1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/power_supply.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16
17 /* PMIC global control registers definition */
18 #define SC27XX_MODULE_EN0 0xc08
19 #define SC27XX_CLK_EN0 0xc18
20 #define SC27XX_FGU_EN BIT(7)
21 #define SC27XX_FGU_RTC_EN BIT(6)
22
23 /* FGU registers definition */
24 #define SC27XX_FGU_START 0x0
25 #define SC27XX_FGU_CONFIG 0x4
26 #define SC27XX_FGU_ADC_CONFIG 0x8
27 #define SC27XX_FGU_STATUS 0xc
28 #define SC27XX_FGU_INT_EN 0x10
29 #define SC27XX_FGU_INT_CLR 0x14
30 #define SC27XX_FGU_INT_STS 0x1c
31 #define SC27XX_FGU_VOLTAGE 0x20
32 #define SC27XX_FGU_OCV 0x24
33 #define SC27XX_FGU_POCV 0x28
34 #define SC27XX_FGU_CURRENT 0x2c
35 #define SC27XX_FGU_LOW_OVERLOAD 0x34
36 #define SC27XX_FGU_CLBCNT_SETH 0x50
37 #define SC27XX_FGU_CLBCNT_SETL 0x54
38 #define SC27XX_FGU_CLBCNT_DELTH 0x58
39 #define SC27XX_FGU_CLBCNT_DELTL 0x5c
40 #define SC27XX_FGU_CLBCNT_VALH 0x68
41 #define SC27XX_FGU_CLBCNT_VALL 0x6c
42 #define SC27XX_FGU_CLBCNT_QMAXL 0x74
43 #define SC27XX_FGU_USER_AREA_SET 0xa0
44 #define SC27XX_FGU_USER_AREA_CLEAR 0xa4
45 #define SC27XX_FGU_USER_AREA_STATUS 0xa8
46 #define SC27XX_FGU_VOLTAGE_BUF 0xd0
47 #define SC27XX_FGU_CURRENT_BUF 0xf0
48
49 #define SC27XX_WRITE_SELCLB_EN BIT(0)
50 #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
51 #define SC27XX_FGU_CLBCNT_SHIFT 16
52 #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
53
54 #define SC27XX_FGU_INT_MASK GENMASK(9, 0)
55 #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
56 #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
57
58 #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
59 #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
60 #define SC27XX_FGU_MODE_AREA_SHIFT 12
61
62 #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
63 #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
64 #define SC27XX_FGU_NORMAIL_POWERTON 0x5
65
66 #define SC27XX_FGU_CUR_BASIC_ADC 8192
67 #define SC27XX_FGU_SAMPLE_HZ 2
68 /* micro Ohms */
69 #define SC27XX_FGU_IDEAL_RESISTANCE 20000
70
71 /*
72 * struct sc27xx_fgu_data: describe the FGU device
73 * @regmap: regmap for register access
74 * @dev: platform device
75 * @battery: battery power supply
76 * @base: the base offset for the controller
77 * @lock: protect the structure
78 * @gpiod: GPIO for battery detection
79 * @channel: IIO channel to get battery temperature
80 * @charge_chan: IIO channel to get charge voltage
81 * @internal_resist: the battery internal resistance in mOhm
82 * @total_cap: the total capacity of the battery in mAh
83 * @init_cap: the initial capacity of the battery in mAh
84 * @alarm_cap: the alarm capacity
85 * @init_clbcnt: the initial coulomb counter
86 * @max_volt: the maximum constant input voltage in millivolt
87 * @min_volt: the minimum drained battery voltage in microvolt
88 * @boot_volt: the voltage measured during boot in microvolt
89 * @table_len: the capacity table length
90 * @resist_table_len: the resistance table length
91 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
92 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
93 * @calib_resist: the real resistance of coulomb counter chip in uOhm
94 * @cap_table: capacity table with corresponding ocv
95 * @resist_table: resistance percent table with corresponding temperature
96 */
97 struct sc27xx_fgu_data {
98 struct regmap *regmap;
99 struct device *dev;
100 struct power_supply *battery;
101 u32 base;
102 struct mutex lock;
103 struct gpio_desc *gpiod;
104 struct iio_channel *channel;
105 struct iio_channel *charge_chan;
106 bool bat_present;
107 int internal_resist;
108 int total_cap;
109 int init_cap;
110 int alarm_cap;
111 int init_clbcnt;
112 int max_volt;
113 int min_volt;
114 int boot_volt;
115 int table_len;
116 int resist_table_len;
117 int cur_1000ma_adc;
118 int vol_1000mv_adc;
119 int calib_resist;
120 struct power_supply_battery_ocv_table *cap_table;
121 struct power_supply_resistance_temp_table *resist_table;
122 };
123
124 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
125 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
126 int cap, bool int_mode);
127 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
128 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
129
130 static const char * const sc27xx_charger_supply_name[] = {
131 "sc2731_charger",
132 "sc2720_charger",
133 "sc2721_charger",
134 "sc2723_charger",
135 };
136
sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data * data,s64 adc)137 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
138 {
139 return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
140 }
141
sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data * data,s64 adc)142 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
143 {
144 return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
145 }
146
sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data * data,int vol)147 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
148 {
149 return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
150 }
151
sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data * data)152 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
153 {
154 int ret, status, cap, mode;
155
156 ret = regmap_read(data->regmap,
157 data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
158 if (ret)
159 return false;
160
161 /*
162 * We use low 4 bits to save the last battery capacity and high 12 bits
163 * to save the system boot mode.
164 */
165 mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
166 cap = status & SC27XX_FGU_CAP_AREA_MASK;
167
168 /*
169 * When FGU has been powered down, the user area registers became
170 * default value (0xffff), which can be used to valid if the system is
171 * first power on or not.
172 */
173 if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
174 return true;
175
176 return false;
177 }
178
sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data * data,int boot_mode)179 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
180 int boot_mode)
181 {
182 int ret;
183
184 ret = regmap_update_bits(data->regmap,
185 data->base + SC27XX_FGU_USER_AREA_CLEAR,
186 SC27XX_FGU_MODE_AREA_MASK,
187 SC27XX_FGU_MODE_AREA_MASK);
188 if (ret)
189 return ret;
190
191 /*
192 * Since the user area registers are put on power always-on region,
193 * then these registers changing time will be a little long. Thus
194 * here we should delay 200us to wait until values are updated
195 * successfully according to the datasheet.
196 */
197 udelay(200);
198
199 ret = regmap_update_bits(data->regmap,
200 data->base + SC27XX_FGU_USER_AREA_SET,
201 SC27XX_FGU_MODE_AREA_MASK,
202 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
203 if (ret)
204 return ret;
205
206 /*
207 * Since the user area registers are put on power always-on region,
208 * then these registers changing time will be a little long. Thus
209 * here we should delay 200us to wait until values are updated
210 * successfully according to the datasheet.
211 */
212 udelay(200);
213
214 /*
215 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
216 * make the user area data available, otherwise we can not save the user
217 * area data.
218 */
219 return regmap_update_bits(data->regmap,
220 data->base + SC27XX_FGU_USER_AREA_CLEAR,
221 SC27XX_FGU_MODE_AREA_MASK, 0);
222 }
223
sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data * data,int cap)224 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
225 {
226 int ret;
227
228 ret = regmap_update_bits(data->regmap,
229 data->base + SC27XX_FGU_USER_AREA_CLEAR,
230 SC27XX_FGU_CAP_AREA_MASK,
231 SC27XX_FGU_CAP_AREA_MASK);
232 if (ret)
233 return ret;
234
235 /*
236 * Since the user area registers are put on power always-on region,
237 * then these registers changing time will be a little long. Thus
238 * here we should delay 200us to wait until values are updated
239 * successfully according to the datasheet.
240 */
241 udelay(200);
242
243 ret = regmap_update_bits(data->regmap,
244 data->base + SC27XX_FGU_USER_AREA_SET,
245 SC27XX_FGU_CAP_AREA_MASK, cap);
246 if (ret)
247 return ret;
248
249 /*
250 * Since the user area registers are put on power always-on region,
251 * then these registers changing time will be a little long. Thus
252 * here we should delay 200us to wait until values are updated
253 * successfully according to the datasheet.
254 */
255 udelay(200);
256
257 /*
258 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
259 * make the user area data available, otherwise we can not save the user
260 * area data.
261 */
262 return regmap_update_bits(data->regmap,
263 data->base + SC27XX_FGU_USER_AREA_CLEAR,
264 SC27XX_FGU_CAP_AREA_MASK, 0);
265 }
266
sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data * data,int * cap)267 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
268 {
269 int ret, value;
270
271 ret = regmap_read(data->regmap,
272 data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
273 if (ret)
274 return ret;
275
276 *cap = value & SC27XX_FGU_CAP_AREA_MASK;
277 return 0;
278 }
279
280 /*
281 * When system boots on, we can not read battery capacity from coulomb
282 * registers, since now the coulomb registers are invalid. So we should
283 * calculate the battery open circuit voltage, and get current battery
284 * capacity according to the capacity table.
285 */
sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data * data,int * cap)286 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
287 {
288 int volt, cur, oci, ocv, ret;
289 bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
290
291 /*
292 * If system is not the first power on, we should use the last saved
293 * battery capacity as the initial battery capacity. Otherwise we should
294 * re-calculate the initial battery capacity.
295 */
296 if (!is_first_poweron) {
297 ret = sc27xx_fgu_read_last_cap(data, cap);
298 if (ret)
299 return ret;
300
301 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
302 }
303
304 /*
305 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
306 * the first sampled open circuit current.
307 */
308 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
309 &cur);
310 if (ret)
311 return ret;
312
313 cur <<= 1;
314 oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
315
316 /*
317 * Should get the OCV from SC27XX_FGU_POCV register at the system
318 * beginning. It is ADC values reading from registers which need to
319 * convert the corresponding voltage.
320 */
321 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
322 if (ret)
323 return ret;
324
325 volt = sc27xx_fgu_adc_to_voltage(data, volt);
326 ocv = volt * 1000 - oci * data->internal_resist;
327 data->boot_volt = ocv;
328
329 /*
330 * Parse the capacity table to look up the correct capacity percent
331 * according to current battery's corresponding OCV values.
332 */
333 *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
334 ocv);
335
336 ret = sc27xx_fgu_save_last_cap(data, *cap);
337 if (ret)
338 return ret;
339
340 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
341 }
342
sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data * data,int clbcnt)343 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
344 {
345 int ret;
346
347 ret = regmap_update_bits(data->regmap,
348 data->base + SC27XX_FGU_CLBCNT_SETL,
349 SC27XX_FGU_CLBCNT_MASK, clbcnt);
350 if (ret)
351 return ret;
352
353 ret = regmap_update_bits(data->regmap,
354 data->base + SC27XX_FGU_CLBCNT_SETH,
355 SC27XX_FGU_CLBCNT_MASK,
356 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
357 if (ret)
358 return ret;
359
360 return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
361 SC27XX_WRITE_SELCLB_EN,
362 SC27XX_WRITE_SELCLB_EN);
363 }
364
sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data * data,int * clb_cnt)365 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
366 {
367 int ccl, cch, ret;
368
369 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
370 &ccl);
371 if (ret)
372 return ret;
373
374 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
375 &cch);
376 if (ret)
377 return ret;
378
379 *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
380 *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
381
382 return 0;
383 }
384
sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data * data,int * val)385 static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
386 {
387 int ret;
388 u32 vol;
389
390 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
391 &vol);
392 if (ret)
393 return ret;
394
395 /*
396 * It is ADC values reading from registers which need to convert to
397 * corresponding voltage values.
398 */
399 *val = sc27xx_fgu_adc_to_voltage(data, vol);
400
401 return 0;
402 }
403
sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data * data,int * val)404 static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
405 {
406 int ret;
407 u32 cur;
408
409 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
410 &cur);
411 if (ret)
412 return ret;
413
414 /*
415 * It is ADC values reading from registers which need to convert to
416 * corresponding current values.
417 */
418 *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
419
420 return 0;
421 }
422
sc27xx_fgu_get_capacity(struct sc27xx_fgu_data * data,int * cap)423 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
424 {
425 int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
426
427 /* Get current coulomb counters firstly */
428 ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
429 if (ret)
430 return ret;
431
432 delta_clbcnt = cur_clbcnt - data->init_clbcnt;
433
434 /*
435 * Convert coulomb counter to delta capacity (mAh), and set multiplier
436 * as 10 to improve the precision.
437 */
438 temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
439 temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
440
441 /*
442 * Convert to capacity percent of the battery total capacity,
443 * and multiplier is 100 too.
444 */
445 delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
446 *cap = delta_cap + data->init_cap;
447
448 /* Calibrate the battery capacity in a normal range. */
449 sc27xx_fgu_capacity_calibration(data, *cap, false);
450
451 return 0;
452 }
453
sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data * data,int * val)454 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
455 {
456 int ret, vol;
457
458 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
459 if (ret)
460 return ret;
461
462 /*
463 * It is ADC values reading from registers which need to convert to
464 * corresponding voltage values.
465 */
466 *val = sc27xx_fgu_adc_to_voltage(data, vol);
467
468 return 0;
469 }
470
sc27xx_fgu_get_current(struct sc27xx_fgu_data * data,int * val)471 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
472 {
473 int ret, cur;
474
475 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
476 if (ret)
477 return ret;
478
479 /*
480 * It is ADC values reading from registers which need to convert to
481 * corresponding current values.
482 */
483 *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
484
485 return 0;
486 }
487
sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data * data,int * val)488 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
489 {
490 int vol, cur, ret, temp, resistance;
491
492 ret = sc27xx_fgu_get_vbat_vol(data, &vol);
493 if (ret)
494 return ret;
495
496 ret = sc27xx_fgu_get_current(data, &cur);
497 if (ret)
498 return ret;
499
500 resistance = data->internal_resist;
501 if (data->resist_table_len > 0) {
502 ret = sc27xx_fgu_get_temp(data, &temp);
503 if (ret)
504 return ret;
505
506 resistance = power_supply_temp2resist_simple(data->resist_table,
507 data->resist_table_len, temp);
508 resistance = data->internal_resist * resistance / 100;
509 }
510
511 /* Return the battery OCV in micro volts. */
512 *val = vol * 1000 - cur * resistance;
513
514 return 0;
515 }
516
sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data * data,int * val)517 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
518 {
519 int ret, vol;
520
521 ret = iio_read_channel_processed(data->charge_chan, &vol);
522 if (ret < 0)
523 return ret;
524
525 *val = vol * 1000;
526 return 0;
527 }
528
sc27xx_fgu_get_temp(struct sc27xx_fgu_data * data,int * temp)529 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
530 {
531 return iio_read_channel_processed(data->channel, temp);
532 }
533
sc27xx_fgu_get_health(struct sc27xx_fgu_data * data,int * health)534 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
535 {
536 int ret, vol;
537
538 ret = sc27xx_fgu_get_vbat_vol(data, &vol);
539 if (ret)
540 return ret;
541
542 if (vol > data->max_volt)
543 *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
544 else
545 *health = POWER_SUPPLY_HEALTH_GOOD;
546
547 return 0;
548 }
549
sc27xx_fgu_get_status(struct sc27xx_fgu_data * data,int * status)550 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
551 {
552 union power_supply_propval val;
553 struct power_supply *psy;
554 int i, ret = -EINVAL;
555
556 for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
557 psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
558 if (!psy)
559 continue;
560
561 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
562 &val);
563 power_supply_put(psy);
564 if (ret)
565 return ret;
566
567 *status = val.intval;
568 }
569
570 return ret;
571 }
572
sc27xx_fgu_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)573 static int sc27xx_fgu_get_property(struct power_supply *psy,
574 enum power_supply_property psp,
575 union power_supply_propval *val)
576 {
577 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
578 int ret = 0;
579 int value;
580
581 mutex_lock(&data->lock);
582
583 switch (psp) {
584 case POWER_SUPPLY_PROP_STATUS:
585 ret = sc27xx_fgu_get_status(data, &value);
586 if (ret)
587 goto error;
588
589 val->intval = value;
590 break;
591
592 case POWER_SUPPLY_PROP_HEALTH:
593 ret = sc27xx_fgu_get_health(data, &value);
594 if (ret)
595 goto error;
596
597 val->intval = value;
598 break;
599
600 case POWER_SUPPLY_PROP_PRESENT:
601 val->intval = data->bat_present;
602 break;
603
604 case POWER_SUPPLY_PROP_TEMP:
605 ret = sc27xx_fgu_get_temp(data, &value);
606 if (ret)
607 goto error;
608
609 val->intval = value;
610 break;
611
612 case POWER_SUPPLY_PROP_TECHNOLOGY:
613 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
614 break;
615
616 case POWER_SUPPLY_PROP_CAPACITY:
617 ret = sc27xx_fgu_get_capacity(data, &value);
618 if (ret)
619 goto error;
620
621 val->intval = value;
622 break;
623
624 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
625 ret = sc27xx_fgu_get_vbat_vol(data, &value);
626 if (ret)
627 goto error;
628
629 val->intval = value * 1000;
630 break;
631
632 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
633 ret = sc27xx_fgu_get_vbat_ocv(data, &value);
634 if (ret)
635 goto error;
636
637 val->intval = value;
638 break;
639
640 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
641 ret = sc27xx_fgu_get_charge_vol(data, &value);
642 if (ret)
643 goto error;
644
645 val->intval = value;
646 break;
647
648 case POWER_SUPPLY_PROP_CURRENT_AVG:
649 ret = sc27xx_fgu_get_current(data, &value);
650 if (ret)
651 goto error;
652
653 val->intval = value * 1000;
654 break;
655
656 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
657 val->intval = data->total_cap * 1000;
658 break;
659
660 case POWER_SUPPLY_PROP_CHARGE_NOW:
661 ret = sc27xx_fgu_get_clbcnt(data, &value);
662 if (ret)
663 goto error;
664
665 value = DIV_ROUND_CLOSEST(value * 10,
666 36 * SC27XX_FGU_SAMPLE_HZ);
667 val->intval = sc27xx_fgu_adc_to_current(data, value);
668
669 break;
670
671 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
672 ret = sc27xx_fgu_get_vol_now(data, &value);
673 if (ret)
674 goto error;
675
676 val->intval = value * 1000;
677 break;
678
679 case POWER_SUPPLY_PROP_CURRENT_NOW:
680 ret = sc27xx_fgu_get_cur_now(data, &value);
681 if (ret)
682 goto error;
683
684 val->intval = value * 1000;
685 break;
686
687 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
688 val->intval = data->boot_volt;
689 break;
690
691 default:
692 ret = -EINVAL;
693 break;
694 }
695
696 error:
697 mutex_unlock(&data->lock);
698 return ret;
699 }
700
sc27xx_fgu_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)701 static int sc27xx_fgu_set_property(struct power_supply *psy,
702 enum power_supply_property psp,
703 const union power_supply_propval *val)
704 {
705 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
706 int ret;
707
708 mutex_lock(&data->lock);
709
710 switch (psp) {
711 case POWER_SUPPLY_PROP_CAPACITY:
712 ret = sc27xx_fgu_save_last_cap(data, val->intval);
713 if (ret < 0)
714 dev_err(data->dev, "failed to save battery capacity\n");
715 break;
716
717 case POWER_SUPPLY_PROP_CALIBRATE:
718 sc27xx_fgu_adjust_cap(data, val->intval);
719 ret = 0;
720 break;
721
722 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
723 data->total_cap = val->intval / 1000;
724 ret = 0;
725 break;
726
727 default:
728 ret = -EINVAL;
729 }
730
731 mutex_unlock(&data->lock);
732
733 return ret;
734 }
735
sc27xx_fgu_external_power_changed(struct power_supply * psy)736 static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
737 {
738 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
739
740 power_supply_changed(data->battery);
741 }
742
sc27xx_fgu_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)743 static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
744 enum power_supply_property psp)
745 {
746 return psp == POWER_SUPPLY_PROP_CAPACITY ||
747 psp == POWER_SUPPLY_PROP_CALIBRATE ||
748 psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
749 }
750
751 static enum power_supply_property sc27xx_fgu_props[] = {
752 POWER_SUPPLY_PROP_STATUS,
753 POWER_SUPPLY_PROP_HEALTH,
754 POWER_SUPPLY_PROP_PRESENT,
755 POWER_SUPPLY_PROP_TEMP,
756 POWER_SUPPLY_PROP_TECHNOLOGY,
757 POWER_SUPPLY_PROP_CAPACITY,
758 POWER_SUPPLY_PROP_VOLTAGE_NOW,
759 POWER_SUPPLY_PROP_VOLTAGE_OCV,
760 POWER_SUPPLY_PROP_VOLTAGE_AVG,
761 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
762 POWER_SUPPLY_PROP_CURRENT_NOW,
763 POWER_SUPPLY_PROP_CURRENT_AVG,
764 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
765 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
766 POWER_SUPPLY_PROP_CALIBRATE,
767 POWER_SUPPLY_PROP_CHARGE_NOW
768 };
769
770 static const struct power_supply_desc sc27xx_fgu_desc = {
771 .name = "sc27xx-fgu",
772 .type = POWER_SUPPLY_TYPE_BATTERY,
773 .properties = sc27xx_fgu_props,
774 .num_properties = ARRAY_SIZE(sc27xx_fgu_props),
775 .get_property = sc27xx_fgu_get_property,
776 .set_property = sc27xx_fgu_set_property,
777 .external_power_changed = sc27xx_fgu_external_power_changed,
778 .property_is_writeable = sc27xx_fgu_property_is_writeable,
779 .no_thermal = true,
780 };
781
sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data * data,int cap)782 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
783 {
784 int ret;
785
786 data->init_cap = cap;
787 ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
788 if (ret)
789 dev_err(data->dev, "failed to get init coulomb counter\n");
790 }
791
sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data * data,int cap,bool int_mode)792 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
793 int cap, bool int_mode)
794 {
795 int ret, ocv, chg_sts, adc;
796
797 ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
798 if (ret) {
799 dev_err(data->dev, "get battery ocv error.\n");
800 return;
801 }
802
803 ret = sc27xx_fgu_get_status(data, &chg_sts);
804 if (ret) {
805 dev_err(data->dev, "get charger status error.\n");
806 return;
807 }
808
809 /*
810 * If we are in charging mode, then we do not need to calibrate the
811 * lower capacity.
812 */
813 if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
814 return;
815
816 if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
817 /*
818 * If current OCV value is larger than the max OCV value in
819 * OCV table, or the current capacity is larger than 100,
820 * we should force the inititial capacity to 100.
821 */
822 sc27xx_fgu_adjust_cap(data, 100);
823 } else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
824 /*
825 * If current OCV value is leass than the minimum OCV value in
826 * OCV table, we should force the inititial capacity to 0.
827 */
828 sc27xx_fgu_adjust_cap(data, 0);
829 } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
830 (ocv > data->min_volt && cap <= data->alarm_cap)) {
831 /*
832 * If current OCV value is not matchable with current capacity,
833 * we should re-calculate current capacity by looking up the
834 * OCV table.
835 */
836 int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
837 data->table_len, ocv);
838
839 sc27xx_fgu_adjust_cap(data, cur_cap);
840 } else if (ocv <= data->min_volt) {
841 /*
842 * If current OCV value is less than the low alarm voltage, but
843 * current capacity is larger than the alarm capacity, we should
844 * adjust the inititial capacity to alarm capacity.
845 */
846 if (cap > data->alarm_cap) {
847 sc27xx_fgu_adjust_cap(data, data->alarm_cap);
848 } else {
849 int cur_cap;
850
851 /*
852 * If current capacity is equal with 0 or less than 0
853 * (some error occurs), we should adjust inititial
854 * capacity to the capacity corresponding to current OCV
855 * value.
856 */
857 cur_cap = power_supply_ocv2cap_simple(data->cap_table,
858 data->table_len,
859 ocv);
860 sc27xx_fgu_adjust_cap(data, cur_cap);
861 }
862
863 if (!int_mode)
864 return;
865
866 /*
867 * After adjusting the battery capacity, we should set the
868 * lowest alarm voltage instead.
869 */
870 data->min_volt = data->cap_table[data->table_len - 1].ocv;
871 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
872 data->table_len,
873 data->min_volt);
874
875 adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
876 regmap_update_bits(data->regmap,
877 data->base + SC27XX_FGU_LOW_OVERLOAD,
878 SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
879 }
880 }
881
sc27xx_fgu_interrupt(int irq,void * dev_id)882 static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
883 {
884 struct sc27xx_fgu_data *data = dev_id;
885 int ret, cap;
886 u32 status;
887
888 mutex_lock(&data->lock);
889
890 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
891 &status);
892 if (ret)
893 goto out;
894
895 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
896 status, status);
897 if (ret)
898 goto out;
899
900 /*
901 * When low overload voltage interrupt happens, we should calibrate the
902 * battery capacity in lower voltage stage.
903 */
904 if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
905 goto out;
906
907 ret = sc27xx_fgu_get_capacity(data, &cap);
908 if (ret)
909 goto out;
910
911 sc27xx_fgu_capacity_calibration(data, cap, true);
912
913 out:
914 mutex_unlock(&data->lock);
915
916 power_supply_changed(data->battery);
917 return IRQ_HANDLED;
918 }
919
sc27xx_fgu_bat_detection(int irq,void * dev_id)920 static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
921 {
922 struct sc27xx_fgu_data *data = dev_id;
923 int state;
924
925 mutex_lock(&data->lock);
926
927 state = gpiod_get_value_cansleep(data->gpiod);
928 if (state < 0) {
929 dev_err(data->dev, "failed to get gpio state\n");
930 mutex_unlock(&data->lock);
931 return IRQ_RETVAL(state);
932 }
933
934 data->bat_present = !!state;
935
936 mutex_unlock(&data->lock);
937
938 power_supply_changed(data->battery);
939 return IRQ_HANDLED;
940 }
941
sc27xx_fgu_disable(void * _data)942 static void sc27xx_fgu_disable(void *_data)
943 {
944 struct sc27xx_fgu_data *data = _data;
945
946 regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
947 regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
948 }
949
sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data * data,int capacity)950 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
951 {
952 /*
953 * Get current capacity (mAh) = battery total capacity (mAh) *
954 * current capacity percent (capacity / 100).
955 */
956 int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
957
958 /*
959 * Convert current capacity (mAh) to coulomb counter according to the
960 * formula: 1 mAh =3.6 coulomb.
961 */
962 return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
963 }
964
sc27xx_fgu_calibration(struct sc27xx_fgu_data * data)965 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
966 {
967 struct nvmem_cell *cell;
968 int calib_data, cal_4200mv;
969 void *buf;
970 size_t len;
971
972 cell = nvmem_cell_get(data->dev, "fgu_calib");
973 if (IS_ERR(cell))
974 return PTR_ERR(cell);
975
976 buf = nvmem_cell_read(cell, &len);
977 nvmem_cell_put(cell);
978
979 if (IS_ERR(buf))
980 return PTR_ERR(buf);
981
982 memcpy(&calib_data, buf, min(len, sizeof(u32)));
983
984 /*
985 * Get the ADC value corresponding to 4200 mV from eFuse controller
986 * according to below formula. Then convert to ADC values corresponding
987 * to 1000 mV and 1000 mA.
988 */
989 cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
990 data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
991 data->cur_1000ma_adc =
992 DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
993 SC27XX_FGU_IDEAL_RESISTANCE);
994
995 kfree(buf);
996 return 0;
997 }
998
sc27xx_fgu_hw_init(struct sc27xx_fgu_data * data)999 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
1000 {
1001 struct power_supply_battery_info *info;
1002 struct power_supply_battery_ocv_table *table;
1003 int ret, delta_clbcnt, alarm_adc;
1004
1005 ret = power_supply_get_battery_info(data->battery, &info);
1006 if (ret) {
1007 dev_err(data->dev, "failed to get battery information\n");
1008 return ret;
1009 }
1010
1011 data->total_cap = info->charge_full_design_uah / 1000;
1012 data->max_volt = info->constant_charge_voltage_max_uv / 1000;
1013 data->internal_resist = info->factory_internal_resistance_uohm / 1000;
1014 data->min_volt = info->voltage_min_design_uv;
1015
1016 /*
1017 * For SC27XX fuel gauge device, we only use one ocv-capacity
1018 * table in normal temperature 20 Celsius.
1019 */
1020 table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
1021 if (!table)
1022 return -EINVAL;
1023
1024 data->cap_table = devm_kmemdup(data->dev, table,
1025 data->table_len * sizeof(*table),
1026 GFP_KERNEL);
1027 if (!data->cap_table) {
1028 power_supply_put_battery_info(data->battery, info);
1029 return -ENOMEM;
1030 }
1031
1032 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
1033 data->table_len,
1034 data->min_volt);
1035 if (!data->alarm_cap)
1036 data->alarm_cap += 1;
1037
1038 data->resist_table_len = info->resist_table_size;
1039 if (data->resist_table_len > 0) {
1040 data->resist_table = devm_kmemdup(data->dev, info->resist_table,
1041 data->resist_table_len *
1042 sizeof(struct power_supply_resistance_temp_table),
1043 GFP_KERNEL);
1044 if (!data->resist_table) {
1045 power_supply_put_battery_info(data->battery, info);
1046 return -ENOMEM;
1047 }
1048 }
1049
1050 power_supply_put_battery_info(data->battery, info);
1051
1052 ret = sc27xx_fgu_calibration(data);
1053 if (ret)
1054 return ret;
1055
1056 /* Enable the FGU module */
1057 ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
1058 SC27XX_FGU_EN, SC27XX_FGU_EN);
1059 if (ret) {
1060 dev_err(data->dev, "failed to enable fgu\n");
1061 return ret;
1062 }
1063
1064 /* Enable the FGU RTC clock to make it work */
1065 ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
1066 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
1067 if (ret) {
1068 dev_err(data->dev, "failed to enable fgu RTC clock\n");
1069 goto disable_fgu;
1070 }
1071
1072 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
1073 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
1074 if (ret) {
1075 dev_err(data->dev, "failed to clear interrupt status\n");
1076 goto disable_clk;
1077 }
1078
1079 /*
1080 * Set the voltage low overload threshold, which means when the battery
1081 * voltage is lower than this threshold, the controller will generate
1082 * one interrupt to notify.
1083 */
1084 alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
1085 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
1086 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
1087 if (ret) {
1088 dev_err(data->dev, "failed to set fgu low overload\n");
1089 goto disable_clk;
1090 }
1091
1092 /*
1093 * Set the coulomb counter delta threshold, that means when the coulomb
1094 * counter change is multiples of the delta threshold, the controller
1095 * will generate one interrupt to notify the users to update the battery
1096 * capacity. Now we set the delta threshold as a counter value of 1%
1097 * capacity.
1098 */
1099 delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
1100
1101 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
1102 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
1103 if (ret) {
1104 dev_err(data->dev, "failed to set low delta coulomb counter\n");
1105 goto disable_clk;
1106 }
1107
1108 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
1109 SC27XX_FGU_CLBCNT_MASK,
1110 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1111 if (ret) {
1112 dev_err(data->dev, "failed to set high delta coulomb counter\n");
1113 goto disable_clk;
1114 }
1115
1116 /*
1117 * Get the boot battery capacity when system powers on, which is used to
1118 * initialize the coulomb counter. After that, we can read the coulomb
1119 * counter to measure the battery capacity.
1120 */
1121 ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
1122 if (ret) {
1123 dev_err(data->dev, "failed to get boot capacity\n");
1124 goto disable_clk;
1125 }
1126
1127 /*
1128 * Convert battery capacity to the corresponding initial coulomb counter
1129 * and set into coulomb counter registers.
1130 */
1131 data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
1132 ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
1133 if (ret) {
1134 dev_err(data->dev, "failed to initialize coulomb counter\n");
1135 goto disable_clk;
1136 }
1137
1138 return 0;
1139
1140 disable_clk:
1141 regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
1142 disable_fgu:
1143 regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
1144
1145 return ret;
1146 }
1147
sc27xx_fgu_probe(struct platform_device * pdev)1148 static int sc27xx_fgu_probe(struct platform_device *pdev)
1149 {
1150 struct device *dev = &pdev->dev;
1151 struct device_node *np = dev->of_node;
1152 struct power_supply_config fgu_cfg = { };
1153 struct sc27xx_fgu_data *data;
1154 int ret, irq;
1155
1156 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1157 if (!data)
1158 return -ENOMEM;
1159
1160 data->regmap = dev_get_regmap(dev->parent, NULL);
1161 if (!data->regmap) {
1162 dev_err(dev, "failed to get regmap\n");
1163 return -ENODEV;
1164 }
1165
1166 ret = device_property_read_u32(dev, "reg", &data->base);
1167 if (ret) {
1168 dev_err(dev, "failed to get fgu address\n");
1169 return ret;
1170 }
1171
1172 ret = device_property_read_u32(&pdev->dev,
1173 "sprd,calib-resistance-micro-ohms",
1174 &data->calib_resist);
1175 if (ret) {
1176 dev_err(&pdev->dev,
1177 "failed to get fgu calibration resistance\n");
1178 return ret;
1179 }
1180
1181 data->channel = devm_iio_channel_get(dev, "bat-temp");
1182 if (IS_ERR(data->channel)) {
1183 dev_err(dev, "failed to get IIO channel\n");
1184 return PTR_ERR(data->channel);
1185 }
1186
1187 data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
1188 if (IS_ERR(data->charge_chan)) {
1189 dev_err(dev, "failed to get charge IIO channel\n");
1190 return PTR_ERR(data->charge_chan);
1191 }
1192
1193 data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
1194 if (IS_ERR(data->gpiod)) {
1195 dev_err(dev, "failed to get battery detection GPIO\n");
1196 return PTR_ERR(data->gpiod);
1197 }
1198
1199 ret = gpiod_get_value_cansleep(data->gpiod);
1200 if (ret < 0) {
1201 dev_err(dev, "failed to get gpio state\n");
1202 return ret;
1203 }
1204
1205 data->bat_present = !!ret;
1206 mutex_init(&data->lock);
1207 data->dev = dev;
1208 platform_set_drvdata(pdev, data);
1209
1210 fgu_cfg.drv_data = data;
1211 fgu_cfg.of_node = np;
1212 data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
1213 &fgu_cfg);
1214 if (IS_ERR(data->battery)) {
1215 dev_err(dev, "failed to register power supply\n");
1216 return PTR_ERR(data->battery);
1217 }
1218
1219 ret = sc27xx_fgu_hw_init(data);
1220 if (ret) {
1221 dev_err(dev, "failed to initialize fgu hardware\n");
1222 return ret;
1223 }
1224
1225 ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1226 if (ret) {
1227 dev_err(dev, "failed to add fgu disable action\n");
1228 return ret;
1229 }
1230
1231 irq = platform_get_irq(pdev, 0);
1232 if (irq < 0)
1233 return irq;
1234
1235 ret = devm_request_threaded_irq(data->dev, irq, NULL,
1236 sc27xx_fgu_interrupt,
1237 IRQF_NO_SUSPEND | IRQF_ONESHOT,
1238 pdev->name, data);
1239 if (ret) {
1240 dev_err(data->dev, "failed to request fgu IRQ\n");
1241 return ret;
1242 }
1243
1244 irq = gpiod_to_irq(data->gpiod);
1245 if (irq < 0) {
1246 dev_err(dev, "failed to translate GPIO to IRQ\n");
1247 return irq;
1248 }
1249
1250 ret = devm_request_threaded_irq(dev, irq, NULL,
1251 sc27xx_fgu_bat_detection,
1252 IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1253 IRQF_TRIGGER_FALLING,
1254 pdev->name, data);
1255 if (ret) {
1256 dev_err(dev, "failed to request IRQ\n");
1257 return ret;
1258 }
1259
1260 return 0;
1261 }
1262
1263 #ifdef CONFIG_PM_SLEEP
sc27xx_fgu_resume(struct device * dev)1264 static int sc27xx_fgu_resume(struct device *dev)
1265 {
1266 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1267 int ret;
1268
1269 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1270 SC27XX_FGU_LOW_OVERLOAD_INT |
1271 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1272 if (ret) {
1273 dev_err(data->dev, "failed to disable fgu interrupts\n");
1274 return ret;
1275 }
1276
1277 return 0;
1278 }
1279
sc27xx_fgu_suspend(struct device * dev)1280 static int sc27xx_fgu_suspend(struct device *dev)
1281 {
1282 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1283 int ret, status, ocv;
1284
1285 ret = sc27xx_fgu_get_status(data, &status);
1286 if (ret)
1287 return ret;
1288
1289 /*
1290 * If we are charging, then no need to enable the FGU interrupts to
1291 * adjust the battery capacity.
1292 */
1293 if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1294 status != POWER_SUPPLY_STATUS_DISCHARGING)
1295 return 0;
1296
1297 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1298 SC27XX_FGU_LOW_OVERLOAD_INT,
1299 SC27XX_FGU_LOW_OVERLOAD_INT);
1300 if (ret) {
1301 dev_err(data->dev, "failed to enable low voltage interrupt\n");
1302 return ret;
1303 }
1304
1305 ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1306 if (ret)
1307 goto disable_int;
1308
1309 /*
1310 * If current OCV is less than the minimum voltage, we should enable the
1311 * coulomb counter threshold interrupt to notify events to adjust the
1312 * battery capacity.
1313 */
1314 if (ocv < data->min_volt) {
1315 ret = regmap_update_bits(data->regmap,
1316 data->base + SC27XX_FGU_INT_EN,
1317 SC27XX_FGU_CLBCNT_DELTA_INT,
1318 SC27XX_FGU_CLBCNT_DELTA_INT);
1319 if (ret) {
1320 dev_err(data->dev,
1321 "failed to enable coulomb threshold int\n");
1322 goto disable_int;
1323 }
1324 }
1325
1326 return 0;
1327
1328 disable_int:
1329 regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1330 SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1331 return ret;
1332 }
1333 #endif
1334
1335 static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1336 SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1337 };
1338
1339 static const struct of_device_id sc27xx_fgu_of_match[] = {
1340 { .compatible = "sprd,sc2731-fgu", },
1341 { }
1342 };
1343 MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);
1344
1345 static struct platform_driver sc27xx_fgu_driver = {
1346 .probe = sc27xx_fgu_probe,
1347 .driver = {
1348 .name = "sc27xx-fgu",
1349 .of_match_table = sc27xx_fgu_of_match,
1350 .pm = &sc27xx_fgu_pm_ops,
1351 }
1352 };
1353
1354 module_platform_driver(sc27xx_fgu_driver);
1355
1356 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1357 MODULE_LICENSE("GPL v2");
1358