1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Google LLC
4 */
5
6 #include <ufs/ufshcd.h>
7 #include "ufshcd-crypto.h"
8
9 /* Blk-crypto modes supported by UFS crypto */
10 static const struct ufs_crypto_alg_entry {
11 enum ufs_crypto_alg ufs_alg;
12 enum ufs_crypto_key_size ufs_key_size;
13 } ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
14 [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
15 .ufs_alg = UFS_CRYPTO_ALG_AES_XTS,
16 .ufs_key_size = UFS_CRYPTO_KEY_SIZE_256,
17 },
18 };
19
ufshcd_program_key(struct ufs_hba * hba,const union ufs_crypto_cfg_entry * cfg,int slot)20 static int ufshcd_program_key(struct ufs_hba *hba,
21 const union ufs_crypto_cfg_entry *cfg, int slot)
22 {
23 int i;
24 u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
25 int err = 0;
26
27 ufshcd_hold(hba, false);
28
29 if (hba->vops && hba->vops->program_key) {
30 err = hba->vops->program_key(hba, cfg, slot);
31 goto out;
32 }
33
34 /* Ensure that CFGE is cleared before programming the key */
35 ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
36 for (i = 0; i < 16; i++) {
37 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]),
38 slot_offset + i * sizeof(cfg->reg_val[0]));
39 }
40 /* Write dword 17 */
41 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]),
42 slot_offset + 17 * sizeof(cfg->reg_val[0]));
43 /* Dword 16 must be written last */
44 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
45 slot_offset + 16 * sizeof(cfg->reg_val[0]));
46 out:
47 ufshcd_release(hba);
48 return err;
49 }
50
ufshcd_crypto_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)51 static int ufshcd_crypto_keyslot_program(struct blk_crypto_profile *profile,
52 const struct blk_crypto_key *key,
53 unsigned int slot)
54 {
55 struct ufs_hba *hba =
56 container_of(profile, struct ufs_hba, crypto_profile);
57 const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
58 const struct ufs_crypto_alg_entry *alg =
59 &ufs_crypto_algs[key->crypto_cfg.crypto_mode];
60 u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
61 int i;
62 int cap_idx = -1;
63 union ufs_crypto_cfg_entry cfg = {};
64 int err;
65
66 BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
67 for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) {
68 if (ccap_array[i].algorithm_id == alg->ufs_alg &&
69 ccap_array[i].key_size == alg->ufs_key_size &&
70 (ccap_array[i].sdus_mask & data_unit_mask)) {
71 cap_idx = i;
72 break;
73 }
74 }
75
76 if (WARN_ON(cap_idx < 0))
77 return -EOPNOTSUPP;
78
79 cfg.data_unit_size = data_unit_mask;
80 cfg.crypto_cap_idx = cap_idx;
81 cfg.config_enable = UFS_CRYPTO_CONFIGURATION_ENABLE;
82
83 if (ccap_array[cap_idx].algorithm_id == UFS_CRYPTO_ALG_AES_XTS) {
84 /* In XTS mode, the blk_crypto_key's size is already doubled */
85 memcpy(cfg.crypto_key, key->raw, key->size/2);
86 memcpy(cfg.crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2,
87 key->raw + key->size/2, key->size/2);
88 } else {
89 memcpy(cfg.crypto_key, key->raw, key->size);
90 }
91
92 err = ufshcd_program_key(hba, &cfg, slot);
93
94 memzero_explicit(&cfg, sizeof(cfg));
95 return err;
96 }
97
ufshcd_clear_keyslot(struct ufs_hba * hba,int slot)98 static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
99 {
100 /*
101 * Clear the crypto cfg on the device. Clearing CFGE
102 * might not be sufficient, so just clear the entire cfg.
103 */
104 union ufs_crypto_cfg_entry cfg = {};
105
106 return ufshcd_program_key(hba, &cfg, slot);
107 }
108
ufshcd_crypto_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)109 static int ufshcd_crypto_keyslot_evict(struct blk_crypto_profile *profile,
110 const struct blk_crypto_key *key,
111 unsigned int slot)
112 {
113 struct ufs_hba *hba =
114 container_of(profile, struct ufs_hba, crypto_profile);
115
116 return ufshcd_clear_keyslot(hba, slot);
117 }
118
ufshcd_crypto_enable(struct ufs_hba * hba)119 bool ufshcd_crypto_enable(struct ufs_hba *hba)
120 {
121 if (!(hba->caps & UFSHCD_CAP_CRYPTO))
122 return false;
123
124 /* Reset might clear all keys, so reprogram all the keys. */
125 blk_crypto_reprogram_all_keys(&hba->crypto_profile);
126 return true;
127 }
128
129 static const struct blk_crypto_ll_ops ufshcd_crypto_ops = {
130 .keyslot_program = ufshcd_crypto_keyslot_program,
131 .keyslot_evict = ufshcd_crypto_keyslot_evict,
132 };
133
134 static enum blk_crypto_mode_num
ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap)135 ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap)
136 {
137 int i;
138
139 for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) {
140 BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
141 if (ufs_crypto_algs[i].ufs_alg == cap.algorithm_id &&
142 ufs_crypto_algs[i].ufs_key_size == cap.key_size) {
143 return i;
144 }
145 }
146 return BLK_ENCRYPTION_MODE_INVALID;
147 }
148
149 /**
150 * ufshcd_hba_init_crypto_capabilities - Read crypto capabilities, init crypto
151 * fields in hba
152 * @hba: Per adapter instance
153 *
154 * Return: 0 if crypto was initialized or is not supported, else a -errno value.
155 */
ufshcd_hba_init_crypto_capabilities(struct ufs_hba * hba)156 int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
157 {
158 int cap_idx;
159 int err = 0;
160 enum blk_crypto_mode_num blk_mode_num;
161
162 /*
163 * Don't use crypto if either the hardware doesn't advertise the
164 * standard crypto capability bit *or* if the vendor specific driver
165 * hasn't advertised that crypto is supported.
166 */
167 if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) ||
168 !(hba->caps & UFSHCD_CAP_CRYPTO))
169 goto out;
170
171 hba->crypto_capabilities.reg_val =
172 cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
173 hba->crypto_cfg_register =
174 (u32)hba->crypto_capabilities.config_array_ptr * 0x100;
175 hba->crypto_cap_array =
176 devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap,
177 sizeof(hba->crypto_cap_array[0]), GFP_KERNEL);
178 if (!hba->crypto_cap_array) {
179 err = -ENOMEM;
180 goto out;
181 }
182
183 /* The actual number of configurations supported is (CFGC+1) */
184 err = devm_blk_crypto_profile_init(
185 hba->dev, &hba->crypto_profile,
186 hba->crypto_capabilities.config_count + 1);
187 if (err)
188 goto out;
189
190 hba->crypto_profile.ll_ops = ufshcd_crypto_ops;
191 /* UFS only supports 8 bytes for any DUN */
192 hba->crypto_profile.max_dun_bytes_supported = 8;
193 hba->crypto_profile.dev = hba->dev;
194
195 /*
196 * Cache all the UFS crypto capabilities and advertise the supported
197 * crypto modes and data unit sizes to the block layer.
198 */
199 for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
200 cap_idx++) {
201 hba->crypto_cap_array[cap_idx].reg_val =
202 cpu_to_le32(ufshcd_readl(hba,
203 REG_UFS_CRYPTOCAP +
204 cap_idx * sizeof(__le32)));
205 blk_mode_num = ufshcd_find_blk_crypto_mode(
206 hba->crypto_cap_array[cap_idx]);
207 if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID)
208 hba->crypto_profile.modes_supported[blk_mode_num] |=
209 hba->crypto_cap_array[cap_idx].sdus_mask * 512;
210 }
211
212 return 0;
213
214 out:
215 /* Indicate that init failed by clearing UFSHCD_CAP_CRYPTO */
216 hba->caps &= ~UFSHCD_CAP_CRYPTO;
217 return err;
218 }
219
220 /**
221 * ufshcd_init_crypto - Initialize crypto hardware
222 * @hba: Per adapter instance
223 */
ufshcd_init_crypto(struct ufs_hba * hba)224 void ufshcd_init_crypto(struct ufs_hba *hba)
225 {
226 int slot;
227
228 if (!(hba->caps & UFSHCD_CAP_CRYPTO))
229 return;
230
231 /* Clear all keyslots - the number of keyslots is (CFGC + 1) */
232 for (slot = 0; slot < hba->crypto_capabilities.config_count + 1; slot++)
233 ufshcd_clear_keyslot(hba, slot);
234 }
235
ufshcd_crypto_register(struct ufs_hba * hba,struct request_queue * q)236 void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q)
237 {
238 if (hba->caps & UFSHCD_CAP_CRYPTO)
239 blk_crypto_register(&hba->crypto_profile, q);
240 }
241