1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved.
4 *
5 * Author:
6 * Mikko Perttunen <mperttunen@nvidia.com>
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0 0
40 #define SENSOR_CONFIG0_STOP BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2)
42 #define SENSOR_CONFIG0_OVER BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT 8
46
47 #define SENSOR_CONFIG1 4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
55
56 /*
57 * SENSOR_CONFIG2 is defined in soctherm.h
58 * because, it will be used by tegra_soctherm_fuse.c
59 */
60
61 #define SENSOR_STATUS0 0xc
62 #define SENSOR_STATUS0_VALID_MASK BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff
64
65 #define SENSOR_STATUS1 0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK 0xffff
68
69 #define READBACK_VALUE_MASK 0xff00
70 #define READBACK_VALUE_SHIFT 8
71 #define READBACK_ADD_HALF BIT(7)
72 #define READBACK_NEGATE BIT(0)
73
74 /*
75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76 * because it will be used by tegraxxx_soctherm.c
77 */
78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
87
88 #define THERMCTL_LVL0_UP_STATS 0x10
89 #define THERMCTL_LVL0_DN_STATS 0x14
90
91 #define THERMCTL_INTR_STATUS 0x84
92
93 #define TH_INTR_MD0_MASK BIT(25)
94 #define TH_INTR_MU0_MASK BIT(24)
95 #define TH_INTR_GD0_MASK BIT(17)
96 #define TH_INTR_GU0_MASK BIT(16)
97 #define TH_INTR_CD0_MASK BIT(9)
98 #define TH_INTR_CU0_MASK BIT(8)
99 #define TH_INTR_PD0_MASK BIT(1)
100 #define TH_INTR_PU0_MASK BIT(0)
101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL 0x94
104 #define STATS_CTL_CLR_DN 0x8
105 #define STATS_CTL_EN_DN 0x4
106 #define STATS_CTL_CLR_UP 0x2
107 #define STATS_CTL_EN_UP 0x1
108
109 #define OC1_CFG 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0)
116
117 #define OC1_CNT_THRESHOLD 0x314
118 #define OC1_THROTTLE_PERIOD 0x318
119 #define OC1_ALARM_COUNT 0x31c
120 #define OC1_FILTER 0x320
121 #define OC1_STATS 0x3a8
122
123 #define OC_INTR_STATUS 0x39c
124 #define OC_INTR_ENABLE 0x3a0
125 #define OC_INTR_DISABLE 0x3a4
126 #define OC_STATS_CTL 0x3c4
127 #define OC_STATS_CTL_CLR_ALL 0x2
128 #define OC_STATS_CTL_EN_ALL 0x1
129
130 #define OC_INTR_OC1_MASK BIT(0)
131 #define OC_INTR_OC2_MASK BIT(1)
132 #define OC_INTR_OC3_MASK BIT(2)
133 #define OC_INTR_OC4_MASK BIT(3)
134 #define OC_INTR_OC5_MASK BIT(4)
135
136 #define THROT_GLOBAL_CFG 0x400
137 #define THROT_GLOBAL_ENB_MASK BIT(0)
138
139 #define CPU_PSKIP_STATUS 0x418
140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
144
145 #define THROT_PRIORITY_LOCK 0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
147
148 #define THROT_STATUS 0x428
149 #define THROT_STATUS_BREACH_MASK BIT(12)
150 #define THROT_STATUS_STATE_MASK (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
160
161 #define THROT_VECT_NONE 0x0 /* 3'b000 */
162 #define THROT_VECT_LOW 0x1 /* 3'b001 */
163 #define THROT_VECT_MED 0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff
170
171 #define THROT_PRIORITY_LITE 0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff
173
174 #define THROT_DELAY_LITE 0x448
175 #define THROT_DELAY_LITE_DELAY_MASK 0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024
183
184 #define CCROC_GLOBAL_CFG 0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206 * level vector
207 * NONE 3'b000
208 * LOW 3'b001
209 * MED 3'b011
210 * HIGH 3'b111
211 */
212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET 0x30
216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
217 (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
219 (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
223 (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
225 (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET 0x14
228 #define ALARM_CFG(throt) (OC1_CFG + \
229 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \
232 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \
235 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \
238 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt) (OC1_FILTER + \
241 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt) (OC1_STATS + \
244 (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET 0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
249 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
251 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE 0x20
255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED 0
258 #define OC_THROTTLE_MODE_BRIEF 2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264 THROTTLE_LIGHT = 0,
265 THROTTLE_HEAVY,
266 THROTTLE_OC1,
267 THROTTLE_OC2,
268 THROTTLE_OC3,
269 THROTTLE_OC4,
270 THROTTLE_OC5, /* OC5 is reserved */
271 THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275 TEGRA_SOC_OC_IRQ_1,
276 TEGRA_SOC_OC_IRQ_2,
277 TEGRA_SOC_OC_IRQ_3,
278 TEGRA_SOC_OC_IRQ_4,
279 TEGRA_SOC_OC_IRQ_5,
280 TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284 THROTTLE_DEV_CPU = 0,
285 THROTTLE_DEV_GPU,
286 THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290 [THROTTLE_LIGHT] = "light",
291 [THROTTLE_HEAVY] = "heavy",
292 [THROTTLE_OC1] = "oc1",
293 [THROTTLE_OC2] = "oc2",
294 [THROTTLE_OC3] = "oc3",
295 [THROTTLE_OC4] = "oc4",
296 [THROTTLE_OC5] = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301 void __iomem *reg;
302 struct device *dev;
303 struct tegra_soctherm *ts;
304 struct thermal_zone_device *tz;
305 const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309 u32 active_low;
310 u32 throt_period;
311 u32 alarm_cnt_thresh;
312 u32 alarm_filter;
313 u32 mode;
314 bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318 const char *name;
319 unsigned int id;
320 u8 priority;
321 u8 cpu_throt_level;
322 u32 cpu_throt_depth;
323 u32 gpu_throt_level;
324 struct soctherm_oc_cfg oc_cfg;
325 struct thermal_cooling_device *cdev;
326 bool init;
327 };
328
329 struct tegra_soctherm {
330 struct reset_control *reset;
331 struct clk *clock_tsensor;
332 struct clk *clock_soctherm;
333 void __iomem *regs;
334 void __iomem *clk_regs;
335 void __iomem *ccroc_regs;
336
337 int thermal_irq;
338 int edp_irq;
339
340 u32 *calib;
341 struct thermal_zone_device **thermctl_tzs;
342 struct tegra_soctherm_soc *soc;
343
344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346 struct dentry *debugfs_dir;
347
348 struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352 struct mutex irq_lock; /* serialize OC IRQs */
353 struct irq_chip irq_chip;
354 struct irq_domain *domain;
355 int irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361 * ccroc_writel() - writes a value to a CCROC register
362 * @ts: pointer to a struct tegra_soctherm
363 * @value: the value to write
364 * @reg: the register offset
365 *
366 * Writes @v to @reg. No return value.
367 */
ccroc_writel(struct tegra_soctherm * ts,u32 value,u32 reg)368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370 writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374 * ccroc_readl() - reads specified register from CCROC IP block
375 * @ts: pointer to a struct tegra_soctherm
376 * @reg: register address to be read
377 *
378 * Return: the value of the register
379 */
ccroc_readl(struct tegra_soctherm * ts,u32 reg)380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382 return readl(ts->ccroc_regs + reg);
383 }
384
enable_tsensor(struct tegra_soctherm * tegra,unsigned int i)385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388 void __iomem *base = tegra->regs + sensor->base;
389 unsigned int val;
390
391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392 writel(val, base + SENSOR_CONFIG0);
393
394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397 val |= SENSOR_CONFIG1_TEMP_ENABLE;
398 writel(val, base + SENSOR_CONFIG1);
399
400 writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404 * Translate from soctherm readback format to millicelsius.
405 * The soctherm readback format in bits is as follows:
406 * TTTTTTTT H______N
407 * where T's contain the temperature in Celsius,
408 * H denotes an addition of 0.5 Celsius and N denotes negation
409 * of the final value.
410 */
translate_temp(u16 val)411 static int translate_temp(u16 val)
412 {
413 int t;
414
415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416 if (val & READBACK_ADD_HALF)
417 t += 500;
418 if (val & READBACK_NEGATE)
419 t *= -1;
420
421 return t;
422 }
423
tegra_thermctl_get_temp(struct thermal_zone_device * tz,int * out_temp)424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425 {
426 struct tegra_thermctl_zone *zone = tz->devdata;
427 u32 val;
428
429 val = readl(zone->reg);
430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431 *out_temp = translate_temp(val);
432
433 return 0;
434 }
435
436 /**
437 * enforce_temp_range() - check and enforce temperature range [min, max]
438 * @dev: struct device * of the SOC_THERM instance
439 * @trip_temp: the trip temperature to check
440 *
441 * Checks and enforces the permitted temperature range that SOC_THERM
442 * HW can support This is
443 * done while taking care of precision.
444 *
445 * Return: The precision adjusted capped temperature in millicelsius.
446 */
enforce_temp_range(struct device * dev,int trip_temp)447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449 int temp;
450
451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452 if (temp != trip_temp)
453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454 trip_temp, temp);
455 return temp;
456 }
457
458 /**
459 * thermtrip_program() - Configures the hardware to shut down the
460 * system if a given sensor group reaches a given temperature
461 * @dev: ptr to the struct device for the SOC_THERM IP block
462 * @sg: pointer to the sensor group to set the thermtrip temperature for
463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464 *
465 * Sets the thermal trip threshold of the given sensor group to be the
466 * @trip_temp. If this threshold is crossed, the hardware will shut
467 * down.
468 *
469 * Note that, although @trip_temp is specified in millicelsius, the
470 * hardware is programmed in degrees Celsius.
471 *
472 * Return: 0 upon success, or %-EINVAL upon failure.
473 */
thermtrip_program(struct device * dev,const struct tegra_tsensor_group * sg,int trip_temp)474 static int thermtrip_program(struct device *dev,
475 const struct tegra_tsensor_group *sg,
476 int trip_temp)
477 {
478 struct tegra_soctherm *ts = dev_get_drvdata(dev);
479 int temp;
480 u32 r;
481
482 if (!sg || !sg->thermtrip_threshold_mask)
483 return -EINVAL;
484
485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493 return 0;
494 }
495
496 /**
497 * throttrip_program() - Configures the hardware to throttle the
498 * pulse if a given sensor group reaches a given temperature
499 * @dev: ptr to the struct device for the SOC_THERM IP block
500 * @sg: pointer to the sensor group to set the thermtrip temperature for
501 * @stc: pointer to the throttle need to be triggered
502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503 *
504 * Sets the thermal trip threshold and throttle event of the given sensor
505 * group. If this threshold is crossed, the hardware will trigger the
506 * throttle.
507 *
508 * Note that, although @trip_temp is specified in millicelsius, the
509 * hardware is programmed in degrees Celsius.
510 *
511 * Return: 0 upon success, or %-EINVAL upon failure.
512 */
throttrip_program(struct device * dev,const struct tegra_tsensor_group * sg,struct soctherm_throt_cfg * stc,int trip_temp)513 static int throttrip_program(struct device *dev,
514 const struct tegra_tsensor_group *sg,
515 struct soctherm_throt_cfg *stc,
516 int trip_temp)
517 {
518 struct tegra_soctherm *ts = dev_get_drvdata(dev);
519 int temp, cpu_throt, gpu_throt;
520 unsigned int throt;
521 u32 r, reg_off;
522
523 if (!sg || !stc || !stc->init)
524 return -EINVAL;
525
526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529 throt = stc->id;
530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532 if (throt == THROTTLE_LIGHT) {
533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535 } else {
536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538 if (throt != THROTTLE_HEAVY)
539 dev_warn(dev,
540 "invalid throt id %d - assuming HEAVY",
541 throt);
542 }
543
544 r = readl(ts->regs + reg_off);
545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550 writel(r, ts->regs + reg_off);
551
552 return 0;
553 }
554
555 static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm * ts,const char * name)556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558 unsigned int i;
559
560 for (i = 0; ts->throt_cfgs[i].name; i++)
561 if (!strcmp(ts->throt_cfgs[i].name, name))
562 return &ts->throt_cfgs[i];
563
564 return NULL;
565 }
566
tsensor_group_thermtrip_get(struct tegra_soctherm * ts,int id)567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569 int i, temp = min_low_temp;
570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573 return temp;
574
575 if (tt) {
576 for (i = 0; i < ts->soc->num_ttgs; i++) {
577 if (tt[i].id == id)
578 return tt[i].temp;
579 }
580 }
581
582 return temp;
583 }
584
tegra_thermctl_set_trip_temp(struct thermal_zone_device * tz,int trip,int temp)585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip, int temp)
586 {
587 struct tegra_thermctl_zone *zone = tz->devdata;
588 struct tegra_soctherm *ts = zone->ts;
589 const struct tegra_tsensor_group *sg = zone->sg;
590 struct device *dev = zone->dev;
591 enum thermal_trip_type type;
592 int ret;
593
594 if (!tz)
595 return -EINVAL;
596
597 ret = tz->ops->get_trip_type(tz, trip, &type);
598 if (ret)
599 return ret;
600
601 if (type == THERMAL_TRIP_CRITICAL) {
602 /*
603 * If thermtrips property is set in DT,
604 * doesn't need to program critical type trip to HW,
605 * if not, program critical trip to HW.
606 */
607 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
608 return thermtrip_program(dev, sg, temp);
609 else
610 return 0;
611
612 } else if (type == THERMAL_TRIP_HOT) {
613 int i;
614
615 for (i = 0; i < THROTTLE_SIZE; i++) {
616 struct thermal_cooling_device *cdev;
617 struct soctherm_throt_cfg *stc;
618
619 if (!ts->throt_cfgs[i].init)
620 continue;
621
622 cdev = ts->throt_cfgs[i].cdev;
623 if (get_thermal_instance(tz, cdev, trip))
624 stc = find_throttle_cfg_by_name(ts, cdev->type);
625 else
626 continue;
627
628 return throttrip_program(dev, sg, stc, temp);
629 }
630 }
631
632 return 0;
633 }
634
thermal_irq_enable(struct tegra_thermctl_zone * zn)635 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
636 {
637 u32 r;
638
639 /* multiple zones could be handling and setting trips at once */
640 mutex_lock(&zn->ts->thermctl_lock);
641 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
642 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
643 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
644 mutex_unlock(&zn->ts->thermctl_lock);
645 }
646
thermal_irq_disable(struct tegra_thermctl_zone * zn)647 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
648 {
649 u32 r;
650
651 /* multiple zones could be handling and setting trips at once */
652 mutex_lock(&zn->ts->thermctl_lock);
653 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
654 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
655 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
656 mutex_unlock(&zn->ts->thermctl_lock);
657 }
658
tegra_thermctl_set_trips(struct thermal_zone_device * tz,int lo,int hi)659 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
660 {
661 struct tegra_thermctl_zone *zone = tz->devdata;
662 u32 r;
663
664 thermal_irq_disable(zone);
665
666 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
667 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
668 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
669
670 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
671 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
672 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
673
674 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
675 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
676 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
677 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
678
679 thermal_irq_enable(zone);
680
681 return 0;
682 }
683
684 static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
685 .get_temp = tegra_thermctl_get_temp,
686 .set_trip_temp = tegra_thermctl_set_trip_temp,
687 .set_trips = tegra_thermctl_set_trips,
688 };
689
get_hot_temp(struct thermal_zone_device * tz,int * trip,int * temp)690 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
691 {
692 int ntrips, i, ret;
693 enum thermal_trip_type type;
694
695 ntrips = of_thermal_get_ntrips(tz);
696 if (ntrips <= 0)
697 return -EINVAL;
698
699 for (i = 0; i < ntrips; i++) {
700 ret = tz->ops->get_trip_type(tz, i, &type);
701 if (ret)
702 return -EINVAL;
703 if (type == THERMAL_TRIP_HOT) {
704 ret = tz->ops->get_trip_temp(tz, i, temp);
705 if (!ret)
706 *trip = i;
707
708 return ret;
709 }
710 }
711
712 return -EINVAL;
713 }
714
715 /**
716 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
717 * @dev: struct device * of the SOC_THERM instance
718 * @sg: pointer to the sensor group to set the thermtrip temperature for
719 * @tz: struct thermal_zone_device *
720 *
721 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
722 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
723 * type trip_temp
724 * from thermal zone.
725 * After they have been configured, THERMTRIP or THROTTLE will take
726 * action when the configured SoC thermal sensor group reaches a
727 * certain temperature.
728 *
729 * Return: 0 upon success, or a negative error code on failure.
730 * "Success" does not mean that trips was enabled; it could also
731 * mean that no node was found in DT.
732 * THERMTRIP has been enabled successfully when a message similar to
733 * this one appears on the serial console:
734 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
735 * THROTTLE has been enabled successfully when a message similar to
736 * this one appears on the serial console:
737 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
738 */
tegra_soctherm_set_hwtrips(struct device * dev,const struct tegra_tsensor_group * sg,struct thermal_zone_device * tz)739 static int tegra_soctherm_set_hwtrips(struct device *dev,
740 const struct tegra_tsensor_group *sg,
741 struct thermal_zone_device *tz)
742 {
743 struct tegra_soctherm *ts = dev_get_drvdata(dev);
744 struct soctherm_throt_cfg *stc;
745 int i, trip, temperature, ret;
746
747 /* Get thermtrips. If missing, try to get critical trips. */
748 temperature = tsensor_group_thermtrip_get(ts, sg->id);
749 if (min_low_temp == temperature)
750 if (tz->ops->get_crit_temp(tz, &temperature))
751 temperature = max_high_temp;
752
753 ret = thermtrip_program(dev, sg, temperature);
754 if (ret) {
755 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
756 return ret;
757 }
758
759 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
760 sg->name, temperature);
761
762 ret = get_hot_temp(tz, &trip, &temperature);
763 if (ret) {
764 dev_info(dev, "throttrip: %s: missing hot temperature\n",
765 sg->name);
766 return 0;
767 }
768
769 for (i = 0; i < THROTTLE_OC1; i++) {
770 struct thermal_cooling_device *cdev;
771
772 if (!ts->throt_cfgs[i].init)
773 continue;
774
775 cdev = ts->throt_cfgs[i].cdev;
776 if (get_thermal_instance(tz, cdev, trip))
777 stc = find_throttle_cfg_by_name(ts, cdev->type);
778 else
779 continue;
780
781 ret = throttrip_program(dev, sg, stc, temperature);
782 if (ret) {
783 dev_err(dev, "throttrip: %s: error during enable\n",
784 sg->name);
785 return ret;
786 }
787
788 dev_info(dev,
789 "throttrip: will throttle when %s reaches %d mC\n",
790 sg->name, temperature);
791 break;
792 }
793
794 if (i == THROTTLE_SIZE)
795 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
796 sg->name);
797
798 return 0;
799 }
800
soctherm_thermal_isr(int irq,void * dev_id)801 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
802 {
803 struct tegra_soctherm *ts = dev_id;
804 u32 r;
805
806 /* Case for no lock:
807 * Although interrupts are enabled in set_trips, there is still no need
808 * to lock here because the interrupts are disabled before programming
809 * new trip points. Hence there cant be a interrupt on the same sensor.
810 * An interrupt can however occur on a sensor while trips are being
811 * programmed on a different one. This beign a LEVEL interrupt won't
812 * cause a new interrupt but this is taken care of by the re-reading of
813 * the STATUS register in the thread function.
814 */
815 r = readl(ts->regs + THERMCTL_INTR_STATUS);
816 writel(r, ts->regs + THERMCTL_INTR_DISABLE);
817
818 return IRQ_WAKE_THREAD;
819 }
820
821 /**
822 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
823 * @irq: The interrupt number being requested; not used
824 * @dev_id: Opaque pointer to tegra_soctherm;
825 *
826 * Clears the interrupt status register if there are expected
827 * interrupt bits set.
828 * The interrupt(s) are then handled by updating the corresponding
829 * thermal zones.
830 *
831 * An error is logged if any unexpected interrupt bits are set.
832 *
833 * Disabled interrupts are re-enabled.
834 *
835 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
836 * is needed.
837 */
soctherm_thermal_isr_thread(int irq,void * dev_id)838 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
839 {
840 struct tegra_soctherm *ts = dev_id;
841 struct thermal_zone_device *tz;
842 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
843
844 st = readl(ts->regs + THERMCTL_INTR_STATUS);
845
846 /* deliberately clear expected interrupts handled in SW */
847 cp |= st & TH_INTR_CD0_MASK;
848 cp |= st & TH_INTR_CU0_MASK;
849
850 gp |= st & TH_INTR_GD0_MASK;
851 gp |= st & TH_INTR_GU0_MASK;
852
853 pl |= st & TH_INTR_PD0_MASK;
854 pl |= st & TH_INTR_PU0_MASK;
855
856 me |= st & TH_INTR_MD0_MASK;
857 me |= st & TH_INTR_MU0_MASK;
858
859 ex |= cp | gp | pl | me;
860 if (ex) {
861 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
862 st &= ~ex;
863
864 if (cp) {
865 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
866 thermal_zone_device_update(tz,
867 THERMAL_EVENT_UNSPECIFIED);
868 }
869
870 if (gp) {
871 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
872 thermal_zone_device_update(tz,
873 THERMAL_EVENT_UNSPECIFIED);
874 }
875
876 if (pl) {
877 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
878 thermal_zone_device_update(tz,
879 THERMAL_EVENT_UNSPECIFIED);
880 }
881
882 if (me) {
883 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
884 thermal_zone_device_update(tz,
885 THERMAL_EVENT_UNSPECIFIED);
886 }
887 }
888
889 /* deliberately ignore expected interrupts NOT handled in SW */
890 ex |= TH_INTR_IGNORE_MASK;
891 st &= ~ex;
892
893 if (st) {
894 /* Whine about any other unexpected INTR bits still set */
895 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
896 writel(st, ts->regs + THERMCTL_INTR_STATUS);
897 }
898
899 return IRQ_HANDLED;
900 }
901
902 /**
903 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
904 * @ts: pointer to a struct tegra_soctherm
905 * @alarm: The soctherm throttle id
906 * @enable: Flag indicating enable the soctherm over-current
907 * interrupt or disable it
908 *
909 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
910 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
911 */
soctherm_oc_intr_enable(struct tegra_soctherm * ts,enum soctherm_throttle_id alarm,bool enable)912 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
913 enum soctherm_throttle_id alarm,
914 bool enable)
915 {
916 u32 r;
917
918 if (!enable)
919 return;
920
921 r = readl(ts->regs + OC_INTR_ENABLE);
922 switch (alarm) {
923 case THROTTLE_OC1:
924 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
925 break;
926 case THROTTLE_OC2:
927 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
928 break;
929 case THROTTLE_OC3:
930 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
931 break;
932 case THROTTLE_OC4:
933 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
934 break;
935 default:
936 r = 0;
937 break;
938 }
939 writel(r, ts->regs + OC_INTR_ENABLE);
940 }
941
942 /**
943 * soctherm_handle_alarm() - Handles soctherm alarms
944 * @alarm: The soctherm throttle id
945 *
946 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
947 * a warning or informative message.
948 *
949 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
950 */
soctherm_handle_alarm(enum soctherm_throttle_id alarm)951 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
952 {
953 int rv = -EINVAL;
954
955 switch (alarm) {
956 case THROTTLE_OC1:
957 pr_debug("soctherm: Successfully handled OC1 alarm\n");
958 rv = 0;
959 break;
960
961 case THROTTLE_OC2:
962 pr_debug("soctherm: Successfully handled OC2 alarm\n");
963 rv = 0;
964 break;
965
966 case THROTTLE_OC3:
967 pr_debug("soctherm: Successfully handled OC3 alarm\n");
968 rv = 0;
969 break;
970
971 case THROTTLE_OC4:
972 pr_debug("soctherm: Successfully handled OC4 alarm\n");
973 rv = 0;
974 break;
975
976 default:
977 break;
978 }
979
980 if (rv)
981 pr_err("soctherm: ERROR in handling %s alarm\n",
982 throt_names[alarm]);
983
984 return rv;
985 }
986
987 /**
988 * soctherm_edp_isr_thread() - log an over-current interrupt request
989 * @irq: OC irq number. Currently not being used. See description
990 * @arg: a void pointer for callback, currently not being used
991 *
992 * Over-current events are handled in hardware. This function is called to log
993 * and handle any OC events that happened. Additionally, it checks every
994 * over-current interrupt registers for registers are set but
995 * was not expected (i.e. any discrepancy in interrupt status) by the function,
996 * the discrepancy will logged.
997 *
998 * Return: %IRQ_HANDLED
999 */
soctherm_edp_isr_thread(int irq,void * arg)1000 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1001 {
1002 struct tegra_soctherm *ts = arg;
1003 u32 st, ex, oc1, oc2, oc3, oc4;
1004
1005 st = readl(ts->regs + OC_INTR_STATUS);
1006
1007 /* deliberately clear expected interrupts handled in SW */
1008 oc1 = st & OC_INTR_OC1_MASK;
1009 oc2 = st & OC_INTR_OC2_MASK;
1010 oc3 = st & OC_INTR_OC3_MASK;
1011 oc4 = st & OC_INTR_OC4_MASK;
1012 ex = oc1 | oc2 | oc3 | oc4;
1013
1014 pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1015 if (ex) {
1016 writel(st, ts->regs + OC_INTR_STATUS);
1017 st &= ~ex;
1018
1019 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1020 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1021
1022 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1023 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1024
1025 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1026 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1027
1028 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1029 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1030
1031 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1032 handle_nested_irq(
1033 irq_find_mapping(soc_irq_cdata.domain, 0));
1034
1035 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1036 handle_nested_irq(
1037 irq_find_mapping(soc_irq_cdata.domain, 1));
1038
1039 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1040 handle_nested_irq(
1041 irq_find_mapping(soc_irq_cdata.domain, 2));
1042
1043 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1044 handle_nested_irq(
1045 irq_find_mapping(soc_irq_cdata.domain, 3));
1046 }
1047
1048 if (st) {
1049 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1050 writel(st, ts->regs + OC_INTR_STATUS);
1051 }
1052
1053 return IRQ_HANDLED;
1054 }
1055
1056 /**
1057 * soctherm_edp_isr() - Disables any active interrupts
1058 * @irq: The interrupt request number
1059 * @arg: Opaque pointer to an argument
1060 *
1061 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1062 * masking any asserted interrupts. Doing this prevents the same interrupts
1063 * from triggering this isr repeatedly. The thread woken by this isr will
1064 * handle asserted interrupts and subsequently unmask/re-enable them.
1065 *
1066 * The OC_INTR_DISABLE register indicates which OC interrupts
1067 * have been disabled.
1068 *
1069 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1070 */
soctherm_edp_isr(int irq,void * arg)1071 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1072 {
1073 struct tegra_soctherm *ts = arg;
1074 u32 r;
1075
1076 if (!ts)
1077 return IRQ_NONE;
1078
1079 r = readl(ts->regs + OC_INTR_STATUS);
1080 writel(r, ts->regs + OC_INTR_DISABLE);
1081
1082 return IRQ_WAKE_THREAD;
1083 }
1084
1085 /**
1086 * soctherm_oc_irq_lock() - locks the over-current interrupt request
1087 * @data: Interrupt request data
1088 *
1089 * Looks up the chip data from @data and locks the mutex associated with
1090 * a particular over-current interrupt request.
1091 */
soctherm_oc_irq_lock(struct irq_data * data)1092 static void soctherm_oc_irq_lock(struct irq_data *data)
1093 {
1094 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1095
1096 mutex_lock(&d->irq_lock);
1097 }
1098
1099 /**
1100 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1101 * @data: Interrupt request data
1102 *
1103 * Looks up the interrupt request data @data and unlocks the mutex associated
1104 * with a particular over-current interrupt request.
1105 */
soctherm_oc_irq_sync_unlock(struct irq_data * data)1106 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1107 {
1108 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1109
1110 mutex_unlock(&d->irq_lock);
1111 }
1112
1113 /**
1114 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1115 * @data: irq_data structure of the chip
1116 *
1117 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1118 * to respond to over-current interrupts.
1119 *
1120 */
soctherm_oc_irq_enable(struct irq_data * data)1121 static void soctherm_oc_irq_enable(struct irq_data *data)
1122 {
1123 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1124
1125 d->irq_enable |= BIT(data->hwirq);
1126 }
1127
1128 /**
1129 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1130 * @data: The interrupt request information
1131 *
1132 * Clears the interrupt request enable bit of the overcurrent
1133 * interrupt request chip data.
1134 *
1135 * Return: Nothing is returned (void)
1136 */
soctherm_oc_irq_disable(struct irq_data * data)1137 static void soctherm_oc_irq_disable(struct irq_data *data)
1138 {
1139 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1140
1141 d->irq_enable &= ~BIT(data->hwirq);
1142 }
1143
soctherm_oc_irq_set_type(struct irq_data * data,unsigned int type)1144 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1145 {
1146 return 0;
1147 }
1148
1149 /**
1150 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1151 * @h: Interrupt request domain
1152 * @virq: Virtual interrupt request number
1153 * @hw: Hardware interrupt request number
1154 *
1155 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1156 * interrupt request is called, the irq_domain takes the request's virtual
1157 * request number (much like a virtual memory address) and maps it to a
1158 * physical hardware request number.
1159 *
1160 * When a mapping doesn't already exist for a virtual request number, the
1161 * irq_domain calls this function to associate the virtual request number with
1162 * a hardware request number.
1163 *
1164 * Return: 0
1165 */
soctherm_oc_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1166 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1167 irq_hw_number_t hw)
1168 {
1169 struct soctherm_oc_irq_chip_data *data = h->host_data;
1170
1171 irq_set_chip_data(virq, data);
1172 irq_set_chip(virq, &data->irq_chip);
1173 irq_set_nested_thread(virq, 1);
1174 return 0;
1175 }
1176
1177 /**
1178 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1179 * @d: Interrupt request domain
1180 * @ctrlr: Controller device tree node
1181 * @intspec: Array of u32s from DTs "interrupt" property
1182 * @intsize: Number of values inside the intspec array
1183 * @out_hwirq: HW IRQ value associated with this interrupt
1184 * @out_type: The IRQ SENSE type for this interrupt.
1185 *
1186 * This Device Tree IRQ specifier translation function will translate a
1187 * specific "interrupt" as defined by 2 DT values where the cell values map
1188 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1189 * number, this function will subtract 1 from the value listed in DT.
1190 *
1191 * Return: 0
1192 */
soctherm_irq_domain_xlate_twocell(struct irq_domain * d,struct device_node * ctrlr,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_type)1193 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1194 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1195 irq_hw_number_t *out_hwirq, unsigned int *out_type)
1196 {
1197 if (WARN_ON(intsize < 2))
1198 return -EINVAL;
1199
1200 /*
1201 * The HW value is 1 index less than the DT IRQ values.
1202 * i.e. OC4 goes to HW index 3.
1203 */
1204 *out_hwirq = intspec[0] - 1;
1205 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1206 return 0;
1207 }
1208
1209 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1210 .map = soctherm_oc_irq_map,
1211 .xlate = soctherm_irq_domain_xlate_twocell,
1212 };
1213
1214 /**
1215 * soctherm_oc_int_init() - Initial enabling of the over
1216 * current interrupts
1217 * @np: The devicetree node for soctherm
1218 * @num_irqs: The number of new interrupt requests
1219 *
1220 * Sets the over current interrupt request chip data
1221 *
1222 * Return: 0 on success or if overcurrent interrupts are not enabled,
1223 * -ENOMEM (out of memory), or irq_base if the function failed to
1224 * allocate the irqs
1225 */
soctherm_oc_int_init(struct device_node * np,int num_irqs)1226 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1227 {
1228 if (!num_irqs) {
1229 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1230 return 0;
1231 }
1232
1233 mutex_init(&soc_irq_cdata.irq_lock);
1234 soc_irq_cdata.irq_enable = 0;
1235
1236 soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1237 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1238 soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1239 soctherm_oc_irq_sync_unlock;
1240 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1241 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1242 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1243 soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1244
1245 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1246 &soctherm_oc_domain_ops,
1247 &soc_irq_cdata);
1248
1249 if (!soc_irq_cdata.domain) {
1250 pr_err("%s: Failed to create IRQ domain\n", __func__);
1251 return -ENOMEM;
1252 }
1253
1254 pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1255 return 0;
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
regs_show(struct seq_file * s,void * data)1259 static int regs_show(struct seq_file *s, void *data)
1260 {
1261 struct platform_device *pdev = s->private;
1262 struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1263 const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1264 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1265 u32 r, state;
1266 int i, level;
1267
1268 seq_puts(s, "-----TSENSE (convert HW)-----\n");
1269
1270 for (i = 0; i < ts->soc->num_tsensors; i++) {
1271 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1272 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1273
1274 seq_printf(s, "%s: ", tsensors[i].name);
1275 seq_printf(s, "En(%d) ", state);
1276
1277 if (!state) {
1278 seq_puts(s, "\n");
1279 continue;
1280 }
1281
1282 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1283 seq_printf(s, "tiddq(%d) ", state);
1284 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1285 seq_printf(s, "ten_count(%d) ", state);
1286 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1287 seq_printf(s, "tsample(%d) ", state + 1);
1288
1289 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1290 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1291 seq_printf(s, "Temp(%d/", state);
1292 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1293 seq_printf(s, "%d) ", translate_temp(state));
1294
1295 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1296 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1297 seq_printf(s, "Capture(%d/", state);
1298 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1299 seq_printf(s, "%d) ", state);
1300
1301 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1302 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1303 seq_printf(s, "Stop(%d) ", state);
1304 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1305 seq_printf(s, "Tall(%d) ", state);
1306 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1307 seq_printf(s, "Over(%d/", state);
1308 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1309 seq_printf(s, "%d/", state);
1310 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1311 seq_printf(s, "%d) ", state);
1312
1313 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1314 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1315 seq_printf(s, "Therm_A/B(%d/", state);
1316 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1317 seq_printf(s, "%d)\n", (s16)state);
1318 }
1319
1320 r = readl(ts->regs + SENSOR_PDIV);
1321 seq_printf(s, "PDIV: 0x%x\n", r);
1322
1323 r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1324 seq_printf(s, "HOTSPOT: 0x%x\n", r);
1325
1326 seq_puts(s, "\n");
1327 seq_puts(s, "-----SOC_THERM-----\n");
1328
1329 r = readl(ts->regs + SENSOR_TEMP1);
1330 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1331 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1332 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1333 seq_printf(s, " GPU(%d) ", translate_temp(state));
1334 r = readl(ts->regs + SENSOR_TEMP2);
1335 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1336 seq_printf(s, " PLLX(%d) ", translate_temp(state));
1337 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1338 seq_printf(s, " MEM(%d)\n", translate_temp(state));
1339
1340 for (i = 0; i < ts->soc->num_ttgs; i++) {
1341 seq_printf(s, "%s:\n", ttgs[i]->name);
1342 for (level = 0; level < 4; level++) {
1343 s32 v;
1344 u32 mask;
1345 u16 off = ttgs[i]->thermctl_lvl0_offset;
1346
1347 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1348
1349 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1350 state = REG_GET_MASK(r, mask);
1351 v = sign_extend32(state, ts->soc->bptt - 1);
1352 v *= ts->soc->thresh_grain;
1353 seq_printf(s, " %d: Up/Dn(%d /", level, v);
1354
1355 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1356 state = REG_GET_MASK(r, mask);
1357 v = sign_extend32(state, ts->soc->bptt - 1);
1358 v *= ts->soc->thresh_grain;
1359 seq_printf(s, "%d ) ", v);
1360
1361 mask = THERMCTL_LVL0_CPU0_EN_MASK;
1362 state = REG_GET_MASK(r, mask);
1363 seq_printf(s, "En(%d) ", state);
1364
1365 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1366 state = REG_GET_MASK(r, mask);
1367 seq_puts(s, "CPU Throt");
1368 if (!state)
1369 seq_printf(s, "(%s) ", "none");
1370 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1371 seq_printf(s, "(%s) ", "L");
1372 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1373 seq_printf(s, "(%s) ", "H");
1374 else
1375 seq_printf(s, "(%s) ", "H+L");
1376
1377 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1378 state = REG_GET_MASK(r, mask);
1379 seq_puts(s, "GPU Throt");
1380 if (!state)
1381 seq_printf(s, "(%s) ", "none");
1382 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1383 seq_printf(s, "(%s) ", "L");
1384 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1385 seq_printf(s, "(%s) ", "H");
1386 else
1387 seq_printf(s, "(%s) ", "H+L");
1388
1389 mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1390 state = REG_GET_MASK(r, mask);
1391 seq_printf(s, "Status(%s)\n",
1392 state == 0 ? "LO" :
1393 state == 1 ? "In" :
1394 state == 2 ? "Res" : "HI");
1395 }
1396 }
1397
1398 r = readl(ts->regs + THERMCTL_STATS_CTL);
1399 seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1400 r & STATS_CTL_EN_UP ? "En" : "--",
1401 r & STATS_CTL_EN_DN ? "En" : "--");
1402
1403 for (level = 0; level < 4; level++) {
1404 u16 off;
1405
1406 off = THERMCTL_LVL0_UP_STATS;
1407 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1408 seq_printf(s, " Level_%d Up(%d) ", level, r);
1409
1410 off = THERMCTL_LVL0_DN_STATS;
1411 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1412 seq_printf(s, "Dn(%d)\n", r);
1413 }
1414
1415 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1416 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1417 seq_printf(s, "Thermtrip Any En(%d)\n", state);
1418 for (i = 0; i < ts->soc->num_ttgs; i++) {
1419 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1420 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
1421 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1422 state *= ts->soc->thresh_grain;
1423 seq_printf(s, "Thresh(%d)\n", state);
1424 }
1425
1426 r = readl(ts->regs + THROT_GLOBAL_CFG);
1427 seq_puts(s, "\n");
1428 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1429
1430 seq_puts(s, "---------------------------------------------------\n");
1431 r = readl(ts->regs + THROT_STATUS);
1432 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1433 seq_printf(s, "THROT STATUS: breach(%d) ", state);
1434 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1435 seq_printf(s, "state(%d) ", state);
1436 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1437 seq_printf(s, "enabled(%d)\n", state);
1438
1439 r = readl(ts->regs + CPU_PSKIP_STATUS);
1440 if (ts->soc->use_ccroc) {
1441 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1442 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1443 } else {
1444 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1445 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1446 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1447 seq_printf(s, "N(%d) ", state);
1448 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1449 seq_printf(s, "enabled(%d)\n", state);
1450 }
1451
1452 return 0;
1453 }
1454
1455 DEFINE_SHOW_ATTRIBUTE(regs);
1456
soctherm_debug_init(struct platform_device * pdev)1457 static void soctherm_debug_init(struct platform_device *pdev)
1458 {
1459 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1460 struct dentry *root;
1461
1462 root = debugfs_create_dir("soctherm", NULL);
1463
1464 tegra->debugfs_dir = root;
1465
1466 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops);
1467 }
1468 #else
soctherm_debug_init(struct platform_device * pdev)1469 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1470 #endif
1471
soctherm_clk_enable(struct platform_device * pdev,bool enable)1472 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1473 {
1474 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1475 int err;
1476
1477 if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1478 return -EINVAL;
1479
1480 reset_control_assert(tegra->reset);
1481
1482 if (enable) {
1483 err = clk_prepare_enable(tegra->clock_soctherm);
1484 if (err) {
1485 reset_control_deassert(tegra->reset);
1486 return err;
1487 }
1488
1489 err = clk_prepare_enable(tegra->clock_tsensor);
1490 if (err) {
1491 clk_disable_unprepare(tegra->clock_soctherm);
1492 reset_control_deassert(tegra->reset);
1493 return err;
1494 }
1495 } else {
1496 clk_disable_unprepare(tegra->clock_tsensor);
1497 clk_disable_unprepare(tegra->clock_soctherm);
1498 }
1499
1500 reset_control_deassert(tegra->reset);
1501
1502 return 0;
1503 }
1504
throt_get_cdev_max_state(struct thermal_cooling_device * cdev,unsigned long * max_state)1505 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1506 unsigned long *max_state)
1507 {
1508 *max_state = 1;
1509 return 0;
1510 }
1511
throt_get_cdev_cur_state(struct thermal_cooling_device * cdev,unsigned long * cur_state)1512 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1513 unsigned long *cur_state)
1514 {
1515 struct tegra_soctherm *ts = cdev->devdata;
1516 u32 r;
1517
1518 r = readl(ts->regs + THROT_STATUS);
1519 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1520 *cur_state = 1;
1521 else
1522 *cur_state = 0;
1523
1524 return 0;
1525 }
1526
throt_set_cdev_state(struct thermal_cooling_device * cdev,unsigned long cur_state)1527 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1528 unsigned long cur_state)
1529 {
1530 return 0;
1531 }
1532
1533 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1534 .get_max_state = throt_get_cdev_max_state,
1535 .get_cur_state = throt_get_cdev_cur_state,
1536 .set_cur_state = throt_set_cdev_state,
1537 };
1538
soctherm_thermtrips_parse(struct platform_device * pdev)1539 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1540 {
1541 struct device *dev = &pdev->dev;
1542 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1543 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1544 const int max_num_prop = ts->soc->num_ttgs * 2;
1545 u32 *tlb;
1546 int i, j, n, ret;
1547
1548 if (!tt)
1549 return -ENOMEM;
1550
1551 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1552 if (n <= 0) {
1553 dev_info(dev,
1554 "missing thermtrips, will use critical trips as shut down temp\n");
1555 return n;
1556 }
1557
1558 n = min(max_num_prop, n);
1559
1560 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1561 if (!tlb)
1562 return -ENOMEM;
1563 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1564 tlb, n);
1565 if (ret) {
1566 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1567 return ret;
1568 }
1569
1570 i = 0;
1571 for (j = 0; j < n; j = j + 2) {
1572 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1573 continue;
1574
1575 tt[i].id = tlb[j];
1576 tt[i].temp = tlb[j + 1];
1577 i++;
1578 }
1579
1580 return 0;
1581 }
1582
soctherm_oc_cfg_parse(struct device * dev,struct device_node * np_oc,struct soctherm_throt_cfg * stc)1583 static void soctherm_oc_cfg_parse(struct device *dev,
1584 struct device_node *np_oc,
1585 struct soctherm_throt_cfg *stc)
1586 {
1587 u32 val;
1588
1589 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1590 stc->oc_cfg.active_low = 1;
1591 else
1592 stc->oc_cfg.active_low = 0;
1593
1594 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1595 stc->oc_cfg.intr_en = 1;
1596 stc->oc_cfg.alarm_cnt_thresh = val;
1597 }
1598
1599 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1600 stc->oc_cfg.throt_period = val;
1601
1602 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1603 stc->oc_cfg.alarm_filter = val;
1604
1605 /* BRIEF throttling by default, do not support STICKY */
1606 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1607 }
1608
soctherm_throt_cfg_parse(struct device * dev,struct device_node * np,struct soctherm_throt_cfg * stc)1609 static int soctherm_throt_cfg_parse(struct device *dev,
1610 struct device_node *np,
1611 struct soctherm_throt_cfg *stc)
1612 {
1613 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1614 int ret;
1615 u32 val;
1616
1617 ret = of_property_read_u32(np, "nvidia,priority", &val);
1618 if (ret) {
1619 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1620 return -EINVAL;
1621 }
1622 stc->priority = val;
1623
1624 ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1625 "nvidia,cpu-throt-level" :
1626 "nvidia,cpu-throt-percent", &val);
1627 if (!ret) {
1628 if (ts->soc->use_ccroc &&
1629 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1630 stc->cpu_throt_level = val;
1631 else if (!ts->soc->use_ccroc && val <= 100)
1632 stc->cpu_throt_depth = val;
1633 else
1634 goto err;
1635 } else {
1636 goto err;
1637 }
1638
1639 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1640 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1641 stc->gpu_throt_level = val;
1642 else
1643 goto err;
1644
1645 return 0;
1646
1647 err:
1648 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1649 stc->name);
1650 return -EINVAL;
1651 }
1652
1653 /**
1654 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1655 * and register them as cooling devices.
1656 * @pdev: Pointer to platform_device struct
1657 */
soctherm_init_hw_throt_cdev(struct platform_device * pdev)1658 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1659 {
1660 struct device *dev = &pdev->dev;
1661 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1662 struct device_node *np_stc, *np_stcc;
1663 const char *name;
1664 int i;
1665
1666 for (i = 0; i < THROTTLE_SIZE; i++) {
1667 ts->throt_cfgs[i].name = throt_names[i];
1668 ts->throt_cfgs[i].id = i;
1669 ts->throt_cfgs[i].init = false;
1670 }
1671
1672 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1673 if (!np_stc) {
1674 dev_info(dev,
1675 "throttle-cfg: no throttle-cfgs - not enabling\n");
1676 return;
1677 }
1678
1679 for_each_child_of_node(np_stc, np_stcc) {
1680 struct soctherm_throt_cfg *stc;
1681 struct thermal_cooling_device *tcd;
1682 int err;
1683
1684 name = np_stcc->name;
1685 stc = find_throttle_cfg_by_name(ts, name);
1686 if (!stc) {
1687 dev_err(dev,
1688 "throttle-cfg: could not find %s\n", name);
1689 continue;
1690 }
1691
1692 if (stc->init) {
1693 dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1694 of_node_put(np_stcc);
1695 break;
1696 }
1697
1698 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1699 if (err)
1700 continue;
1701
1702 if (stc->id >= THROTTLE_OC1) {
1703 soctherm_oc_cfg_parse(dev, np_stcc, stc);
1704 stc->init = true;
1705 } else {
1706
1707 tcd = thermal_of_cooling_device_register(np_stcc,
1708 (char *)name, ts,
1709 &throt_cooling_ops);
1710 if (IS_ERR_OR_NULL(tcd)) {
1711 dev_err(dev,
1712 "throttle-cfg: %s: failed to register cooling device\n",
1713 name);
1714 continue;
1715 }
1716 stc->cdev = tcd;
1717 stc->init = true;
1718 }
1719
1720 }
1721
1722 of_node_put(np_stc);
1723 }
1724
1725 /**
1726 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1727 * @ts: pointer to a struct tegra_soctherm
1728 * @level: describing the level LOW/MED/HIGH of throttling
1729 *
1730 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1731 * the M/N values desired for each level. This function does this.
1732 *
1733 * This function pre-programs the CCROC NV_THERM levels in terms of
1734 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1735 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1736 */
throttlectl_cpu_level_cfg(struct tegra_soctherm * ts,int level)1737 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1738 {
1739 u8 depth, dividend;
1740 u32 r;
1741
1742 switch (level) {
1743 case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1744 depth = 50;
1745 break;
1746 case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1747 depth = 75;
1748 break;
1749 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1750 depth = 80;
1751 break;
1752 case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1753 return;
1754 default:
1755 return;
1756 }
1757
1758 dividend = THROT_DEPTH_DIVIDEND(depth);
1759
1760 /* setup PSKIP in ccroc nv_therm registers */
1761 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1762 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1763 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1764 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1765
1766 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1767 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1768 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1769 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1770 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1771 }
1772
1773 /**
1774 * throttlectl_cpu_level_select() - program CPU pulse skipper config
1775 * @ts: pointer to a struct tegra_soctherm
1776 * @throt: the LIGHT/HEAVY of throttle event id
1777 *
1778 * Pulse skippers are used to throttle clock frequencies. This
1779 * function programs the pulse skippers based on @throt and platform
1780 * data. This function is used on SoCs which have CPU-local pulse
1781 * skipper control, such as T13x. It programs soctherm's interface to
1782 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1783 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1784 */
throttlectl_cpu_level_select(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1785 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1786 enum soctherm_throttle_id throt)
1787 {
1788 u32 r, throt_vect;
1789
1790 /* Denver:CCROC NV_THERM interface N:3 Mapping */
1791 switch (ts->throt_cfgs[throt].cpu_throt_level) {
1792 case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1793 throt_vect = THROT_VECT_LOW;
1794 break;
1795 case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1796 throt_vect = THROT_VECT_MED;
1797 break;
1798 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1799 throt_vect = THROT_VECT_HIGH;
1800 break;
1801 default:
1802 throt_vect = THROT_VECT_NONE;
1803 break;
1804 }
1805
1806 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1807 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1808 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1809 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1810 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1811
1812 /* bypass sequencer in soc_therm as it is programmed in ccroc */
1813 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1814 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1815 }
1816
1817 /**
1818 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1819 * @ts: pointer to a struct tegra_soctherm
1820 * @throt: the LIGHT/HEAVY of throttle event id
1821 *
1822 * Pulse skippers are used to throttle clock frequencies. This
1823 * function programs the pulse skippers based on @throt and platform
1824 * data. This function is used for CPUs that have "remote" pulse
1825 * skipper control, e.g., the CPU pulse skipper is controlled by the
1826 * SOC_THERM IP block. (SOC_THERM is located outside the CPU
1827 * complex.)
1828 */
throttlectl_cpu_mn(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1829 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1830 enum soctherm_throttle_id throt)
1831 {
1832 u32 r;
1833 int depth;
1834 u8 dividend;
1835
1836 depth = ts->throt_cfgs[throt].cpu_throt_depth;
1837 dividend = THROT_DEPTH_DIVIDEND(depth);
1838
1839 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1840 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1841 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1842 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1843 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1844
1845 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1846 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1847 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1848 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1849 }
1850
1851 /**
1852 * throttlectl_gpu_level_select() - selects throttling level for GPU
1853 * @ts: pointer to a struct tegra_soctherm
1854 * @throt: the LIGHT/HEAVY of throttle event id
1855 *
1856 * This function programs soctherm's interface to GK20a NV_THERM to select
1857 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1858 *
1859 * Return: boolean true if HW was programmed
1860 */
throttlectl_gpu_level_select(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1861 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1862 enum soctherm_throttle_id throt)
1863 {
1864 u32 r, level, throt_vect;
1865
1866 level = ts->throt_cfgs[throt].gpu_throt_level;
1867 throt_vect = THROT_LEVEL_TO_DEPTH(level);
1868 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1869 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1870 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1871 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1872 }
1873
soctherm_oc_cfg_program(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1874 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1875 enum soctherm_throttle_id throt)
1876 {
1877 u32 r;
1878 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1879
1880 if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1881 return -EINVAL;
1882
1883 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1884 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1885 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1886 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1887 writel(r, ts->regs + ALARM_CFG(throt));
1888 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1889 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1890 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1891 soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1892
1893 return 0;
1894 }
1895
1896 /**
1897 * soctherm_throttle_program() - programs pulse skippers' configuration
1898 * @ts: pointer to a struct tegra_soctherm
1899 * @throt: the LIGHT/HEAVY of the throttle event id.
1900 *
1901 * Pulse skippers are used to throttle clock frequencies.
1902 * This function programs the pulse skippers.
1903 */
soctherm_throttle_program(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1904 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1905 enum soctherm_throttle_id throt)
1906 {
1907 u32 r;
1908 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1909
1910 if (!stc.init)
1911 return;
1912
1913 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1914 return;
1915
1916 /* Setup PSKIP parameters */
1917 if (ts->soc->use_ccroc)
1918 throttlectl_cpu_level_select(ts, throt);
1919 else
1920 throttlectl_cpu_mn(ts, throt);
1921
1922 throttlectl_gpu_level_select(ts, throt);
1923
1924 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1925 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1926
1927 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1928 writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1929
1930 r = readl(ts->regs + THROT_PRIORITY_LOCK);
1931 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1932 if (r >= stc.priority)
1933 return;
1934 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1935 stc.priority);
1936 writel(r, ts->regs + THROT_PRIORITY_LOCK);
1937 }
1938
tegra_soctherm_throttle(struct device * dev)1939 static void tegra_soctherm_throttle(struct device *dev)
1940 {
1941 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1942 u32 v;
1943 int i;
1944
1945 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1946 if (ts->soc->use_ccroc) {
1947 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1948 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1949 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1950 }
1951
1952 /* Thermal HW throttle programming */
1953 for (i = 0; i < THROTTLE_SIZE; i++)
1954 soctherm_throttle_program(ts, i);
1955
1956 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1957 if (ts->soc->use_ccroc) {
1958 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1959
1960 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1961 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1962 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1963 } else {
1964 writel(v, ts->regs + THROT_GLOBAL_CFG);
1965
1966 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1967 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1968 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1969 }
1970
1971 /* initialize stats collection */
1972 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1973 STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1974 writel(v, ts->regs + THERMCTL_STATS_CTL);
1975 }
1976
soctherm_interrupts_init(struct platform_device * pdev,struct tegra_soctherm * tegra)1977 static int soctherm_interrupts_init(struct platform_device *pdev,
1978 struct tegra_soctherm *tegra)
1979 {
1980 struct device_node *np = pdev->dev.of_node;
1981 int ret;
1982
1983 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1984 if (ret < 0) {
1985 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1986 return ret;
1987 }
1988
1989 tegra->thermal_irq = platform_get_irq(pdev, 0);
1990 if (tegra->thermal_irq < 0) {
1991 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1992 return 0;
1993 }
1994
1995 tegra->edp_irq = platform_get_irq(pdev, 1);
1996 if (tegra->edp_irq < 0) {
1997 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1998 return 0;
1999 }
2000
2001 ret = devm_request_threaded_irq(&pdev->dev,
2002 tegra->thermal_irq,
2003 soctherm_thermal_isr,
2004 soctherm_thermal_isr_thread,
2005 IRQF_ONESHOT,
2006 dev_name(&pdev->dev),
2007 tegra);
2008 if (ret < 0) {
2009 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2010 return ret;
2011 }
2012
2013 ret = devm_request_threaded_irq(&pdev->dev,
2014 tegra->edp_irq,
2015 soctherm_edp_isr,
2016 soctherm_edp_isr_thread,
2017 IRQF_ONESHOT,
2018 "soctherm_edp",
2019 tegra);
2020 if (ret < 0) {
2021 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2022 return ret;
2023 }
2024
2025 return 0;
2026 }
2027
soctherm_init(struct platform_device * pdev)2028 static void soctherm_init(struct platform_device *pdev)
2029 {
2030 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2031 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2032 int i;
2033 u32 pdiv, hotspot;
2034
2035 /* Initialize raw sensors */
2036 for (i = 0; i < tegra->soc->num_tsensors; ++i)
2037 enable_tsensor(tegra, i);
2038
2039 /* program pdiv and hotspot offsets per THERM */
2040 pdiv = readl(tegra->regs + SENSOR_PDIV);
2041 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2042 for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2043 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2044 ttgs[i]->pdiv);
2045 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2046 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2047 continue;
2048 hotspot = REG_SET_MASK(hotspot,
2049 ttgs[i]->pllx_hotspot_mask,
2050 ttgs[i]->pllx_hotspot_diff);
2051 }
2052 writel(pdiv, tegra->regs + SENSOR_PDIV);
2053 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2054
2055 /* Configure hw throttle */
2056 tegra_soctherm_throttle(&pdev->dev);
2057 }
2058
2059 static const struct of_device_id tegra_soctherm_of_match[] = {
2060 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2061 {
2062 .compatible = "nvidia,tegra124-soctherm",
2063 .data = &tegra124_soctherm,
2064 },
2065 #endif
2066 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2067 {
2068 .compatible = "nvidia,tegra132-soctherm",
2069 .data = &tegra132_soctherm,
2070 },
2071 #endif
2072 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2073 {
2074 .compatible = "nvidia,tegra210-soctherm",
2075 .data = &tegra210_soctherm,
2076 },
2077 #endif
2078 { },
2079 };
2080 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2081
tegra_soctherm_probe(struct platform_device * pdev)2082 static int tegra_soctherm_probe(struct platform_device *pdev)
2083 {
2084 const struct of_device_id *match;
2085 struct tegra_soctherm *tegra;
2086 struct thermal_zone_device *z;
2087 struct tsensor_shared_calib shared_calib;
2088 struct tegra_soctherm_soc *soc;
2089 unsigned int i;
2090 int err;
2091
2092 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2093 if (!match)
2094 return -ENODEV;
2095
2096 soc = (struct tegra_soctherm_soc *)match->data;
2097 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2098 return -EINVAL;
2099
2100 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2101 if (!tegra)
2102 return -ENOMEM;
2103
2104 mutex_init(&tegra->thermctl_lock);
2105 dev_set_drvdata(&pdev->dev, tegra);
2106
2107 tegra->soc = soc;
2108
2109 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2110 if (IS_ERR(tegra->regs)) {
2111 dev_err(&pdev->dev, "can't get soctherm registers");
2112 return PTR_ERR(tegra->regs);
2113 }
2114
2115 if (!tegra->soc->use_ccroc) {
2116 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2117 if (IS_ERR(tegra->clk_regs)) {
2118 dev_err(&pdev->dev, "can't get car clk registers");
2119 return PTR_ERR(tegra->clk_regs);
2120 }
2121 } else {
2122 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2123 if (IS_ERR(tegra->ccroc_regs)) {
2124 dev_err(&pdev->dev, "can't get ccroc registers");
2125 return PTR_ERR(tegra->ccroc_regs);
2126 }
2127 }
2128
2129 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2130 if (IS_ERR(tegra->reset)) {
2131 dev_err(&pdev->dev, "can't get soctherm reset\n");
2132 return PTR_ERR(tegra->reset);
2133 }
2134
2135 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2136 if (IS_ERR(tegra->clock_tsensor)) {
2137 dev_err(&pdev->dev, "can't get tsensor clock\n");
2138 return PTR_ERR(tegra->clock_tsensor);
2139 }
2140
2141 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2142 if (IS_ERR(tegra->clock_soctherm)) {
2143 dev_err(&pdev->dev, "can't get soctherm clock\n");
2144 return PTR_ERR(tegra->clock_soctherm);
2145 }
2146
2147 tegra->calib = devm_kcalloc(&pdev->dev,
2148 soc->num_tsensors, sizeof(u32),
2149 GFP_KERNEL);
2150 if (!tegra->calib)
2151 return -ENOMEM;
2152
2153 /* calculate shared calibration data */
2154 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2155 if (err)
2156 return err;
2157
2158 /* calculate tsensor calibration data */
2159 for (i = 0; i < soc->num_tsensors; ++i) {
2160 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2161 &shared_calib,
2162 &tegra->calib[i]);
2163 if (err)
2164 return err;
2165 }
2166
2167 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2168 soc->num_ttgs, sizeof(z),
2169 GFP_KERNEL);
2170 if (!tegra->thermctl_tzs)
2171 return -ENOMEM;
2172
2173 err = soctherm_clk_enable(pdev, true);
2174 if (err)
2175 return err;
2176
2177 soctherm_thermtrips_parse(pdev);
2178
2179 soctherm_init_hw_throt_cdev(pdev);
2180
2181 soctherm_init(pdev);
2182
2183 for (i = 0; i < soc->num_ttgs; ++i) {
2184 struct tegra_thermctl_zone *zone =
2185 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2186 if (!zone) {
2187 err = -ENOMEM;
2188 goto disable_clocks;
2189 }
2190
2191 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2192 zone->dev = &pdev->dev;
2193 zone->sg = soc->ttgs[i];
2194 zone->ts = tegra;
2195
2196 z = devm_thermal_of_zone_register(&pdev->dev,
2197 soc->ttgs[i]->id, zone,
2198 &tegra_of_thermal_ops);
2199 if (IS_ERR(z)) {
2200 err = PTR_ERR(z);
2201 dev_err(&pdev->dev, "failed to register sensor: %d\n",
2202 err);
2203 goto disable_clocks;
2204 }
2205
2206 zone->tz = z;
2207 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2208
2209 /* Configure hw trip points */
2210 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2211 if (err)
2212 goto disable_clocks;
2213 }
2214
2215 err = soctherm_interrupts_init(pdev, tegra);
2216
2217 soctherm_debug_init(pdev);
2218
2219 return 0;
2220
2221 disable_clocks:
2222 soctherm_clk_enable(pdev, false);
2223
2224 return err;
2225 }
2226
tegra_soctherm_remove(struct platform_device * pdev)2227 static int tegra_soctherm_remove(struct platform_device *pdev)
2228 {
2229 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2230
2231 debugfs_remove_recursive(tegra->debugfs_dir);
2232
2233 soctherm_clk_enable(pdev, false);
2234
2235 return 0;
2236 }
2237
soctherm_suspend(struct device * dev)2238 static int __maybe_unused soctherm_suspend(struct device *dev)
2239 {
2240 struct platform_device *pdev = to_platform_device(dev);
2241
2242 soctherm_clk_enable(pdev, false);
2243
2244 return 0;
2245 }
2246
soctherm_resume(struct device * dev)2247 static int __maybe_unused soctherm_resume(struct device *dev)
2248 {
2249 struct platform_device *pdev = to_platform_device(dev);
2250 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2251 struct tegra_soctherm_soc *soc = tegra->soc;
2252 int err, i;
2253
2254 err = soctherm_clk_enable(pdev, true);
2255 if (err) {
2256 dev_err(&pdev->dev,
2257 "Resume failed: enable clocks failed\n");
2258 return err;
2259 }
2260
2261 soctherm_init(pdev);
2262
2263 for (i = 0; i < soc->num_ttgs; ++i) {
2264 struct thermal_zone_device *tz;
2265
2266 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2267 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2268 if (err) {
2269 dev_err(&pdev->dev,
2270 "Resume failed: set hwtrips failed\n");
2271 return err;
2272 }
2273 }
2274
2275 return 0;
2276 }
2277
2278 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2279
2280 static struct platform_driver tegra_soctherm_driver = {
2281 .probe = tegra_soctherm_probe,
2282 .remove = tegra_soctherm_remove,
2283 .driver = {
2284 .name = "tegra_soctherm",
2285 .pm = &tegra_soctherm_pm,
2286 .of_match_table = tegra_soctherm_of_match,
2287 },
2288 };
2289 module_platform_driver(tegra_soctherm_driver);
2290
2291 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2292 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2293 MODULE_LICENSE("GPL v2");
2294