1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9 /*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 return 0;
131 }
132
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 return 0;
136 }
137
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 return 0;
141 }
142
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 return 0;
147 }
148
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 return 0;
152 }
153
hpet_rtc_dropped_irq(void)154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 return 0;
157 }
158
hpet_rtc_timer_init(void)159 static inline int hpet_rtc_timer_init(void)
160 {
161 return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
hpet_register_irq_handler(irq_handler_t handler)166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 return 0;
169 }
170
hpet_unregister_irq_handler(irq_handler_t handler)171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)179 static inline int use_hpet_alarm(void)
180 {
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192 #define can_bank2 true
193
cmos_read_bank2(unsigned char addr)194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198 }
199
cmos_write_bank2(unsigned char val,unsigned char addr)200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2 false
209
cmos_read_bank2(unsigned char addr)210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 return 0;
213 }
214
cmos_write_bank2(unsigned char val,unsigned char addr)215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
cmos_read_time(struct device * dev,struct rtc_time * t)223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 int ret;
226
227 /*
228 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 * which tells the caller that this RTC value is unusable.
230 */
231 if (!pm_trace_rtc_valid())
232 return -EIO;
233
234 ret = mc146818_get_time(t);
235 if (ret < 0) {
236 dev_err_ratelimited(dev, "unable to read current time\n");
237 return ret;
238 }
239
240 return 0;
241 }
242
cmos_set_time(struct device * dev,struct rtc_time * t)243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245 /* NOTE: this ignores the issue whereby updating the seconds
246 * takes effect exactly 500ms after we write the register.
247 * (Also queueing and other delays before we get this far.)
248 */
249 return mc146818_set_time(t);
250 }
251
252 struct cmos_read_alarm_callback_param {
253 struct cmos_rtc *cmos;
254 struct rtc_time *time;
255 unsigned char rtc_control;
256 };
257
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 void *param_in)
260 {
261 struct cmos_read_alarm_callback_param *p =
262 (struct cmos_read_alarm_callback_param *)param_in;
263 struct rtc_time *time = p->time;
264
265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269 if (p->cmos->day_alrm) {
270 /* ignore upper bits on readback per ACPI spec */
271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 if (!time->tm_mday)
273 time->tm_mday = -1;
274
275 if (p->cmos->mon_alrm) {
276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 if (!time->tm_mon)
278 time->tm_mon = -1;
279 }
280 }
281
282 p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
288 struct cmos_read_alarm_callback_param p = {
289 .cmos = cmos,
290 .time = &t->time,
291 };
292
293 /* This not only a rtc_op, but also called directly */
294 if (!is_valid_irq(cmos->irq))
295 return -EIO;
296
297 /* Basic alarms only support hour, minute, and seconds fields.
298 * Some also support day and month, for alarms up to a year in
299 * the future.
300 */
301
302 /* Some Intel chipsets disconnect the alarm registers when the clock
303 * update is in progress - during this time reads return bogus values
304 * and writes may fail silently. See for example "7th Generation Intel®
305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 * 27.7.1
307 *
308 * Use the mc146818_avoid_UIP() function to avoid this.
309 */
310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
311 return -EIO;
312
313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 if (((unsigned)t->time.tm_sec) < 0x60)
315 t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 else
317 t->time.tm_sec = -1;
318 if (((unsigned)t->time.tm_min) < 0x60)
319 t->time.tm_min = bcd2bin(t->time.tm_min);
320 else
321 t->time.tm_min = -1;
322 if (((unsigned)t->time.tm_hour) < 0x24)
323 t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 else
325 t->time.tm_hour = -1;
326
327 if (cmos->day_alrm) {
328 if (((unsigned)t->time.tm_mday) <= 0x31)
329 t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 else
331 t->time.tm_mday = -1;
332
333 if (cmos->mon_alrm) {
334 if (((unsigned)t->time.tm_mon) <= 0x12)
335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 else
337 t->time.tm_mon = -1;
338 }
339 }
340 }
341
342 t->enabled = !!(p.rtc_control & RTC_AIE);
343 t->pending = 0;
344
345 return 0;
346 }
347
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350 unsigned char rtc_intr;
351
352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 * allegedly some older rtcs need that to handle irqs properly
354 */
355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357 if (use_hpet_alarm())
358 return;
359
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 unsigned char rtc_control;
368
369 /* flush any pending IRQ status, notably for update irqs,
370 * before we enable new IRQs
371 */
372 rtc_control = CMOS_READ(RTC_CONTROL);
373 cmos_checkintr(cmos, rtc_control);
374
375 rtc_control |= mask;
376 CMOS_WRITE(rtc_control, RTC_CONTROL);
377 if (use_hpet_alarm())
378 hpet_set_rtc_irq_bit(mask);
379
380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 if (cmos->wake_on)
382 cmos->wake_on(cmos->dev);
383 }
384
385 cmos_checkintr(cmos, rtc_control);
386 }
387
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390 unsigned char rtc_control;
391
392 rtc_control = CMOS_READ(RTC_CONTROL);
393 rtc_control &= ~mask;
394 CMOS_WRITE(rtc_control, RTC_CONTROL);
395 if (use_hpet_alarm())
396 hpet_mask_rtc_irq_bit(mask);
397
398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 if (cmos->wake_off)
400 cmos->wake_off(cmos->dev);
401 }
402
403 cmos_checkintr(cmos, rtc_control);
404 }
405
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 struct rtc_time now;
410
411 cmos_read_time(dev, &now);
412
413 if (!cmos->day_alrm) {
414 time64_t t_max_date;
415 time64_t t_alrm;
416
417 t_max_date = rtc_tm_to_time64(&now);
418 t_max_date += 24 * 60 * 60 - 1;
419 t_alrm = rtc_tm_to_time64(&t->time);
420 if (t_alrm > t_max_date) {
421 dev_err(dev,
422 "Alarms can be up to one day in the future\n");
423 return -EINVAL;
424 }
425 } else if (!cmos->mon_alrm) {
426 struct rtc_time max_date = now;
427 time64_t t_max_date;
428 time64_t t_alrm;
429 int max_mday;
430
431 if (max_date.tm_mon == 11) {
432 max_date.tm_mon = 0;
433 max_date.tm_year += 1;
434 } else {
435 max_date.tm_mon += 1;
436 }
437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 if (max_date.tm_mday > max_mday)
439 max_date.tm_mday = max_mday;
440
441 t_max_date = rtc_tm_to_time64(&max_date);
442 t_max_date -= 1;
443 t_alrm = rtc_tm_to_time64(&t->time);
444 if (t_alrm > t_max_date) {
445 dev_err(dev,
446 "Alarms can be up to one month in the future\n");
447 return -EINVAL;
448 }
449 } else {
450 struct rtc_time max_date = now;
451 time64_t t_max_date;
452 time64_t t_alrm;
453 int max_mday;
454
455 max_date.tm_year += 1;
456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 if (max_date.tm_mday > max_mday)
458 max_date.tm_mday = max_mday;
459
460 t_max_date = rtc_tm_to_time64(&max_date);
461 t_max_date -= 1;
462 t_alrm = rtc_tm_to_time64(&t->time);
463 if (t_alrm > t_max_date) {
464 dev_err(dev,
465 "Alarms can be up to one year in the future\n");
466 return -EINVAL;
467 }
468 }
469
470 return 0;
471 }
472
473 struct cmos_set_alarm_callback_param {
474 struct cmos_rtc *cmos;
475 unsigned char mon, mday, hrs, min, sec;
476 struct rtc_wkalrm *t;
477 };
478
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480 * once
481 */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 void *param_in)
484 {
485 struct cmos_set_alarm_callback_param *p =
486 (struct cmos_set_alarm_callback_param *)param_in;
487
488 /* next rtc irq must not be from previous alarm setting */
489 cmos_irq_disable(p->cmos, RTC_AIE);
490
491 /* update alarm */
492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496 /* the system may support an "enhanced" alarm */
497 if (p->cmos->day_alrm) {
498 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 if (p->cmos->mon_alrm)
500 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 }
502
503 if (use_hpet_alarm()) {
504 /*
505 * FIXME the HPET alarm glue currently ignores day_alrm
506 * and mon_alrm ...
507 */
508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509 p->t->time.tm_sec);
510 }
511
512 if (p->t->enabled)
513 cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 struct cmos_set_alarm_callback_param p = {
520 .cmos = cmos,
521 .t = t
522 };
523 unsigned char rtc_control;
524 int ret;
525
526 /* This not only a rtc_op, but also called directly */
527 if (!is_valid_irq(cmos->irq))
528 return -EIO;
529
530 ret = cmos_validate_alarm(dev, t);
531 if (ret < 0)
532 return ret;
533
534 p.mon = t->time.tm_mon + 1;
535 p.mday = t->time.tm_mday;
536 p.hrs = t->time.tm_hour;
537 p.min = t->time.tm_min;
538 p.sec = t->time.tm_sec;
539
540 spin_lock_irq(&rtc_lock);
541 rtc_control = CMOS_READ(RTC_CONTROL);
542 spin_unlock_irq(&rtc_lock);
543
544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 /* Writing 0xff means "don't care" or "match all". */
546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 }
552
553 /*
554 * Some Intel chipsets disconnect the alarm registers when the clock
555 * update is in progress - during this time writes fail silently.
556 *
557 * Use mc146818_avoid_UIP() to avoid this.
558 */
559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
560 return -EIO;
561
562 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563
564 return 0;
565 }
566
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569 struct cmos_rtc *cmos = dev_get_drvdata(dev);
570 unsigned long flags;
571
572 spin_lock_irqsave(&rtc_lock, flags);
573
574 if (enabled)
575 cmos_irq_enable(cmos, RTC_AIE);
576 else
577 cmos_irq_disable(cmos, RTC_AIE);
578
579 spin_unlock_irqrestore(&rtc_lock, flags);
580 return 0;
581 }
582
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
cmos_procfs(struct device * dev,struct seq_file * seq)585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587 struct cmos_rtc *cmos = dev_get_drvdata(dev);
588 unsigned char rtc_control, valid;
589
590 spin_lock_irq(&rtc_lock);
591 rtc_control = CMOS_READ(RTC_CONTROL);
592 valid = CMOS_READ(RTC_VALID);
593 spin_unlock_irq(&rtc_lock);
594
595 /* NOTE: at least ICH6 reports battery status using a different
596 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 */
598 seq_printf(seq,
599 "periodic_IRQ\t: %s\n"
600 "update_IRQ\t: %s\n"
601 "HPET_emulated\t: %s\n"
602 // "square_wave\t: %s\n"
603 "BCD\t\t: %s\n"
604 "DST_enable\t: %s\n"
605 "periodic_freq\t: %d\n"
606 "batt_status\t: %s\n",
607 (rtc_control & RTC_PIE) ? "yes" : "no",
608 (rtc_control & RTC_UIE) ? "yes" : "no",
609 use_hpet_alarm() ? "yes" : "no",
610 // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 cmos->rtc->irq_freq,
614 (valid & RTC_VRT) ? "okay" : "dead");
615
616 return 0;
617 }
618
619 #else
620 #define cmos_procfs NULL
621 #endif
622
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 .read_time = cmos_read_time,
625 .set_time = cmos_set_time,
626 .read_alarm = cmos_read_alarm,
627 .set_alarm = cmos_set_alarm,
628 .proc = cmos_procfs,
629 .alarm_irq_enable = cmos_alarm_irq_enable,
630 };
631
632 /*----------------------------------------------------------------*/
633
634 /*
635 * All these chips have at least 64 bytes of address space, shared by
636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
637 * by boot firmware. Modern chips have 128 or 256 bytes.
638 */
639
640 #define NVRAM_OFFSET (RTC_REG_D + 1)
641
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643 size_t count)
644 {
645 unsigned char *buf = val;
646 int retval;
647
648 off += NVRAM_OFFSET;
649 spin_lock_irq(&rtc_lock);
650 for (retval = 0; count; count--, off++, retval++) {
651 if (off < 128)
652 *buf++ = CMOS_READ(off);
653 else if (can_bank2)
654 *buf++ = cmos_read_bank2(off);
655 else
656 break;
657 }
658 spin_unlock_irq(&rtc_lock);
659
660 return retval;
661 }
662
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)663 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
664 size_t count)
665 {
666 struct cmos_rtc *cmos = priv;
667 unsigned char *buf = val;
668 int retval;
669
670 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
671 * checksum on part of the NVRAM data. That's currently ignored
672 * here. If userspace is smart enough to know what fields of
673 * NVRAM to update, updating checksums is also part of its job.
674 */
675 off += NVRAM_OFFSET;
676 spin_lock_irq(&rtc_lock);
677 for (retval = 0; count; count--, off++, retval++) {
678 /* don't trash RTC registers */
679 if (off == cmos->day_alrm
680 || off == cmos->mon_alrm
681 || off == cmos->century)
682 buf++;
683 else if (off < 128)
684 CMOS_WRITE(*buf++, off);
685 else if (can_bank2)
686 cmos_write_bank2(*buf++, off);
687 else
688 break;
689 }
690 spin_unlock_irq(&rtc_lock);
691
692 return retval;
693 }
694
695 /*----------------------------------------------------------------*/
696
697 static struct cmos_rtc cmos_rtc;
698
cmos_interrupt(int irq,void * p)699 static irqreturn_t cmos_interrupt(int irq, void *p)
700 {
701 u8 irqstat;
702 u8 rtc_control;
703
704 spin_lock(&rtc_lock);
705
706 /* When the HPET interrupt handler calls us, the interrupt
707 * status is passed as arg1 instead of the irq number. But
708 * always clear irq status, even when HPET is in the way.
709 *
710 * Note that HPET and RTC are almost certainly out of phase,
711 * giving different IRQ status ...
712 */
713 irqstat = CMOS_READ(RTC_INTR_FLAGS);
714 rtc_control = CMOS_READ(RTC_CONTROL);
715 if (use_hpet_alarm())
716 irqstat = (unsigned long)irq & 0xF0;
717
718 /* If we were suspended, RTC_CONTROL may not be accurate since the
719 * bios may have cleared it.
720 */
721 if (!cmos_rtc.suspend_ctrl)
722 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
723 else
724 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
725
726 /* All Linux RTC alarms should be treated as if they were oneshot.
727 * Similar code may be needed in system wakeup paths, in case the
728 * alarm woke the system.
729 */
730 if (irqstat & RTC_AIE) {
731 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
732 rtc_control &= ~RTC_AIE;
733 CMOS_WRITE(rtc_control, RTC_CONTROL);
734 if (use_hpet_alarm())
735 hpet_mask_rtc_irq_bit(RTC_AIE);
736 CMOS_READ(RTC_INTR_FLAGS);
737 }
738 spin_unlock(&rtc_lock);
739
740 if (is_intr(irqstat)) {
741 rtc_update_irq(p, 1, irqstat);
742 return IRQ_HANDLED;
743 } else
744 return IRQ_NONE;
745 }
746
747 #ifdef CONFIG_PNP
748 #define INITSECTION
749
750 #else
751 #define INITSECTION __init
752 #endif
753
754 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)755 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
756 {
757 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
758 int retval = 0;
759 unsigned char rtc_control;
760 unsigned address_space;
761 u32 flags = 0;
762 struct nvmem_config nvmem_cfg = {
763 .name = "cmos_nvram",
764 .word_size = 1,
765 .stride = 1,
766 .reg_read = cmos_nvram_read,
767 .reg_write = cmos_nvram_write,
768 .priv = &cmos_rtc,
769 };
770
771 /* there can be only one ... */
772 if (cmos_rtc.dev)
773 return -EBUSY;
774
775 if (!ports)
776 return -ENODEV;
777
778 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
779 *
780 * REVISIT non-x86 systems may instead use memory space resources
781 * (needing ioremap etc), not i/o space resources like this ...
782 */
783 if (RTC_IOMAPPED)
784 ports = request_region(ports->start, resource_size(ports),
785 driver_name);
786 else
787 ports = request_mem_region(ports->start, resource_size(ports),
788 driver_name);
789 if (!ports) {
790 dev_dbg(dev, "i/o registers already in use\n");
791 return -EBUSY;
792 }
793
794 cmos_rtc.irq = rtc_irq;
795 cmos_rtc.iomem = ports;
796
797 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
798 * driver did, but don't reject unknown configs. Old hardware
799 * won't address 128 bytes. Newer chips have multiple banks,
800 * though they may not be listed in one I/O resource.
801 */
802 #if defined(CONFIG_ATARI)
803 address_space = 64;
804 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
805 || defined(__sparc__) || defined(__mips__) \
806 || defined(__powerpc__)
807 address_space = 128;
808 #else
809 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
810 address_space = 128;
811 #endif
812 if (can_bank2 && ports->end > (ports->start + 1))
813 address_space = 256;
814
815 /* For ACPI systems extension info comes from the FADT. On others,
816 * board specific setup provides it as appropriate. Systems where
817 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
818 * some almost-clones) can provide hooks to make that behave.
819 *
820 * Note that ACPI doesn't preclude putting these registers into
821 * "extended" areas of the chip, including some that we won't yet
822 * expect CMOS_READ and friends to handle.
823 */
824 if (info) {
825 if (info->flags)
826 flags = info->flags;
827 if (info->address_space)
828 address_space = info->address_space;
829
830 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
831 cmos_rtc.day_alrm = info->rtc_day_alarm;
832 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
833 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
834 if (info->rtc_century && info->rtc_century < 128)
835 cmos_rtc.century = info->rtc_century;
836
837 if (info->wake_on && info->wake_off) {
838 cmos_rtc.wake_on = info->wake_on;
839 cmos_rtc.wake_off = info->wake_off;
840 }
841 }
842
843 cmos_rtc.dev = dev;
844 dev_set_drvdata(dev, &cmos_rtc);
845
846 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
847 if (IS_ERR(cmos_rtc.rtc)) {
848 retval = PTR_ERR(cmos_rtc.rtc);
849 goto cleanup0;
850 }
851
852 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
853
854 if (!mc146818_does_rtc_work()) {
855 dev_warn(dev, "broken or not accessible\n");
856 retval = -ENXIO;
857 goto cleanup1;
858 }
859
860 spin_lock_irq(&rtc_lock);
861
862 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
863 /* force periodic irq to CMOS reset default of 1024Hz;
864 *
865 * REVISIT it's been reported that at least one x86_64 ALI
866 * mobo doesn't use 32KHz here ... for portability we might
867 * need to do something about other clock frequencies.
868 */
869 cmos_rtc.rtc->irq_freq = 1024;
870 if (use_hpet_alarm())
871 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
872 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
873 }
874
875 /* disable irqs */
876 if (is_valid_irq(rtc_irq))
877 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
878
879 rtc_control = CMOS_READ(RTC_CONTROL);
880
881 spin_unlock_irq(&rtc_lock);
882
883 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
884 dev_warn(dev, "only 24-hr supported\n");
885 retval = -ENXIO;
886 goto cleanup1;
887 }
888
889 if (use_hpet_alarm())
890 hpet_rtc_timer_init();
891
892 if (is_valid_irq(rtc_irq)) {
893 irq_handler_t rtc_cmos_int_handler;
894
895 if (use_hpet_alarm()) {
896 rtc_cmos_int_handler = hpet_rtc_interrupt;
897 retval = hpet_register_irq_handler(cmos_interrupt);
898 if (retval) {
899 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
900 dev_warn(dev, "hpet_register_irq_handler "
901 " failed in rtc_init().");
902 goto cleanup1;
903 }
904 } else
905 rtc_cmos_int_handler = cmos_interrupt;
906
907 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
908 0, dev_name(&cmos_rtc.rtc->dev),
909 cmos_rtc.rtc);
910 if (retval < 0) {
911 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
912 goto cleanup1;
913 }
914 } else {
915 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
916 }
917
918 cmos_rtc.rtc->ops = &cmos_rtc_ops;
919
920 retval = devm_rtc_register_device(cmos_rtc.rtc);
921 if (retval)
922 goto cleanup2;
923
924 /* Set the sync offset for the periodic 11min update correct */
925 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
926
927 /* export at least the first block of NVRAM */
928 nvmem_cfg.size = address_space - NVRAM_OFFSET;
929 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
930
931 dev_info(dev, "%s%s, %d bytes nvram%s\n",
932 !is_valid_irq(rtc_irq) ? "no alarms" :
933 cmos_rtc.mon_alrm ? "alarms up to one year" :
934 cmos_rtc.day_alrm ? "alarms up to one month" :
935 "alarms up to one day",
936 cmos_rtc.century ? ", y3k" : "",
937 nvmem_cfg.size,
938 use_hpet_alarm() ? ", hpet irqs" : "");
939
940 return 0;
941
942 cleanup2:
943 if (is_valid_irq(rtc_irq))
944 free_irq(rtc_irq, cmos_rtc.rtc);
945 cleanup1:
946 cmos_rtc.dev = NULL;
947 cleanup0:
948 if (RTC_IOMAPPED)
949 release_region(ports->start, resource_size(ports));
950 else
951 release_mem_region(ports->start, resource_size(ports));
952 return retval;
953 }
954
cmos_do_shutdown(int rtc_irq)955 static void cmos_do_shutdown(int rtc_irq)
956 {
957 spin_lock_irq(&rtc_lock);
958 if (is_valid_irq(rtc_irq))
959 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
960 spin_unlock_irq(&rtc_lock);
961 }
962
cmos_do_remove(struct device * dev)963 static void cmos_do_remove(struct device *dev)
964 {
965 struct cmos_rtc *cmos = dev_get_drvdata(dev);
966 struct resource *ports;
967
968 cmos_do_shutdown(cmos->irq);
969
970 if (is_valid_irq(cmos->irq)) {
971 free_irq(cmos->irq, cmos->rtc);
972 if (use_hpet_alarm())
973 hpet_unregister_irq_handler(cmos_interrupt);
974 }
975
976 cmos->rtc = NULL;
977
978 ports = cmos->iomem;
979 if (RTC_IOMAPPED)
980 release_region(ports->start, resource_size(ports));
981 else
982 release_mem_region(ports->start, resource_size(ports));
983 cmos->iomem = NULL;
984
985 cmos->dev = NULL;
986 }
987
cmos_aie_poweroff(struct device * dev)988 static int cmos_aie_poweroff(struct device *dev)
989 {
990 struct cmos_rtc *cmos = dev_get_drvdata(dev);
991 struct rtc_time now;
992 time64_t t_now;
993 int retval = 0;
994 unsigned char rtc_control;
995
996 if (!cmos->alarm_expires)
997 return -EINVAL;
998
999 spin_lock_irq(&rtc_lock);
1000 rtc_control = CMOS_READ(RTC_CONTROL);
1001 spin_unlock_irq(&rtc_lock);
1002
1003 /* We only care about the situation where AIE is disabled. */
1004 if (rtc_control & RTC_AIE)
1005 return -EBUSY;
1006
1007 cmos_read_time(dev, &now);
1008 t_now = rtc_tm_to_time64(&now);
1009
1010 /*
1011 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1012 * automatically right after shutdown on some buggy boxes.
1013 * This automatic rebooting issue won't happen when the alarm
1014 * time is larger than now+1 seconds.
1015 *
1016 * If the alarm time is equal to now+1 seconds, the issue can be
1017 * prevented by cancelling the alarm.
1018 */
1019 if (cmos->alarm_expires == t_now + 1) {
1020 struct rtc_wkalrm alarm;
1021
1022 /* Cancel the AIE timer by configuring the past time. */
1023 rtc_time64_to_tm(t_now - 1, &alarm.time);
1024 alarm.enabled = 0;
1025 retval = cmos_set_alarm(dev, &alarm);
1026 } else if (cmos->alarm_expires > t_now + 1) {
1027 retval = -EBUSY;
1028 }
1029
1030 return retval;
1031 }
1032
cmos_suspend(struct device * dev)1033 static int cmos_suspend(struct device *dev)
1034 {
1035 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1036 unsigned char tmp;
1037
1038 /* only the alarm might be a wakeup event source */
1039 spin_lock_irq(&rtc_lock);
1040 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1041 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1042 unsigned char mask;
1043
1044 if (device_may_wakeup(dev))
1045 mask = RTC_IRQMASK & ~RTC_AIE;
1046 else
1047 mask = RTC_IRQMASK;
1048 tmp &= ~mask;
1049 CMOS_WRITE(tmp, RTC_CONTROL);
1050 if (use_hpet_alarm())
1051 hpet_mask_rtc_irq_bit(mask);
1052 cmos_checkintr(cmos, tmp);
1053 }
1054 spin_unlock_irq(&rtc_lock);
1055
1056 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1057 cmos->enabled_wake = 1;
1058 if (cmos->wake_on)
1059 cmos->wake_on(dev);
1060 else
1061 enable_irq_wake(cmos->irq);
1062 }
1063
1064 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1065 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1066
1067 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1068 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1069 tmp);
1070
1071 return 0;
1072 }
1073
1074 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1075 * after a detour through G3 "mechanical off", although the ACPI spec
1076 * says wakeup should only work from G1/S4 "hibernate". To most users,
1077 * distinctions between S4 and S5 are pointless. So when the hardware
1078 * allows, don't draw that distinction.
1079 */
cmos_poweroff(struct device * dev)1080 static inline int cmos_poweroff(struct device *dev)
1081 {
1082 if (!IS_ENABLED(CONFIG_PM))
1083 return -ENOSYS;
1084
1085 return cmos_suspend(dev);
1086 }
1087
cmos_check_wkalrm(struct device * dev)1088 static void cmos_check_wkalrm(struct device *dev)
1089 {
1090 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1091 struct rtc_wkalrm current_alarm;
1092 time64_t t_now;
1093 time64_t t_current_expires;
1094 time64_t t_saved_expires;
1095 struct rtc_time now;
1096
1097 /* Check if we have RTC Alarm armed */
1098 if (!(cmos->suspend_ctrl & RTC_AIE))
1099 return;
1100
1101 cmos_read_time(dev, &now);
1102 t_now = rtc_tm_to_time64(&now);
1103
1104 /*
1105 * ACPI RTC wake event is cleared after resume from STR,
1106 * ACK the rtc irq here
1107 */
1108 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1109 local_irq_disable();
1110 cmos_interrupt(0, (void *)cmos->rtc);
1111 local_irq_enable();
1112 return;
1113 }
1114
1115 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1116 cmos_read_alarm(dev, ¤t_alarm);
1117 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1118 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1119 if (t_current_expires != t_saved_expires ||
1120 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1121 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1122 }
1123 }
1124
1125 static void cmos_check_acpi_rtc_status(struct device *dev,
1126 unsigned char *rtc_control);
1127
cmos_resume(struct device * dev)1128 static int __maybe_unused cmos_resume(struct device *dev)
1129 {
1130 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1131 unsigned char tmp;
1132
1133 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1134 if (cmos->wake_off)
1135 cmos->wake_off(dev);
1136 else
1137 disable_irq_wake(cmos->irq);
1138 cmos->enabled_wake = 0;
1139 }
1140
1141 /* The BIOS might have changed the alarm, restore it */
1142 cmos_check_wkalrm(dev);
1143
1144 spin_lock_irq(&rtc_lock);
1145 tmp = cmos->suspend_ctrl;
1146 cmos->suspend_ctrl = 0;
1147 /* re-enable any irqs previously active */
1148 if (tmp & RTC_IRQMASK) {
1149 unsigned char mask;
1150
1151 if (device_may_wakeup(dev) && use_hpet_alarm())
1152 hpet_rtc_timer_init();
1153
1154 do {
1155 CMOS_WRITE(tmp, RTC_CONTROL);
1156 if (use_hpet_alarm())
1157 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1158
1159 mask = CMOS_READ(RTC_INTR_FLAGS);
1160 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1161 if (!use_hpet_alarm() || !is_intr(mask))
1162 break;
1163
1164 /* force one-shot behavior if HPET blocked
1165 * the wake alarm's irq
1166 */
1167 rtc_update_irq(cmos->rtc, 1, mask);
1168 tmp &= ~RTC_AIE;
1169 hpet_mask_rtc_irq_bit(RTC_AIE);
1170 } while (mask & RTC_AIE);
1171
1172 if (tmp & RTC_AIE)
1173 cmos_check_acpi_rtc_status(dev, &tmp);
1174 }
1175 spin_unlock_irq(&rtc_lock);
1176
1177 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1178
1179 return 0;
1180 }
1181
1182 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1183
1184 /*----------------------------------------------------------------*/
1185
1186 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1187 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1188 * probably list them in similar PNPBIOS tables; so PNP is more common.
1189 *
1190 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1191 * predate even PNPBIOS should set up platform_bus devices.
1192 */
1193
1194 #ifdef CONFIG_ACPI
1195
1196 #include <linux/acpi.h>
1197
rtc_handler(void * context)1198 static u32 rtc_handler(void *context)
1199 {
1200 struct device *dev = context;
1201 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1202 unsigned char rtc_control = 0;
1203 unsigned char rtc_intr;
1204 unsigned long flags;
1205
1206
1207 /*
1208 * Always update rtc irq when ACPI is used as RTC Alarm.
1209 * Or else, ACPI SCI is enabled during suspend/resume only,
1210 * update rtc irq in that case.
1211 */
1212 if (cmos_use_acpi_alarm())
1213 cmos_interrupt(0, (void *)cmos->rtc);
1214 else {
1215 /* Fix me: can we use cmos_interrupt() here as well? */
1216 spin_lock_irqsave(&rtc_lock, flags);
1217 if (cmos_rtc.suspend_ctrl)
1218 rtc_control = CMOS_READ(RTC_CONTROL);
1219 if (rtc_control & RTC_AIE) {
1220 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1221 CMOS_WRITE(rtc_control, RTC_CONTROL);
1222 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1223 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1224 }
1225 spin_unlock_irqrestore(&rtc_lock, flags);
1226 }
1227
1228 pm_wakeup_hard_event(dev);
1229 acpi_clear_event(ACPI_EVENT_RTC);
1230 acpi_disable_event(ACPI_EVENT_RTC, 0);
1231 return ACPI_INTERRUPT_HANDLED;
1232 }
1233
rtc_wake_setup(struct device * dev)1234 static inline void rtc_wake_setup(struct device *dev)
1235 {
1236 if (acpi_disabled)
1237 return;
1238
1239 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1240 /*
1241 * After the RTC handler is installed, the Fixed_RTC event should
1242 * be disabled. Only when the RTC alarm is set will it be enabled.
1243 */
1244 acpi_clear_event(ACPI_EVENT_RTC);
1245 acpi_disable_event(ACPI_EVENT_RTC, 0);
1246 }
1247
rtc_wake_on(struct device * dev)1248 static void rtc_wake_on(struct device *dev)
1249 {
1250 acpi_clear_event(ACPI_EVENT_RTC);
1251 acpi_enable_event(ACPI_EVENT_RTC, 0);
1252 }
1253
rtc_wake_off(struct device * dev)1254 static void rtc_wake_off(struct device *dev)
1255 {
1256 acpi_disable_event(ACPI_EVENT_RTC, 0);
1257 }
1258
1259 #ifdef CONFIG_X86
1260 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
use_acpi_alarm_quirks(void)1261 static void use_acpi_alarm_quirks(void)
1262 {
1263 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1264 return;
1265
1266 if (!is_hpet_enabled())
1267 return;
1268
1269 if (dmi_get_bios_year() < 2015)
1270 return;
1271
1272 use_acpi_alarm = true;
1273 }
1274 #else
use_acpi_alarm_quirks(void)1275 static inline void use_acpi_alarm_quirks(void) { }
1276 #endif
1277
1278 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1279 * its device node and pass extra config data. This helps its driver use
1280 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1281 * that this board's RTC is wakeup-capable (per ACPI spec).
1282 */
1283 static struct cmos_rtc_board_info acpi_rtc_info;
1284
cmos_wake_setup(struct device * dev)1285 static void cmos_wake_setup(struct device *dev)
1286 {
1287 if (acpi_disabled)
1288 return;
1289
1290 use_acpi_alarm_quirks();
1291
1292 acpi_rtc_info.wake_on = rtc_wake_on;
1293 acpi_rtc_info.wake_off = rtc_wake_off;
1294
1295 /* workaround bug in some ACPI tables */
1296 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1297 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1298 acpi_gbl_FADT.month_alarm);
1299 acpi_gbl_FADT.month_alarm = 0;
1300 }
1301
1302 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1303 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1304 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1305
1306 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1307 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1308 dev_info(dev, "RTC can wake from S4\n");
1309
1310 dev->platform_data = &acpi_rtc_info;
1311
1312 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1313 device_init_wakeup(dev, 1);
1314 }
1315
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)1316 static void cmos_check_acpi_rtc_status(struct device *dev,
1317 unsigned char *rtc_control)
1318 {
1319 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1320 acpi_event_status rtc_status;
1321 acpi_status status;
1322
1323 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1324 return;
1325
1326 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1327 if (ACPI_FAILURE(status)) {
1328 dev_err(dev, "Could not get RTC status\n");
1329 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1330 unsigned char mask;
1331 *rtc_control &= ~RTC_AIE;
1332 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1333 mask = CMOS_READ(RTC_INTR_FLAGS);
1334 rtc_update_irq(cmos->rtc, 1, mask);
1335 }
1336 }
1337
1338 #else
1339
cmos_wake_setup(struct device * dev)1340 static void cmos_wake_setup(struct device *dev)
1341 {
1342 }
1343
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)1344 static void cmos_check_acpi_rtc_status(struct device *dev,
1345 unsigned char *rtc_control)
1346 {
1347 }
1348
rtc_wake_setup(struct device * dev)1349 static void rtc_wake_setup(struct device *dev)
1350 {
1351 }
1352 #endif
1353
1354 #ifdef CONFIG_PNP
1355
1356 #include <linux/pnp.h>
1357
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1358 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1359 {
1360 int irq, ret;
1361
1362 cmos_wake_setup(&pnp->dev);
1363
1364 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1365 irq = 0;
1366 #ifdef CONFIG_X86
1367 /* Some machines contain a PNP entry for the RTC, but
1368 * don't define the IRQ. It should always be safe to
1369 * hardcode it on systems with a legacy PIC.
1370 */
1371 if (nr_legacy_irqs())
1372 irq = RTC_IRQ;
1373 #endif
1374 } else {
1375 irq = pnp_irq(pnp, 0);
1376 }
1377
1378 ret = cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1379 if (ret)
1380 return ret;
1381
1382 rtc_wake_setup(&pnp->dev);
1383
1384 return 0;
1385 }
1386
cmos_pnp_remove(struct pnp_dev * pnp)1387 static void cmos_pnp_remove(struct pnp_dev *pnp)
1388 {
1389 cmos_do_remove(&pnp->dev);
1390 }
1391
cmos_pnp_shutdown(struct pnp_dev * pnp)1392 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1393 {
1394 struct device *dev = &pnp->dev;
1395 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1396
1397 if (system_state == SYSTEM_POWER_OFF) {
1398 int retval = cmos_poweroff(dev);
1399
1400 if (cmos_aie_poweroff(dev) < 0 && !retval)
1401 return;
1402 }
1403
1404 cmos_do_shutdown(cmos->irq);
1405 }
1406
1407 static const struct pnp_device_id rtc_ids[] = {
1408 { .id = "PNP0b00", },
1409 { .id = "PNP0b01", },
1410 { .id = "PNP0b02", },
1411 { },
1412 };
1413 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1414
1415 static struct pnp_driver cmos_pnp_driver = {
1416 .name = driver_name,
1417 .id_table = rtc_ids,
1418 .probe = cmos_pnp_probe,
1419 .remove = cmos_pnp_remove,
1420 .shutdown = cmos_pnp_shutdown,
1421
1422 /* flag ensures resume() gets called, and stops syslog spam */
1423 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1424 .driver = {
1425 .pm = &cmos_pm_ops,
1426 },
1427 };
1428
1429 #endif /* CONFIG_PNP */
1430
1431 #ifdef CONFIG_OF
1432 static const struct of_device_id of_cmos_match[] = {
1433 {
1434 .compatible = "motorola,mc146818",
1435 },
1436 { },
1437 };
1438 MODULE_DEVICE_TABLE(of, of_cmos_match);
1439
cmos_of_init(struct platform_device * pdev)1440 static __init void cmos_of_init(struct platform_device *pdev)
1441 {
1442 struct device_node *node = pdev->dev.of_node;
1443 const __be32 *val;
1444
1445 if (!node)
1446 return;
1447
1448 val = of_get_property(node, "ctrl-reg", NULL);
1449 if (val)
1450 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1451
1452 val = of_get_property(node, "freq-reg", NULL);
1453 if (val)
1454 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1455 }
1456 #else
cmos_of_init(struct platform_device * pdev)1457 static inline void cmos_of_init(struct platform_device *pdev) {}
1458 #endif
1459 /*----------------------------------------------------------------*/
1460
1461 /* Platform setup should have set up an RTC device, when PNP is
1462 * unavailable ... this could happen even on (older) PCs.
1463 */
1464
cmos_platform_probe(struct platform_device * pdev)1465 static int __init cmos_platform_probe(struct platform_device *pdev)
1466 {
1467 struct resource *resource;
1468 int irq, ret;
1469
1470 cmos_of_init(pdev);
1471 cmos_wake_setup(&pdev->dev);
1472
1473 if (RTC_IOMAPPED)
1474 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1475 else
1476 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1477 irq = platform_get_irq(pdev, 0);
1478 if (irq < 0)
1479 irq = -1;
1480
1481 ret = cmos_do_probe(&pdev->dev, resource, irq);
1482 if (ret)
1483 return ret;
1484
1485 rtc_wake_setup(&pdev->dev);
1486
1487 return 0;
1488 }
1489
cmos_platform_remove(struct platform_device * pdev)1490 static int cmos_platform_remove(struct platform_device *pdev)
1491 {
1492 cmos_do_remove(&pdev->dev);
1493 return 0;
1494 }
1495
cmos_platform_shutdown(struct platform_device * pdev)1496 static void cmos_platform_shutdown(struct platform_device *pdev)
1497 {
1498 struct device *dev = &pdev->dev;
1499 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1500
1501 if (system_state == SYSTEM_POWER_OFF) {
1502 int retval = cmos_poweroff(dev);
1503
1504 if (cmos_aie_poweroff(dev) < 0 && !retval)
1505 return;
1506 }
1507
1508 cmos_do_shutdown(cmos->irq);
1509 }
1510
1511 /* work with hotplug and coldplug */
1512 MODULE_ALIAS("platform:rtc_cmos");
1513
1514 static struct platform_driver cmos_platform_driver = {
1515 .remove = cmos_platform_remove,
1516 .shutdown = cmos_platform_shutdown,
1517 .driver = {
1518 .name = driver_name,
1519 .pm = &cmos_pm_ops,
1520 .of_match_table = of_match_ptr(of_cmos_match),
1521 }
1522 };
1523
1524 #ifdef CONFIG_PNP
1525 static bool pnp_driver_registered;
1526 #endif
1527 static bool platform_driver_registered;
1528
cmos_init(void)1529 static int __init cmos_init(void)
1530 {
1531 int retval = 0;
1532
1533 #ifdef CONFIG_PNP
1534 retval = pnp_register_driver(&cmos_pnp_driver);
1535 if (retval == 0)
1536 pnp_driver_registered = true;
1537 #endif
1538
1539 if (!cmos_rtc.dev) {
1540 retval = platform_driver_probe(&cmos_platform_driver,
1541 cmos_platform_probe);
1542 if (retval == 0)
1543 platform_driver_registered = true;
1544 }
1545
1546 if (retval == 0)
1547 return 0;
1548
1549 #ifdef CONFIG_PNP
1550 if (pnp_driver_registered)
1551 pnp_unregister_driver(&cmos_pnp_driver);
1552 #endif
1553 return retval;
1554 }
1555 module_init(cmos_init);
1556
cmos_exit(void)1557 static void __exit cmos_exit(void)
1558 {
1559 #ifdef CONFIG_PNP
1560 if (pnp_driver_registered)
1561 pnp_unregister_driver(&cmos_pnp_driver);
1562 #endif
1563 if (platform_driver_registered)
1564 platform_driver_unregister(&cmos_platform_driver);
1565 }
1566 module_exit(cmos_exit);
1567
1568
1569 MODULE_AUTHOR("David Brownell");
1570 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1571 MODULE_LICENSE("GPL");
1572