1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33 
34 #define CQSPI_NAME			"cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT		16
36 
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
42 #define CQSPI_SLOW_SRAM		BIT(4)
43 
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
46 
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48 
49 struct cqspi_st;
50 
51 struct cqspi_flash_pdata {
52 	struct cqspi_st	*cqspi;
53 	u32		clk_rate;
54 	u32		read_delay;
55 	u32		tshsl_ns;
56 	u32		tsd2d_ns;
57 	u32		tchsh_ns;
58 	u32		tslch_ns;
59 	u8		cs;
60 };
61 
62 struct cqspi_st {
63 	struct platform_device	*pdev;
64 	struct spi_master	*master;
65 	struct clk		*clk;
66 	unsigned int		sclk;
67 
68 	void __iomem		*iobase;
69 	void __iomem		*ahb_base;
70 	resource_size_t		ahb_size;
71 	struct completion	transfer_complete;
72 
73 	struct dma_chan		*rx_chan;
74 	struct completion	rx_dma_complete;
75 	dma_addr_t		mmap_phys_base;
76 
77 	int			current_cs;
78 	unsigned long		master_ref_clk_hz;
79 	bool			is_decoded_cs;
80 	u32			fifo_depth;
81 	u32			fifo_width;
82 	u32			num_chipselect;
83 	bool			rclk_en;
84 	u32			trigger_address;
85 	u32			wr_delay;
86 	bool			use_direct_mode;
87 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
88 	bool			use_dma_read;
89 	u32			pd_dev_id;
90 	bool			wr_completion;
91 	bool			slow_sram;
92 };
93 
94 struct cqspi_driver_platdata {
95 	u32 hwcaps_mask;
96 	u8 quirks;
97 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
98 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
99 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
100 };
101 
102 /* Operation timeout value */
103 #define CQSPI_TIMEOUT_MS			500
104 #define CQSPI_READ_TIMEOUT_MS			10
105 
106 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
107 #define CQSPI_DUMMY_BYTES_MAX			4
108 #define CQSPI_DUMMY_CLKS_MAX			31
109 
110 #define CQSPI_STIG_DATA_LEN_MAX			8
111 
112 /* Register map */
113 #define CQSPI_REG_CONFIG			0x00
114 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
115 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
116 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
117 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
118 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
119 #define CQSPI_REG_CONFIG_BAUD_LSB		19
120 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
121 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
122 #define CQSPI_REG_CONFIG_IDLE_LSB		31
123 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
124 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
125 
126 #define CQSPI_REG_RD_INSTR			0x04
127 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
128 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
129 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
130 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
131 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
132 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
136 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
137 
138 #define CQSPI_REG_WR_INSTR			0x08
139 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
140 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
141 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
142 
143 #define CQSPI_REG_DELAY				0x0C
144 #define CQSPI_REG_DELAY_TSLCH_LSB		0
145 #define CQSPI_REG_DELAY_TCHSH_LSB		8
146 #define CQSPI_REG_DELAY_TSD2D_LSB		16
147 #define CQSPI_REG_DELAY_TSHSL_LSB		24
148 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
149 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
150 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
151 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
152 
153 #define CQSPI_REG_READCAPTURE			0x10
154 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
155 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
156 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
157 
158 #define CQSPI_REG_SIZE				0x14
159 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
160 #define CQSPI_REG_SIZE_PAGE_LSB			4
161 #define CQSPI_REG_SIZE_BLOCK_LSB		16
162 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
163 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
164 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
165 
166 #define CQSPI_REG_SRAMPARTITION			0x18
167 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
168 
169 #define CQSPI_REG_DMA				0x20
170 #define CQSPI_REG_DMA_SINGLE_LSB		0
171 #define CQSPI_REG_DMA_BURST_LSB			8
172 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
173 #define CQSPI_REG_DMA_BURST_MASK		0xFF
174 
175 #define CQSPI_REG_REMAP				0x24
176 #define CQSPI_REG_MODE_BIT			0x28
177 
178 #define CQSPI_REG_SDRAMLEVEL			0x2C
179 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
180 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
181 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
182 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
183 
184 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
185 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
186 
187 #define CQSPI_REG_IRQSTATUS			0x40
188 #define CQSPI_REG_IRQMASK			0x44
189 
190 #define CQSPI_REG_INDIRECTRD			0x60
191 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
192 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
193 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
194 
195 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
196 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
197 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
198 
199 #define CQSPI_REG_CMDCTRL			0x90
200 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
201 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
202 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
203 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
204 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
205 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
206 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
207 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
208 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
209 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
210 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
211 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
212 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
213 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
214 
215 #define CQSPI_REG_INDIRECTWR			0x70
216 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
217 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
218 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
219 
220 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
221 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
222 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
223 
224 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
225 
226 #define CQSPI_REG_CMDADDRESS			0x94
227 #define CQSPI_REG_CMDREADDATALOWER		0xA0
228 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
229 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
230 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
231 
232 #define CQSPI_REG_POLLING_STATUS		0xB0
233 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
234 
235 #define CQSPI_REG_OP_EXT_LOWER			0xE0
236 #define CQSPI_REG_OP_EXT_READ_LSB		24
237 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
238 #define CQSPI_REG_OP_EXT_STIG_LSB		0
239 
240 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
241 
242 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
243 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
244 
245 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
246 
247 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
248 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
249 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
250 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
251 
252 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
253 
254 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
255 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
256 
257 /* Interrupt status bits */
258 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
259 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
260 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
261 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
262 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
263 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
264 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
265 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
266 
267 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
268 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
269 					 CQSPI_REG_IRQ_IND_COMP)
270 
271 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
272 					 CQSPI_REG_IRQ_WATERMARK	| \
273 					 CQSPI_REG_IRQ_UNDERFLOW)
274 
275 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
276 #define CQSPI_DMA_UNALIGN		0x3
277 
278 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
279 
cqspi_wait_for_bit(void __iomem * reg,const u32 mask,bool clr)280 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
281 {
282 	u32 val;
283 
284 	return readl_relaxed_poll_timeout(reg, val,
285 					  (((clr ? ~val : val) & mask) == mask),
286 					  10, CQSPI_TIMEOUT_MS * 1000);
287 }
288 
cqspi_is_idle(struct cqspi_st * cqspi)289 static bool cqspi_is_idle(struct cqspi_st *cqspi)
290 {
291 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
292 
293 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
294 }
295 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)296 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
297 {
298 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
299 
300 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
301 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
302 }
303 
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)304 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
305 {
306 	u32 dma_status;
307 
308 	dma_status = readl(cqspi->iobase +
309 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
310 	writel(dma_status, cqspi->iobase +
311 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
312 
313 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
314 }
315 
cqspi_irq_handler(int this_irq,void * dev)316 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
317 {
318 	struct cqspi_st *cqspi = dev;
319 	unsigned int irq_status;
320 	struct device *device = &cqspi->pdev->dev;
321 	const struct cqspi_driver_platdata *ddata;
322 
323 	ddata = of_device_get_match_data(device);
324 
325 	/* Read interrupt status */
326 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
327 
328 	/* Clear interrupt */
329 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
330 
331 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
332 		if (ddata->get_dma_status(cqspi)) {
333 			complete(&cqspi->transfer_complete);
334 			return IRQ_HANDLED;
335 		}
336 	}
337 
338 	else if (!cqspi->slow_sram)
339 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
340 	else
341 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
342 
343 	if (irq_status)
344 		complete(&cqspi->transfer_complete);
345 
346 	return IRQ_HANDLED;
347 }
348 
cqspi_calc_rdreg(const struct spi_mem_op * op)349 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
350 {
351 	u32 rdreg = 0;
352 
353 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
354 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
355 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
356 
357 	return rdreg;
358 }
359 
cqspi_calc_dummy(const struct spi_mem_op * op)360 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
361 {
362 	unsigned int dummy_clk;
363 
364 	if (!op->dummy.nbytes)
365 		return 0;
366 
367 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
368 	if (op->cmd.dtr)
369 		dummy_clk /= 2;
370 
371 	return dummy_clk;
372 }
373 
cqspi_wait_idle(struct cqspi_st * cqspi)374 static int cqspi_wait_idle(struct cqspi_st *cqspi)
375 {
376 	const unsigned int poll_idle_retry = 3;
377 	unsigned int count = 0;
378 	unsigned long timeout;
379 
380 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
381 	while (1) {
382 		/*
383 		 * Read few times in succession to ensure the controller
384 		 * is indeed idle, that is, the bit does not transition
385 		 * low again.
386 		 */
387 		if (cqspi_is_idle(cqspi))
388 			count++;
389 		else
390 			count = 0;
391 
392 		if (count >= poll_idle_retry)
393 			return 0;
394 
395 		if (time_after(jiffies, timeout)) {
396 			/* Timeout, in busy mode. */
397 			dev_err(&cqspi->pdev->dev,
398 				"QSPI is still busy after %dms timeout.\n",
399 				CQSPI_TIMEOUT_MS);
400 			return -ETIMEDOUT;
401 		}
402 
403 		cpu_relax();
404 	}
405 }
406 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)407 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
408 {
409 	void __iomem *reg_base = cqspi->iobase;
410 	int ret;
411 
412 	/* Write the CMDCTRL without start execution. */
413 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
414 	/* Start execute */
415 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
416 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
417 
418 	/* Polling for completion. */
419 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
420 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
421 	if (ret) {
422 		dev_err(&cqspi->pdev->dev,
423 			"Flash command execution timed out.\n");
424 		return ret;
425 	}
426 
427 	/* Polling QSPI idle status. */
428 	return cqspi_wait_idle(cqspi);
429 }
430 
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)431 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
432 				  const struct spi_mem_op *op,
433 				  unsigned int shift)
434 {
435 	struct cqspi_st *cqspi = f_pdata->cqspi;
436 	void __iomem *reg_base = cqspi->iobase;
437 	unsigned int reg;
438 	u8 ext;
439 
440 	if (op->cmd.nbytes != 2)
441 		return -EINVAL;
442 
443 	/* Opcode extension is the LSB. */
444 	ext = op->cmd.opcode & 0xff;
445 
446 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
447 	reg &= ~(0xff << shift);
448 	reg |= ext << shift;
449 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
450 
451 	return 0;
452 }
453 
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)454 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
455 			    const struct spi_mem_op *op, unsigned int shift)
456 {
457 	struct cqspi_st *cqspi = f_pdata->cqspi;
458 	void __iomem *reg_base = cqspi->iobase;
459 	unsigned int reg;
460 	int ret;
461 
462 	reg = readl(reg_base + CQSPI_REG_CONFIG);
463 
464 	/*
465 	 * We enable dual byte opcode here. The callers have to set up the
466 	 * extension opcode based on which type of operation it is.
467 	 */
468 	if (op->cmd.dtr) {
469 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
470 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
471 
472 		/* Set up command opcode extension. */
473 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
474 		if (ret)
475 			return ret;
476 	} else {
477 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
478 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
479 	}
480 
481 	writel(reg, reg_base + CQSPI_REG_CONFIG);
482 
483 	return cqspi_wait_idle(cqspi);
484 }
485 
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)486 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
487 			      const struct spi_mem_op *op)
488 {
489 	struct cqspi_st *cqspi = f_pdata->cqspi;
490 	void __iomem *reg_base = cqspi->iobase;
491 	u8 *rxbuf = op->data.buf.in;
492 	u8 opcode;
493 	size_t n_rx = op->data.nbytes;
494 	unsigned int rdreg;
495 	unsigned int reg;
496 	unsigned int dummy_clk;
497 	size_t read_len;
498 	int status;
499 
500 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
501 	if (status)
502 		return status;
503 
504 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
505 		dev_err(&cqspi->pdev->dev,
506 			"Invalid input argument, len %zu rxbuf 0x%p\n",
507 			n_rx, rxbuf);
508 		return -EINVAL;
509 	}
510 
511 	if (op->cmd.dtr)
512 		opcode = op->cmd.opcode >> 8;
513 	else
514 		opcode = op->cmd.opcode;
515 
516 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
517 
518 	rdreg = cqspi_calc_rdreg(op);
519 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
520 
521 	dummy_clk = cqspi_calc_dummy(op);
522 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
523 		return -EOPNOTSUPP;
524 
525 	if (dummy_clk)
526 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
527 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
528 
529 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
530 
531 	/* 0 means 1 byte. */
532 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
533 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
534 	status = cqspi_exec_flash_cmd(cqspi, reg);
535 	if (status)
536 		return status;
537 
538 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
539 
540 	/* Put the read value into rx_buf */
541 	read_len = (n_rx > 4) ? 4 : n_rx;
542 	memcpy(rxbuf, &reg, read_len);
543 	rxbuf += read_len;
544 
545 	if (n_rx > 4) {
546 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
547 
548 		read_len = n_rx - read_len;
549 		memcpy(rxbuf, &reg, read_len);
550 	}
551 
552 	return 0;
553 }
554 
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)555 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
556 			       const struct spi_mem_op *op)
557 {
558 	struct cqspi_st *cqspi = f_pdata->cqspi;
559 	void __iomem *reg_base = cqspi->iobase;
560 	u8 opcode;
561 	const u8 *txbuf = op->data.buf.out;
562 	size_t n_tx = op->data.nbytes;
563 	unsigned int reg;
564 	unsigned int data;
565 	size_t write_len;
566 	int ret;
567 
568 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
569 	if (ret)
570 		return ret;
571 
572 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
573 		dev_err(&cqspi->pdev->dev,
574 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
575 			n_tx, txbuf);
576 		return -EINVAL;
577 	}
578 
579 	reg = cqspi_calc_rdreg(op);
580 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
581 
582 	if (op->cmd.dtr)
583 		opcode = op->cmd.opcode >> 8;
584 	else
585 		opcode = op->cmd.opcode;
586 
587 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
588 
589 	if (op->addr.nbytes) {
590 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
591 		reg |= ((op->addr.nbytes - 1) &
592 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
593 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
594 
595 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
596 	}
597 
598 	if (n_tx) {
599 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
600 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
601 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
602 		data = 0;
603 		write_len = (n_tx > 4) ? 4 : n_tx;
604 		memcpy(&data, txbuf, write_len);
605 		txbuf += write_len;
606 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
607 
608 		if (n_tx > 4) {
609 			data = 0;
610 			write_len = n_tx - 4;
611 			memcpy(&data, txbuf, write_len);
612 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
613 		}
614 	}
615 
616 	return cqspi_exec_flash_cmd(cqspi, reg);
617 }
618 
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)619 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
620 			    const struct spi_mem_op *op)
621 {
622 	struct cqspi_st *cqspi = f_pdata->cqspi;
623 	void __iomem *reg_base = cqspi->iobase;
624 	unsigned int dummy_clk = 0;
625 	unsigned int reg;
626 	int ret;
627 	u8 opcode;
628 
629 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
630 	if (ret)
631 		return ret;
632 
633 	if (op->cmd.dtr)
634 		opcode = op->cmd.opcode >> 8;
635 	else
636 		opcode = op->cmd.opcode;
637 
638 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
639 	reg |= cqspi_calc_rdreg(op);
640 
641 	/* Setup dummy clock cycles */
642 	dummy_clk = cqspi_calc_dummy(op);
643 
644 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
645 		return -EOPNOTSUPP;
646 
647 	if (dummy_clk)
648 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
649 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
650 
651 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
652 
653 	/* Set address width */
654 	reg = readl(reg_base + CQSPI_REG_SIZE);
655 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
656 	reg |= (op->addr.nbytes - 1);
657 	writel(reg, reg_base + CQSPI_REG_SIZE);
658 	return 0;
659 }
660 
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)661 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
662 				       u8 *rxbuf, loff_t from_addr,
663 				       const size_t n_rx)
664 {
665 	struct cqspi_st *cqspi = f_pdata->cqspi;
666 	struct device *dev = &cqspi->pdev->dev;
667 	void __iomem *reg_base = cqspi->iobase;
668 	void __iomem *ahb_base = cqspi->ahb_base;
669 	unsigned int remaining = n_rx;
670 	unsigned int mod_bytes = n_rx % 4;
671 	unsigned int bytes_to_read = 0;
672 	u8 *rxbuf_end = rxbuf + n_rx;
673 	int ret = 0;
674 
675 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
676 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
677 
678 	/* Clear all interrupts. */
679 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
680 
681 	/*
682 	 * On SoCFPGA platform reading the SRAM is slow due to
683 	 * hardware limitation and causing read interrupt storm to CPU,
684 	 * so enabling only watermark interrupt to disable all read
685 	 * interrupts later as we want to run "bytes to read" loop with
686 	 * all the read interrupts disabled for max performance.
687 	 */
688 
689 	if (!cqspi->slow_sram)
690 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
691 	else
692 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
693 
694 	reinit_completion(&cqspi->transfer_complete);
695 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
696 	       reg_base + CQSPI_REG_INDIRECTRD);
697 
698 	while (remaining > 0) {
699 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
700 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
701 			ret = -ETIMEDOUT;
702 
703 		/*
704 		 * Disable all read interrupts until
705 		 * we are out of "bytes to read"
706 		 */
707 		if (cqspi->slow_sram)
708 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
709 
710 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
711 
712 		if (ret && bytes_to_read == 0) {
713 			dev_err(dev, "Indirect read timeout, no bytes\n");
714 			goto failrd;
715 		}
716 
717 		while (bytes_to_read != 0) {
718 			unsigned int word_remain = round_down(remaining, 4);
719 
720 			bytes_to_read *= cqspi->fifo_width;
721 			bytes_to_read = bytes_to_read > remaining ?
722 					remaining : bytes_to_read;
723 			bytes_to_read = round_down(bytes_to_read, 4);
724 			/* Read 4 byte word chunks then single bytes */
725 			if (bytes_to_read) {
726 				ioread32_rep(ahb_base, rxbuf,
727 					     (bytes_to_read / 4));
728 			} else if (!word_remain && mod_bytes) {
729 				unsigned int temp = ioread32(ahb_base);
730 
731 				bytes_to_read = mod_bytes;
732 				memcpy(rxbuf, &temp, min((unsigned int)
733 							 (rxbuf_end - rxbuf),
734 							 bytes_to_read));
735 			}
736 			rxbuf += bytes_to_read;
737 			remaining -= bytes_to_read;
738 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
739 		}
740 
741 		if (remaining > 0) {
742 			reinit_completion(&cqspi->transfer_complete);
743 			if (cqspi->slow_sram)
744 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
745 		}
746 	}
747 
748 	/* Check indirect done status */
749 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
750 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
751 	if (ret) {
752 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
753 		goto failrd;
754 	}
755 
756 	/* Disable interrupt */
757 	writel(0, reg_base + CQSPI_REG_IRQMASK);
758 
759 	/* Clear indirect completion status */
760 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
761 
762 	return 0;
763 
764 failrd:
765 	/* Disable interrupt */
766 	writel(0, reg_base + CQSPI_REG_IRQMASK);
767 
768 	/* Cancel the indirect read */
769 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
770 	       reg_base + CQSPI_REG_INDIRECTRD);
771 	return ret;
772 }
773 
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)774 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
775 					  u_char *rxbuf, loff_t from_addr,
776 					  size_t n_rx)
777 {
778 	struct cqspi_st *cqspi = f_pdata->cqspi;
779 	struct device *dev = &cqspi->pdev->dev;
780 	void __iomem *reg_base = cqspi->iobase;
781 	u32 reg, bytes_to_dma;
782 	loff_t addr = from_addr;
783 	void *buf = rxbuf;
784 	dma_addr_t dma_addr;
785 	u8 bytes_rem;
786 	int ret = 0;
787 
788 	bytes_rem = n_rx % 4;
789 	bytes_to_dma = (n_rx - bytes_rem);
790 
791 	if (!bytes_to_dma)
792 		goto nondmard;
793 
794 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
795 	if (ret)
796 		return ret;
797 
798 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
799 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
800 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
801 
802 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
803 	if (dma_mapping_error(dev, dma_addr)) {
804 		dev_err(dev, "dma mapping failed\n");
805 		return -ENOMEM;
806 	}
807 
808 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
809 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
810 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
811 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
812 
813 	/* Clear all interrupts. */
814 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
815 
816 	/* Enable DMA done interrupt */
817 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
818 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
819 
820 	/* Default DMA periph configuration */
821 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
822 
823 	/* Configure DMA Dst address */
824 	writel(lower_32_bits(dma_addr),
825 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
826 	writel(upper_32_bits(dma_addr),
827 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
828 
829 	/* Configure DMA Src address */
830 	writel(cqspi->trigger_address, reg_base +
831 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
832 
833 	/* Set DMA destination size */
834 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
835 
836 	/* Set DMA destination control */
837 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
838 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
839 
840 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
841 	       reg_base + CQSPI_REG_INDIRECTRD);
842 
843 	reinit_completion(&cqspi->transfer_complete);
844 
845 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
846 					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
847 		ret = -ETIMEDOUT;
848 		goto failrd;
849 	}
850 
851 	/* Disable DMA interrupt */
852 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
853 
854 	/* Clear indirect completion status */
855 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
856 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
857 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
858 
859 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
860 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
861 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
862 
863 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
864 					PM_OSPI_MUX_SEL_LINEAR);
865 	if (ret)
866 		return ret;
867 
868 nondmard:
869 	if (bytes_rem) {
870 		addr += bytes_to_dma;
871 		buf += bytes_to_dma;
872 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
873 						  bytes_rem);
874 		if (ret)
875 			return ret;
876 	}
877 
878 	return 0;
879 
880 failrd:
881 	/* Disable DMA interrupt */
882 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
883 
884 	/* Cancel the indirect read */
885 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
886 	       reg_base + CQSPI_REG_INDIRECTRD);
887 
888 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
889 
890 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
891 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
892 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
893 
894 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
895 
896 	return ret;
897 }
898 
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)899 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
900 			     const struct spi_mem_op *op)
901 {
902 	unsigned int reg;
903 	int ret;
904 	struct cqspi_st *cqspi = f_pdata->cqspi;
905 	void __iomem *reg_base = cqspi->iobase;
906 	u8 opcode;
907 
908 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
909 	if (ret)
910 		return ret;
911 
912 	if (op->cmd.dtr)
913 		opcode = op->cmd.opcode >> 8;
914 	else
915 		opcode = op->cmd.opcode;
916 
917 	/* Set opcode. */
918 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
919 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
920 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
921 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
922 	reg = cqspi_calc_rdreg(op);
923 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
924 
925 	/*
926 	 * SPI NAND flashes require the address of the status register to be
927 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
928 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
929 	 * command in DTR mode.
930 	 *
931 	 * But this controller does not support address phase in the Read SR
932 	 * command when doing auto-HW polling. So, disable write completion
933 	 * polling on the controller's side. spinand and spi-nor will take
934 	 * care of polling the status register.
935 	 */
936 	if (cqspi->wr_completion) {
937 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
938 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
939 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
940 	}
941 
942 	reg = readl(reg_base + CQSPI_REG_SIZE);
943 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
944 	reg |= (op->addr.nbytes - 1);
945 	writel(reg, reg_base + CQSPI_REG_SIZE);
946 	return 0;
947 }
948 
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)949 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
950 					loff_t to_addr, const u8 *txbuf,
951 					const size_t n_tx)
952 {
953 	struct cqspi_st *cqspi = f_pdata->cqspi;
954 	struct device *dev = &cqspi->pdev->dev;
955 	void __iomem *reg_base = cqspi->iobase;
956 	unsigned int remaining = n_tx;
957 	unsigned int write_bytes;
958 	int ret;
959 
960 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
961 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
962 
963 	/* Clear all interrupts. */
964 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
965 
966 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
967 
968 	reinit_completion(&cqspi->transfer_complete);
969 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
970 	       reg_base + CQSPI_REG_INDIRECTWR);
971 	/*
972 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
973 	 * Controller programming sequence, couple of cycles of
974 	 * QSPI_REF_CLK delay is required for the above bit to
975 	 * be internally synchronized by the QSPI module. Provide 5
976 	 * cycles of delay.
977 	 */
978 	if (cqspi->wr_delay)
979 		ndelay(cqspi->wr_delay);
980 
981 	while (remaining > 0) {
982 		size_t write_words, mod_bytes;
983 
984 		write_bytes = remaining;
985 		write_words = write_bytes / 4;
986 		mod_bytes = write_bytes % 4;
987 		/* Write 4 bytes at a time then single bytes. */
988 		if (write_words) {
989 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
990 			txbuf += (write_words * 4);
991 		}
992 		if (mod_bytes) {
993 			unsigned int temp = 0xFFFFFFFF;
994 
995 			memcpy(&temp, txbuf, mod_bytes);
996 			iowrite32(temp, cqspi->ahb_base);
997 			txbuf += mod_bytes;
998 		}
999 
1000 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1001 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1002 			dev_err(dev, "Indirect write timeout\n");
1003 			ret = -ETIMEDOUT;
1004 			goto failwr;
1005 		}
1006 
1007 		remaining -= write_bytes;
1008 
1009 		if (remaining > 0)
1010 			reinit_completion(&cqspi->transfer_complete);
1011 	}
1012 
1013 	/* Check indirect done status */
1014 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1015 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1016 	if (ret) {
1017 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1018 		goto failwr;
1019 	}
1020 
1021 	/* Disable interrupt. */
1022 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1023 
1024 	/* Clear indirect completion status */
1025 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1026 
1027 	cqspi_wait_idle(cqspi);
1028 
1029 	return 0;
1030 
1031 failwr:
1032 	/* Disable interrupt. */
1033 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1034 
1035 	/* Cancel the indirect write */
1036 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1037 	       reg_base + CQSPI_REG_INDIRECTWR);
1038 	return ret;
1039 }
1040 
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1041 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1042 {
1043 	struct cqspi_st *cqspi = f_pdata->cqspi;
1044 	void __iomem *reg_base = cqspi->iobase;
1045 	unsigned int chip_select = f_pdata->cs;
1046 	unsigned int reg;
1047 
1048 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1049 	if (cqspi->is_decoded_cs) {
1050 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1051 	} else {
1052 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1053 
1054 		/* Convert CS if without decoder.
1055 		 * CS0 to 4b'1110
1056 		 * CS1 to 4b'1101
1057 		 * CS2 to 4b'1011
1058 		 * CS3 to 4b'0111
1059 		 */
1060 		chip_select = 0xF & ~(1 << chip_select);
1061 	}
1062 
1063 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1064 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1065 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1066 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1067 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1068 }
1069 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1070 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1071 					   const unsigned int ns_val)
1072 {
1073 	unsigned int ticks;
1074 
1075 	ticks = ref_clk_hz / 1000;	/* kHz */
1076 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1077 
1078 	return ticks;
1079 }
1080 
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1081 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1082 {
1083 	struct cqspi_st *cqspi = f_pdata->cqspi;
1084 	void __iomem *iobase = cqspi->iobase;
1085 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1086 	unsigned int tshsl, tchsh, tslch, tsd2d;
1087 	unsigned int reg;
1088 	unsigned int tsclk;
1089 
1090 	/* calculate the number of ref ticks for one sclk tick */
1091 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1092 
1093 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1094 	/* this particular value must be at least one sclk */
1095 	if (tshsl < tsclk)
1096 		tshsl = tsclk;
1097 
1098 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1099 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1100 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1101 
1102 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1103 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1104 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1105 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1106 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1107 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1108 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1109 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1110 	writel(reg, iobase + CQSPI_REG_DELAY);
1111 }
1112 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1113 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1114 {
1115 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1116 	void __iomem *reg_base = cqspi->iobase;
1117 	u32 reg, div;
1118 
1119 	/* Recalculate the baudrate divisor based on QSPI specification. */
1120 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1121 
1122 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1123 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1124 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1125 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1126 }
1127 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1128 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1129 				   const bool bypass,
1130 				   const unsigned int delay)
1131 {
1132 	void __iomem *reg_base = cqspi->iobase;
1133 	unsigned int reg;
1134 
1135 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1136 
1137 	if (bypass)
1138 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1139 	else
1140 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1141 
1142 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1143 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1144 
1145 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1146 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1147 
1148 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1149 }
1150 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)1151 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1152 {
1153 	void __iomem *reg_base = cqspi->iobase;
1154 	unsigned int reg;
1155 
1156 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1157 
1158 	if (enable)
1159 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1160 	else
1161 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1162 
1163 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1164 }
1165 
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1166 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1167 			    unsigned long sclk)
1168 {
1169 	struct cqspi_st *cqspi = f_pdata->cqspi;
1170 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1171 	int switch_ck = (cqspi->sclk != sclk);
1172 
1173 	if (switch_cs || switch_ck)
1174 		cqspi_controller_enable(cqspi, 0);
1175 
1176 	/* Switch chip select. */
1177 	if (switch_cs) {
1178 		cqspi->current_cs = f_pdata->cs;
1179 		cqspi_chipselect(f_pdata);
1180 	}
1181 
1182 	/* Setup baudrate divisor and delays */
1183 	if (switch_ck) {
1184 		cqspi->sclk = sclk;
1185 		cqspi_config_baudrate_div(cqspi);
1186 		cqspi_delay(f_pdata);
1187 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1188 				       f_pdata->read_delay);
1189 	}
1190 
1191 	if (switch_cs || switch_ck)
1192 		cqspi_controller_enable(cqspi, 1);
1193 }
1194 
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1195 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1196 			   const struct spi_mem_op *op)
1197 {
1198 	struct cqspi_st *cqspi = f_pdata->cqspi;
1199 	loff_t to = op->addr.val;
1200 	size_t len = op->data.nbytes;
1201 	const u_char *buf = op->data.buf.out;
1202 	int ret;
1203 
1204 	ret = cqspi_write_setup(f_pdata, op);
1205 	if (ret)
1206 		return ret;
1207 
1208 	/*
1209 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1210 	 * address (all 0s) with the read status register command in DTR mode.
1211 	 * But this controller does not support sending dummy address bytes to
1212 	 * the flash when it is polling the write completion register in DTR
1213 	 * mode. So, we can not use direct mode when in DTR mode for writing
1214 	 * data.
1215 	 */
1216 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1217 	    ((to + len) <= cqspi->ahb_size)) {
1218 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1219 		return cqspi_wait_idle(cqspi);
1220 	}
1221 
1222 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1223 }
1224 
cqspi_rx_dma_callback(void * param)1225 static void cqspi_rx_dma_callback(void *param)
1226 {
1227 	struct cqspi_st *cqspi = param;
1228 
1229 	complete(&cqspi->rx_dma_complete);
1230 }
1231 
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1232 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1233 				     u_char *buf, loff_t from, size_t len)
1234 {
1235 	struct cqspi_st *cqspi = f_pdata->cqspi;
1236 	struct device *dev = &cqspi->pdev->dev;
1237 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1238 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1239 	int ret = 0;
1240 	struct dma_async_tx_descriptor *tx;
1241 	dma_cookie_t cookie;
1242 	dma_addr_t dma_dst;
1243 	struct device *ddev;
1244 
1245 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1246 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1247 		return 0;
1248 	}
1249 
1250 	ddev = cqspi->rx_chan->device->dev;
1251 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1252 	if (dma_mapping_error(ddev, dma_dst)) {
1253 		dev_err(dev, "dma mapping failed\n");
1254 		return -ENOMEM;
1255 	}
1256 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1257 				       len, flags);
1258 	if (!tx) {
1259 		dev_err(dev, "device_prep_dma_memcpy error\n");
1260 		ret = -EIO;
1261 		goto err_unmap;
1262 	}
1263 
1264 	tx->callback = cqspi_rx_dma_callback;
1265 	tx->callback_param = cqspi;
1266 	cookie = tx->tx_submit(tx);
1267 	reinit_completion(&cqspi->rx_dma_complete);
1268 
1269 	ret = dma_submit_error(cookie);
1270 	if (ret) {
1271 		dev_err(dev, "dma_submit_error %d\n", cookie);
1272 		ret = -EIO;
1273 		goto err_unmap;
1274 	}
1275 
1276 	dma_async_issue_pending(cqspi->rx_chan);
1277 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1278 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1279 		dmaengine_terminate_sync(cqspi->rx_chan);
1280 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1281 		ret = -ETIMEDOUT;
1282 		goto err_unmap;
1283 	}
1284 
1285 err_unmap:
1286 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1287 
1288 	return ret;
1289 }
1290 
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1291 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1292 			  const struct spi_mem_op *op)
1293 {
1294 	struct cqspi_st *cqspi = f_pdata->cqspi;
1295 	struct device *dev = &cqspi->pdev->dev;
1296 	const struct cqspi_driver_platdata *ddata;
1297 	loff_t from = op->addr.val;
1298 	size_t len = op->data.nbytes;
1299 	u_char *buf = op->data.buf.in;
1300 	u64 dma_align = (u64)(uintptr_t)buf;
1301 	int ret;
1302 
1303 	ddata = of_device_get_match_data(dev);
1304 
1305 	ret = cqspi_read_setup(f_pdata, op);
1306 	if (ret)
1307 		return ret;
1308 
1309 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1310 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1311 
1312 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1313 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1314 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1315 
1316 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1317 }
1318 
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1319 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1320 {
1321 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1322 	struct cqspi_flash_pdata *f_pdata;
1323 
1324 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1325 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1326 
1327 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1328 		if (!op->addr.nbytes)
1329 			return cqspi_command_read(f_pdata, op);
1330 
1331 		return cqspi_read(f_pdata, op);
1332 	}
1333 
1334 	if (!op->addr.nbytes || !op->data.buf.out)
1335 		return cqspi_command_write(f_pdata, op);
1336 
1337 	return cqspi_write(f_pdata, op);
1338 }
1339 
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1340 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1341 {
1342 	int ret;
1343 
1344 	ret = cqspi_mem_process(mem, op);
1345 	if (ret)
1346 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1347 
1348 	return ret;
1349 }
1350 
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1351 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1352 				  const struct spi_mem_op *op)
1353 {
1354 	bool all_true, all_false;
1355 
1356 	/*
1357 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1358 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1359 	 */
1360 	all_true = op->cmd.dtr &&
1361 		   (!op->addr.nbytes || op->addr.dtr) &&
1362 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1363 		   (!op->data.nbytes || op->data.dtr);
1364 
1365 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1366 		    !op->data.dtr;
1367 
1368 	if (all_true) {
1369 		/* Right now we only support 8-8-8 DTR mode. */
1370 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1371 			return false;
1372 		if (op->addr.nbytes && op->addr.buswidth != 8)
1373 			return false;
1374 		if (op->data.nbytes && op->data.buswidth != 8)
1375 			return false;
1376 	} else if (!all_false) {
1377 		/* Mixed DTR modes are not supported. */
1378 		return false;
1379 	}
1380 
1381 	return spi_mem_default_supports_op(mem, op);
1382 }
1383 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1384 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1385 				    struct cqspi_flash_pdata *f_pdata,
1386 				    struct device_node *np)
1387 {
1388 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1389 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1390 		return -ENXIO;
1391 	}
1392 
1393 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1394 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1395 		return -ENXIO;
1396 	}
1397 
1398 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1399 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1400 		return -ENXIO;
1401 	}
1402 
1403 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1404 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1405 		return -ENXIO;
1406 	}
1407 
1408 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1409 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1410 		return -ENXIO;
1411 	}
1412 
1413 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1414 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1415 		return -ENXIO;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
cqspi_of_get_pdata(struct cqspi_st * cqspi)1421 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1422 {
1423 	struct device *dev = &cqspi->pdev->dev;
1424 	struct device_node *np = dev->of_node;
1425 	u32 id[2];
1426 
1427 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1428 
1429 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1430 		dev_err(dev, "couldn't determine fifo-depth\n");
1431 		return -ENXIO;
1432 	}
1433 
1434 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1435 		dev_err(dev, "couldn't determine fifo-width\n");
1436 		return -ENXIO;
1437 	}
1438 
1439 	if (of_property_read_u32(np, "cdns,trigger-address",
1440 				 &cqspi->trigger_address)) {
1441 		dev_err(dev, "couldn't determine trigger-address\n");
1442 		return -ENXIO;
1443 	}
1444 
1445 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1446 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1447 
1448 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1449 
1450 	if (!of_property_read_u32_array(np, "power-domains", id,
1451 					ARRAY_SIZE(id)))
1452 		cqspi->pd_dev_id = id[1];
1453 
1454 	return 0;
1455 }
1456 
cqspi_controller_init(struct cqspi_st * cqspi)1457 static void cqspi_controller_init(struct cqspi_st *cqspi)
1458 {
1459 	u32 reg;
1460 
1461 	cqspi_controller_enable(cqspi, 0);
1462 
1463 	/* Configure the remap address register, no remap */
1464 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1465 
1466 	/* Disable all interrupts. */
1467 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1468 
1469 	/* Configure the SRAM split to 1:1 . */
1470 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1471 
1472 	/* Load indirect trigger address. */
1473 	writel(cqspi->trigger_address,
1474 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1475 
1476 	/* Program read watermark -- 1/2 of the FIFO. */
1477 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1478 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1479 	/* Program write watermark -- 1/8 of the FIFO. */
1480 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1481 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1482 
1483 	/* Disable direct access controller */
1484 	if (!cqspi->use_direct_mode) {
1485 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1486 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1487 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1488 	}
1489 
1490 	/* Enable DMA interface */
1491 	if (cqspi->use_dma_read) {
1492 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1493 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1494 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1495 	}
1496 
1497 	cqspi_controller_enable(cqspi, 1);
1498 }
1499 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1500 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1501 {
1502 	dma_cap_mask_t mask;
1503 
1504 	dma_cap_zero(mask);
1505 	dma_cap_set(DMA_MEMCPY, mask);
1506 
1507 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1508 	if (IS_ERR(cqspi->rx_chan)) {
1509 		int ret = PTR_ERR(cqspi->rx_chan);
1510 
1511 		cqspi->rx_chan = NULL;
1512 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1513 	}
1514 	init_completion(&cqspi->rx_dma_complete);
1515 
1516 	return 0;
1517 }
1518 
cqspi_get_name(struct spi_mem * mem)1519 static const char *cqspi_get_name(struct spi_mem *mem)
1520 {
1521 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1522 	struct device *dev = &cqspi->pdev->dev;
1523 
1524 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1525 }
1526 
1527 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1528 	.exec_op = cqspi_exec_mem_op,
1529 	.get_name = cqspi_get_name,
1530 	.supports_op = cqspi_supports_mem_op,
1531 };
1532 
1533 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1534 	.dtr = true,
1535 };
1536 
cqspi_setup_flash(struct cqspi_st * cqspi)1537 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1538 {
1539 	struct platform_device *pdev = cqspi->pdev;
1540 	struct device *dev = &pdev->dev;
1541 	struct device_node *np = dev->of_node;
1542 	struct cqspi_flash_pdata *f_pdata;
1543 	unsigned int cs;
1544 	int ret;
1545 
1546 	/* Get flash device data */
1547 	for_each_available_child_of_node(dev->of_node, np) {
1548 		ret = of_property_read_u32(np, "reg", &cs);
1549 		if (ret) {
1550 			dev_err(dev, "Couldn't determine chip select.\n");
1551 			of_node_put(np);
1552 			return ret;
1553 		}
1554 
1555 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1556 			dev_err(dev, "Chip select %d out of range.\n", cs);
1557 			of_node_put(np);
1558 			return -EINVAL;
1559 		}
1560 
1561 		f_pdata = &cqspi->f_pdata[cs];
1562 		f_pdata->cqspi = cqspi;
1563 		f_pdata->cs = cs;
1564 
1565 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1566 		if (ret) {
1567 			of_node_put(np);
1568 			return ret;
1569 		}
1570 	}
1571 
1572 	return 0;
1573 }
1574 
cqspi_probe(struct platform_device * pdev)1575 static int cqspi_probe(struct platform_device *pdev)
1576 {
1577 	const struct cqspi_driver_platdata *ddata;
1578 	struct reset_control *rstc, *rstc_ocp;
1579 	struct device *dev = &pdev->dev;
1580 	struct spi_master *master;
1581 	struct resource *res_ahb;
1582 	struct cqspi_st *cqspi;
1583 	struct resource *res;
1584 	int ret;
1585 	int irq;
1586 
1587 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1588 	if (!master) {
1589 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1590 		return -ENOMEM;
1591 	}
1592 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1593 	master->mem_ops = &cqspi_mem_ops;
1594 	master->mem_caps = &cqspi_mem_caps;
1595 	master->dev.of_node = pdev->dev.of_node;
1596 
1597 	cqspi = spi_master_get_devdata(master);
1598 
1599 	cqspi->pdev = pdev;
1600 	cqspi->master = master;
1601 	platform_set_drvdata(pdev, cqspi);
1602 
1603 	/* Obtain configuration from OF. */
1604 	ret = cqspi_of_get_pdata(cqspi);
1605 	if (ret) {
1606 		dev_err(dev, "Cannot get mandatory OF data.\n");
1607 		return -ENODEV;
1608 	}
1609 
1610 	/* Obtain QSPI clock. */
1611 	cqspi->clk = devm_clk_get(dev, NULL);
1612 	if (IS_ERR(cqspi->clk)) {
1613 		dev_err(dev, "Cannot claim QSPI clock.\n");
1614 		ret = PTR_ERR(cqspi->clk);
1615 		return ret;
1616 	}
1617 
1618 	/* Obtain and remap controller address. */
1619 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1620 	cqspi->iobase = devm_ioremap_resource(dev, res);
1621 	if (IS_ERR(cqspi->iobase)) {
1622 		dev_err(dev, "Cannot remap controller address.\n");
1623 		ret = PTR_ERR(cqspi->iobase);
1624 		return ret;
1625 	}
1626 
1627 	/* Obtain and remap AHB address. */
1628 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1629 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1630 	if (IS_ERR(cqspi->ahb_base)) {
1631 		dev_err(dev, "Cannot remap AHB address.\n");
1632 		ret = PTR_ERR(cqspi->ahb_base);
1633 		return ret;
1634 	}
1635 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1636 	cqspi->ahb_size = resource_size(res_ahb);
1637 
1638 	init_completion(&cqspi->transfer_complete);
1639 
1640 	/* Obtain IRQ line. */
1641 	irq = platform_get_irq(pdev, 0);
1642 	if (irq < 0)
1643 		return -ENXIO;
1644 
1645 	pm_runtime_enable(dev);
1646 	ret = pm_runtime_resume_and_get(dev);
1647 	if (ret < 0)
1648 		goto probe_pm_failed;
1649 
1650 	ret = clk_prepare_enable(cqspi->clk);
1651 	if (ret) {
1652 		dev_err(dev, "Cannot enable QSPI clock.\n");
1653 		goto probe_clk_failed;
1654 	}
1655 
1656 	/* Obtain QSPI reset control */
1657 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1658 	if (IS_ERR(rstc)) {
1659 		ret = PTR_ERR(rstc);
1660 		dev_err(dev, "Cannot get QSPI reset.\n");
1661 		goto probe_reset_failed;
1662 	}
1663 
1664 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1665 	if (IS_ERR(rstc_ocp)) {
1666 		ret = PTR_ERR(rstc_ocp);
1667 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1668 		goto probe_reset_failed;
1669 	}
1670 
1671 	reset_control_assert(rstc);
1672 	reset_control_deassert(rstc);
1673 
1674 	reset_control_assert(rstc_ocp);
1675 	reset_control_deassert(rstc_ocp);
1676 
1677 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1678 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1679 
1680 	/* write completion is supported by default */
1681 	cqspi->wr_completion = true;
1682 
1683 	ddata  = of_device_get_match_data(dev);
1684 	if (ddata) {
1685 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1686 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1687 						cqspi->master_ref_clk_hz);
1688 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1689 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1690 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1691 			cqspi->use_direct_mode = true;
1692 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1693 			cqspi->use_dma_read = true;
1694 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1695 			cqspi->wr_completion = false;
1696 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1697 			cqspi->slow_sram = true;
1698 
1699 		if (of_device_is_compatible(pdev->dev.of_node,
1700 					    "xlnx,versal-ospi-1.0"))
1701 			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1702 	}
1703 
1704 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1705 			       pdev->name, cqspi);
1706 	if (ret) {
1707 		dev_err(dev, "Cannot request IRQ.\n");
1708 		goto probe_reset_failed;
1709 	}
1710 
1711 	cqspi_wait_idle(cqspi);
1712 	cqspi_controller_init(cqspi);
1713 	cqspi->current_cs = -1;
1714 	cqspi->sclk = 0;
1715 
1716 	master->num_chipselect = cqspi->num_chipselect;
1717 
1718 	ret = cqspi_setup_flash(cqspi);
1719 	if (ret) {
1720 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1721 		goto probe_setup_failed;
1722 	}
1723 
1724 	if (cqspi->use_direct_mode) {
1725 		ret = cqspi_request_mmap_dma(cqspi);
1726 		if (ret == -EPROBE_DEFER)
1727 			goto probe_setup_failed;
1728 	}
1729 
1730 	ret = spi_register_master(master);
1731 	if (ret) {
1732 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1733 		goto probe_setup_failed;
1734 	}
1735 
1736 	return 0;
1737 probe_setup_failed:
1738 	cqspi_controller_enable(cqspi, 0);
1739 probe_reset_failed:
1740 	clk_disable_unprepare(cqspi->clk);
1741 probe_clk_failed:
1742 	pm_runtime_put_sync(dev);
1743 probe_pm_failed:
1744 	pm_runtime_disable(dev);
1745 	return ret;
1746 }
1747 
cqspi_remove(struct platform_device * pdev)1748 static int cqspi_remove(struct platform_device *pdev)
1749 {
1750 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1751 
1752 	spi_unregister_master(cqspi->master);
1753 	cqspi_controller_enable(cqspi, 0);
1754 
1755 	if (cqspi->rx_chan)
1756 		dma_release_channel(cqspi->rx_chan);
1757 
1758 	clk_disable_unprepare(cqspi->clk);
1759 
1760 	pm_runtime_put_sync(&pdev->dev);
1761 	pm_runtime_disable(&pdev->dev);
1762 
1763 	return 0;
1764 }
1765 
1766 #ifdef CONFIG_PM_SLEEP
cqspi_suspend(struct device * dev)1767 static int cqspi_suspend(struct device *dev)
1768 {
1769 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1770 
1771 	cqspi_controller_enable(cqspi, 0);
1772 	return 0;
1773 }
1774 
cqspi_resume(struct device * dev)1775 static int cqspi_resume(struct device *dev)
1776 {
1777 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1778 
1779 	cqspi_controller_enable(cqspi, 1);
1780 	return 0;
1781 }
1782 
1783 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1784 	.suspend = cqspi_suspend,
1785 	.resume = cqspi_resume,
1786 };
1787 
1788 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1789 #else
1790 #define CQSPI_DEV_PM_OPS	NULL
1791 #endif
1792 
1793 static const struct cqspi_driver_platdata cdns_qspi = {
1794 	.quirks = CQSPI_DISABLE_DAC_MODE,
1795 };
1796 
1797 static const struct cqspi_driver_platdata k2g_qspi = {
1798 	.quirks = CQSPI_NEEDS_WR_DELAY,
1799 };
1800 
1801 static const struct cqspi_driver_platdata am654_ospi = {
1802 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1803 	.quirks = CQSPI_NEEDS_WR_DELAY,
1804 };
1805 
1806 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1807 	.quirks = CQSPI_DISABLE_DAC_MODE,
1808 };
1809 
1810 static const struct cqspi_driver_platdata socfpga_qspi = {
1811 	.quirks = CQSPI_DISABLE_DAC_MODE
1812 			| CQSPI_NO_SUPPORT_WR_COMPLETION
1813 			| CQSPI_SLOW_SRAM,
1814 };
1815 
1816 static const struct cqspi_driver_platdata versal_ospi = {
1817 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1818 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1819 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1820 	.get_dma_status = cqspi_get_versal_dma_status,
1821 };
1822 
1823 static const struct of_device_id cqspi_dt_ids[] = {
1824 	{
1825 		.compatible = "cdns,qspi-nor",
1826 		.data = &cdns_qspi,
1827 	},
1828 	{
1829 		.compatible = "ti,k2g-qspi",
1830 		.data = &k2g_qspi,
1831 	},
1832 	{
1833 		.compatible = "ti,am654-ospi",
1834 		.data = &am654_ospi,
1835 	},
1836 	{
1837 		.compatible = "intel,lgm-qspi",
1838 		.data = &intel_lgm_qspi,
1839 	},
1840 	{
1841 		.compatible = "xlnx,versal-ospi-1.0",
1842 		.data = &versal_ospi,
1843 	},
1844 	{
1845 		.compatible = "intel,socfpga-qspi",
1846 		.data = &socfpga_qspi,
1847 	},
1848 	{ /* end of table */ }
1849 };
1850 
1851 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1852 
1853 static struct platform_driver cqspi_platform_driver = {
1854 	.probe = cqspi_probe,
1855 	.remove = cqspi_remove,
1856 	.driver = {
1857 		.name = CQSPI_NAME,
1858 		.pm = CQSPI_DEV_PM_OPS,
1859 		.of_match_table = cqspi_dt_ids,
1860 	},
1861 };
1862 
1863 module_platform_driver(cqspi_platform_driver);
1864 
1865 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1866 MODULE_LICENSE("GPL v2");
1867 MODULE_ALIAS("platform:" CQSPI_NAME);
1868 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1869 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1870 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1871 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1872 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1873