1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4 *
5 * Contact Information:
6 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
7 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
8 *
9 * Few modifications for Realtek's Wi-Fi drivers by
10 * Andrea Merello <andrea.merello@gmail.com>
11 *
12 * A special thanks goes to Realtek for their support !
13 */
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/if_arp.h>
17 #include <linux/in6.h>
18 #include <linux/in.h>
19 #include <linux/ip.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/tcp.h>
28 #include <linux/types.h>
29 #include <linux/wireless.h>
30 #include <linux/etherdevice.h>
31 #include <linux/uaccess.h>
32 #include <linux/if_vlan.h>
33
34 #include "rtllib.h"
35
36 /* 802.11 Data Frame
37 *
38 *
39 * 802.11 frame_control for data frames - 2 bytes
40 * ,--------------------------------------------------------------------.
41 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
42 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
43 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
44 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
45 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep |
46 * | | | x=0 data |DS | DS |frag| | mgm |data | |
47 * | | | x=1 data+ack | | | | | | | |
48 * '--------------------------------------------------------------------'
49 * /\
50 * |
51 * 802.11 Data Frame |
52 * ,--------- 'ctrl' expands to >---'
53 * |
54 * ,--'---,-------------------------------------------------------------.
55 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
56 * |------|------|---------|---------|---------|------|---------|------|
57 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
58 * | | tion | (BSSID) | | | ence | data | |
59 * `--------------------------------------------------| |------'
60 * Total: 28 non-data bytes `----.----'
61 * |
62 * .- 'Frame data' expands to <---------------------------'
63 * |
64 * V
65 * ,---------------------------------------------------.
66 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
67 * |------|------|---------|----------|------|---------|
68 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
69 * | DSAP | SSAP | | | | Packet |
70 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
71 * `-----------------------------------------| |
72 * Total: 8 non-data bytes `----.----'
73 * |
74 * .- 'IP Packet' expands, if WEP enabled, to <--'
75 * |
76 * V
77 * ,-----------------------.
78 * Bytes | 4 | 0-2296 | 4 |
79 * |-----|-----------|-----|
80 * Desc. | IV | Encrypted | ICV |
81 * | | IP Packet | |
82 * `-----------------------'
83 * Total: 8 non-data bytes
84 *
85 *
86 * 802.3 Ethernet Data Frame
87 *
88 * ,-----------------------------------------.
89 * Bytes | 6 | 6 | 2 | Variable | 4 |
90 * |-------|-------|------|-----------|------|
91 * Desc. | Dest. | Source| Type | IP Packet | fcs |
92 * | MAC | MAC | | | |
93 * `-----------------------------------------'
94 * Total: 18 non-data bytes
95 *
96 * In the event that fragmentation is required, the incoming payload is split
97 * into N parts of size ieee->fts. The first fragment contains the SNAP header
98 * and the remaining packets are just data.
99 *
100 * If encryption is enabled, each fragment payload size is reduced by enough
101 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
102 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
103 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames
104 * as the payload of each frame is reduced to 492 bytes.
105 *
106 * SKB visualization
107 *
108 * ,- skb->data
109 * |
110 * | ETHERNET HEADER ,-<-- PAYLOAD
111 * | | 14 bytes from skb->data
112 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
113 * | | | |
114 * |,-Dest.--. ,--Src.---. | | |
115 * | 6 bytes| | 6 bytes | | | |
116 * v | | | | | |
117 * 0 | v 1 | v | v 2
118 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
119 * ^ | ^ | ^ |
120 * | | | | | |
121 * | | | | `T' <---- 2 bytes for Type
122 * | | | |
123 * | | '---SNAP--' <-------- 6 bytes for SNAP
124 * | |
125 * `-IV--' <-------------------- 4 bytes for IV (WEP)
126 *
127 * SNAP HEADER
128 *
129 */
130
131 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
132 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
133
rtllib_put_snap(u8 * data,u16 h_proto)134 static int rtllib_put_snap(u8 *data, u16 h_proto)
135 {
136 struct rtllib_snap_hdr *snap;
137 u8 *oui;
138
139 snap = (struct rtllib_snap_hdr *)data;
140 snap->dsap = 0xaa;
141 snap->ssap = 0xaa;
142 snap->ctrl = 0x03;
143
144 if (h_proto == 0x8137 || h_proto == 0x80f3)
145 oui = P802_1H_OUI;
146 else
147 oui = RFC1042_OUI;
148 snap->oui[0] = oui[0];
149 snap->oui[1] = oui[1];
150 snap->oui[2] = oui[2];
151
152 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
153
154 return SNAP_SIZE + sizeof(u16);
155 }
156
rtllib_encrypt_fragment(struct rtllib_device * ieee,struct sk_buff * frag,int hdr_len)157 int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
158 int hdr_len)
159 {
160 struct lib80211_crypt_data *crypt = NULL;
161 int res;
162
163 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
164
165 if (!(crypt && crypt->ops)) {
166 netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
167 __func__);
168 return -1;
169 }
170 /* To encrypt, frame format is:
171 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
172 */
173
174 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
175 * call both MSDU and MPDU encryption functions from here.
176 */
177 atomic_inc(&crypt->refcnt);
178 res = 0;
179 if (crypt->ops->encrypt_msdu)
180 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
181 if (res == 0 && crypt->ops->encrypt_mpdu)
182 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
183
184 atomic_dec(&crypt->refcnt);
185 if (res < 0) {
186 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
187 ieee->dev->name, frag->len);
188 return -1;
189 }
190
191 return 0;
192 }
193
194
rtllib_txb_free(struct rtllib_txb * txb)195 void rtllib_txb_free(struct rtllib_txb *txb)
196 {
197 if (unlikely(!txb))
198 return;
199 kfree(txb);
200 }
201
rtllib_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)202 static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
203 gfp_t gfp_mask)
204 {
205 struct rtllib_txb *txb;
206 int i;
207
208 txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask);
209 if (!txb)
210 return NULL;
211
212 txb->nr_frags = nr_frags;
213 txb->frag_size = cpu_to_le16(txb_size);
214
215 for (i = 0; i < nr_frags; i++) {
216 txb->fragments[i] = dev_alloc_skb(txb_size);
217 if (unlikely(!txb->fragments[i]))
218 goto err_free;
219 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
220 }
221
222 return txb;
223
224 err_free:
225 while (--i >= 0)
226 dev_kfree_skb_any(txb->fragments[i]);
227 kfree(txb);
228
229 return NULL;
230 }
231
rtllib_classify(struct sk_buff * skb,u8 bIsAmsdu)232 static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu)
233 {
234 struct ethhdr *eth;
235 struct iphdr *ip;
236
237 eth = (struct ethhdr *)skb->data;
238 if (eth->h_proto != htons(ETH_P_IP))
239 return 0;
240
241 #ifdef VERBOSE_DEBUG
242 print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data,
243 skb->len);
244 #endif
245 ip = ip_hdr(skb);
246 switch (ip->tos & 0xfc) {
247 case 0x20:
248 return 2;
249 case 0x40:
250 return 1;
251 case 0x60:
252 return 3;
253 case 0x80:
254 return 4;
255 case 0xa0:
256 return 5;
257 case 0xc0:
258 return 6;
259 case 0xe0:
260 return 7;
261 default:
262 return 0;
263 }
264 }
265
rtllib_tx_query_agg_cap(struct rtllib_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)266 static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
267 struct sk_buff *skb,
268 struct cb_desc *tcb_desc)
269 {
270 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
271 struct tx_ts_record *pTxTs = NULL;
272 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data;
273
274 if (rtllib_act_scanning(ieee, false))
275 return;
276
277 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
278 return;
279 if (!IsQoSDataFrame(skb->data))
280 return;
281 if (is_multicast_ether_addr(hdr->addr1))
282 return;
283
284 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2)
285 return;
286
287 if (pHTInfo->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION)
288 return;
289
290 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev))
291 return;
292 if (pHTInfo->bCurrentAMPDUEnable) {
293 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1,
294 skb->priority, TX_DIR, true)) {
295 netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
296 return;
297 }
298 if (!pTxTs->TxAdmittedBARecord.b_valid) {
299 if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
300 KEY_TYPE_NA)) {
301 ;
302 } else if (tcb_desc->bdhcp == 1) {
303 ;
304 } else if (!pTxTs->bDisable_AddBa) {
305 TsStartAddBaProcess(ieee, pTxTs);
306 }
307 goto FORCED_AGG_SETTING;
308 } else if (!pTxTs->bUsingBa) {
309 if (SN_LESS(pTxTs->TxAdmittedBARecord.ba_start_seq_ctrl.field.seq_num,
310 (pTxTs->TxCurSeq+1)%4096))
311 pTxTs->bUsingBa = true;
312 else
313 goto FORCED_AGG_SETTING;
314 }
315 if (ieee->iw_mode == IW_MODE_INFRA) {
316 tcb_desc->bAMPDUEnable = true;
317 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
318 tcb_desc->ampdu_density = pHTInfo->current_mpdu_density;
319 }
320 }
321 FORCED_AGG_SETTING:
322 switch (pHTInfo->ForcedAMPDUMode) {
323 case HT_AGG_AUTO:
324 break;
325
326 case HT_AGG_FORCE_ENABLE:
327 tcb_desc->bAMPDUEnable = true;
328 tcb_desc->ampdu_density = pHTInfo->forced_mpdu_density;
329 tcb_desc->ampdu_factor = pHTInfo->forced_ampdu_factor;
330 break;
331
332 case HT_AGG_FORCE_DISABLE:
333 tcb_desc->bAMPDUEnable = false;
334 tcb_desc->ampdu_density = 0;
335 tcb_desc->ampdu_factor = 0;
336 break;
337 }
338 }
339
rtllib_query_ShortPreambleMode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)340 static void rtllib_query_ShortPreambleMode(struct rtllib_device *ieee,
341 struct cb_desc *tcb_desc)
342 {
343 tcb_desc->bUseShortPreamble = false;
344 if (tcb_desc->data_rate == 2)
345 return;
346 else if (ieee->current_network.capability &
347 WLAN_CAPABILITY_SHORT_PREAMBLE)
348 tcb_desc->bUseShortPreamble = true;
349 }
350
rtllib_query_HTCapShortGI(struct rtllib_device * ieee,struct cb_desc * tcb_desc)351 static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee,
352 struct cb_desc *tcb_desc)
353 {
354 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
355
356 tcb_desc->bUseShortGI = false;
357
358 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
359 return;
360
361 if (pHTInfo->forced_short_gi) {
362 tcb_desc->bUseShortGI = true;
363 return;
364 }
365
366 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurShortGI40MHz)
367 tcb_desc->bUseShortGI = true;
368 else if (!pHTInfo->bCurBW40MHz && pHTInfo->bCurShortGI20MHz)
369 tcb_desc->bUseShortGI = true;
370 }
371
rtllib_query_BandwidthMode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)372 static void rtllib_query_BandwidthMode(struct rtllib_device *ieee,
373 struct cb_desc *tcb_desc)
374 {
375 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
376
377 tcb_desc->bPacketBW = false;
378
379 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
380 return;
381
382 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
383 return;
384
385 if ((tcb_desc->data_rate & 0x80) == 0)
386 return;
387 if (pHTInfo->bCurBW40MHz && pHTInfo->cur_tx_bw40mhz &&
388 !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
389 tcb_desc->bPacketBW = true;
390 }
391
rtllib_query_protectionmode(struct rtllib_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)392 static void rtllib_query_protectionmode(struct rtllib_device *ieee,
393 struct cb_desc *tcb_desc,
394 struct sk_buff *skb)
395 {
396 struct rt_hi_throughput *pHTInfo;
397
398 tcb_desc->bRTSSTBC = false;
399 tcb_desc->bRTSUseShortGI = false;
400 tcb_desc->bCTSEnable = false;
401 tcb_desc->RTSSC = 0;
402 tcb_desc->bRTSBW = false;
403
404 if (tcb_desc->bBroadcast || tcb_desc->bMulticast)
405 return;
406
407 if (is_broadcast_ether_addr(skb->data+16))
408 return;
409
410 if (ieee->mode < IEEE_N_24G) {
411 if (skb->len > ieee->rts) {
412 tcb_desc->bRTSEnable = true;
413 tcb_desc->rts_rate = MGN_24M;
414 } else if (ieee->current_network.buseprotection) {
415 tcb_desc->bRTSEnable = true;
416 tcb_desc->bCTSEnable = true;
417 tcb_desc->rts_rate = MGN_24M;
418 }
419 return;
420 }
421
422 pHTInfo = ieee->pHTInfo;
423
424 while (true) {
425 if (pHTInfo->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) {
426 tcb_desc->bCTSEnable = true;
427 tcb_desc->rts_rate = MGN_24M;
428 tcb_desc->bRTSEnable = true;
429 break;
430 } else if (pHTInfo->iot_action & (HT_IOT_ACT_FORCED_RTS |
431 HT_IOT_ACT_PURE_N_MODE)) {
432 tcb_desc->bRTSEnable = true;
433 tcb_desc->rts_rate = MGN_24M;
434 break;
435 }
436 if (ieee->current_network.buseprotection) {
437 tcb_desc->bRTSEnable = true;
438 tcb_desc->bCTSEnable = true;
439 tcb_desc->rts_rate = MGN_24M;
440 break;
441 }
442 if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) {
443 u8 HTOpMode = pHTInfo->current_op_mode;
444
445 if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 ||
446 HTOpMode == 3)) ||
447 (!pHTInfo->bCurBW40MHz && HTOpMode == 3)) {
448 tcb_desc->rts_rate = MGN_24M;
449 tcb_desc->bRTSEnable = true;
450 break;
451 }
452 }
453 if (skb->len > ieee->rts) {
454 tcb_desc->rts_rate = MGN_24M;
455 tcb_desc->bRTSEnable = true;
456 break;
457 }
458 if (tcb_desc->bAMPDUEnable) {
459 tcb_desc->rts_rate = MGN_24M;
460 tcb_desc->bRTSEnable = false;
461 break;
462 }
463 goto NO_PROTECTION;
464 }
465 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
466 tcb_desc->bUseShortPreamble = true;
467 if (ieee->iw_mode == IW_MODE_MASTER)
468 goto NO_PROTECTION;
469 return;
470 NO_PROTECTION:
471 tcb_desc->bRTSEnable = false;
472 tcb_desc->bCTSEnable = false;
473 tcb_desc->rts_rate = 0;
474 tcb_desc->RTSSC = 0;
475 tcb_desc->bRTSBW = false;
476 }
477
478
rtllib_txrate_selectmode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)479 static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
480 struct cb_desc *tcb_desc)
481 {
482 if (ieee->bTxDisableRateFallBack)
483 tcb_desc->bTxDisableRateFallBack = true;
484
485 if (ieee->bTxUseDriverAssingedRate)
486 tcb_desc->bTxUseDriverAssingedRate = true;
487 if (!tcb_desc->bTxDisableRateFallBack ||
488 !tcb_desc->bTxUseDriverAssingedRate) {
489 if (ieee->iw_mode == IW_MODE_INFRA ||
490 ieee->iw_mode == IW_MODE_ADHOC)
491 tcb_desc->RATRIndex = 0;
492 }
493 }
494
rtllib_query_seqnum(struct rtllib_device * ieee,struct sk_buff * skb,u8 * dst)495 static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
496 u8 *dst)
497 {
498 u16 seqnum = 0;
499
500 if (is_multicast_ether_addr(dst))
501 return 0;
502 if (IsQoSDataFrame(skb->data)) {
503 struct tx_ts_record *pTS = NULL;
504
505 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst,
506 skb->priority, TX_DIR, true))
507 return 0;
508 seqnum = pTS->TxCurSeq;
509 pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096;
510 return seqnum;
511 }
512 return 0;
513 }
514
wme_downgrade_ac(struct sk_buff * skb)515 static int wme_downgrade_ac(struct sk_buff *skb)
516 {
517 switch (skb->priority) {
518 case 6:
519 case 7:
520 skb->priority = 5; /* VO -> VI */
521 return 0;
522 case 4:
523 case 5:
524 skb->priority = 3; /* VI -> BE */
525 return 0;
526 case 0:
527 case 3:
528 skb->priority = 1; /* BE -> BK */
529 return 0;
530 default:
531 return -1;
532 }
533 }
534
rtllib_current_rate(struct rtllib_device * ieee)535 static u8 rtllib_current_rate(struct rtllib_device *ieee)
536 {
537 if (ieee->mode & IEEE_MODE_MASK)
538 return ieee->rate;
539
540 if (ieee->HTCurrentOperaRate)
541 return ieee->HTCurrentOperaRate;
542 else
543 return ieee->rate & 0x7F;
544 }
545
rtllib_xmit_inter(struct sk_buff * skb,struct net_device * dev)546 static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
547 {
548 struct rtllib_device *ieee = (struct rtllib_device *)
549 netdev_priv_rsl(dev);
550 struct rtllib_txb *txb = NULL;
551 struct rtllib_hdr_3addrqos *frag_hdr;
552 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
553 unsigned long flags;
554 struct net_device_stats *stats = &ieee->stats;
555 int ether_type = 0, encrypt;
556 int bytes, fc, qos_ctl = 0, hdr_len;
557 struct sk_buff *skb_frag;
558 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */
559 .duration_id = 0,
560 .seq_ctl = 0,
561 .qos_ctl = 0
562 };
563 int qos_activated = ieee->current_network.qos_data.active;
564 u8 dest[ETH_ALEN];
565 u8 src[ETH_ALEN];
566 struct lib80211_crypt_data *crypt = NULL;
567 struct cb_desc *tcb_desc;
568 u8 bIsMulticast = false;
569 u8 IsAmsdu = false;
570 bool bdhcp = false;
571
572 spin_lock_irqsave(&ieee->lock, flags);
573
574 /* If there is no driver handler to take the TXB, don't bother
575 * creating it...
576 */
577 if ((!ieee->hard_start_xmit && !(ieee->softmac_features &
578 IEEE_SOFTMAC_TX_QUEUE)) ||
579 ((!ieee->softmac_data_hard_start_xmit &&
580 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
581 netdev_warn(ieee->dev, "No xmit handler.\n");
582 goto success;
583 }
584
585
586 if (likely(ieee->raw_tx == 0)) {
587 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
588 netdev_warn(ieee->dev, "skb too small (%d).\n",
589 skb->len);
590 goto success;
591 }
592 /* Save source and destination addresses */
593 ether_addr_copy(dest, skb->data);
594 ether_addr_copy(src, skb->data + ETH_ALEN);
595
596 memset(skb->cb, 0, sizeof(skb->cb));
597 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
598
599 if (ieee->iw_mode == IW_MODE_MONITOR) {
600 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
601 if (unlikely(!txb)) {
602 netdev_warn(ieee->dev,
603 "Could not allocate TXB\n");
604 goto failed;
605 }
606
607 txb->encrypted = 0;
608 txb->payload_size = cpu_to_le16(skb->len);
609 skb_put_data(txb->fragments[0], skb->data, skb->len);
610
611 goto success;
612 }
613
614 if (skb->len > 282) {
615 if (ether_type == ETH_P_IP) {
616 const struct iphdr *ip = (struct iphdr *)
617 ((u8 *)skb->data+14);
618 if (ip->protocol == IPPROTO_UDP) {
619 struct udphdr *udp;
620
621 udp = (struct udphdr *)((u8 *)ip +
622 (ip->ihl << 2));
623 if (((((u8 *)udp)[1] == 68) &&
624 (((u8 *)udp)[3] == 67)) ||
625 ((((u8 *)udp)[1] == 67) &&
626 (((u8 *)udp)[3] == 68))) {
627 bdhcp = true;
628 ieee->LPSDelayCnt = 200;
629 }
630 }
631 } else if (ether_type == ETH_P_ARP) {
632 netdev_info(ieee->dev,
633 "=================>DHCP Protocol start tx ARP pkt!!\n");
634 bdhcp = true;
635 ieee->LPSDelayCnt =
636 ieee->current_network.tim.tim_count;
637 }
638 }
639
640 skb->priority = rtllib_classify(skb, IsAmsdu);
641 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
642 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
643 ieee->host_encrypt && crypt && crypt->ops;
644 if (!encrypt && ieee->ieee802_1x &&
645 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
646 stats->tx_dropped++;
647 goto success;
648 }
649 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
650 struct eapol *eap = (struct eapol *)(skb->data +
651 sizeof(struct ethhdr) - SNAP_SIZE -
652 sizeof(u16));
653 netdev_dbg(ieee->dev,
654 "TX: IEEE 802.11 EAPOL frame: %s\n",
655 eap_get_type(eap->type));
656 }
657
658 /* Advance the SKB to the start of the payload */
659 skb_pull(skb, sizeof(struct ethhdr));
660
661 /* Determine total amount of storage required for TXB packets */
662 bytes = skb->len + SNAP_SIZE + sizeof(u16);
663
664 if (encrypt)
665 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP;
666 else
667 fc = RTLLIB_FTYPE_DATA;
668
669 if (qos_activated)
670 fc |= RTLLIB_STYPE_QOS_DATA;
671 else
672 fc |= RTLLIB_STYPE_DATA;
673
674 if (ieee->iw_mode == IW_MODE_INFRA) {
675 fc |= RTLLIB_FCTL_TODS;
676 /* To DS: Addr1 = BSSID, Addr2 = SA,
677 * Addr3 = DA
678 */
679 ether_addr_copy(header.addr1,
680 ieee->current_network.bssid);
681 ether_addr_copy(header.addr2, src);
682 if (IsAmsdu)
683 ether_addr_copy(header.addr3,
684 ieee->current_network.bssid);
685 else
686 ether_addr_copy(header.addr3, dest);
687 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
688 /* not From/To DS: Addr1 = DA, Addr2 = SA,
689 * Addr3 = BSSID
690 */
691 ether_addr_copy(header.addr1, dest);
692 ether_addr_copy(header.addr2, src);
693 ether_addr_copy(header.addr3,
694 ieee->current_network.bssid);
695 }
696
697 bIsMulticast = is_multicast_ether_addr(header.addr1);
698
699 header.frame_ctl = cpu_to_le16(fc);
700
701 /* Determine fragmentation size based on destination (multicast
702 * and broadcast are not fragmented)
703 */
704 if (bIsMulticast) {
705 frag_size = MAX_FRAG_THRESHOLD;
706 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
707 } else {
708 frag_size = ieee->fts;
709 qos_ctl = 0;
710 }
711
712 if (qos_activated) {
713 hdr_len = RTLLIB_3ADDR_LEN + 2;
714
715 /* in case we are a client verify acm is not set for this ac */
716 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
717 netdev_info(ieee->dev, "skb->priority = %x\n",
718 skb->priority);
719 if (wme_downgrade_ac(skb))
720 break;
721 netdev_info(ieee->dev, "converted skb->priority = %x\n",
722 skb->priority);
723 }
724
725 qos_ctl |= skb->priority;
726 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);
727
728 } else {
729 hdr_len = RTLLIB_3ADDR_LEN;
730 }
731 /* Determine amount of payload per fragment. Regardless of if
732 * this stack is providing the full 802.11 header, one will
733 * eventually be affixed to this fragment -- so we must account
734 * for it when determining the amount of payload space.
735 */
736 bytes_per_frag = frag_size - hdr_len;
737 if (ieee->config &
738 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
739 bytes_per_frag -= RTLLIB_FCS_LEN;
740
741 /* Each fragment may need to have room for encrypting
742 * pre/postfix
743 */
744 if (encrypt) {
745 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
746 crypt->ops->extra_mpdu_postfix_len +
747 crypt->ops->extra_msdu_prefix_len +
748 crypt->ops->extra_msdu_postfix_len;
749 }
750 /* Number of fragments is the total bytes_per_frag /
751 * payload_per_fragment
752 */
753 nr_frags = bytes / bytes_per_frag;
754 bytes_last_frag = bytes % bytes_per_frag;
755 if (bytes_last_frag)
756 nr_frags++;
757 else
758 bytes_last_frag = bytes_per_frag;
759
760 /* When we allocate the TXB we allocate enough space for the
761 * reserve and full fragment bytes (bytes_per_frag doesn't
762 * include prefix, postfix, header, FCS, etc.)
763 */
764 txb = rtllib_alloc_txb(nr_frags, frag_size +
765 ieee->tx_headroom, GFP_ATOMIC);
766 if (unlikely(!txb)) {
767 netdev_warn(ieee->dev, "Could not allocate TXB\n");
768 goto failed;
769 }
770 txb->encrypted = encrypt;
771 txb->payload_size = cpu_to_le16(bytes);
772
773 if (qos_activated)
774 txb->queue_index = UP2AC(skb->priority);
775 else
776 txb->queue_index = WME_AC_BE;
777
778 for (i = 0; i < nr_frags; i++) {
779 skb_frag = txb->fragments[i];
780 tcb_desc = (struct cb_desc *)(skb_frag->cb +
781 MAX_DEV_ADDR_SIZE);
782 if (qos_activated) {
783 skb_frag->priority = skb->priority;
784 tcb_desc->queue_index = UP2AC(skb->priority);
785 } else {
786 skb_frag->priority = WME_AC_BE;
787 tcb_desc->queue_index = WME_AC_BE;
788 }
789 skb_reserve(skb_frag, ieee->tx_headroom);
790
791 if (encrypt) {
792 if (ieee->hwsec_active)
793 tcb_desc->bHwSec = 1;
794 else
795 tcb_desc->bHwSec = 0;
796 skb_reserve(skb_frag,
797 crypt->ops->extra_mpdu_prefix_len +
798 crypt->ops->extra_msdu_prefix_len);
799 } else {
800 tcb_desc->bHwSec = 0;
801 }
802 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
803
804 /* If this is not the last fragment, then add the
805 * MOREFRAGS bit to the frame control
806 */
807 if (i != nr_frags - 1) {
808 frag_hdr->frame_ctl = cpu_to_le16(
809 fc | RTLLIB_FCTL_MOREFRAGS);
810 bytes = bytes_per_frag;
811
812 } else {
813 /* The last fragment has the remaining length */
814 bytes = bytes_last_frag;
815 }
816 if ((qos_activated) && (!bIsMulticast)) {
817 frag_hdr->seq_ctl =
818 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
819 header.addr1));
820 frag_hdr->seq_ctl =
821 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl)<<4 | i);
822 } else {
823 frag_hdr->seq_ctl =
824 cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
825 }
826 /* Put a SNAP header on the first fragment */
827 if (i == 0) {
828 rtllib_put_snap(
829 skb_put(skb_frag, SNAP_SIZE +
830 sizeof(u16)), ether_type);
831 bytes -= SNAP_SIZE + sizeof(u16);
832 }
833
834 skb_put_data(skb_frag, skb->data, bytes);
835
836 /* Advance the SKB... */
837 skb_pull(skb, bytes);
838
839 /* Encryption routine will move the header forward in
840 * order to insert the IV between the header and the
841 * payload
842 */
843 if (encrypt)
844 rtllib_encrypt_fragment(ieee, skb_frag,
845 hdr_len);
846 if (ieee->config &
847 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
848 skb_put(skb_frag, 4);
849 }
850
851 if ((qos_activated) && (!bIsMulticast)) {
852 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
853 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
854 else
855 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
856 } else {
857 if (ieee->seq_ctrl[0] == 0xFFF)
858 ieee->seq_ctrl[0] = 0;
859 else
860 ieee->seq_ctrl[0]++;
861 }
862 } else {
863 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) {
864 netdev_warn(ieee->dev, "skb too small (%d).\n",
865 skb->len);
866 goto success;
867 }
868
869 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
870 if (!txb) {
871 netdev_warn(ieee->dev, "Could not allocate TXB\n");
872 goto failed;
873 }
874
875 txb->encrypted = 0;
876 txb->payload_size = cpu_to_le16(skb->len);
877 skb_put_data(txb->fragments[0], skb->data, skb->len);
878 }
879
880 success:
881 if (txb) {
882 tcb_desc = (struct cb_desc *)
883 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
884 tcb_desc->bTxEnableFwCalcDur = 1;
885 tcb_desc->priority = skb->priority;
886
887 if (ether_type == ETH_P_PAE) {
888 if (ieee->pHTInfo->iot_action &
889 HT_IOT_ACT_WA_IOT_Broadcom) {
890 tcb_desc->data_rate =
891 MgntQuery_TxRateExcludeCCKRates(ieee);
892 tcb_desc->bTxDisableRateFallBack = false;
893 } else {
894 tcb_desc->data_rate = ieee->basic_rate;
895 tcb_desc->bTxDisableRateFallBack = 1;
896 }
897
898
899 tcb_desc->RATRIndex = 7;
900 tcb_desc->bTxUseDriverAssingedRate = 1;
901 } else {
902 if (is_multicast_ether_addr(header.addr1))
903 tcb_desc->bMulticast = 1;
904 if (is_broadcast_ether_addr(header.addr1))
905 tcb_desc->bBroadcast = 1;
906 rtllib_txrate_selectmode(ieee, tcb_desc);
907 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
908 tcb_desc->data_rate = ieee->basic_rate;
909 else
910 tcb_desc->data_rate = rtllib_current_rate(ieee);
911
912 if (bdhcp) {
913 if (ieee->pHTInfo->iot_action &
914 HT_IOT_ACT_WA_IOT_Broadcom) {
915 tcb_desc->data_rate =
916 MgntQuery_TxRateExcludeCCKRates(ieee);
917 tcb_desc->bTxDisableRateFallBack = false;
918 } else {
919 tcb_desc->data_rate = MGN_1M;
920 tcb_desc->bTxDisableRateFallBack = 1;
921 }
922
923
924 tcb_desc->RATRIndex = 7;
925 tcb_desc->bTxUseDriverAssingedRate = 1;
926 tcb_desc->bdhcp = 1;
927 }
928
929 rtllib_query_ShortPreambleMode(ieee, tcb_desc);
930 rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
931 tcb_desc);
932 rtllib_query_HTCapShortGI(ieee, tcb_desc);
933 rtllib_query_BandwidthMode(ieee, tcb_desc);
934 rtllib_query_protectionmode(ieee, tcb_desc,
935 txb->fragments[0]);
936 }
937 }
938 spin_unlock_irqrestore(&ieee->lock, flags);
939 dev_kfree_skb_any(skb);
940 if (txb) {
941 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
942 dev->stats.tx_packets++;
943 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
944 rtllib_softmac_xmit(txb, ieee);
945 } else {
946 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
947 stats->tx_packets++;
948 stats->tx_bytes += le16_to_cpu(txb->payload_size);
949 return 0;
950 }
951 rtllib_txb_free(txb);
952 }
953 }
954
955 return 0;
956
957 failed:
958 spin_unlock_irqrestore(&ieee->lock, flags);
959 netif_stop_queue(dev);
960 stats->tx_errors++;
961 return 1;
962
963 }
964
rtllib_xmit(struct sk_buff * skb,struct net_device * dev)965 netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
966 {
967 memset(skb->cb, 0, sizeof(skb->cb));
968 return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
969 }
970 EXPORT_SYMBOL(rtllib_xmit);
971