ring_pages[0]);
682 ring->id = ctx->id;
683 kunmap_atomic(ring);
684 return 0;
685 }
686
687 new_nr = (table ? table->nr : 1) * 4;
688 spin_unlock(&mm->ioctx_lock);
689
690 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
691 if (!table)
692 return -ENOMEM;
693
694 table->nr = new_nr;
695
696 spin_lock(&mm->ioctx_lock);
697 old = rcu_dereference_raw(mm->ioctx_table);
698
699 if (!old) {
700 rcu_assign_pointer(mm->ioctx_table, table);
701 } else if (table->nr > old->nr) {
702 memcpy(table->table, old->table,
703 old->nr * sizeof(struct kioctx *));
704
705 rcu_assign_pointer(mm->ioctx_table, table);
706 kfree_rcu(old, rcu);
707 } else {
708 kfree(table);
709 table = old;
710 }
711 }
712 }
713
aio_nr_sub(unsigned nr)714 static void aio_nr_sub(unsigned nr)
715 {
716 spin_lock(&aio_nr_lock);
717 if (WARN_ON(aio_nr - nr > aio_nr))
718 aio_nr = 0;
719 else
720 aio_nr -= nr;
721 spin_unlock(&aio_nr_lock);
722 }
723
724 /* ioctx_alloc
725 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
726 */
ioctx_alloc(unsigned nr_events)727 static struct kioctx *ioctx_alloc(unsigned nr_events)
728 {
729 struct mm_struct *mm = current->mm;
730 struct kioctx *ctx;
731 int err = -ENOMEM;
732
733 /*
734 * Store the original nr_events -- what userspace passed to io_setup(),
735 * for counting against the global limit -- before it changes.
736 */
737 unsigned int max_reqs = nr_events;
738
739 /*
740 * We keep track of the number of available ringbuffer slots, to prevent
741 * overflow (reqs_available), and we also use percpu counters for this.
742 *
743 * So since up to half the slots might be on other cpu's percpu counters
744 * and unavailable, double nr_events so userspace sees what they
745 * expected: additionally, we move req_batch slots to/from percpu
746 * counters at a time, so make sure that isn't 0:
747 */
748 nr_events = max(nr_events, num_possible_cpus() * 4);
749 nr_events *= 2;
750
751 /* Prevent overflows */
752 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
753 pr_debug("ENOMEM: nr_events too high\n");
754 return ERR_PTR(-EINVAL);
755 }
756
757 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
758 return ERR_PTR(-EAGAIN);
759
760 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
761 if (!ctx)
762 return ERR_PTR(-ENOMEM);
763
764 ctx->max_reqs = max_reqs;
765
766 spin_lock_init(&ctx->ctx_lock);
767 spin_lock_init(&ctx->completion_lock);
768 mutex_init(&ctx->ring_lock);
769 /* Protect against page migration throughout kiotx setup by keeping
770 * the ring_lock mutex held until setup is complete. */
771 mutex_lock(&ctx->ring_lock);
772 init_waitqueue_head(&ctx->wait);
773
774 INIT_LIST_HEAD(&ctx->active_reqs);
775
776 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
777 goto err;
778
779 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
780 goto err;
781
782 ctx->cpu = alloc_percpu(struct kioctx_cpu);
783 if (!ctx->cpu)
784 goto err;
785
786 err = aio_setup_ring(ctx, nr_events);
787 if (err < 0)
788 goto err;
789
790 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
791 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
792 if (ctx->req_batch < 1)
793 ctx->req_batch = 1;
794
795 /* limit the number of system wide aios */
796 spin_lock(&aio_nr_lock);
797 if (aio_nr + ctx->max_reqs > aio_max_nr ||
798 aio_nr + ctx->max_reqs < aio_nr) {
799 spin_unlock(&aio_nr_lock);
800 err = -EAGAIN;
801 goto err_ctx;
802 }
803 aio_nr += ctx->max_reqs;
804 spin_unlock(&aio_nr_lock);
805
806 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
807 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
808
809 err = ioctx_add_table(ctx, mm);
810 if (err)
811 goto err_cleanup;
812
813 /* Release the ring_lock mutex now that all setup is complete. */
814 mutex_unlock(&ctx->ring_lock);
815
816 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
817 ctx, ctx->user_id, mm, ctx->nr_events);
818 return ctx;
819
820 err_cleanup:
821 aio_nr_sub(ctx->max_reqs);
822 err_ctx:
823 atomic_set(&ctx->dead, 1);
824 if (ctx->mmap_size)
825 vm_munmap(ctx->mmap_base, ctx->mmap_size);
826 aio_free_ring(ctx);
827 err:
828 mutex_unlock(&ctx->ring_lock);
829 free_percpu(ctx->cpu);
830 percpu_ref_exit(&ctx->reqs);
831 percpu_ref_exit(&ctx->users);
832 kmem_cache_free(kioctx_cachep, ctx);
833 pr_debug("error allocating ioctx %d\n", err);
834 return ERR_PTR(err);
835 }
836
837 /* kill_ioctx
838 * Cancels all outstanding aio requests on an aio context. Used
839 * when the processes owning a context have all exited to encourage
840 * the rapid destruction of the kioctx.
841 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)842 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
843 struct ctx_rq_wait *wait)
844 {
845 struct kioctx_table *table;
846
847 spin_lock(&mm->ioctx_lock);
848 if (atomic_xchg(&ctx->dead, 1)) {
849 spin_unlock(&mm->ioctx_lock);
850 return -EINVAL;
851 }
852
853 table = rcu_dereference_raw(mm->ioctx_table);
854 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
855 RCU_INIT_POINTER(table->table[ctx->id], NULL);
856 spin_unlock(&mm->ioctx_lock);
857
858 /* free_ioctx_reqs() will do the necessary RCU synchronization */
859 wake_up_all(&ctx->wait);
860
861 /*
862 * It'd be more correct to do this in free_ioctx(), after all
863 * the outstanding kiocbs have finished - but by then io_destroy
864 * has already returned, so io_setup() could potentially return
865 * -EAGAIN with no ioctxs actually in use (as far as userspace
866 * could tell).
867 */
868 aio_nr_sub(ctx->max_reqs);
869
870 if (ctx->mmap_size)
871 vm_munmap(ctx->mmap_base, ctx->mmap_size);
872
873 ctx->rq_wait = wait;
874 percpu_ref_kill(&ctx->users);
875 return 0;
876 }
877
878 /*
879 * exit_aio: called when the last user of mm goes away. At this point, there is
880 * no way for any new requests to be submited or any of the io_* syscalls to be
881 * called on the context.
882 *
883 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
884 * them.
885 */
exit_aio(struct mm_struct * mm)886 void exit_aio(struct mm_struct *mm)
887 {
888 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
889 struct ctx_rq_wait wait;
890 int i, skipped;
891
892 if (!table)
893 return;
894
895 atomic_set(&wait.count, table->nr);
896 init_completion(&wait.comp);
897
898 skipped = 0;
899 for (i = 0; i < table->nr; ++i) {
900 struct kioctx *ctx =
901 rcu_dereference_protected(table->table[i], true);
902
903 if (!ctx) {
904 skipped++;
905 continue;
906 }
907
908 /*
909 * We don't need to bother with munmap() here - exit_mmap(mm)
910 * is coming and it'll unmap everything. And we simply can't,
911 * this is not necessarily our ->mm.
912 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
913 * that it needs to unmap the area, just set it to 0.
914 */
915 ctx->mmap_size = 0;
916 kill_ioctx(mm, ctx, &wait);
917 }
918
919 if (!atomic_sub_and_test(skipped, &wait.count)) {
920 /* Wait until all IO for the context are done. */
921 wait_for_completion(&wait.comp);
922 }
923
924 RCU_INIT_POINTER(mm->ioctx_table, NULL);
925 kfree(table);
926 }
927
put_reqs_available(struct kioctx * ctx,unsigned nr)928 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
929 {
930 struct kioctx_cpu *kcpu;
931 unsigned long flags;
932
933 local_irq_save(flags);
934 kcpu = this_cpu_ptr(ctx->cpu);
935 kcpu->reqs_available += nr;
936
937 while (kcpu->reqs_available >= ctx->req_batch * 2) {
938 kcpu->reqs_available -= ctx->req_batch;
939 atomic_add(ctx->req_batch, &ctx->reqs_available);
940 }
941
942 local_irq_restore(flags);
943 }
944
__get_reqs_available(struct kioctx * ctx)945 static bool __get_reqs_available(struct kioctx *ctx)
946 {
947 struct kioctx_cpu *kcpu;
948 bool ret = false;
949 unsigned long flags;
950
951 local_irq_save(flags);
952 kcpu = this_cpu_ptr(ctx->cpu);
953 if (!kcpu->reqs_available) {
954 int avail = atomic_read(&ctx->reqs_available);
955
956 do {
957 if (avail < ctx->req_batch)
958 goto out;
959 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
960 &avail, avail - ctx->req_batch));
961
962 kcpu->reqs_available += ctx->req_batch;
963 }
964
965 ret = true;
966 kcpu->reqs_available--;
967 out:
968 local_irq_restore(flags);
969 return ret;
970 }
971
972 /* refill_reqs_available
973 * Updates the reqs_available reference counts used for tracking the
974 * number of free slots in the completion ring. This can be called
975 * from aio_complete() (to optimistically update reqs_available) or
976 * from aio_get_req() (the we're out of events case). It must be
977 * called holding ctx->completion_lock.
978 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)979 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
980 unsigned tail)
981 {
982 unsigned events_in_ring, completed;
983
984 /* Clamp head since userland can write to it. */
985 head %= ctx->nr_events;
986 if (head <= tail)
987 events_in_ring = tail - head;
988 else
989 events_in_ring = ctx->nr_events - (head - tail);
990
991 completed = ctx->completed_events;
992 if (events_in_ring < completed)
993 completed -= events_in_ring;
994 else
995 completed = 0;
996
997 if (!completed)
998 return;
999
1000 ctx->completed_events -= completed;
1001 put_reqs_available(ctx, completed);
1002 }
1003
1004 /* user_refill_reqs_available
1005 * Called to refill reqs_available when aio_get_req() encounters an
1006 * out of space in the completion ring.
1007 */
user_refill_reqs_available(struct kioctx * ctx)1008 static void user_refill_reqs_available(struct kioctx *ctx)
1009 {
1010 spin_lock_irq(&ctx->completion_lock);
1011 if (ctx->completed_events) {
1012 struct aio_ring *ring;
1013 unsigned head;
1014
1015 /* Access of ring->head may race with aio_read_events_ring()
1016 * here, but that's okay since whether we read the old version
1017 * or the new version, and either will be valid. The important
1018 * part is that head cannot pass tail since we prevent
1019 * aio_complete() from updating tail by holding
1020 * ctx->completion_lock. Even if head is invalid, the check
1021 * against ctx->completed_events below will make sure we do the
1022 * safe/right thing.
1023 */
1024 ring = kmap_atomic(ctx->ring_pages[0]);
1025 head = ring->head;
1026 kunmap_atomic(ring);
1027
1028 refill_reqs_available(ctx, head, ctx->tail);
1029 }
1030
1031 spin_unlock_irq(&ctx->completion_lock);
1032 }
1033
get_reqs_available(struct kioctx * ctx)1034 static bool get_reqs_available(struct kioctx *ctx)
1035 {
1036 if (__get_reqs_available(ctx))
1037 return true;
1038 user_refill_reqs_available(ctx);
1039 return __get_reqs_available(ctx);
1040 }
1041
1042 /* aio_get_req
1043 * Allocate a slot for an aio request.
1044 * Returns NULL if no requests are free.
1045 *
1046 * The refcount is initialized to 2 - one for the async op completion,
1047 * one for the synchronous code that does this.
1048 */
aio_get_req(struct kioctx * ctx)1049 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1050 {
1051 struct aio_kiocb *req;
1052
1053 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1054 if (unlikely(!req))
1055 return NULL;
1056
1057 if (unlikely(!get_reqs_available(ctx))) {
1058 kmem_cache_free(kiocb_cachep, req);
1059 return NULL;
1060 }
1061
1062 percpu_ref_get(&ctx->reqs);
1063 req->ki_ctx = ctx;
1064 INIT_LIST_HEAD(&req->ki_list);
1065 refcount_set(&req->ki_refcnt, 2);
1066 req->ki_eventfd = NULL;
1067 return req;
1068 }
1069
lookup_ioctx(unsigned long ctx_id)1070 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1071 {
1072 struct aio_ring __user *ring = (void __user *)ctx_id;
1073 struct mm_struct *mm = current->mm;
1074 struct kioctx *ctx, *ret = NULL;
1075 struct kioctx_table *table;
1076 unsigned id;
1077
1078 if (get_user(id, &ring->id))
1079 return NULL;
1080
1081 rcu_read_lock();
1082 table = rcu_dereference(mm->ioctx_table);
1083
1084 if (!table || id >= table->nr)
1085 goto out;
1086
1087 id = array_index_nospec(id, table->nr);
1088 ctx = rcu_dereference(table->table[id]);
1089 if (ctx && ctx->user_id == ctx_id) {
1090 if (percpu_ref_tryget_live(&ctx->users))
1091 ret = ctx;
1092 }
1093 out:
1094 rcu_read_unlock();
1095 return ret;
1096 }
1097
iocb_destroy(struct aio_kiocb * iocb)1098 static inline void iocb_destroy(struct aio_kiocb *iocb)
1099 {
1100 if (iocb->ki_eventfd)
1101 eventfd_ctx_put(iocb->ki_eventfd);
1102 if (iocb->ki_filp)
1103 fput(iocb->ki_filp);
1104 percpu_ref_put(&iocb->ki_ctx->reqs);
1105 kmem_cache_free(kiocb_cachep, iocb);
1106 }
1107
1108 /* aio_complete
1109 * Called when the io request on the given iocb is complete.
1110 */
aio_complete(struct aio_kiocb * iocb)1111 static void aio_complete(struct aio_kiocb *iocb)
1112 {
1113 struct kioctx *ctx = iocb->ki_ctx;
1114 struct aio_ring *ring;
1115 struct io_event *ev_page, *event;
1116 unsigned tail, pos, head;
1117 unsigned long flags;
1118
1119 /*
1120 * Add a completion event to the ring buffer. Must be done holding
1121 * ctx->completion_lock to prevent other code from messing with the tail
1122 * pointer since we might be called from irq context.
1123 */
1124 spin_lock_irqsave(&ctx->completion_lock, flags);
1125
1126 tail = ctx->tail;
1127 pos = tail + AIO_EVENTS_OFFSET;
1128
1129 if (++tail >= ctx->nr_events)
1130 tail = 0;
1131
1132 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1133 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1134
1135 *event = iocb->ki_res;
1136
1137 kunmap_atomic(ev_page);
1138 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1139
1140 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1141 (void __user *)(unsigned long)iocb->ki_res.obj,
1142 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1143
1144 /* after flagging the request as done, we
1145 * must never even look at it again
1146 */
1147 smp_wmb(); /* make event visible before updating tail */
1148
1149 ctx->tail = tail;
1150
1151 ring = kmap_atomic(ctx->ring_pages[0]);
1152 head = ring->head;
1153 ring->tail = tail;
1154 kunmap_atomic(ring);
1155 flush_dcache_page(ctx->ring_pages[0]);
1156
1157 ctx->completed_events++;
1158 if (ctx->completed_events > 1)
1159 refill_reqs_available(ctx, head, tail);
1160 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1161
1162 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1163
1164 /*
1165 * Check if the user asked us to deliver the result through an
1166 * eventfd. The eventfd_signal() function is safe to be called
1167 * from IRQ context.
1168 */
1169 if (iocb->ki_eventfd)
1170 eventfd_signal(iocb->ki_eventfd, 1);
1171
1172 /*
1173 * We have to order our ring_info tail store above and test
1174 * of the wait list below outside the wait lock. This is
1175 * like in wake_up_bit() where clearing a bit has to be
1176 * ordered with the unlocked test.
1177 */
1178 smp_mb();
1179
1180 if (waitqueue_active(&ctx->wait))
1181 wake_up(&ctx->wait);
1182 }
1183
iocb_put(struct aio_kiocb * iocb)1184 static inline void iocb_put(struct aio_kiocb *iocb)
1185 {
1186 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1187 aio_complete(iocb);
1188 iocb_destroy(iocb);
1189 }
1190 }
1191
1192 /* aio_read_events_ring
1193 * Pull an event off of the ioctx's event ring. Returns the number of
1194 * events fetched
1195 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1196 static long aio_read_events_ring(struct kioctx *ctx,
1197 struct io_event __user *event, long nr)
1198 {
1199 struct aio_ring *ring;
1200 unsigned head, tail, pos;
1201 long ret = 0;
1202 int copy_ret;
1203
1204 /*
1205 * The mutex can block and wake us up and that will cause
1206 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1207 * and repeat. This should be rare enough that it doesn't cause
1208 * peformance issues. See the comment in read_events() for more detail.
1209 */
1210 sched_annotate_sleep();
1211 mutex_lock(&ctx->ring_lock);
1212
1213 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1214 ring = kmap_atomic(ctx->ring_pages[0]);
1215 head = ring->head;
1216 tail = ring->tail;
1217 kunmap_atomic(ring);
1218
1219 /*
1220 * Ensure that once we've read the current tail pointer, that
1221 * we also see the events that were stored up to the tail.
1222 */
1223 smp_rmb();
1224
1225 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1226
1227 if (head == tail)
1228 goto out;
1229
1230 head %= ctx->nr_events;
1231 tail %= ctx->nr_events;
1232
1233 while (ret < nr) {
1234 long avail;
1235 struct io_event *ev;
1236 struct page *page;
1237
1238 avail = (head <= tail ? tail : ctx->nr_events) - head;
1239 if (head == tail)
1240 break;
1241
1242 pos = head + AIO_EVENTS_OFFSET;
1243 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1244 pos %= AIO_EVENTS_PER_PAGE;
1245
1246 avail = min(avail, nr - ret);
1247 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1248
1249 ev = kmap(page);
1250 copy_ret = copy_to_user(event + ret, ev + pos,
1251 sizeof(*ev) * avail);
1252 kunmap(page);
1253
1254 if (unlikely(copy_ret)) {
1255 ret = -EFAULT;
1256 goto out;
1257 }
1258
1259 ret += avail;
1260 head += avail;
1261 head %= ctx->nr_events;
1262 }
1263
1264 ring = kmap_atomic(ctx->ring_pages[0]);
1265 ring->head = head;
1266 kunmap_atomic(ring);
1267 flush_dcache_page(ctx->ring_pages[0]);
1268
1269 pr_debug("%li h%u t%u\n", ret, head, tail);
1270 out:
1271 mutex_unlock(&ctx->ring_lock);
1272
1273 return ret;
1274 }
1275
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1276 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1277 struct io_event __user *event, long *i)
1278 {
1279 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1280
1281 if (ret > 0)
1282 *i += ret;
1283
1284 if (unlikely(atomic_read(&ctx->dead)))
1285 ret = -EINVAL;
1286
1287 if (!*i)
1288 *i = ret;
1289
1290 return ret < 0 || *i >= min_nr;
1291 }
1292
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1293 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1294 struct io_event __user *event,
1295 ktime_t until)
1296 {
1297 long ret = 0;
1298
1299 /*
1300 * Note that aio_read_events() is being called as the conditional - i.e.
1301 * we're calling it after prepare_to_wait() has set task state to
1302 * TASK_INTERRUPTIBLE.
1303 *
1304 * But aio_read_events() can block, and if it blocks it's going to flip
1305 * the task state back to TASK_RUNNING.
1306 *
1307 * This should be ok, provided it doesn't flip the state back to
1308 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1309 * will only happen if the mutex_lock() call blocks, and we then find
1310 * the ringbuffer empty. So in practice we should be ok, but it's
1311 * something to be aware of when touching this code.
1312 */
1313 if (until == 0)
1314 aio_read_events(ctx, min_nr, nr, event, &ret);
1315 else
1316 wait_event_interruptible_hrtimeout(ctx->wait,
1317 aio_read_events(ctx, min_nr, nr, event, &ret),
1318 until);
1319 return ret;
1320 }
1321
1322 /* sys_io_setup:
1323 * Create an aio_context capable of receiving at least nr_events.
1324 * ctxp must not point to an aio_context that already exists, and
1325 * must be initialized to 0 prior to the call. On successful
1326 * creation of the aio_context, *ctxp is filled in with the resulting
1327 * handle. May fail with -EINVAL if *ctxp is not initialized,
1328 * if the specified nr_events exceeds internal limits. May fail
1329 * with -EAGAIN if the specified nr_events exceeds the user's limit
1330 * of available events. May fail with -ENOMEM if insufficient kernel
1331 * resources are available. May fail with -EFAULT if an invalid
1332 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1333 * implemented.
1334 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1335 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1336 {
1337 struct kioctx *ioctx = NULL;
1338 unsigned long ctx;
1339 long ret;
1340
1341 ret = get_user(ctx, ctxp);
1342 if (unlikely(ret))
1343 goto out;
1344
1345 ret = -EINVAL;
1346 if (unlikely(ctx || nr_events == 0)) {
1347 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1348 ctx, nr_events);
1349 goto out;
1350 }
1351
1352 ioctx = ioctx_alloc(nr_events);
1353 ret = PTR_ERR(ioctx);
1354 if (!IS_ERR(ioctx)) {
1355 ret = put_user(ioctx->user_id, ctxp);
1356 if (ret)
1357 kill_ioctx(current->mm, ioctx, NULL);
1358 percpu_ref_put(&ioctx->users);
1359 }
1360
1361 out:
1362 return ret;
1363 }
1364
1365 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1366 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1367 {
1368 struct kioctx *ioctx = NULL;
1369 unsigned long ctx;
1370 long ret;
1371
1372 ret = get_user(ctx, ctx32p);
1373 if (unlikely(ret))
1374 goto out;
1375
1376 ret = -EINVAL;
1377 if (unlikely(ctx || nr_events == 0)) {
1378 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1379 ctx, nr_events);
1380 goto out;
1381 }
1382
1383 ioctx = ioctx_alloc(nr_events);
1384 ret = PTR_ERR(ioctx);
1385 if (!IS_ERR(ioctx)) {
1386 /* truncating is ok because it's a user address */
1387 ret = put_user((u32)ioctx->user_id, ctx32p);
1388 if (ret)
1389 kill_ioctx(current->mm, ioctx, NULL);
1390 percpu_ref_put(&ioctx->users);
1391 }
1392
1393 out:
1394 return ret;
1395 }
1396 #endif
1397
1398 /* sys_io_destroy:
1399 * Destroy the aio_context specified. May cancel any outstanding
1400 * AIOs and block on completion. Will fail with -ENOSYS if not
1401 * implemented. May fail with -EINVAL if the context pointed to
1402 * is invalid.
1403 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1404 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1405 {
1406 struct kioctx *ioctx = lookup_ioctx(ctx);
1407 if (likely(NULL != ioctx)) {
1408 struct ctx_rq_wait wait;
1409 int ret;
1410
1411 init_completion(&wait.comp);
1412 atomic_set(&wait.count, 1);
1413
1414 /* Pass requests_done to kill_ioctx() where it can be set
1415 * in a thread-safe way. If we try to set it here then we have
1416 * a race condition if two io_destroy() called simultaneously.
1417 */
1418 ret = kill_ioctx(current->mm, ioctx, &wait);
1419 percpu_ref_put(&ioctx->users);
1420
1421 /* Wait until all IO for the context are done. Otherwise kernel
1422 * keep using user-space buffers even if user thinks the context
1423 * is destroyed.
1424 */
1425 if (!ret)
1426 wait_for_completion(&wait.comp);
1427
1428 return ret;
1429 }
1430 pr_debug("EINVAL: invalid context id\n");
1431 return -EINVAL;
1432 }
1433
aio_remove_iocb(struct aio_kiocb * iocb)1434 static void aio_remove_iocb(struct aio_kiocb *iocb)
1435 {
1436 struct kioctx *ctx = iocb->ki_ctx;
1437 unsigned long flags;
1438
1439 spin_lock_irqsave(&ctx->ctx_lock, flags);
1440 list_del(&iocb->ki_list);
1441 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1442 }
1443
aio_complete_rw(struct kiocb * kiocb,long res)1444 static void aio_complete_rw(struct kiocb *kiocb, long res)
1445 {
1446 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1447
1448 if (!list_empty_careful(&iocb->ki_list))
1449 aio_remove_iocb(iocb);
1450
1451 if (kiocb->ki_flags & IOCB_WRITE) {
1452 struct inode *inode = file_inode(kiocb->ki_filp);
1453
1454 /*
1455 * Tell lockdep we inherited freeze protection from submission
1456 * thread.
1457 */
1458 if (S_ISREG(inode->i_mode))
1459 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1460 file_end_write(kiocb->ki_filp);
1461 }
1462
1463 iocb->ki_res.res = res;
1464 iocb->ki_res.res2 = 0;
1465 iocb_put(iocb);
1466 }
1467
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1468 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1469 {
1470 int ret;
1471
1472 req->ki_complete = aio_complete_rw;
1473 req->private = NULL;
1474 req->ki_pos = iocb->aio_offset;
1475 req->ki_flags = req->ki_filp->f_iocb_flags;
1476 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1477 req->ki_flags |= IOCB_EVENTFD;
1478 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1479 /*
1480 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1481 * aio_reqprio is interpreted as an I/O scheduling
1482 * class and priority.
1483 */
1484 ret = ioprio_check_cap(iocb->aio_reqprio);
1485 if (ret) {
1486 pr_debug("aio ioprio check cap error: %d\n", ret);
1487 return ret;
1488 }
1489
1490 req->ki_ioprio = iocb->aio_reqprio;
1491 } else
1492 req->ki_ioprio = get_current_ioprio();
1493
1494 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1495 if (unlikely(ret))
1496 return ret;
1497
1498 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1499 return 0;
1500 }
1501
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1502 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1503 struct iovec **iovec, bool vectored, bool compat,
1504 struct iov_iter *iter)
1505 {
1506 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1507 size_t len = iocb->aio_nbytes;
1508
1509 if (!vectored) {
1510 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1511 *iovec = NULL;
1512 return ret;
1513 }
1514
1515 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1516 }
1517
aio_rw_done(struct kiocb * req,ssize_t ret)1518 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1519 {
1520 switch (ret) {
1521 case -EIOCBQUEUED:
1522 break;
1523 case -ERESTARTSYS:
1524 case -ERESTARTNOINTR:
1525 case -ERESTARTNOHAND:
1526 case -ERESTART_RESTARTBLOCK:
1527 /*
1528 * There's no easy way to restart the syscall since other AIO's
1529 * may be already running. Just fail this IO with EINTR.
1530 */
1531 ret = -EINTR;
1532 fallthrough;
1533 default:
1534 req->ki_complete(req, ret);
1535 }
1536 }
1537
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1538 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1539 bool vectored, bool compat)
1540 {
1541 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1542 struct iov_iter iter;
1543 struct file *file;
1544 int ret;
1545
1546 ret = aio_prep_rw(req, iocb);
1547 if (ret)
1548 return ret;
1549 file = req->ki_filp;
1550 if (unlikely(!(file->f_mode & FMODE_READ)))
1551 return -EBADF;
1552 if (unlikely(!file->f_op->read_iter))
1553 return -EINVAL;
1554
1555 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1556 if (ret < 0)
1557 return ret;
1558 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1559 if (!ret)
1560 aio_rw_done(req, call_read_iter(file, req, &iter));
1561 kfree(iovec);
1562 return ret;
1563 }
1564
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1565 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1566 bool vectored, bool compat)
1567 {
1568 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1569 struct iov_iter iter;
1570 struct file *file;
1571 int ret;
1572
1573 ret = aio_prep_rw(req, iocb);
1574 if (ret)
1575 return ret;
1576 file = req->ki_filp;
1577
1578 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1579 return -EBADF;
1580 if (unlikely(!file->f_op->write_iter))
1581 return -EINVAL;
1582
1583 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1584 if (ret < 0)
1585 return ret;
1586 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1587 if (!ret) {
1588 /*
1589 * Open-code file_start_write here to grab freeze protection,
1590 * which will be released by another thread in
1591 * aio_complete_rw(). Fool lockdep by telling it the lock got
1592 * released so that it doesn't complain about the held lock when
1593 * we return to userspace.
1594 */
1595 if (S_ISREG(file_inode(file)->i_mode)) {
1596 sb_start_write(file_inode(file)->i_sb);
1597 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1598 }
1599 req->ki_flags |= IOCB_WRITE;
1600 aio_rw_done(req, call_write_iter(file, req, &iter));
1601 }
1602 kfree(iovec);
1603 return ret;
1604 }
1605
aio_fsync_work(struct work_struct * work)1606 static void aio_fsync_work(struct work_struct *work)
1607 {
1608 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1609 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1610
1611 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1612 revert_creds(old_cred);
1613 put_cred(iocb->fsync.creds);
1614 iocb_put(iocb);
1615 }
1616
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1617 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1618 bool datasync)
1619 {
1620 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1621 iocb->aio_rw_flags))
1622 return -EINVAL;
1623
1624 if (unlikely(!req->file->f_op->fsync))
1625 return -EINVAL;
1626
1627 req->creds = prepare_creds();
1628 if (!req->creds)
1629 return -ENOMEM;
1630
1631 req->datasync = datasync;
1632 INIT_WORK(&req->work, aio_fsync_work);
1633 schedule_work(&req->work);
1634 return 0;
1635 }
1636
aio_poll_put_work(struct work_struct * work)1637 static void aio_poll_put_work(struct work_struct *work)
1638 {
1639 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1640 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1641
1642 iocb_put(iocb);
1643 }
1644
1645 /*
1646 * Safely lock the waitqueue which the request is on, synchronizing with the
1647 * case where the ->poll() provider decides to free its waitqueue early.
1648 *
1649 * Returns true on success, meaning that req->head->lock was locked, req->wait
1650 * is on req->head, and an RCU read lock was taken. Returns false if the
1651 * request was already removed from its waitqueue (which might no longer exist).
1652 */
poll_iocb_lock_wq(struct poll_iocb * req)1653 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1654 {
1655 wait_queue_head_t *head;
1656
1657 /*
1658 * While we hold the waitqueue lock and the waitqueue is nonempty,
1659 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1660 * lock in the first place can race with the waitqueue being freed.
1661 *
1662 * We solve this as eventpoll does: by taking advantage of the fact that
1663 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1664 * we enter rcu_read_lock() and see that the pointer to the queue is
1665 * non-NULL, we can then lock it without the memory being freed out from
1666 * under us, then check whether the request is still on the queue.
1667 *
1668 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1669 * case the caller deletes the entry from the queue, leaving it empty.
1670 * In that case, only RCU prevents the queue memory from being freed.
1671 */
1672 rcu_read_lock();
1673 head = smp_load_acquire(&req->head);
1674 if (head) {
1675 spin_lock(&head->lock);
1676 if (!list_empty(&req->wait.entry))
1677 return true;
1678 spin_unlock(&head->lock);
1679 }
1680 rcu_read_unlock();
1681 return false;
1682 }
1683
poll_iocb_unlock_wq(struct poll_iocb * req)1684 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1685 {
1686 spin_unlock(&req->head->lock);
1687 rcu_read_unlock();
1688 }
1689
aio_poll_complete_work(struct work_struct * work)1690 static void aio_poll_complete_work(struct work_struct *work)
1691 {
1692 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1693 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1694 struct poll_table_struct pt = { ._key = req->events };
1695 struct kioctx *ctx = iocb->ki_ctx;
1696 __poll_t mask = 0;
1697
1698 if (!READ_ONCE(req->cancelled))
1699 mask = vfs_poll(req->file, &pt) & req->events;
1700
1701 /*
1702 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1703 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1704 * synchronize with them. In the cancellation case the list_del_init
1705 * itself is not actually needed, but harmless so we keep it in to
1706 * avoid further branches in the fast path.
1707 */
1708 spin_lock_irq(&ctx->ctx_lock);
1709 if (poll_iocb_lock_wq(req)) {
1710 if (!mask && !READ_ONCE(req->cancelled)) {
1711 /*
1712 * The request isn't actually ready to be completed yet.
1713 * Reschedule completion if another wakeup came in.
1714 */
1715 if (req->work_need_resched) {
1716 schedule_work(&req->work);
1717 req->work_need_resched = false;
1718 } else {
1719 req->work_scheduled = false;
1720 }
1721 poll_iocb_unlock_wq(req);
1722 spin_unlock_irq(&ctx->ctx_lock);
1723 return;
1724 }
1725 list_del_init(&req->wait.entry);
1726 poll_iocb_unlock_wq(req);
1727 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1728 list_del_init(&iocb->ki_list);
1729 iocb->ki_res.res = mangle_poll(mask);
1730 spin_unlock_irq(&ctx->ctx_lock);
1731
1732 iocb_put(iocb);
1733 }
1734
1735 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1736 static int aio_poll_cancel(struct kiocb *iocb)
1737 {
1738 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1739 struct poll_iocb *req = &aiocb->poll;
1740
1741 if (poll_iocb_lock_wq(req)) {
1742 WRITE_ONCE(req->cancelled, true);
1743 if (!req->work_scheduled) {
1744 schedule_work(&aiocb->poll.work);
1745 req->work_scheduled = true;
1746 }
1747 poll_iocb_unlock_wq(req);
1748 } /* else, the request was force-cancelled by POLLFREE already */
1749
1750 return 0;
1751 }
1752
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1753 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1754 void *key)
1755 {
1756 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1757 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1758 __poll_t mask = key_to_poll(key);
1759 unsigned long flags;
1760
1761 /* for instances that support it check for an event match first: */
1762 if (mask && !(mask & req->events))
1763 return 0;
1764
1765 /*
1766 * Complete the request inline if possible. This requires that three
1767 * conditions be met:
1768 * 1. An event mask must have been passed. If a plain wakeup was done
1769 * instead, then mask == 0 and we have to call vfs_poll() to get
1770 * the events, so inline completion isn't possible.
1771 * 2. The completion work must not have already been scheduled.
1772 * 3. ctx_lock must not be busy. We have to use trylock because we
1773 * already hold the waitqueue lock, so this inverts the normal
1774 * locking order. Use irqsave/irqrestore because not all
1775 * filesystems (e.g. fuse) call this function with IRQs disabled,
1776 * yet IRQs have to be disabled before ctx_lock is obtained.
1777 */
1778 if (mask && !req->work_scheduled &&
1779 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1780 struct kioctx *ctx = iocb->ki_ctx;
1781
1782 list_del_init(&req->wait.entry);
1783 list_del(&iocb->ki_list);
1784 iocb->ki_res.res = mangle_poll(mask);
1785 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1786 iocb = NULL;
1787 INIT_WORK(&req->work, aio_poll_put_work);
1788 schedule_work(&req->work);
1789 }
1790 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1791 if (iocb)
1792 iocb_put(iocb);
1793 } else {
1794 /*
1795 * Schedule the completion work if needed. If it was already
1796 * scheduled, record that another wakeup came in.
1797 *
1798 * Don't remove the request from the waitqueue here, as it might
1799 * not actually be complete yet (we won't know until vfs_poll()
1800 * is called), and we must not miss any wakeups. POLLFREE is an
1801 * exception to this; see below.
1802 */
1803 if (req->work_scheduled) {
1804 req->work_need_resched = true;
1805 } else {
1806 schedule_work(&req->work);
1807 req->work_scheduled = true;
1808 }
1809
1810 /*
1811 * If the waitqueue is being freed early but we can't complete
1812 * the request inline, we have to tear down the request as best
1813 * we can. That means immediately removing the request from its
1814 * waitqueue and preventing all further accesses to the
1815 * waitqueue via the request. We also need to schedule the
1816 * completion work (done above). Also mark the request as
1817 * cancelled, to potentially skip an unneeded call to ->poll().
1818 */
1819 if (mask & POLLFREE) {
1820 WRITE_ONCE(req->cancelled, true);
1821 list_del_init(&req->wait.entry);
1822
1823 /*
1824 * Careful: this *must* be the last step, since as soon
1825 * as req->head is NULL'ed out, the request can be
1826 * completed and freed, since aio_poll_complete_work()
1827 * will no longer need to take the waitqueue lock.
1828 */
1829 smp_store_release(&req->head, NULL);
1830 }
1831 }
1832 return 1;
1833 }
1834
1835 struct aio_poll_table {
1836 struct poll_table_struct pt;
1837 struct aio_kiocb *iocb;
1838 bool queued;
1839 int error;
1840 };
1841
1842 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1843 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1844 struct poll_table_struct *p)
1845 {
1846 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1847
1848 /* multiple wait queues per file are not supported */
1849 if (unlikely(pt->queued)) {
1850 pt->error = -EINVAL;
1851 return;
1852 }
1853
1854 pt->queued = true;
1855 pt->error = 0;
1856 pt->iocb->poll.head = head;
1857 add_wait_queue(head, &pt->iocb->poll.wait);
1858 }
1859
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1860 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1861 {
1862 struct kioctx *ctx = aiocb->ki_ctx;
1863 struct poll_iocb *req = &aiocb->poll;
1864 struct aio_poll_table apt;
1865 bool cancel = false;
1866 __poll_t mask;
1867
1868 /* reject any unknown events outside the normal event mask. */
1869 if ((u16)iocb->aio_buf != iocb->aio_buf)
1870 return -EINVAL;
1871 /* reject fields that are not defined for poll */
1872 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1873 return -EINVAL;
1874
1875 INIT_WORK(&req->work, aio_poll_complete_work);
1876 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1877
1878 req->head = NULL;
1879 req->cancelled = false;
1880 req->work_scheduled = false;
1881 req->work_need_resched = false;
1882
1883 apt.pt._qproc = aio_poll_queue_proc;
1884 apt.pt._key = req->events;
1885 apt.iocb = aiocb;
1886 apt.queued = false;
1887 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1888
1889 /* initialized the list so that we can do list_empty checks */
1890 INIT_LIST_HEAD(&req->wait.entry);
1891 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1892
1893 mask = vfs_poll(req->file, &apt.pt) & req->events;
1894 spin_lock_irq(&ctx->ctx_lock);
1895 if (likely(apt.queued)) {
1896 bool on_queue = poll_iocb_lock_wq(req);
1897
1898 if (!on_queue || req->work_scheduled) {
1899 /*
1900 * aio_poll_wake() already either scheduled the async
1901 * completion work, or completed the request inline.
1902 */
1903 if (apt.error) /* unsupported case: multiple queues */
1904 cancel = true;
1905 apt.error = 0;
1906 mask = 0;
1907 }
1908 if (mask || apt.error) {
1909 /* Steal to complete synchronously. */
1910 list_del_init(&req->wait.entry);
1911 } else if (cancel) {
1912 /* Cancel if possible (may be too late though). */
1913 WRITE_ONCE(req->cancelled, true);
1914 } else if (on_queue) {
1915 /*
1916 * Actually waiting for an event, so add the request to
1917 * active_reqs so that it can be cancelled if needed.
1918 */
1919 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1920 aiocb->ki_cancel = aio_poll_cancel;
1921 }
1922 if (on_queue)
1923 poll_iocb_unlock_wq(req);
1924 }
1925 if (mask) { /* no async, we'd stolen it */
1926 aiocb->ki_res.res = mangle_poll(mask);
1927 apt.error = 0;
1928 }
1929 spin_unlock_irq(&ctx->ctx_lock);
1930 if (mask)
1931 iocb_put(aiocb);
1932 return apt.error;
1933 }
1934
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1935 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1936 struct iocb __user *user_iocb, struct aio_kiocb *req,
1937 bool compat)
1938 {
1939 req->ki_filp = fget(iocb->aio_fildes);
1940 if (unlikely(!req->ki_filp))
1941 return -EBADF;
1942
1943 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1944 struct eventfd_ctx *eventfd;
1945 /*
1946 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1947 * instance of the file* now. The file descriptor must be
1948 * an eventfd() fd, and will be signaled for each completed
1949 * event using the eventfd_signal() function.
1950 */
1951 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1952 if (IS_ERR(eventfd))
1953 return PTR_ERR(eventfd);
1954
1955 req->ki_eventfd = eventfd;
1956 }
1957
1958 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1959 pr_debug("EFAULT: aio_key\n");
1960 return -EFAULT;
1961 }
1962
1963 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1964 req->ki_res.data = iocb->aio_data;
1965 req->ki_res.res = 0;
1966 req->ki_res.res2 = 0;
1967
1968 switch (iocb->aio_lio_opcode) {
1969 case IOCB_CMD_PREAD:
1970 return aio_read(&req->rw, iocb, false, compat);
1971 case IOCB_CMD_PWRITE:
1972 return aio_write(&req->rw, iocb, false, compat);
1973 case IOCB_CMD_PREADV:
1974 return aio_read(&req->rw, iocb, true, compat);
1975 case IOCB_CMD_PWRITEV:
1976 return aio_write(&req->rw, iocb, true, compat);
1977 case IOCB_CMD_FSYNC:
1978 return aio_fsync(&req->fsync, iocb, false);
1979 case IOCB_CMD_FDSYNC:
1980 return aio_fsync(&req->fsync, iocb, true);
1981 case IOCB_CMD_POLL:
1982 return aio_poll(req, iocb);
1983 default:
1984 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1985 return -EINVAL;
1986 }
1987 }
1988
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1989 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1990 bool compat)
1991 {
1992 struct aio_kiocb *req;
1993 struct iocb iocb;
1994 int err;
1995
1996 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1997 return -EFAULT;
1998
1999 /* enforce forwards compatibility on users */
2000 if (unlikely(iocb.aio_reserved2)) {
2001 pr_debug("EINVAL: reserve field set\n");
2002 return -EINVAL;
2003 }
2004
2005 /* prevent overflows */
2006 if (unlikely(
2007 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2008 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2009 ((ssize_t)iocb.aio_nbytes < 0)
2010 )) {
2011 pr_debug("EINVAL: overflow check\n");
2012 return -EINVAL;
2013 }
2014
2015 req = aio_get_req(ctx);
2016 if (unlikely(!req))
2017 return -EAGAIN;
2018
2019 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2020
2021 /* Done with the synchronous reference */
2022 iocb_put(req);
2023
2024 /*
2025 * If err is 0, we'd either done aio_complete() ourselves or have
2026 * arranged for that to be done asynchronously. Anything non-zero
2027 * means that we need to destroy req ourselves.
2028 */
2029 if (unlikely(err)) {
2030 iocb_destroy(req);
2031 put_reqs_available(ctx, 1);
2032 }
2033 return err;
2034 }
2035
2036 /* sys_io_submit:
2037 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2038 * the number of iocbs queued. May return -EINVAL if the aio_context
2039 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2040 * *iocbpp[0] is not properly initialized, if the operation specified
2041 * is invalid for the file descriptor in the iocb. May fail with
2042 * -EFAULT if any of the data structures point to invalid data. May
2043 * fail with -EBADF if the file descriptor specified in the first
2044 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2045 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2046 * fail with -ENOSYS if not implemented.
2047 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2048 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2049 struct iocb __user * __user *, iocbpp)
2050 {
2051 struct kioctx *ctx;
2052 long ret = 0;
2053 int i = 0;
2054 struct blk_plug plug;
2055
2056 if (unlikely(nr < 0))
2057 return -EINVAL;
2058
2059 ctx = lookup_ioctx(ctx_id);
2060 if (unlikely(!ctx)) {
2061 pr_debug("EINVAL: invalid context id\n");
2062 return -EINVAL;
2063 }
2064
2065 if (nr > ctx->nr_events)
2066 nr = ctx->nr_events;
2067
2068 if (nr > AIO_PLUG_THRESHOLD)
2069 blk_start_plug(&plug);
2070 for (i = 0; i < nr; i++) {
2071 struct iocb __user *user_iocb;
2072
2073 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2074 ret = -EFAULT;
2075 break;
2076 }
2077
2078 ret = io_submit_one(ctx, user_iocb, false);
2079 if (ret)
2080 break;
2081 }
2082 if (nr > AIO_PLUG_THRESHOLD)
2083 blk_finish_plug(&plug);
2084
2085 percpu_ref_put(&ctx->users);
2086 return i ? i : ret;
2087 }
2088
2089 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2090 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2091 int, nr, compat_uptr_t __user *, iocbpp)
2092 {
2093 struct kioctx *ctx;
2094 long ret = 0;
2095 int i = 0;
2096 struct blk_plug plug;
2097
2098 if (unlikely(nr < 0))
2099 return -EINVAL;
2100
2101 ctx = lookup_ioctx(ctx_id);
2102 if (unlikely(!ctx)) {
2103 pr_debug("EINVAL: invalid context id\n");
2104 return -EINVAL;
2105 }
2106
2107 if (nr > ctx->nr_events)
2108 nr = ctx->nr_events;
2109
2110 if (nr > AIO_PLUG_THRESHOLD)
2111 blk_start_plug(&plug);
2112 for (i = 0; i < nr; i++) {
2113 compat_uptr_t user_iocb;
2114
2115 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2116 ret = -EFAULT;
2117 break;
2118 }
2119
2120 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2121 if (ret)
2122 break;
2123 }
2124 if (nr > AIO_PLUG_THRESHOLD)
2125 blk_finish_plug(&plug);
2126
2127 percpu_ref_put(&ctx->users);
2128 return i ? i : ret;
2129 }
2130 #endif
2131
2132 /* sys_io_cancel:
2133 * Attempts to cancel an iocb previously passed to io_submit. If
2134 * the operation is successfully cancelled, the resulting event is
2135 * copied into the memory pointed to by result without being placed
2136 * into the completion queue and 0 is returned. May fail with
2137 * -EFAULT if any of the data structures pointed to are invalid.
2138 * May fail with -EINVAL if aio_context specified by ctx_id is
2139 * invalid. May fail with -EAGAIN if the iocb specified was not
2140 * cancelled. Will fail with -ENOSYS if not implemented.
2141 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2142 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2143 struct io_event __user *, result)
2144 {
2145 struct kioctx *ctx;
2146 struct aio_kiocb *kiocb;
2147 int ret = -EINVAL;
2148 u32 key;
2149 u64 obj = (u64)(unsigned long)iocb;
2150
2151 if (unlikely(get_user(key, &iocb->aio_key)))
2152 return -EFAULT;
2153 if (unlikely(key != KIOCB_KEY))
2154 return -EINVAL;
2155
2156 ctx = lookup_ioctx(ctx_id);
2157 if (unlikely(!ctx))
2158 return -EINVAL;
2159
2160 spin_lock_irq(&ctx->ctx_lock);
2161 /* TODO: use a hash or array, this sucks. */
2162 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2163 if (kiocb->ki_res.obj == obj) {
2164 ret = kiocb->ki_cancel(&kiocb->rw);
2165 list_del_init(&kiocb->ki_list);
2166 break;
2167 }
2168 }
2169 spin_unlock_irq(&ctx->ctx_lock);
2170
2171 if (!ret) {
2172 /*
2173 * The result argument is no longer used - the io_event is
2174 * always delivered via the ring buffer. -EINPROGRESS indicates
2175 * cancellation is progress:
2176 */
2177 ret = -EINPROGRESS;
2178 }
2179
2180 percpu_ref_put(&ctx->users);
2181
2182 return ret;
2183 }
2184
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2185 static long do_io_getevents(aio_context_t ctx_id,
2186 long min_nr,
2187 long nr,
2188 struct io_event __user *events,
2189 struct timespec64 *ts)
2190 {
2191 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2192 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2193 long ret = -EINVAL;
2194
2195 if (likely(ioctx)) {
2196 if (likely(min_nr <= nr && min_nr >= 0))
2197 ret = read_events(ioctx, min_nr, nr, events, until);
2198 percpu_ref_put(&ioctx->users);
2199 }
2200
2201 return ret;
2202 }
2203
2204 /* io_getevents:
2205 * Attempts to read at least min_nr events and up to nr events from
2206 * the completion queue for the aio_context specified by ctx_id. If
2207 * it succeeds, the number of read events is returned. May fail with
2208 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2209 * out of range, if timeout is out of range. May fail with -EFAULT
2210 * if any of the memory specified is invalid. May return 0 or
2211 * < min_nr if the timeout specified by timeout has elapsed
2212 * before sufficient events are available, where timeout == NULL
2213 * specifies an infinite timeout. Note that the timeout pointed to by
2214 * timeout is relative. Will fail with -ENOSYS if not implemented.
2215 */
2216 #ifdef CONFIG_64BIT
2217
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2218 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2219 long, min_nr,
2220 long, nr,
2221 struct io_event __user *, events,
2222 struct __kernel_timespec __user *, timeout)
2223 {
2224 struct timespec64 ts;
2225 int ret;
2226
2227 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2228 return -EFAULT;
2229
2230 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2231 if (!ret && signal_pending(current))
2232 ret = -EINTR;
2233 return ret;
2234 }
2235
2236 #endif
2237
2238 struct __aio_sigset {
2239 const sigset_t __user *sigmask;
2240 size_t sigsetsize;
2241 };
2242
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2243 SYSCALL_DEFINE6(io_pgetevents,
2244 aio_context_t, ctx_id,
2245 long, min_nr,
2246 long, nr,
2247 struct io_event __user *, events,
2248 struct __kernel_timespec __user *, timeout,
2249 const struct __aio_sigset __user *, usig)
2250 {
2251 struct __aio_sigset ksig = { NULL, };
2252 struct timespec64 ts;
2253 bool interrupted;
2254 int ret;
2255
2256 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2257 return -EFAULT;
2258
2259 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2260 return -EFAULT;
2261
2262 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2263 if (ret)
2264 return ret;
2265
2266 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2267
2268 interrupted = signal_pending(current);
2269 restore_saved_sigmask_unless(interrupted);
2270 if (interrupted && !ret)
2271 ret = -ERESTARTNOHAND;
2272
2273 return ret;
2274 }
2275
2276 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2277
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2278 SYSCALL_DEFINE6(io_pgetevents_time32,
2279 aio_context_t, ctx_id,
2280 long, min_nr,
2281 long, nr,
2282 struct io_event __user *, events,
2283 struct old_timespec32 __user *, timeout,
2284 const struct __aio_sigset __user *, usig)
2285 {
2286 struct __aio_sigset ksig = { NULL, };
2287 struct timespec64 ts;
2288 bool interrupted;
2289 int ret;
2290
2291 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2292 return -EFAULT;
2293
2294 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2295 return -EFAULT;
2296
2297
2298 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2299 if (ret)
2300 return ret;
2301
2302 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2303
2304 interrupted = signal_pending(current);
2305 restore_saved_sigmask_unless(interrupted);
2306 if (interrupted && !ret)
2307 ret = -ERESTARTNOHAND;
2308
2309 return ret;
2310 }
2311
2312 #endif
2313
2314 #if defined(CONFIG_COMPAT_32BIT_TIME)
2315
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2316 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2317 __s32, min_nr,
2318 __s32, nr,
2319 struct io_event __user *, events,
2320 struct old_timespec32 __user *, timeout)
2321 {
2322 struct timespec64 t;
2323 int ret;
2324
2325 if (timeout && get_old_timespec32(&t, timeout))
2326 return -EFAULT;
2327
2328 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2329 if (!ret && signal_pending(current))
2330 ret = -EINTR;
2331 return ret;
2332 }
2333
2334 #endif
2335
2336 #ifdef CONFIG_COMPAT
2337
2338 struct __compat_aio_sigset {
2339 compat_uptr_t sigmask;
2340 compat_size_t sigsetsize;
2341 };
2342
2343 #if defined(CONFIG_COMPAT_32BIT_TIME)
2344
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2345 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2346 compat_aio_context_t, ctx_id,
2347 compat_long_t, min_nr,
2348 compat_long_t, nr,
2349 struct io_event __user *, events,
2350 struct old_timespec32 __user *, timeout,
2351 const struct __compat_aio_sigset __user *, usig)
2352 {
2353 struct __compat_aio_sigset ksig = { 0, };
2354 struct timespec64 t;
2355 bool interrupted;
2356 int ret;
2357
2358 if (timeout && get_old_timespec32(&t, timeout))
2359 return -EFAULT;
2360
2361 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2362 return -EFAULT;
2363
2364 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2365 if (ret)
2366 return ret;
2367
2368 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2369
2370 interrupted = signal_pending(current);
2371 restore_saved_sigmask_unless(interrupted);
2372 if (interrupted && !ret)
2373 ret = -ERESTARTNOHAND;
2374
2375 return ret;
2376 }
2377
2378 #endif
2379
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2380 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2381 compat_aio_context_t, ctx_id,
2382 compat_long_t, min_nr,
2383 compat_long_t, nr,
2384 struct io_event __user *, events,
2385 struct __kernel_timespec __user *, timeout,
2386 const struct __compat_aio_sigset __user *, usig)
2387 {
2388 struct __compat_aio_sigset ksig = { 0, };
2389 struct timespec64 t;
2390 bool interrupted;
2391 int ret;
2392
2393 if (timeout && get_timespec64(&t, timeout))
2394 return -EFAULT;
2395
2396 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2397 return -EFAULT;
2398
2399 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2400 if (ret)
2401 return ret;
2402
2403 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2404
2405 interrupted = signal_pending(current);
2406 restore_saved_sigmask_unless(interrupted);
2407 if (interrupted && !ret)
2408 ret = -ERESTARTNOHAND;
2409
2410 return ret;
2411 }
2412 #endif
2413