1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device tree based initialization code for reserved memory.
4 *
5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7 * http://www.samsung.com
8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9 * Author: Josh Cartwright <joshc@codeaurora.org>
10 */
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26
27 #include "of_private.h"
28
29 #define MAX_RESERVED_REGIONS 64
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35 phys_addr_t *res_base)
36 {
37 phys_addr_t base;
38 int err = 0;
39
40 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 align = !align ? SMP_CACHE_BYTES : align;
42 base = memblock_phys_alloc_range(size, align, start, end);
43 if (!base)
44 return -ENOMEM;
45
46 *res_base = base;
47 if (nomap) {
48 err = memblock_mark_nomap(base, size);
49 if (err)
50 memblock_phys_free(base, size);
51 kmemleak_ignore_phys(base);
52 }
53
54 return err;
55 }
56
57 /*
58 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
59 */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)60 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
61 phys_addr_t base, phys_addr_t size)
62 {
63 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
64
65 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
66 pr_err("not enough space for all defined regions.\n");
67 return;
68 }
69
70 rmem->fdt_node = node;
71 rmem->name = uname;
72 rmem->base = base;
73 rmem->size = size;
74
75 reserved_mem_count++;
76 return;
77 }
78
79 /*
80 * __reserved_mem_alloc_size() - allocate reserved memory described by
81 * 'size', 'alignment' and 'alloc-ranges' properties.
82 */
__reserved_mem_alloc_size(unsigned long node,const char * uname,phys_addr_t * res_base,phys_addr_t * res_size)83 static int __init __reserved_mem_alloc_size(unsigned long node,
84 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
85 {
86 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
87 phys_addr_t start = 0, end = 0;
88 phys_addr_t base = 0, align = 0, size;
89 int len;
90 const __be32 *prop;
91 bool nomap;
92 int ret;
93
94 prop = of_get_flat_dt_prop(node, "size", &len);
95 if (!prop)
96 return -EINVAL;
97
98 if (len != dt_root_size_cells * sizeof(__be32)) {
99 pr_err("invalid size property in '%s' node.\n", uname);
100 return -EINVAL;
101 }
102 size = dt_mem_next_cell(dt_root_size_cells, &prop);
103
104 prop = of_get_flat_dt_prop(node, "alignment", &len);
105 if (prop) {
106 if (len != dt_root_addr_cells * sizeof(__be32)) {
107 pr_err("invalid alignment property in '%s' node.\n",
108 uname);
109 return -EINVAL;
110 }
111 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
112 }
113
114 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
115
116 /* Need adjust the alignment to satisfy the CMA requirement */
117 if (IS_ENABLED(CONFIG_CMA)
118 && of_flat_dt_is_compatible(node, "shared-dma-pool")
119 && of_get_flat_dt_prop(node, "reusable", NULL)
120 && !nomap)
121 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
122
123 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
124 if (prop) {
125
126 if (len % t_len != 0) {
127 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
128 uname);
129 return -EINVAL;
130 }
131
132 base = 0;
133
134 while (len > 0) {
135 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
136 end = start + dt_mem_next_cell(dt_root_size_cells,
137 &prop);
138
139 ret = early_init_dt_alloc_reserved_memory_arch(size,
140 align, start, end, nomap, &base);
141 if (ret == 0) {
142 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
143 uname, &base,
144 (unsigned long)(size / SZ_1M));
145 break;
146 }
147 len -= t_len;
148 }
149
150 } else {
151 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
152 0, 0, nomap, &base);
153 if (ret == 0)
154 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
155 uname, &base, (unsigned long)(size / SZ_1M));
156 }
157
158 if (base == 0) {
159 pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
160 uname, (unsigned long)(size / SZ_1M));
161 return -ENOMEM;
162 }
163
164 *res_base = base;
165 *res_size = size;
166
167 return 0;
168 }
169
170 static const struct of_device_id __rmem_of_table_sentinel
171 __used __section("__reservedmem_of_table_end");
172
173 /*
174 * __reserved_mem_init_node() - call region specific reserved memory init code
175 */
__reserved_mem_init_node(struct reserved_mem * rmem)176 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
177 {
178 extern const struct of_device_id __reservedmem_of_table[];
179 const struct of_device_id *i;
180 int ret = -ENOENT;
181
182 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
183 reservedmem_of_init_fn initfn = i->data;
184 const char *compat = i->compatible;
185
186 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
187 continue;
188
189 ret = initfn(rmem);
190 if (ret == 0) {
191 pr_info("initialized node %s, compatible id %s\n",
192 rmem->name, compat);
193 break;
194 }
195 }
196 return ret;
197 }
198
__rmem_cmp(const void * a,const void * b)199 static int __init __rmem_cmp(const void *a, const void *b)
200 {
201 const struct reserved_mem *ra = a, *rb = b;
202
203 if (ra->base < rb->base)
204 return -1;
205
206 if (ra->base > rb->base)
207 return 1;
208
209 /*
210 * Put the dynamic allocations (address == 0, size == 0) before static
211 * allocations at address 0x0 so that overlap detection works
212 * correctly.
213 */
214 if (ra->size < rb->size)
215 return -1;
216 if (ra->size > rb->size)
217 return 1;
218
219 return 0;
220 }
221
__rmem_check_for_overlap(void)222 static void __init __rmem_check_for_overlap(void)
223 {
224 int i;
225
226 if (reserved_mem_count < 2)
227 return;
228
229 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
230 __rmem_cmp, NULL);
231 for (i = 0; i < reserved_mem_count - 1; i++) {
232 struct reserved_mem *this, *next;
233
234 this = &reserved_mem[i];
235 next = &reserved_mem[i + 1];
236
237 if (this->base + this->size > next->base) {
238 phys_addr_t this_end, next_end;
239
240 this_end = this->base + this->size;
241 next_end = next->base + next->size;
242 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
243 this->name, &this->base, &this_end,
244 next->name, &next->base, &next_end);
245 }
246 }
247 }
248
249 /**
250 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
251 */
fdt_init_reserved_mem(void)252 void __init fdt_init_reserved_mem(void)
253 {
254 int i;
255
256 /* check for overlapping reserved regions */
257 __rmem_check_for_overlap();
258
259 for (i = 0; i < reserved_mem_count; i++) {
260 struct reserved_mem *rmem = &reserved_mem[i];
261 unsigned long node = rmem->fdt_node;
262 int len;
263 const __be32 *prop;
264 int err = 0;
265 bool nomap;
266
267 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
268 prop = of_get_flat_dt_prop(node, "phandle", &len);
269 if (!prop)
270 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
271 if (prop)
272 rmem->phandle = of_read_number(prop, len/4);
273
274 if (rmem->size == 0)
275 err = __reserved_mem_alloc_size(node, rmem->name,
276 &rmem->base, &rmem->size);
277 if (err == 0) {
278 err = __reserved_mem_init_node(rmem);
279 if (err != 0 && err != -ENOENT) {
280 pr_info("node %s compatible matching fail\n",
281 rmem->name);
282 if (nomap)
283 memblock_clear_nomap(rmem->base, rmem->size);
284 else
285 memblock_phys_free(rmem->base,
286 rmem->size);
287 }
288 }
289 }
290 }
291
__find_rmem(struct device_node * node)292 static inline struct reserved_mem *__find_rmem(struct device_node *node)
293 {
294 unsigned int i;
295
296 if (!node->phandle)
297 return NULL;
298
299 for (i = 0; i < reserved_mem_count; i++)
300 if (reserved_mem[i].phandle == node->phandle)
301 return &reserved_mem[i];
302 return NULL;
303 }
304
305 struct rmem_assigned_device {
306 struct device *dev;
307 struct reserved_mem *rmem;
308 struct list_head list;
309 };
310
311 static LIST_HEAD(of_rmem_assigned_device_list);
312 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
313
314 /**
315 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
316 * given device
317 * @dev: Pointer to the device to configure
318 * @np: Pointer to the device_node with 'reserved-memory' property
319 * @idx: Index of selected region
320 *
321 * This function assigns respective DMA-mapping operations based on reserved
322 * memory region specified by 'memory-region' property in @np node to the @dev
323 * device. When driver needs to use more than one reserved memory region, it
324 * should allocate child devices and initialize regions by name for each of
325 * child device.
326 *
327 * Returns error code or zero on success.
328 */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)329 int of_reserved_mem_device_init_by_idx(struct device *dev,
330 struct device_node *np, int idx)
331 {
332 struct rmem_assigned_device *rd;
333 struct device_node *target;
334 struct reserved_mem *rmem;
335 int ret;
336
337 if (!np || !dev)
338 return -EINVAL;
339
340 target = of_parse_phandle(np, "memory-region", idx);
341 if (!target)
342 return -ENODEV;
343
344 if (!of_device_is_available(target)) {
345 of_node_put(target);
346 return 0;
347 }
348
349 rmem = __find_rmem(target);
350 of_node_put(target);
351
352 if (!rmem || !rmem->ops || !rmem->ops->device_init)
353 return -EINVAL;
354
355 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
356 if (!rd)
357 return -ENOMEM;
358
359 ret = rmem->ops->device_init(rmem, dev);
360 if (ret == 0) {
361 rd->dev = dev;
362 rd->rmem = rmem;
363
364 mutex_lock(&of_rmem_assigned_device_mutex);
365 list_add(&rd->list, &of_rmem_assigned_device_list);
366 mutex_unlock(&of_rmem_assigned_device_mutex);
367
368 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
369 } else {
370 kfree(rd);
371 }
372
373 return ret;
374 }
375 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
376
377 /**
378 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
379 * to given device
380 * @dev: pointer to the device to configure
381 * @np: pointer to the device node with 'memory-region' property
382 * @name: name of the selected memory region
383 *
384 * Returns: 0 on success or a negative error-code on failure.
385 */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)386 int of_reserved_mem_device_init_by_name(struct device *dev,
387 struct device_node *np,
388 const char *name)
389 {
390 int idx = of_property_match_string(np, "memory-region-names", name);
391
392 return of_reserved_mem_device_init_by_idx(dev, np, idx);
393 }
394 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
395
396 /**
397 * of_reserved_mem_device_release() - release reserved memory device structures
398 * @dev: Pointer to the device to deconfigure
399 *
400 * This function releases structures allocated for memory region handling for
401 * the given device.
402 */
of_reserved_mem_device_release(struct device * dev)403 void of_reserved_mem_device_release(struct device *dev)
404 {
405 struct rmem_assigned_device *rd, *tmp;
406 LIST_HEAD(release_list);
407
408 mutex_lock(&of_rmem_assigned_device_mutex);
409 list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
410 if (rd->dev == dev)
411 list_move_tail(&rd->list, &release_list);
412 }
413 mutex_unlock(&of_rmem_assigned_device_mutex);
414
415 list_for_each_entry_safe(rd, tmp, &release_list, list) {
416 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
417 rd->rmem->ops->device_release(rd->rmem, dev);
418
419 kfree(rd);
420 }
421 }
422 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
423
424 /**
425 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
426 * @np: node pointer of the desired reserved-memory region
427 *
428 * This function allows drivers to acquire a reference to the reserved_mem
429 * struct based on a device node handle.
430 *
431 * Returns a reserved_mem reference, or NULL on error.
432 */
of_reserved_mem_lookup(struct device_node * np)433 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
434 {
435 const char *name;
436 int i;
437
438 if (!np->full_name)
439 return NULL;
440
441 name = kbasename(np->full_name);
442 for (i = 0; i < reserved_mem_count; i++)
443 if (!strcmp(reserved_mem[i].name, name))
444 return &reserved_mem[i];
445
446 return NULL;
447 }
448 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
449