1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 *
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 *
7 * This driver uses the sungem driver (c) David Miller
8 * (davem@redhat.com) as its basis.
9 *
10 * The cassini chip has a number of features that distinguish it from
11 * the gem chip:
12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
13 * load balancing (non-VLAN mode)
14 * batching of multiple packets
15 * multiple CPU dispatching
16 * page-based RX descriptor engine with separate completion rings
17 * Gigabit support (GMII and PCS interface)
18 * MIF link up/down detection works
19 *
20 * RX is handled by page sized buffers that are attached as fragments to
21 * the skb. here's what's done:
22 * -- driver allocates pages at a time and keeps reference counts
23 * on them.
24 * -- the upper protocol layers assume that the header is in the skb
25 * itself. as a result, cassini will copy a small amount (64 bytes)
26 * to make them happy.
27 * -- driver appends the rest of the data pages as frags to skbuffs
28 * and increments the reference count
29 * -- on page reclamation, the driver swaps the page with a spare page.
30 * if that page is still in use, it frees its reference to that page,
31 * and allocates a new page for use. otherwise, it just recycles the
32 * page.
33 *
34 * NOTE: cassini can parse the header. however, it's not worth it
35 * as long as the network stack requires a header copy.
36 *
37 * TX has 4 queues. currently these queues are used in a round-robin
38 * fashion for load balancing. They can also be used for QoS. for that
39 * to work, however, QoS information needs to be exposed down to the driver
40 * level so that subqueues get targeted to particular transmit rings.
41 * alternatively, the queues can be configured via use of the all-purpose
42 * ioctl.
43 *
44 * RX DATA: the rx completion ring has all the info, but the rx desc
45 * ring has all of the data. RX can conceivably come in under multiple
46 * interrupts, but the INT# assignment needs to be set up properly by
47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48 * that. also, the two descriptor rings are designed to distinguish between
49 * encrypted and non-encrypted packets, but we use them for buffering
50 * instead.
51 *
52 * by default, the selective clear mask is set up to process rx packets.
53 */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84
85 #include <net/checksum.h>
86
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91 #include <linux/jiffies.h>
92
93 #define cas_page_map(x) kmap_atomic((x))
94 #define cas_page_unmap(x) kunmap_atomic((x))
95 #define CAS_NCPUS num_online_cpus()
96
97 #define cas_skb_release(x) netif_rx(x)
98
99 /* select which firmware to use */
100 #define USE_HP_WORKAROUND
101 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
102 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
103
104 #include "cassini.h"
105
106 #define USE_TX_COMPWB /* use completion writeback registers */
107 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
108 #define USE_RX_BLANK /* hw interrupt mitigation */
109 #undef USE_ENTROPY_DEV /* don't test for entropy device */
110
111 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
112 * also, we need to make cp->lock finer-grained.
113 */
114 #undef USE_PCI_INTB
115 #undef USE_PCI_INTC
116 #undef USE_PCI_INTD
117 #undef USE_QOS
118
119 #undef USE_VPD_DEBUG /* debug vpd information if defined */
120
121 /* rx processing options */
122 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
123 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
124 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
125 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
126 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
127
128 #define DRV_MODULE_NAME "cassini"
129 #define DRV_MODULE_VERSION "1.6"
130 #define DRV_MODULE_RELDATE "21 May 2008"
131
132 #define CAS_DEF_MSG_ENABLE \
133 (NETIF_MSG_DRV | \
134 NETIF_MSG_PROBE | \
135 NETIF_MSG_LINK | \
136 NETIF_MSG_TIMER | \
137 NETIF_MSG_IFDOWN | \
138 NETIF_MSG_IFUP | \
139 NETIF_MSG_RX_ERR | \
140 NETIF_MSG_TX_ERR)
141
142 /* length of time before we decide the hardware is borked,
143 * and dev->tx_timeout() should be called to fix the problem
144 */
145 #define CAS_TX_TIMEOUT (HZ)
146 #define CAS_LINK_TIMEOUT (22*HZ/10)
147 #define CAS_LINK_FAST_TIMEOUT (1)
148
149 /* timeout values for state changing. these specify the number
150 * of 10us delays to be used before giving up.
151 */
152 #define STOP_TRIES_PHY 1000
153 #define STOP_TRIES 5000
154
155 /* specify a minimum frame size to deal with some fifo issues
156 * max mtu == 2 * page size - ethernet header - 64 - swivel =
157 * 2 * page_size - 0x50
158 */
159 #define CAS_MIN_FRAME 97
160 #define CAS_1000MB_MIN_FRAME 255
161 #define CAS_MIN_MTU 60
162 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
163
164 #if 1
165 /*
166 * Eliminate these and use separate atomic counters for each, to
167 * avoid a race condition.
168 */
169 #else
170 #define CAS_RESET_MTU 1
171 #define CAS_RESET_ALL 2
172 #define CAS_RESET_SPARE 3
173 #endif
174
175 static char version[] =
176 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
177
178 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
179 static int link_mode;
180
181 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
182 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
183 MODULE_LICENSE("GPL");
184 MODULE_FIRMWARE("sun/cassini.bin");
185 module_param(cassini_debug, int, 0);
186 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
187 module_param(link_mode, int, 0);
188 MODULE_PARM_DESC(link_mode, "default link mode");
189
190 /*
191 * Work around for a PCS bug in which the link goes down due to the chip
192 * being confused and never showing a link status of "up."
193 */
194 #define DEFAULT_LINKDOWN_TIMEOUT 5
195 /*
196 * Value in seconds, for user input.
197 */
198 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
199 module_param(linkdown_timeout, int, 0);
200 MODULE_PARM_DESC(linkdown_timeout,
201 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
202
203 /*
204 * value in 'ticks' (units used by jiffies). Set when we init the
205 * module because 'HZ' in actually a function call on some flavors of
206 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
207 */
208 static int link_transition_timeout;
209
210
211
212 static u16 link_modes[] = {
213 BMCR_ANENABLE, /* 0 : autoneg */
214 0, /* 1 : 10bt half duplex */
215 BMCR_SPEED100, /* 2 : 100bt half duplex */
216 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
217 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
218 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
219 };
220
221 static const struct pci_device_id cas_pci_tbl[] = {
222 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
224 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
225 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
226 { 0, }
227 };
228
229 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
230
231 static void cas_set_link_modes(struct cas *cp);
232
cas_lock_tx(struct cas * cp)233 static inline void cas_lock_tx(struct cas *cp)
234 {
235 int i;
236
237 for (i = 0; i < N_TX_RINGS; i++)
238 spin_lock_nested(&cp->tx_lock[i], i);
239 }
240
241 /* WTZ: QA was finding deadlock problems with the previous
242 * versions after long test runs with multiple cards per machine.
243 * See if replacing cas_lock_all with safer versions helps. The
244 * symptoms QA is reporting match those we'd expect if interrupts
245 * aren't being properly restored, and we fixed a previous deadlock
246 * with similar symptoms by using save/restore versions in other
247 * places.
248 */
249 #define cas_lock_all_save(cp, flags) \
250 do { \
251 struct cas *xxxcp = (cp); \
252 spin_lock_irqsave(&xxxcp->lock, flags); \
253 cas_lock_tx(xxxcp); \
254 } while (0)
255
cas_unlock_tx(struct cas * cp)256 static inline void cas_unlock_tx(struct cas *cp)
257 {
258 int i;
259
260 for (i = N_TX_RINGS; i > 0; i--)
261 spin_unlock(&cp->tx_lock[i - 1]);
262 }
263
264 #define cas_unlock_all_restore(cp, flags) \
265 do { \
266 struct cas *xxxcp = (cp); \
267 cas_unlock_tx(xxxcp); \
268 spin_unlock_irqrestore(&xxxcp->lock, flags); \
269 } while (0)
270
cas_disable_irq(struct cas * cp,const int ring)271 static void cas_disable_irq(struct cas *cp, const int ring)
272 {
273 /* Make sure we won't get any more interrupts */
274 if (ring == 0) {
275 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
276 return;
277 }
278
279 /* disable completion interrupts and selectively mask */
280 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
281 switch (ring) {
282 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
283 #ifdef USE_PCI_INTB
284 case 1:
285 #endif
286 #ifdef USE_PCI_INTC
287 case 2:
288 #endif
289 #ifdef USE_PCI_INTD
290 case 3:
291 #endif
292 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
293 cp->regs + REG_PLUS_INTRN_MASK(ring));
294 break;
295 #endif
296 default:
297 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
298 REG_PLUS_INTRN_MASK(ring));
299 break;
300 }
301 }
302 }
303
cas_mask_intr(struct cas * cp)304 static inline void cas_mask_intr(struct cas *cp)
305 {
306 int i;
307
308 for (i = 0; i < N_RX_COMP_RINGS; i++)
309 cas_disable_irq(cp, i);
310 }
311
cas_enable_irq(struct cas * cp,const int ring)312 static void cas_enable_irq(struct cas *cp, const int ring)
313 {
314 if (ring == 0) { /* all but TX_DONE */
315 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
316 return;
317 }
318
319 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
320 switch (ring) {
321 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
322 #ifdef USE_PCI_INTB
323 case 1:
324 #endif
325 #ifdef USE_PCI_INTC
326 case 2:
327 #endif
328 #ifdef USE_PCI_INTD
329 case 3:
330 #endif
331 writel(INTRN_MASK_RX_EN, cp->regs +
332 REG_PLUS_INTRN_MASK(ring));
333 break;
334 #endif
335 default:
336 break;
337 }
338 }
339 }
340
cas_unmask_intr(struct cas * cp)341 static inline void cas_unmask_intr(struct cas *cp)
342 {
343 int i;
344
345 for (i = 0; i < N_RX_COMP_RINGS; i++)
346 cas_enable_irq(cp, i);
347 }
348
cas_entropy_gather(struct cas * cp)349 static inline void cas_entropy_gather(struct cas *cp)
350 {
351 #ifdef USE_ENTROPY_DEV
352 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
353 return;
354
355 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
356 readl(cp->regs + REG_ENTROPY_IV),
357 sizeof(uint64_t)*8);
358 #endif
359 }
360
cas_entropy_reset(struct cas * cp)361 static inline void cas_entropy_reset(struct cas *cp)
362 {
363 #ifdef USE_ENTROPY_DEV
364 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
365 return;
366
367 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
368 cp->regs + REG_BIM_LOCAL_DEV_EN);
369 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
370 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
371
372 /* if we read back 0x0, we don't have an entropy device */
373 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
374 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
375 #endif
376 }
377
378 /* access to the phy. the following assumes that we've initialized the MIF to
379 * be in frame rather than bit-bang mode
380 */
cas_phy_read(struct cas * cp,int reg)381 static u16 cas_phy_read(struct cas *cp, int reg)
382 {
383 u32 cmd;
384 int limit = STOP_TRIES_PHY;
385
386 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
387 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
388 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
389 cmd |= MIF_FRAME_TURN_AROUND_MSB;
390 writel(cmd, cp->regs + REG_MIF_FRAME);
391
392 /* poll for completion */
393 while (limit-- > 0) {
394 udelay(10);
395 cmd = readl(cp->regs + REG_MIF_FRAME);
396 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
397 return cmd & MIF_FRAME_DATA_MASK;
398 }
399 return 0xFFFF; /* -1 */
400 }
401
cas_phy_write(struct cas * cp,int reg,u16 val)402 static int cas_phy_write(struct cas *cp, int reg, u16 val)
403 {
404 int limit = STOP_TRIES_PHY;
405 u32 cmd;
406
407 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
408 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
409 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
410 cmd |= MIF_FRAME_TURN_AROUND_MSB;
411 cmd |= val & MIF_FRAME_DATA_MASK;
412 writel(cmd, cp->regs + REG_MIF_FRAME);
413
414 /* poll for completion */
415 while (limit-- > 0) {
416 udelay(10);
417 cmd = readl(cp->regs + REG_MIF_FRAME);
418 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
419 return 0;
420 }
421 return -1;
422 }
423
cas_phy_powerup(struct cas * cp)424 static void cas_phy_powerup(struct cas *cp)
425 {
426 u16 ctl = cas_phy_read(cp, MII_BMCR);
427
428 if ((ctl & BMCR_PDOWN) == 0)
429 return;
430 ctl &= ~BMCR_PDOWN;
431 cas_phy_write(cp, MII_BMCR, ctl);
432 }
433
cas_phy_powerdown(struct cas * cp)434 static void cas_phy_powerdown(struct cas *cp)
435 {
436 u16 ctl = cas_phy_read(cp, MII_BMCR);
437
438 if (ctl & BMCR_PDOWN)
439 return;
440 ctl |= BMCR_PDOWN;
441 cas_phy_write(cp, MII_BMCR, ctl);
442 }
443
444 /* cp->lock held. note: the last put_page will free the buffer */
cas_page_free(struct cas * cp,cas_page_t * page)445 static int cas_page_free(struct cas *cp, cas_page_t *page)
446 {
447 dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
448 DMA_FROM_DEVICE);
449 __free_pages(page->buffer, cp->page_order);
450 kfree(page);
451 return 0;
452 }
453
454 #ifdef RX_COUNT_BUFFERS
455 #define RX_USED_ADD(x, y) ((x)->used += (y))
456 #define RX_USED_SET(x, y) ((x)->used = (y))
457 #else
458 #define RX_USED_ADD(x, y) do { } while(0)
459 #define RX_USED_SET(x, y) do { } while(0)
460 #endif
461
462 /* local page allocation routines for the receive buffers. jumbo pages
463 * require at least 8K contiguous and 8K aligned buffers.
464 */
cas_page_alloc(struct cas * cp,const gfp_t flags)465 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
466 {
467 cas_page_t *page;
468
469 page = kmalloc(sizeof(cas_page_t), flags);
470 if (!page)
471 return NULL;
472
473 INIT_LIST_HEAD(&page->list);
474 RX_USED_SET(page, 0);
475 page->buffer = alloc_pages(flags, cp->page_order);
476 if (!page->buffer)
477 goto page_err;
478 page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
479 cp->page_size, DMA_FROM_DEVICE);
480 return page;
481
482 page_err:
483 kfree(page);
484 return NULL;
485 }
486
487 /* initialize spare pool of rx buffers, but allocate during the open */
cas_spare_init(struct cas * cp)488 static void cas_spare_init(struct cas *cp)
489 {
490 spin_lock(&cp->rx_inuse_lock);
491 INIT_LIST_HEAD(&cp->rx_inuse_list);
492 spin_unlock(&cp->rx_inuse_lock);
493
494 spin_lock(&cp->rx_spare_lock);
495 INIT_LIST_HEAD(&cp->rx_spare_list);
496 cp->rx_spares_needed = RX_SPARE_COUNT;
497 spin_unlock(&cp->rx_spare_lock);
498 }
499
500 /* used on close. free all the spare buffers. */
cas_spare_free(struct cas * cp)501 static void cas_spare_free(struct cas *cp)
502 {
503 struct list_head list, *elem, *tmp;
504
505 /* free spare buffers */
506 INIT_LIST_HEAD(&list);
507 spin_lock(&cp->rx_spare_lock);
508 list_splice_init(&cp->rx_spare_list, &list);
509 spin_unlock(&cp->rx_spare_lock);
510 list_for_each_safe(elem, tmp, &list) {
511 cas_page_free(cp, list_entry(elem, cas_page_t, list));
512 }
513
514 INIT_LIST_HEAD(&list);
515 #if 1
516 /*
517 * Looks like Adrian had protected this with a different
518 * lock than used everywhere else to manipulate this list.
519 */
520 spin_lock(&cp->rx_inuse_lock);
521 list_splice_init(&cp->rx_inuse_list, &list);
522 spin_unlock(&cp->rx_inuse_lock);
523 #else
524 spin_lock(&cp->rx_spare_lock);
525 list_splice_init(&cp->rx_inuse_list, &list);
526 spin_unlock(&cp->rx_spare_lock);
527 #endif
528 list_for_each_safe(elem, tmp, &list) {
529 cas_page_free(cp, list_entry(elem, cas_page_t, list));
530 }
531 }
532
533 /* replenish spares if needed */
cas_spare_recover(struct cas * cp,const gfp_t flags)534 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
535 {
536 struct list_head list, *elem, *tmp;
537 int needed, i;
538
539 /* check inuse list. if we don't need any more free buffers,
540 * just free it
541 */
542
543 /* make a local copy of the list */
544 INIT_LIST_HEAD(&list);
545 spin_lock(&cp->rx_inuse_lock);
546 list_splice_init(&cp->rx_inuse_list, &list);
547 spin_unlock(&cp->rx_inuse_lock);
548
549 list_for_each_safe(elem, tmp, &list) {
550 cas_page_t *page = list_entry(elem, cas_page_t, list);
551
552 /*
553 * With the lockless pagecache, cassini buffering scheme gets
554 * slightly less accurate: we might find that a page has an
555 * elevated reference count here, due to a speculative ref,
556 * and skip it as in-use. Ideally we would be able to reclaim
557 * it. However this would be such a rare case, it doesn't
558 * matter too much as we should pick it up the next time round.
559 *
560 * Importantly, if we find that the page has a refcount of 1
561 * here (our refcount), then we know it is definitely not inuse
562 * so we can reuse it.
563 */
564 if (page_count(page->buffer) > 1)
565 continue;
566
567 list_del(elem);
568 spin_lock(&cp->rx_spare_lock);
569 if (cp->rx_spares_needed > 0) {
570 list_add(elem, &cp->rx_spare_list);
571 cp->rx_spares_needed--;
572 spin_unlock(&cp->rx_spare_lock);
573 } else {
574 spin_unlock(&cp->rx_spare_lock);
575 cas_page_free(cp, page);
576 }
577 }
578
579 /* put any inuse buffers back on the list */
580 if (!list_empty(&list)) {
581 spin_lock(&cp->rx_inuse_lock);
582 list_splice(&list, &cp->rx_inuse_list);
583 spin_unlock(&cp->rx_inuse_lock);
584 }
585
586 spin_lock(&cp->rx_spare_lock);
587 needed = cp->rx_spares_needed;
588 spin_unlock(&cp->rx_spare_lock);
589 if (!needed)
590 return;
591
592 /* we still need spares, so try to allocate some */
593 INIT_LIST_HEAD(&list);
594 i = 0;
595 while (i < needed) {
596 cas_page_t *spare = cas_page_alloc(cp, flags);
597 if (!spare)
598 break;
599 list_add(&spare->list, &list);
600 i++;
601 }
602
603 spin_lock(&cp->rx_spare_lock);
604 list_splice(&list, &cp->rx_spare_list);
605 cp->rx_spares_needed -= i;
606 spin_unlock(&cp->rx_spare_lock);
607 }
608
609 /* pull a page from the list. */
cas_page_dequeue(struct cas * cp)610 static cas_page_t *cas_page_dequeue(struct cas *cp)
611 {
612 struct list_head *entry;
613 int recover;
614
615 spin_lock(&cp->rx_spare_lock);
616 if (list_empty(&cp->rx_spare_list)) {
617 /* try to do a quick recovery */
618 spin_unlock(&cp->rx_spare_lock);
619 cas_spare_recover(cp, GFP_ATOMIC);
620 spin_lock(&cp->rx_spare_lock);
621 if (list_empty(&cp->rx_spare_list)) {
622 netif_err(cp, rx_err, cp->dev,
623 "no spare buffers available\n");
624 spin_unlock(&cp->rx_spare_lock);
625 return NULL;
626 }
627 }
628
629 entry = cp->rx_spare_list.next;
630 list_del(entry);
631 recover = ++cp->rx_spares_needed;
632 spin_unlock(&cp->rx_spare_lock);
633
634 /* trigger the timer to do the recovery */
635 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
636 #if 1
637 atomic_inc(&cp->reset_task_pending);
638 atomic_inc(&cp->reset_task_pending_spare);
639 schedule_work(&cp->reset_task);
640 #else
641 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
642 schedule_work(&cp->reset_task);
643 #endif
644 }
645 return list_entry(entry, cas_page_t, list);
646 }
647
648
cas_mif_poll(struct cas * cp,const int enable)649 static void cas_mif_poll(struct cas *cp, const int enable)
650 {
651 u32 cfg;
652
653 cfg = readl(cp->regs + REG_MIF_CFG);
654 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
655
656 if (cp->phy_type & CAS_PHY_MII_MDIO1)
657 cfg |= MIF_CFG_PHY_SELECT;
658
659 /* poll and interrupt on link status change. */
660 if (enable) {
661 cfg |= MIF_CFG_POLL_EN;
662 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
663 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
664 }
665 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
666 cp->regs + REG_MIF_MASK);
667 writel(cfg, cp->regs + REG_MIF_CFG);
668 }
669
670 /* Must be invoked under cp->lock */
cas_begin_auto_negotiation(struct cas * cp,const struct ethtool_link_ksettings * ep)671 static void cas_begin_auto_negotiation(struct cas *cp,
672 const struct ethtool_link_ksettings *ep)
673 {
674 u16 ctl;
675 #if 1
676 int lcntl;
677 int changed = 0;
678 int oldstate = cp->lstate;
679 int link_was_not_down = !(oldstate == link_down);
680 #endif
681 /* Setup link parameters */
682 if (!ep)
683 goto start_aneg;
684 lcntl = cp->link_cntl;
685 if (ep->base.autoneg == AUTONEG_ENABLE) {
686 cp->link_cntl = BMCR_ANENABLE;
687 } else {
688 u32 speed = ep->base.speed;
689 cp->link_cntl = 0;
690 if (speed == SPEED_100)
691 cp->link_cntl |= BMCR_SPEED100;
692 else if (speed == SPEED_1000)
693 cp->link_cntl |= CAS_BMCR_SPEED1000;
694 if (ep->base.duplex == DUPLEX_FULL)
695 cp->link_cntl |= BMCR_FULLDPLX;
696 }
697 #if 1
698 changed = (lcntl != cp->link_cntl);
699 #endif
700 start_aneg:
701 if (cp->lstate == link_up) {
702 netdev_info(cp->dev, "PCS link down\n");
703 } else {
704 if (changed) {
705 netdev_info(cp->dev, "link configuration changed\n");
706 }
707 }
708 cp->lstate = link_down;
709 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
710 if (!cp->hw_running)
711 return;
712 #if 1
713 /*
714 * WTZ: If the old state was link_up, we turn off the carrier
715 * to replicate everything we do elsewhere on a link-down
716 * event when we were already in a link-up state..
717 */
718 if (oldstate == link_up)
719 netif_carrier_off(cp->dev);
720 if (changed && link_was_not_down) {
721 /*
722 * WTZ: This branch will simply schedule a full reset after
723 * we explicitly changed link modes in an ioctl. See if this
724 * fixes the link-problems we were having for forced mode.
725 */
726 atomic_inc(&cp->reset_task_pending);
727 atomic_inc(&cp->reset_task_pending_all);
728 schedule_work(&cp->reset_task);
729 cp->timer_ticks = 0;
730 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
731 return;
732 }
733 #endif
734 if (cp->phy_type & CAS_PHY_SERDES) {
735 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
736
737 if (cp->link_cntl & BMCR_ANENABLE) {
738 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
739 cp->lstate = link_aneg;
740 } else {
741 if (cp->link_cntl & BMCR_FULLDPLX)
742 val |= PCS_MII_CTRL_DUPLEX;
743 val &= ~PCS_MII_AUTONEG_EN;
744 cp->lstate = link_force_ok;
745 }
746 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
747 writel(val, cp->regs + REG_PCS_MII_CTRL);
748
749 } else {
750 cas_mif_poll(cp, 0);
751 ctl = cas_phy_read(cp, MII_BMCR);
752 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
753 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
754 ctl |= cp->link_cntl;
755 if (ctl & BMCR_ANENABLE) {
756 ctl |= BMCR_ANRESTART;
757 cp->lstate = link_aneg;
758 } else {
759 cp->lstate = link_force_ok;
760 }
761 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
762 cas_phy_write(cp, MII_BMCR, ctl);
763 cas_mif_poll(cp, 1);
764 }
765
766 cp->timer_ticks = 0;
767 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
768 }
769
770 /* Must be invoked under cp->lock. */
cas_reset_mii_phy(struct cas * cp)771 static int cas_reset_mii_phy(struct cas *cp)
772 {
773 int limit = STOP_TRIES_PHY;
774 u16 val;
775
776 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
777 udelay(100);
778 while (--limit) {
779 val = cas_phy_read(cp, MII_BMCR);
780 if ((val & BMCR_RESET) == 0)
781 break;
782 udelay(10);
783 }
784 return limit <= 0;
785 }
786
cas_saturn_firmware_init(struct cas * cp)787 static void cas_saturn_firmware_init(struct cas *cp)
788 {
789 const struct firmware *fw;
790 const char fw_name[] = "sun/cassini.bin";
791 int err;
792
793 if (PHY_NS_DP83065 != cp->phy_id)
794 return;
795
796 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
797 if (err) {
798 pr_err("Failed to load firmware \"%s\"\n",
799 fw_name);
800 return;
801 }
802 if (fw->size < 2) {
803 pr_err("bogus length %zu in \"%s\"\n",
804 fw->size, fw_name);
805 goto out;
806 }
807 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
808 cp->fw_size = fw->size - 2;
809 cp->fw_data = vmalloc(cp->fw_size);
810 if (!cp->fw_data)
811 goto out;
812 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
813 out:
814 release_firmware(fw);
815 }
816
cas_saturn_firmware_load(struct cas * cp)817 static void cas_saturn_firmware_load(struct cas *cp)
818 {
819 int i;
820
821 if (!cp->fw_data)
822 return;
823
824 cas_phy_powerdown(cp);
825
826 /* expanded memory access mode */
827 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
828
829 /* pointer configuration for new firmware */
830 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
831 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
832 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
833 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
834 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
835 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
836 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
837 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
838
839 /* download new firmware */
840 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
841 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
842 for (i = 0; i < cp->fw_size; i++)
843 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
844
845 /* enable firmware */
846 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
847 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
848 }
849
850
851 /* phy initialization */
cas_phy_init(struct cas * cp)852 static void cas_phy_init(struct cas *cp)
853 {
854 u16 val;
855
856 /* if we're in MII/GMII mode, set up phy */
857 if (CAS_PHY_MII(cp->phy_type)) {
858 writel(PCS_DATAPATH_MODE_MII,
859 cp->regs + REG_PCS_DATAPATH_MODE);
860
861 cas_mif_poll(cp, 0);
862 cas_reset_mii_phy(cp); /* take out of isolate mode */
863
864 if (PHY_LUCENT_B0 == cp->phy_id) {
865 /* workaround link up/down issue with lucent */
866 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
867 cas_phy_write(cp, MII_BMCR, 0x00f1);
868 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
869
870 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
871 /* workarounds for broadcom phy */
872 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
873 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
874 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
875 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
876 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
877 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
878 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
879 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
880 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
881 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
882 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
883
884 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
885 val = cas_phy_read(cp, BROADCOM_MII_REG4);
886 val = cas_phy_read(cp, BROADCOM_MII_REG4);
887 if (val & 0x0080) {
888 /* link workaround */
889 cas_phy_write(cp, BROADCOM_MII_REG4,
890 val & ~0x0080);
891 }
892
893 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
894 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
895 SATURN_PCFG_FSI : 0x0,
896 cp->regs + REG_SATURN_PCFG);
897
898 /* load firmware to address 10Mbps auto-negotiation
899 * issue. NOTE: this will need to be changed if the
900 * default firmware gets fixed.
901 */
902 if (PHY_NS_DP83065 == cp->phy_id) {
903 cas_saturn_firmware_load(cp);
904 }
905 cas_phy_powerup(cp);
906 }
907
908 /* advertise capabilities */
909 val = cas_phy_read(cp, MII_BMCR);
910 val &= ~BMCR_ANENABLE;
911 cas_phy_write(cp, MII_BMCR, val);
912 udelay(10);
913
914 cas_phy_write(cp, MII_ADVERTISE,
915 cas_phy_read(cp, MII_ADVERTISE) |
916 (ADVERTISE_10HALF | ADVERTISE_10FULL |
917 ADVERTISE_100HALF | ADVERTISE_100FULL |
918 CAS_ADVERTISE_PAUSE |
919 CAS_ADVERTISE_ASYM_PAUSE));
920
921 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
922 /* make sure that we don't advertise half
923 * duplex to avoid a chip issue
924 */
925 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
926 val &= ~CAS_ADVERTISE_1000HALF;
927 val |= CAS_ADVERTISE_1000FULL;
928 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
929 }
930
931 } else {
932 /* reset pcs for serdes */
933 u32 val;
934 int limit;
935
936 writel(PCS_DATAPATH_MODE_SERDES,
937 cp->regs + REG_PCS_DATAPATH_MODE);
938
939 /* enable serdes pins on saturn */
940 if (cp->cas_flags & CAS_FLAG_SATURN)
941 writel(0, cp->regs + REG_SATURN_PCFG);
942
943 /* Reset PCS unit. */
944 val = readl(cp->regs + REG_PCS_MII_CTRL);
945 val |= PCS_MII_RESET;
946 writel(val, cp->regs + REG_PCS_MII_CTRL);
947
948 limit = STOP_TRIES;
949 while (--limit > 0) {
950 udelay(10);
951 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
952 PCS_MII_RESET) == 0)
953 break;
954 }
955 if (limit <= 0)
956 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
957 readl(cp->regs + REG_PCS_STATE_MACHINE));
958
959 /* Make sure PCS is disabled while changing advertisement
960 * configuration.
961 */
962 writel(0x0, cp->regs + REG_PCS_CFG);
963
964 /* Advertise all capabilities except half-duplex. */
965 val = readl(cp->regs + REG_PCS_MII_ADVERT);
966 val &= ~PCS_MII_ADVERT_HD;
967 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
968 PCS_MII_ADVERT_ASYM_PAUSE);
969 writel(val, cp->regs + REG_PCS_MII_ADVERT);
970
971 /* enable PCS */
972 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
973
974 /* pcs workaround: enable sync detect */
975 writel(PCS_SERDES_CTRL_SYNCD_EN,
976 cp->regs + REG_PCS_SERDES_CTRL);
977 }
978 }
979
980
cas_pcs_link_check(struct cas * cp)981 static int cas_pcs_link_check(struct cas *cp)
982 {
983 u32 stat, state_machine;
984 int retval = 0;
985
986 /* The link status bit latches on zero, so you must
987 * read it twice in such a case to see a transition
988 * to the link being up.
989 */
990 stat = readl(cp->regs + REG_PCS_MII_STATUS);
991 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
992 stat = readl(cp->regs + REG_PCS_MII_STATUS);
993
994 /* The remote-fault indication is only valid
995 * when autoneg has completed.
996 */
997 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
998 PCS_MII_STATUS_REMOTE_FAULT)) ==
999 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1000 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1001
1002 /* work around link detection issue by querying the PCS state
1003 * machine directly.
1004 */
1005 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1006 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1007 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1008 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1009 stat |= PCS_MII_STATUS_LINK_STATUS;
1010 }
1011
1012 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1013 if (cp->lstate != link_up) {
1014 if (cp->opened) {
1015 cp->lstate = link_up;
1016 cp->link_transition = LINK_TRANSITION_LINK_UP;
1017
1018 cas_set_link_modes(cp);
1019 netif_carrier_on(cp->dev);
1020 }
1021 }
1022 } else if (cp->lstate == link_up) {
1023 cp->lstate = link_down;
1024 if (link_transition_timeout != 0 &&
1025 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1026 !cp->link_transition_jiffies_valid) {
1027 /*
1028 * force a reset, as a workaround for the
1029 * link-failure problem. May want to move this to a
1030 * point a bit earlier in the sequence. If we had
1031 * generated a reset a short time ago, we'll wait for
1032 * the link timer to check the status until a
1033 * timer expires (link_transistion_jiffies_valid is
1034 * true when the timer is running.) Instead of using
1035 * a system timer, we just do a check whenever the
1036 * link timer is running - this clears the flag after
1037 * a suitable delay.
1038 */
1039 retval = 1;
1040 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1041 cp->link_transition_jiffies = jiffies;
1042 cp->link_transition_jiffies_valid = 1;
1043 } else {
1044 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1045 }
1046 netif_carrier_off(cp->dev);
1047 if (cp->opened)
1048 netif_info(cp, link, cp->dev, "PCS link down\n");
1049
1050 /* Cassini only: if you force a mode, there can be
1051 * sync problems on link down. to fix that, the following
1052 * things need to be checked:
1053 * 1) read serialink state register
1054 * 2) read pcs status register to verify link down.
1055 * 3) if link down and serial link == 0x03, then you need
1056 * to global reset the chip.
1057 */
1058 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1059 /* should check to see if we're in a forced mode */
1060 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1061 if (stat == 0x03)
1062 return 1;
1063 }
1064 } else if (cp->lstate == link_down) {
1065 if (link_transition_timeout != 0 &&
1066 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1067 !cp->link_transition_jiffies_valid) {
1068 /* force a reset, as a workaround for the
1069 * link-failure problem. May want to move
1070 * this to a point a bit earlier in the
1071 * sequence.
1072 */
1073 retval = 1;
1074 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1075 cp->link_transition_jiffies = jiffies;
1076 cp->link_transition_jiffies_valid = 1;
1077 } else {
1078 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1079 }
1080 }
1081
1082 return retval;
1083 }
1084
cas_pcs_interrupt(struct net_device * dev,struct cas * cp,u32 status)1085 static int cas_pcs_interrupt(struct net_device *dev,
1086 struct cas *cp, u32 status)
1087 {
1088 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1089
1090 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1091 return 0;
1092 return cas_pcs_link_check(cp);
1093 }
1094
cas_txmac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1095 static int cas_txmac_interrupt(struct net_device *dev,
1096 struct cas *cp, u32 status)
1097 {
1098 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1099
1100 if (!txmac_stat)
1101 return 0;
1102
1103 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1104 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1105
1106 /* Defer timer expiration is quite normal,
1107 * don't even log the event.
1108 */
1109 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1110 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1111 return 0;
1112
1113 spin_lock(&cp->stat_lock[0]);
1114 if (txmac_stat & MAC_TX_UNDERRUN) {
1115 netdev_err(dev, "TX MAC xmit underrun\n");
1116 cp->net_stats[0].tx_fifo_errors++;
1117 }
1118
1119 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1120 netdev_err(dev, "TX MAC max packet size error\n");
1121 cp->net_stats[0].tx_errors++;
1122 }
1123
1124 /* The rest are all cases of one of the 16-bit TX
1125 * counters expiring.
1126 */
1127 if (txmac_stat & MAC_TX_COLL_NORMAL)
1128 cp->net_stats[0].collisions += 0x10000;
1129
1130 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1131 cp->net_stats[0].tx_aborted_errors += 0x10000;
1132 cp->net_stats[0].collisions += 0x10000;
1133 }
1134
1135 if (txmac_stat & MAC_TX_COLL_LATE) {
1136 cp->net_stats[0].tx_aborted_errors += 0x10000;
1137 cp->net_stats[0].collisions += 0x10000;
1138 }
1139 spin_unlock(&cp->stat_lock[0]);
1140
1141 /* We do not keep track of MAC_TX_COLL_FIRST and
1142 * MAC_TX_PEAK_ATTEMPTS events.
1143 */
1144 return 0;
1145 }
1146
cas_load_firmware(struct cas * cp,cas_hp_inst_t * firmware)1147 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1148 {
1149 cas_hp_inst_t *inst;
1150 u32 val;
1151 int i;
1152
1153 i = 0;
1154 while ((inst = firmware) && inst->note) {
1155 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1156
1157 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1158 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1159 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1160
1161 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1162 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1163 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1164 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1165 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1166 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1167 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1168 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1169
1170 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1172 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1173 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1174 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1175 ++firmware;
1176 ++i;
1177 }
1178 }
1179
cas_init_rx_dma(struct cas * cp)1180 static void cas_init_rx_dma(struct cas *cp)
1181 {
1182 u64 desc_dma = cp->block_dvma;
1183 u32 val;
1184 int i, size;
1185
1186 /* rx free descriptors */
1187 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1188 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1189 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1190 if ((N_RX_DESC_RINGS > 1) &&
1191 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1192 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1193 writel(val, cp->regs + REG_RX_CFG);
1194
1195 val = (unsigned long) cp->init_rxds[0] -
1196 (unsigned long) cp->init_block;
1197 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1198 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1199 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1200
1201 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1202 /* rx desc 2 is for IPSEC packets. however,
1203 * we don't it that for that purpose.
1204 */
1205 val = (unsigned long) cp->init_rxds[1] -
1206 (unsigned long) cp->init_block;
1207 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1208 writel((desc_dma + val) & 0xffffffff, cp->regs +
1209 REG_PLUS_RX_DB1_LOW);
1210 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1211 REG_PLUS_RX_KICK1);
1212 }
1213
1214 /* rx completion registers */
1215 val = (unsigned long) cp->init_rxcs[0] -
1216 (unsigned long) cp->init_block;
1217 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1218 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1219
1220 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1221 /* rx comp 2-4 */
1222 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1223 val = (unsigned long) cp->init_rxcs[i] -
1224 (unsigned long) cp->init_block;
1225 writel((desc_dma + val) >> 32, cp->regs +
1226 REG_PLUS_RX_CBN_HI(i));
1227 writel((desc_dma + val) & 0xffffffff, cp->regs +
1228 REG_PLUS_RX_CBN_LOW(i));
1229 }
1230 }
1231
1232 /* read selective clear regs to prevent spurious interrupts
1233 * on reset because complete == kick.
1234 * selective clear set up to prevent interrupts on resets
1235 */
1236 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1237 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1238
1239 /* set up pause thresholds */
1240 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1241 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1242 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1243 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1244 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1245
1246 /* zero out dma reassembly buffers */
1247 for (i = 0; i < 64; i++) {
1248 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1249 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1250 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1251 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1252 }
1253
1254 /* make sure address register is 0 for normal operation */
1255 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1256 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1257
1258 /* interrupt mitigation */
1259 #ifdef USE_RX_BLANK
1260 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1261 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1262 writel(val, cp->regs + REG_RX_BLANK);
1263 #else
1264 writel(0x0, cp->regs + REG_RX_BLANK);
1265 #endif
1266
1267 /* interrupt generation as a function of low water marks for
1268 * free desc and completion entries. these are used to trigger
1269 * housekeeping for rx descs. we don't use the free interrupt
1270 * as it's not very useful
1271 */
1272 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1273 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1274 writel(val, cp->regs + REG_RX_AE_THRESH);
1275 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1276 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1277 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1278 }
1279
1280 /* Random early detect registers. useful for congestion avoidance.
1281 * this should be tunable.
1282 */
1283 writel(0x0, cp->regs + REG_RX_RED);
1284
1285 /* receive page sizes. default == 2K (0x800) */
1286 val = 0;
1287 if (cp->page_size == 0x1000)
1288 val = 0x1;
1289 else if (cp->page_size == 0x2000)
1290 val = 0x2;
1291 else if (cp->page_size == 0x4000)
1292 val = 0x3;
1293
1294 /* round mtu + offset. constrain to page size. */
1295 size = cp->dev->mtu + 64;
1296 if (size > cp->page_size)
1297 size = cp->page_size;
1298
1299 if (size <= 0x400)
1300 i = 0x0;
1301 else if (size <= 0x800)
1302 i = 0x1;
1303 else if (size <= 0x1000)
1304 i = 0x2;
1305 else
1306 i = 0x3;
1307
1308 cp->mtu_stride = 1 << (i + 10);
1309 val = CAS_BASE(RX_PAGE_SIZE, val);
1310 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1311 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1312 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1313 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1314
1315 /* enable the header parser if desired */
1316 if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1317 return;
1318
1319 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1320 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1321 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1322 writel(val, cp->regs + REG_HP_CFG);
1323 }
1324
cas_rxc_init(struct cas_rx_comp * rxc)1325 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1326 {
1327 memset(rxc, 0, sizeof(*rxc));
1328 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1329 }
1330
1331 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1332 * flipping is protected by the fact that the chip will not
1333 * hand back the same page index while it's being processed.
1334 */
cas_page_spare(struct cas * cp,const int index)1335 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1336 {
1337 cas_page_t *page = cp->rx_pages[1][index];
1338 cas_page_t *new;
1339
1340 if (page_count(page->buffer) == 1)
1341 return page;
1342
1343 new = cas_page_dequeue(cp);
1344 if (new) {
1345 spin_lock(&cp->rx_inuse_lock);
1346 list_add(&page->list, &cp->rx_inuse_list);
1347 spin_unlock(&cp->rx_inuse_lock);
1348 }
1349 return new;
1350 }
1351
1352 /* this needs to be changed if we actually use the ENC RX DESC ring */
cas_page_swap(struct cas * cp,const int ring,const int index)1353 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1354 const int index)
1355 {
1356 cas_page_t **page0 = cp->rx_pages[0];
1357 cas_page_t **page1 = cp->rx_pages[1];
1358
1359 /* swap if buffer is in use */
1360 if (page_count(page0[index]->buffer) > 1) {
1361 cas_page_t *new = cas_page_spare(cp, index);
1362 if (new) {
1363 page1[index] = page0[index];
1364 page0[index] = new;
1365 }
1366 }
1367 RX_USED_SET(page0[index], 0);
1368 return page0[index];
1369 }
1370
cas_clean_rxds(struct cas * cp)1371 static void cas_clean_rxds(struct cas *cp)
1372 {
1373 /* only clean ring 0 as ring 1 is used for spare buffers */
1374 struct cas_rx_desc *rxd = cp->init_rxds[0];
1375 int i, size;
1376
1377 /* release all rx flows */
1378 for (i = 0; i < N_RX_FLOWS; i++) {
1379 struct sk_buff *skb;
1380 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1381 cas_skb_release(skb);
1382 }
1383 }
1384
1385 /* initialize descriptors */
1386 size = RX_DESC_RINGN_SIZE(0);
1387 for (i = 0; i < size; i++) {
1388 cas_page_t *page = cas_page_swap(cp, 0, i);
1389 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1390 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1391 CAS_BASE(RX_INDEX_RING, 0));
1392 }
1393
1394 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1395 cp->rx_last[0] = 0;
1396 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1397 }
1398
cas_clean_rxcs(struct cas * cp)1399 static void cas_clean_rxcs(struct cas *cp)
1400 {
1401 int i, j;
1402
1403 /* take ownership of rx comp descriptors */
1404 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1405 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1406 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1407 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1408 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1409 cas_rxc_init(rxc + j);
1410 }
1411 }
1412 }
1413
1414 #if 0
1415 /* When we get a RX fifo overflow, the RX unit is probably hung
1416 * so we do the following.
1417 *
1418 * If any part of the reset goes wrong, we return 1 and that causes the
1419 * whole chip to be reset.
1420 */
1421 static int cas_rxmac_reset(struct cas *cp)
1422 {
1423 struct net_device *dev = cp->dev;
1424 int limit;
1425 u32 val;
1426
1427 /* First, reset MAC RX. */
1428 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1429 for (limit = 0; limit < STOP_TRIES; limit++) {
1430 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1431 break;
1432 udelay(10);
1433 }
1434 if (limit == STOP_TRIES) {
1435 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1436 return 1;
1437 }
1438
1439 /* Second, disable RX DMA. */
1440 writel(0, cp->regs + REG_RX_CFG);
1441 for (limit = 0; limit < STOP_TRIES; limit++) {
1442 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1443 break;
1444 udelay(10);
1445 }
1446 if (limit == STOP_TRIES) {
1447 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1448 return 1;
1449 }
1450
1451 mdelay(5);
1452
1453 /* Execute RX reset command. */
1454 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1455 for (limit = 0; limit < STOP_TRIES; limit++) {
1456 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1457 break;
1458 udelay(10);
1459 }
1460 if (limit == STOP_TRIES) {
1461 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1462 return 1;
1463 }
1464
1465 /* reset driver rx state */
1466 cas_clean_rxds(cp);
1467 cas_clean_rxcs(cp);
1468
1469 /* Now, reprogram the rest of RX unit. */
1470 cas_init_rx_dma(cp);
1471
1472 /* re-enable */
1473 val = readl(cp->regs + REG_RX_CFG);
1474 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1475 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1476 val = readl(cp->regs + REG_MAC_RX_CFG);
1477 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1478 return 0;
1479 }
1480 #endif
1481
cas_rxmac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1482 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1483 u32 status)
1484 {
1485 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1486
1487 if (!stat)
1488 return 0;
1489
1490 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1491
1492 /* these are all rollovers */
1493 spin_lock(&cp->stat_lock[0]);
1494 if (stat & MAC_RX_ALIGN_ERR)
1495 cp->net_stats[0].rx_frame_errors += 0x10000;
1496
1497 if (stat & MAC_RX_CRC_ERR)
1498 cp->net_stats[0].rx_crc_errors += 0x10000;
1499
1500 if (stat & MAC_RX_LEN_ERR)
1501 cp->net_stats[0].rx_length_errors += 0x10000;
1502
1503 if (stat & MAC_RX_OVERFLOW) {
1504 cp->net_stats[0].rx_over_errors++;
1505 cp->net_stats[0].rx_fifo_errors++;
1506 }
1507
1508 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1509 * events.
1510 */
1511 spin_unlock(&cp->stat_lock[0]);
1512 return 0;
1513 }
1514
cas_mac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1515 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1516 u32 status)
1517 {
1518 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1519
1520 if (!stat)
1521 return 0;
1522
1523 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1524 "mac interrupt, stat: 0x%x\n", stat);
1525
1526 /* This interrupt is just for pause frame and pause
1527 * tracking. It is useful for diagnostics and debug
1528 * but probably by default we will mask these events.
1529 */
1530 if (stat & MAC_CTRL_PAUSE_STATE)
1531 cp->pause_entered++;
1532
1533 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1534 cp->pause_last_time_recvd = (stat >> 16);
1535
1536 return 0;
1537 }
1538
1539
1540 /* Must be invoked under cp->lock. */
cas_mdio_link_not_up(struct cas * cp)1541 static inline int cas_mdio_link_not_up(struct cas *cp)
1542 {
1543 u16 val;
1544
1545 switch (cp->lstate) {
1546 case link_force_ret:
1547 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1548 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1549 cp->timer_ticks = 5;
1550 cp->lstate = link_force_ok;
1551 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1552 break;
1553
1554 case link_aneg:
1555 val = cas_phy_read(cp, MII_BMCR);
1556
1557 /* Try forced modes. we try things in the following order:
1558 * 1000 full -> 100 full/half -> 10 half
1559 */
1560 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1561 val |= BMCR_FULLDPLX;
1562 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1563 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1564 cas_phy_write(cp, MII_BMCR, val);
1565 cp->timer_ticks = 5;
1566 cp->lstate = link_force_try;
1567 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1568 break;
1569
1570 case link_force_try:
1571 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1572 val = cas_phy_read(cp, MII_BMCR);
1573 cp->timer_ticks = 5;
1574 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1575 val &= ~CAS_BMCR_SPEED1000;
1576 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1577 cas_phy_write(cp, MII_BMCR, val);
1578 break;
1579 }
1580
1581 if (val & BMCR_SPEED100) {
1582 if (val & BMCR_FULLDPLX) /* fd failed */
1583 val &= ~BMCR_FULLDPLX;
1584 else { /* 100Mbps failed */
1585 val &= ~BMCR_SPEED100;
1586 }
1587 cas_phy_write(cp, MII_BMCR, val);
1588 break;
1589 }
1590 break;
1591 default:
1592 break;
1593 }
1594 return 0;
1595 }
1596
1597
1598 /* must be invoked with cp->lock held */
cas_mii_link_check(struct cas * cp,const u16 bmsr)1599 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1600 {
1601 int restart;
1602
1603 if (bmsr & BMSR_LSTATUS) {
1604 /* Ok, here we got a link. If we had it due to a forced
1605 * fallback, and we were configured for autoneg, we
1606 * retry a short autoneg pass. If you know your hub is
1607 * broken, use ethtool ;)
1608 */
1609 if ((cp->lstate == link_force_try) &&
1610 (cp->link_cntl & BMCR_ANENABLE)) {
1611 cp->lstate = link_force_ret;
1612 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613 cas_mif_poll(cp, 0);
1614 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1615 cp->timer_ticks = 5;
1616 if (cp->opened)
1617 netif_info(cp, link, cp->dev,
1618 "Got link after fallback, retrying autoneg once...\n");
1619 cas_phy_write(cp, MII_BMCR,
1620 cp->link_fcntl | BMCR_ANENABLE |
1621 BMCR_ANRESTART);
1622 cas_mif_poll(cp, 1);
1623
1624 } else if (cp->lstate != link_up) {
1625 cp->lstate = link_up;
1626 cp->link_transition = LINK_TRANSITION_LINK_UP;
1627
1628 if (cp->opened) {
1629 cas_set_link_modes(cp);
1630 netif_carrier_on(cp->dev);
1631 }
1632 }
1633 return 0;
1634 }
1635
1636 /* link not up. if the link was previously up, we restart the
1637 * whole process
1638 */
1639 restart = 0;
1640 if (cp->lstate == link_up) {
1641 cp->lstate = link_down;
1642 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1643
1644 netif_carrier_off(cp->dev);
1645 if (cp->opened)
1646 netif_info(cp, link, cp->dev, "Link down\n");
1647 restart = 1;
1648
1649 } else if (++cp->timer_ticks > 10)
1650 cas_mdio_link_not_up(cp);
1651
1652 return restart;
1653 }
1654
cas_mif_interrupt(struct net_device * dev,struct cas * cp,u32 status)1655 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1656 u32 status)
1657 {
1658 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1659 u16 bmsr;
1660
1661 /* check for a link change */
1662 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1663 return 0;
1664
1665 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1666 return cas_mii_link_check(cp, bmsr);
1667 }
1668
cas_pci_interrupt(struct net_device * dev,struct cas * cp,u32 status)1669 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1670 u32 status)
1671 {
1672 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1673
1674 if (!stat)
1675 return 0;
1676
1677 netdev_err(dev, "PCI error [%04x:%04x]",
1678 stat, readl(cp->regs + REG_BIM_DIAG));
1679
1680 /* cassini+ has this reserved */
1681 if ((stat & PCI_ERR_BADACK) &&
1682 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1683 pr_cont(" <No ACK64# during ABS64 cycle>");
1684
1685 if (stat & PCI_ERR_DTRTO)
1686 pr_cont(" <Delayed transaction timeout>");
1687 if (stat & PCI_ERR_OTHER)
1688 pr_cont(" <other>");
1689 if (stat & PCI_ERR_BIM_DMA_WRITE)
1690 pr_cont(" <BIM DMA 0 write req>");
1691 if (stat & PCI_ERR_BIM_DMA_READ)
1692 pr_cont(" <BIM DMA 0 read req>");
1693 pr_cont("\n");
1694
1695 if (stat & PCI_ERR_OTHER) {
1696 int pci_errs;
1697
1698 /* Interrogate PCI config space for the
1699 * true cause.
1700 */
1701 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1702
1703 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1704 if (pci_errs & PCI_STATUS_PARITY)
1705 netdev_err(dev, "PCI parity error detected\n");
1706 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1707 netdev_err(dev, "PCI target abort\n");
1708 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1709 netdev_err(dev, "PCI master acks target abort\n");
1710 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1711 netdev_err(dev, "PCI master abort\n");
1712 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1713 netdev_err(dev, "PCI system error SERR#\n");
1714 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1715 netdev_err(dev, "PCI parity error\n");
1716 }
1717
1718 /* For all PCI errors, we should reset the chip. */
1719 return 1;
1720 }
1721
1722 /* All non-normal interrupt conditions get serviced here.
1723 * Returns non-zero if we should just exit the interrupt
1724 * handler right now (ie. if we reset the card which invalidates
1725 * all of the other original irq status bits).
1726 */
cas_abnormal_irq(struct net_device * dev,struct cas * cp,u32 status)1727 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1728 u32 status)
1729 {
1730 if (status & INTR_RX_TAG_ERROR) {
1731 /* corrupt RX tag framing */
1732 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1733 "corrupt rx tag framing\n");
1734 spin_lock(&cp->stat_lock[0]);
1735 cp->net_stats[0].rx_errors++;
1736 spin_unlock(&cp->stat_lock[0]);
1737 goto do_reset;
1738 }
1739
1740 if (status & INTR_RX_LEN_MISMATCH) {
1741 /* length mismatch. */
1742 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1743 "length mismatch for rx frame\n");
1744 spin_lock(&cp->stat_lock[0]);
1745 cp->net_stats[0].rx_errors++;
1746 spin_unlock(&cp->stat_lock[0]);
1747 goto do_reset;
1748 }
1749
1750 if (status & INTR_PCS_STATUS) {
1751 if (cas_pcs_interrupt(dev, cp, status))
1752 goto do_reset;
1753 }
1754
1755 if (status & INTR_TX_MAC_STATUS) {
1756 if (cas_txmac_interrupt(dev, cp, status))
1757 goto do_reset;
1758 }
1759
1760 if (status & INTR_RX_MAC_STATUS) {
1761 if (cas_rxmac_interrupt(dev, cp, status))
1762 goto do_reset;
1763 }
1764
1765 if (status & INTR_MAC_CTRL_STATUS) {
1766 if (cas_mac_interrupt(dev, cp, status))
1767 goto do_reset;
1768 }
1769
1770 if (status & INTR_MIF_STATUS) {
1771 if (cas_mif_interrupt(dev, cp, status))
1772 goto do_reset;
1773 }
1774
1775 if (status & INTR_PCI_ERROR_STATUS) {
1776 if (cas_pci_interrupt(dev, cp, status))
1777 goto do_reset;
1778 }
1779 return 0;
1780
1781 do_reset:
1782 #if 1
1783 atomic_inc(&cp->reset_task_pending);
1784 atomic_inc(&cp->reset_task_pending_all);
1785 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1786 schedule_work(&cp->reset_task);
1787 #else
1788 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1789 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1790 schedule_work(&cp->reset_task);
1791 #endif
1792 return 1;
1793 }
1794
1795 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1796 * determining whether to do a netif_stop/wakeup
1797 */
1798 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1799 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
cas_calc_tabort(struct cas * cp,const unsigned long addr,const int len)1800 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1801 const int len)
1802 {
1803 unsigned long off = addr + len;
1804
1805 if (CAS_TABORT(cp) == 1)
1806 return 0;
1807 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1808 return 0;
1809 return TX_TARGET_ABORT_LEN;
1810 }
1811
cas_tx_ringN(struct cas * cp,int ring,int limit)1812 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1813 {
1814 struct cas_tx_desc *txds;
1815 struct sk_buff **skbs;
1816 struct net_device *dev = cp->dev;
1817 int entry, count;
1818
1819 spin_lock(&cp->tx_lock[ring]);
1820 txds = cp->init_txds[ring];
1821 skbs = cp->tx_skbs[ring];
1822 entry = cp->tx_old[ring];
1823
1824 count = TX_BUFF_COUNT(ring, entry, limit);
1825 while (entry != limit) {
1826 struct sk_buff *skb = skbs[entry];
1827 dma_addr_t daddr;
1828 u32 dlen;
1829 int frag;
1830
1831 if (!skb) {
1832 /* this should never occur */
1833 entry = TX_DESC_NEXT(ring, entry);
1834 continue;
1835 }
1836
1837 /* however, we might get only a partial skb release. */
1838 count -= skb_shinfo(skb)->nr_frags +
1839 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1840 if (count < 0)
1841 break;
1842
1843 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1844 "tx[%d] done, slot %d\n", ring, entry);
1845
1846 skbs[entry] = NULL;
1847 cp->tx_tiny_use[ring][entry].nbufs = 0;
1848
1849 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1850 struct cas_tx_desc *txd = txds + entry;
1851
1852 daddr = le64_to_cpu(txd->buffer);
1853 dlen = CAS_VAL(TX_DESC_BUFLEN,
1854 le64_to_cpu(txd->control));
1855 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1856 DMA_TO_DEVICE);
1857 entry = TX_DESC_NEXT(ring, entry);
1858
1859 /* tiny buffer may follow */
1860 if (cp->tx_tiny_use[ring][entry].used) {
1861 cp->tx_tiny_use[ring][entry].used = 0;
1862 entry = TX_DESC_NEXT(ring, entry);
1863 }
1864 }
1865
1866 spin_lock(&cp->stat_lock[ring]);
1867 cp->net_stats[ring].tx_packets++;
1868 cp->net_stats[ring].tx_bytes += skb->len;
1869 spin_unlock(&cp->stat_lock[ring]);
1870 dev_consume_skb_irq(skb);
1871 }
1872 cp->tx_old[ring] = entry;
1873
1874 /* this is wrong for multiple tx rings. the net device needs
1875 * multiple queues for this to do the right thing. we wait
1876 * for 2*packets to be available when using tiny buffers
1877 */
1878 if (netif_queue_stopped(dev) &&
1879 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1880 netif_wake_queue(dev);
1881 spin_unlock(&cp->tx_lock[ring]);
1882 }
1883
cas_tx(struct net_device * dev,struct cas * cp,u32 status)1884 static void cas_tx(struct net_device *dev, struct cas *cp,
1885 u32 status)
1886 {
1887 int limit, ring;
1888 #ifdef USE_TX_COMPWB
1889 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1890 #endif
1891 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1892 "tx interrupt, status: 0x%x, %llx\n",
1893 status, (unsigned long long)compwb);
1894 /* process all the rings */
1895 for (ring = 0; ring < N_TX_RINGS; ring++) {
1896 #ifdef USE_TX_COMPWB
1897 /* use the completion writeback registers */
1898 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1899 CAS_VAL(TX_COMPWB_LSB, compwb);
1900 compwb = TX_COMPWB_NEXT(compwb);
1901 #else
1902 limit = readl(cp->regs + REG_TX_COMPN(ring));
1903 #endif
1904 if (cp->tx_old[ring] != limit)
1905 cas_tx_ringN(cp, ring, limit);
1906 }
1907 }
1908
1909
cas_rx_process_pkt(struct cas * cp,struct cas_rx_comp * rxc,int entry,const u64 * words,struct sk_buff ** skbref)1910 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1911 int entry, const u64 *words,
1912 struct sk_buff **skbref)
1913 {
1914 int dlen, hlen, len, i, alloclen;
1915 int off, swivel = RX_SWIVEL_OFF_VAL;
1916 struct cas_page *page;
1917 struct sk_buff *skb;
1918 void *addr, *crcaddr;
1919 __sum16 csum;
1920 char *p;
1921
1922 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1923 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1924 len = hlen + dlen;
1925
1926 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1927 alloclen = len;
1928 else
1929 alloclen = max(hlen, RX_COPY_MIN);
1930
1931 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1932 if (skb == NULL)
1933 return -1;
1934
1935 *skbref = skb;
1936 skb_reserve(skb, swivel);
1937
1938 p = skb->data;
1939 addr = crcaddr = NULL;
1940 if (hlen) { /* always copy header pages */
1941 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1942 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1943 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1944 swivel;
1945
1946 i = hlen;
1947 if (!dlen) /* attach FCS */
1948 i += cp->crc_size;
1949 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1950 i, DMA_FROM_DEVICE);
1951 addr = cas_page_map(page->buffer);
1952 memcpy(p, addr + off, i);
1953 dma_sync_single_for_device(&cp->pdev->dev,
1954 page->dma_addr + off, i,
1955 DMA_FROM_DEVICE);
1956 cas_page_unmap(addr);
1957 RX_USED_ADD(page, 0x100);
1958 p += hlen;
1959 swivel = 0;
1960 }
1961
1962
1963 if (alloclen < (hlen + dlen)) {
1964 skb_frag_t *frag = skb_shinfo(skb)->frags;
1965
1966 /* normal or jumbo packets. we use frags */
1967 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1968 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1969 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1970
1971 hlen = min(cp->page_size - off, dlen);
1972 if (hlen < 0) {
1973 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1974 "rx page overflow: %d\n", hlen);
1975 dev_kfree_skb_irq(skb);
1976 return -1;
1977 }
1978 i = hlen;
1979 if (i == dlen) /* attach FCS */
1980 i += cp->crc_size;
1981 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1982 i, DMA_FROM_DEVICE);
1983
1984 /* make sure we always copy a header */
1985 swivel = 0;
1986 if (p == (char *) skb->data) { /* not split */
1987 addr = cas_page_map(page->buffer);
1988 memcpy(p, addr + off, RX_COPY_MIN);
1989 dma_sync_single_for_device(&cp->pdev->dev,
1990 page->dma_addr + off, i,
1991 DMA_FROM_DEVICE);
1992 cas_page_unmap(addr);
1993 off += RX_COPY_MIN;
1994 swivel = RX_COPY_MIN;
1995 RX_USED_ADD(page, cp->mtu_stride);
1996 } else {
1997 RX_USED_ADD(page, hlen);
1998 }
1999 skb_put(skb, alloclen);
2000
2001 skb_shinfo(skb)->nr_frags++;
2002 skb->data_len += hlen - swivel;
2003 skb->truesize += hlen - swivel;
2004 skb->len += hlen - swivel;
2005
2006 __skb_frag_set_page(frag, page->buffer);
2007 __skb_frag_ref(frag);
2008 skb_frag_off_set(frag, off);
2009 skb_frag_size_set(frag, hlen - swivel);
2010
2011 /* any more data? */
2012 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2013 hlen = dlen;
2014 off = 0;
2015
2016 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2017 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2018 dma_sync_single_for_cpu(&cp->pdev->dev,
2019 page->dma_addr,
2020 hlen + cp->crc_size,
2021 DMA_FROM_DEVICE);
2022 dma_sync_single_for_device(&cp->pdev->dev,
2023 page->dma_addr,
2024 hlen + cp->crc_size,
2025 DMA_FROM_DEVICE);
2026
2027 skb_shinfo(skb)->nr_frags++;
2028 skb->data_len += hlen;
2029 skb->len += hlen;
2030 frag++;
2031
2032 __skb_frag_set_page(frag, page->buffer);
2033 __skb_frag_ref(frag);
2034 skb_frag_off_set(frag, 0);
2035 skb_frag_size_set(frag, hlen);
2036 RX_USED_ADD(page, hlen + cp->crc_size);
2037 }
2038
2039 if (cp->crc_size) {
2040 addr = cas_page_map(page->buffer);
2041 crcaddr = addr + off + hlen;
2042 }
2043
2044 } else {
2045 /* copying packet */
2046 if (!dlen)
2047 goto end_copy_pkt;
2048
2049 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2050 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2051 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2052 hlen = min(cp->page_size - off, dlen);
2053 if (hlen < 0) {
2054 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2055 "rx page overflow: %d\n", hlen);
2056 dev_kfree_skb_irq(skb);
2057 return -1;
2058 }
2059 i = hlen;
2060 if (i == dlen) /* attach FCS */
2061 i += cp->crc_size;
2062 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2063 i, DMA_FROM_DEVICE);
2064 addr = cas_page_map(page->buffer);
2065 memcpy(p, addr + off, i);
2066 dma_sync_single_for_device(&cp->pdev->dev,
2067 page->dma_addr + off, i,
2068 DMA_FROM_DEVICE);
2069 cas_page_unmap(addr);
2070 if (p == (char *) skb->data) /* not split */
2071 RX_USED_ADD(page, cp->mtu_stride);
2072 else
2073 RX_USED_ADD(page, i);
2074
2075 /* any more data? */
2076 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2077 p += hlen;
2078 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2080 dma_sync_single_for_cpu(&cp->pdev->dev,
2081 page->dma_addr,
2082 dlen + cp->crc_size,
2083 DMA_FROM_DEVICE);
2084 addr = cas_page_map(page->buffer);
2085 memcpy(p, addr, dlen + cp->crc_size);
2086 dma_sync_single_for_device(&cp->pdev->dev,
2087 page->dma_addr,
2088 dlen + cp->crc_size,
2089 DMA_FROM_DEVICE);
2090 cas_page_unmap(addr);
2091 RX_USED_ADD(page, dlen + cp->crc_size);
2092 }
2093 end_copy_pkt:
2094 if (cp->crc_size) {
2095 addr = NULL;
2096 crcaddr = skb->data + alloclen;
2097 }
2098 skb_put(skb, alloclen);
2099 }
2100
2101 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2102 if (cp->crc_size) {
2103 /* checksum includes FCS. strip it out. */
2104 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2105 csum_unfold(csum)));
2106 if (addr)
2107 cas_page_unmap(addr);
2108 }
2109 skb->protocol = eth_type_trans(skb, cp->dev);
2110 if (skb->protocol == htons(ETH_P_IP)) {
2111 skb->csum = csum_unfold(~csum);
2112 skb->ip_summed = CHECKSUM_COMPLETE;
2113 } else
2114 skb_checksum_none_assert(skb);
2115 return len;
2116 }
2117
2118
2119 /* we can handle up to 64 rx flows at a time. we do the same thing
2120 * as nonreassm except that we batch up the buffers.
2121 * NOTE: we currently just treat each flow as a bunch of packets that
2122 * we pass up. a better way would be to coalesce the packets
2123 * into a jumbo packet. to do that, we need to do the following:
2124 * 1) the first packet will have a clean split between header and
2125 * data. save both.
2126 * 2) each time the next flow packet comes in, extend the
2127 * data length and merge the checksums.
2128 * 3) on flow release, fix up the header.
2129 * 4) make sure the higher layer doesn't care.
2130 * because packets get coalesced, we shouldn't run into fragment count
2131 * issues.
2132 */
cas_rx_flow_pkt(struct cas * cp,const u64 * words,struct sk_buff * skb)2133 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2134 struct sk_buff *skb)
2135 {
2136 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2137 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2138
2139 /* this is protected at a higher layer, so no need to
2140 * do any additional locking here. stick the buffer
2141 * at the end.
2142 */
2143 __skb_queue_tail(flow, skb);
2144 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2145 while ((skb = __skb_dequeue(flow))) {
2146 cas_skb_release(skb);
2147 }
2148 }
2149 }
2150
2151 /* put rx descriptor back on ring. if a buffer is in use by a higher
2152 * layer, this will need to put in a replacement.
2153 */
cas_post_page(struct cas * cp,const int ring,const int index)2154 static void cas_post_page(struct cas *cp, const int ring, const int index)
2155 {
2156 cas_page_t *new;
2157 int entry;
2158
2159 entry = cp->rx_old[ring];
2160
2161 new = cas_page_swap(cp, ring, index);
2162 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2163 cp->init_rxds[ring][entry].index =
2164 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2165 CAS_BASE(RX_INDEX_RING, ring));
2166
2167 entry = RX_DESC_ENTRY(ring, entry + 1);
2168 cp->rx_old[ring] = entry;
2169
2170 if (entry % 4)
2171 return;
2172
2173 if (ring == 0)
2174 writel(entry, cp->regs + REG_RX_KICK);
2175 else if ((N_RX_DESC_RINGS > 1) &&
2176 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2177 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2178 }
2179
2180
2181 /* only when things are bad */
cas_post_rxds_ringN(struct cas * cp,int ring,int num)2182 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2183 {
2184 unsigned int entry, last, count, released;
2185 int cluster;
2186 cas_page_t **page = cp->rx_pages[ring];
2187
2188 entry = cp->rx_old[ring];
2189
2190 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2191 "rxd[%d] interrupt, done: %d\n", ring, entry);
2192
2193 cluster = -1;
2194 count = entry & 0x3;
2195 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2196 released = 0;
2197 while (entry != last) {
2198 /* make a new buffer if it's still in use */
2199 if (page_count(page[entry]->buffer) > 1) {
2200 cas_page_t *new = cas_page_dequeue(cp);
2201 if (!new) {
2202 /* let the timer know that we need to
2203 * do this again
2204 */
2205 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2206 if (!timer_pending(&cp->link_timer))
2207 mod_timer(&cp->link_timer, jiffies +
2208 CAS_LINK_FAST_TIMEOUT);
2209 cp->rx_old[ring] = entry;
2210 cp->rx_last[ring] = num ? num - released : 0;
2211 return -ENOMEM;
2212 }
2213 spin_lock(&cp->rx_inuse_lock);
2214 list_add(&page[entry]->list, &cp->rx_inuse_list);
2215 spin_unlock(&cp->rx_inuse_lock);
2216 cp->init_rxds[ring][entry].buffer =
2217 cpu_to_le64(new->dma_addr);
2218 page[entry] = new;
2219
2220 }
2221
2222 if (++count == 4) {
2223 cluster = entry;
2224 count = 0;
2225 }
2226 released++;
2227 entry = RX_DESC_ENTRY(ring, entry + 1);
2228 }
2229 cp->rx_old[ring] = entry;
2230
2231 if (cluster < 0)
2232 return 0;
2233
2234 if (ring == 0)
2235 writel(cluster, cp->regs + REG_RX_KICK);
2236 else if ((N_RX_DESC_RINGS > 1) &&
2237 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2238 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2239 return 0;
2240 }
2241
2242
2243 /* process a completion ring. packets are set up in three basic ways:
2244 * small packets: should be copied header + data in single buffer.
2245 * large packets: header and data in a single buffer.
2246 * split packets: header in a separate buffer from data.
2247 * data may be in multiple pages. data may be > 256
2248 * bytes but in a single page.
2249 *
2250 * NOTE: RX page posting is done in this routine as well. while there's
2251 * the capability of using multiple RX completion rings, it isn't
2252 * really worthwhile due to the fact that the page posting will
2253 * force serialization on the single descriptor ring.
2254 */
cas_rx_ringN(struct cas * cp,int ring,int budget)2255 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2256 {
2257 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2258 int entry, drops;
2259 int npackets = 0;
2260
2261 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2262 "rx[%d] interrupt, done: %d/%d\n",
2263 ring,
2264 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2265
2266 entry = cp->rx_new[ring];
2267 drops = 0;
2268 while (1) {
2269 struct cas_rx_comp *rxc = rxcs + entry;
2270 struct sk_buff *skb;
2271 int type, len;
2272 u64 words[4];
2273 int i, dring;
2274
2275 words[0] = le64_to_cpu(rxc->word1);
2276 words[1] = le64_to_cpu(rxc->word2);
2277 words[2] = le64_to_cpu(rxc->word3);
2278 words[3] = le64_to_cpu(rxc->word4);
2279
2280 /* don't touch if still owned by hw */
2281 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2282 if (type == 0)
2283 break;
2284
2285 /* hw hasn't cleared the zero bit yet */
2286 if (words[3] & RX_COMP4_ZERO) {
2287 break;
2288 }
2289
2290 /* get info on the packet */
2291 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2292 spin_lock(&cp->stat_lock[ring]);
2293 cp->net_stats[ring].rx_errors++;
2294 if (words[3] & RX_COMP4_LEN_MISMATCH)
2295 cp->net_stats[ring].rx_length_errors++;
2296 if (words[3] & RX_COMP4_BAD)
2297 cp->net_stats[ring].rx_crc_errors++;
2298 spin_unlock(&cp->stat_lock[ring]);
2299
2300 /* We'll just return it to Cassini. */
2301 drop_it:
2302 spin_lock(&cp->stat_lock[ring]);
2303 ++cp->net_stats[ring].rx_dropped;
2304 spin_unlock(&cp->stat_lock[ring]);
2305 goto next;
2306 }
2307
2308 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2309 if (len < 0) {
2310 ++drops;
2311 goto drop_it;
2312 }
2313
2314 /* see if it's a flow re-assembly or not. the driver
2315 * itself handles release back up.
2316 */
2317 if (RX_DONT_BATCH || (type == 0x2)) {
2318 /* non-reassm: these always get released */
2319 cas_skb_release(skb);
2320 } else {
2321 cas_rx_flow_pkt(cp, words, skb);
2322 }
2323
2324 spin_lock(&cp->stat_lock[ring]);
2325 cp->net_stats[ring].rx_packets++;
2326 cp->net_stats[ring].rx_bytes += len;
2327 spin_unlock(&cp->stat_lock[ring]);
2328
2329 next:
2330 npackets++;
2331
2332 /* should it be released? */
2333 if (words[0] & RX_COMP1_RELEASE_HDR) {
2334 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2335 dring = CAS_VAL(RX_INDEX_RING, i);
2336 i = CAS_VAL(RX_INDEX_NUM, i);
2337 cas_post_page(cp, dring, i);
2338 }
2339
2340 if (words[0] & RX_COMP1_RELEASE_DATA) {
2341 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2342 dring = CAS_VAL(RX_INDEX_RING, i);
2343 i = CAS_VAL(RX_INDEX_NUM, i);
2344 cas_post_page(cp, dring, i);
2345 }
2346
2347 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2348 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2349 dring = CAS_VAL(RX_INDEX_RING, i);
2350 i = CAS_VAL(RX_INDEX_NUM, i);
2351 cas_post_page(cp, dring, i);
2352 }
2353
2354 /* skip to the next entry */
2355 entry = RX_COMP_ENTRY(ring, entry + 1 +
2356 CAS_VAL(RX_COMP1_SKIP, words[0]));
2357 #ifdef USE_NAPI
2358 if (budget && (npackets >= budget))
2359 break;
2360 #endif
2361 }
2362 cp->rx_new[ring] = entry;
2363
2364 if (drops)
2365 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2366 return npackets;
2367 }
2368
2369
2370 /* put completion entries back on the ring */
cas_post_rxcs_ringN(struct net_device * dev,struct cas * cp,int ring)2371 static void cas_post_rxcs_ringN(struct net_device *dev,
2372 struct cas *cp, int ring)
2373 {
2374 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2375 int last, entry;
2376
2377 last = cp->rx_cur[ring];
2378 entry = cp->rx_new[ring];
2379 netif_printk(cp, intr, KERN_DEBUG, dev,
2380 "rxc[%d] interrupt, done: %d/%d\n",
2381 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2382
2383 /* zero and re-mark descriptors */
2384 while (last != entry) {
2385 cas_rxc_init(rxc + last);
2386 last = RX_COMP_ENTRY(ring, last + 1);
2387 }
2388 cp->rx_cur[ring] = last;
2389
2390 if (ring == 0)
2391 writel(last, cp->regs + REG_RX_COMP_TAIL);
2392 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2393 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2394 }
2395
2396
2397
2398 /* cassini can use all four PCI interrupts for the completion ring.
2399 * rings 3 and 4 are identical
2400 */
2401 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
cas_handle_irqN(struct net_device * dev,struct cas * cp,const u32 status,const int ring)2402 static inline void cas_handle_irqN(struct net_device *dev,
2403 struct cas *cp, const u32 status,
2404 const int ring)
2405 {
2406 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2407 cas_post_rxcs_ringN(dev, cp, ring);
2408 }
2409
cas_interruptN(int irq,void * dev_id)2410 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2411 {
2412 struct net_device *dev = dev_id;
2413 struct cas *cp = netdev_priv(dev);
2414 unsigned long flags;
2415 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2416 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2417
2418 /* check for shared irq */
2419 if (status == 0)
2420 return IRQ_NONE;
2421
2422 spin_lock_irqsave(&cp->lock, flags);
2423 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2424 #ifdef USE_NAPI
2425 cas_mask_intr(cp);
2426 napi_schedule(&cp->napi);
2427 #else
2428 cas_rx_ringN(cp, ring, 0);
2429 #endif
2430 status &= ~INTR_RX_DONE_ALT;
2431 }
2432
2433 if (status)
2434 cas_handle_irqN(dev, cp, status, ring);
2435 spin_unlock_irqrestore(&cp->lock, flags);
2436 return IRQ_HANDLED;
2437 }
2438 #endif
2439
2440 #ifdef USE_PCI_INTB
2441 /* everything but rx packets */
cas_handle_irq1(struct cas * cp,const u32 status)2442 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2443 {
2444 if (status & INTR_RX_BUF_UNAVAIL_1) {
2445 /* Frame arrived, no free RX buffers available.
2446 * NOTE: we can get this on a link transition. */
2447 cas_post_rxds_ringN(cp, 1, 0);
2448 spin_lock(&cp->stat_lock[1]);
2449 cp->net_stats[1].rx_dropped++;
2450 spin_unlock(&cp->stat_lock[1]);
2451 }
2452
2453 if (status & INTR_RX_BUF_AE_1)
2454 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2455 RX_AE_FREEN_VAL(1));
2456
2457 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2458 cas_post_rxcs_ringN(cp, 1);
2459 }
2460
2461 /* ring 2 handles a few more events than 3 and 4 */
cas_interrupt1(int irq,void * dev_id)2462 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2463 {
2464 struct net_device *dev = dev_id;
2465 struct cas *cp = netdev_priv(dev);
2466 unsigned long flags;
2467 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2468
2469 /* check for shared interrupt */
2470 if (status == 0)
2471 return IRQ_NONE;
2472
2473 spin_lock_irqsave(&cp->lock, flags);
2474 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2475 #ifdef USE_NAPI
2476 cas_mask_intr(cp);
2477 napi_schedule(&cp->napi);
2478 #else
2479 cas_rx_ringN(cp, 1, 0);
2480 #endif
2481 status &= ~INTR_RX_DONE_ALT;
2482 }
2483 if (status)
2484 cas_handle_irq1(cp, status);
2485 spin_unlock_irqrestore(&cp->lock, flags);
2486 return IRQ_HANDLED;
2487 }
2488 #endif
2489
cas_handle_irq(struct net_device * dev,struct cas * cp,const u32 status)2490 static inline void cas_handle_irq(struct net_device *dev,
2491 struct cas *cp, const u32 status)
2492 {
2493 /* housekeeping interrupts */
2494 if (status & INTR_ERROR_MASK)
2495 cas_abnormal_irq(dev, cp, status);
2496
2497 if (status & INTR_RX_BUF_UNAVAIL) {
2498 /* Frame arrived, no free RX buffers available.
2499 * NOTE: we can get this on a link transition.
2500 */
2501 cas_post_rxds_ringN(cp, 0, 0);
2502 spin_lock(&cp->stat_lock[0]);
2503 cp->net_stats[0].rx_dropped++;
2504 spin_unlock(&cp->stat_lock[0]);
2505 } else if (status & INTR_RX_BUF_AE) {
2506 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2507 RX_AE_FREEN_VAL(0));
2508 }
2509
2510 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2511 cas_post_rxcs_ringN(dev, cp, 0);
2512 }
2513
cas_interrupt(int irq,void * dev_id)2514 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2515 {
2516 struct net_device *dev = dev_id;
2517 struct cas *cp = netdev_priv(dev);
2518 unsigned long flags;
2519 u32 status = readl(cp->regs + REG_INTR_STATUS);
2520
2521 if (status == 0)
2522 return IRQ_NONE;
2523
2524 spin_lock_irqsave(&cp->lock, flags);
2525 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2526 cas_tx(dev, cp, status);
2527 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2528 }
2529
2530 if (status & INTR_RX_DONE) {
2531 #ifdef USE_NAPI
2532 cas_mask_intr(cp);
2533 napi_schedule(&cp->napi);
2534 #else
2535 cas_rx_ringN(cp, 0, 0);
2536 #endif
2537 status &= ~INTR_RX_DONE;
2538 }
2539
2540 if (status)
2541 cas_handle_irq(dev, cp, status);
2542 spin_unlock_irqrestore(&cp->lock, flags);
2543 return IRQ_HANDLED;
2544 }
2545
2546
2547 #ifdef USE_NAPI
cas_poll(struct napi_struct * napi,int budget)2548 static int cas_poll(struct napi_struct *napi, int budget)
2549 {
2550 struct cas *cp = container_of(napi, struct cas, napi);
2551 struct net_device *dev = cp->dev;
2552 int i, enable_intr, credits;
2553 u32 status = readl(cp->regs + REG_INTR_STATUS);
2554 unsigned long flags;
2555
2556 spin_lock_irqsave(&cp->lock, flags);
2557 cas_tx(dev, cp, status);
2558 spin_unlock_irqrestore(&cp->lock, flags);
2559
2560 /* NAPI rx packets. we spread the credits across all of the
2561 * rxc rings
2562 *
2563 * to make sure we're fair with the work we loop through each
2564 * ring N_RX_COMP_RING times with a request of
2565 * budget / N_RX_COMP_RINGS
2566 */
2567 enable_intr = 1;
2568 credits = 0;
2569 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2570 int j;
2571 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2572 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2573 if (credits >= budget) {
2574 enable_intr = 0;
2575 goto rx_comp;
2576 }
2577 }
2578 }
2579
2580 rx_comp:
2581 /* final rx completion */
2582 spin_lock_irqsave(&cp->lock, flags);
2583 if (status)
2584 cas_handle_irq(dev, cp, status);
2585
2586 #ifdef USE_PCI_INTB
2587 if (N_RX_COMP_RINGS > 1) {
2588 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2589 if (status)
2590 cas_handle_irq1(dev, cp, status);
2591 }
2592 #endif
2593
2594 #ifdef USE_PCI_INTC
2595 if (N_RX_COMP_RINGS > 2) {
2596 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2597 if (status)
2598 cas_handle_irqN(dev, cp, status, 2);
2599 }
2600 #endif
2601
2602 #ifdef USE_PCI_INTD
2603 if (N_RX_COMP_RINGS > 3) {
2604 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2605 if (status)
2606 cas_handle_irqN(dev, cp, status, 3);
2607 }
2608 #endif
2609 spin_unlock_irqrestore(&cp->lock, flags);
2610 if (enable_intr) {
2611 napi_complete(napi);
2612 cas_unmask_intr(cp);
2613 }
2614 return credits;
2615 }
2616 #endif
2617
2618 #ifdef CONFIG_NET_POLL_CONTROLLER
cas_netpoll(struct net_device * dev)2619 static void cas_netpoll(struct net_device *dev)
2620 {
2621 struct cas *cp = netdev_priv(dev);
2622
2623 cas_disable_irq(cp, 0);
2624 cas_interrupt(cp->pdev->irq, dev);
2625 cas_enable_irq(cp, 0);
2626
2627 #ifdef USE_PCI_INTB
2628 if (N_RX_COMP_RINGS > 1) {
2629 /* cas_interrupt1(); */
2630 }
2631 #endif
2632 #ifdef USE_PCI_INTC
2633 if (N_RX_COMP_RINGS > 2) {
2634 /* cas_interruptN(); */
2635 }
2636 #endif
2637 #ifdef USE_PCI_INTD
2638 if (N_RX_COMP_RINGS > 3) {
2639 /* cas_interruptN(); */
2640 }
2641 #endif
2642 }
2643 #endif
2644
cas_tx_timeout(struct net_device * dev,unsigned int txqueue)2645 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2646 {
2647 struct cas *cp = netdev_priv(dev);
2648
2649 netdev_err(dev, "transmit timed out, resetting\n");
2650 if (!cp->hw_running) {
2651 netdev_err(dev, "hrm.. hw not running!\n");
2652 return;
2653 }
2654
2655 netdev_err(dev, "MIF_STATE[%08x]\n",
2656 readl(cp->regs + REG_MIF_STATE_MACHINE));
2657
2658 netdev_err(dev, "MAC_STATE[%08x]\n",
2659 readl(cp->regs + REG_MAC_STATE_MACHINE));
2660
2661 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2662 readl(cp->regs + REG_TX_CFG),
2663 readl(cp->regs + REG_MAC_TX_STATUS),
2664 readl(cp->regs + REG_MAC_TX_CFG),
2665 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2666 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2667 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2668 readl(cp->regs + REG_TX_SM_1),
2669 readl(cp->regs + REG_TX_SM_2));
2670
2671 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2672 readl(cp->regs + REG_RX_CFG),
2673 readl(cp->regs + REG_MAC_RX_STATUS),
2674 readl(cp->regs + REG_MAC_RX_CFG));
2675
2676 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2677 readl(cp->regs + REG_HP_STATE_MACHINE),
2678 readl(cp->regs + REG_HP_STATUS0),
2679 readl(cp->regs + REG_HP_STATUS1),
2680 readl(cp->regs + REG_HP_STATUS2));
2681
2682 #if 1
2683 atomic_inc(&cp->reset_task_pending);
2684 atomic_inc(&cp->reset_task_pending_all);
2685 schedule_work(&cp->reset_task);
2686 #else
2687 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2688 schedule_work(&cp->reset_task);
2689 #endif
2690 }
2691
cas_intme(int ring,int entry)2692 static inline int cas_intme(int ring, int entry)
2693 {
2694 /* Algorithm: IRQ every 1/2 of descriptors. */
2695 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2696 return 1;
2697 return 0;
2698 }
2699
2700
cas_write_txd(struct cas * cp,int ring,int entry,dma_addr_t mapping,int len,u64 ctrl,int last)2701 static void cas_write_txd(struct cas *cp, int ring, int entry,
2702 dma_addr_t mapping, int len, u64 ctrl, int last)
2703 {
2704 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2705
2706 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2707 if (cas_intme(ring, entry))
2708 ctrl |= TX_DESC_INTME;
2709 if (last)
2710 ctrl |= TX_DESC_EOF;
2711 txd->control = cpu_to_le64(ctrl);
2712 txd->buffer = cpu_to_le64(mapping);
2713 }
2714
tx_tiny_buf(struct cas * cp,const int ring,const int entry)2715 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2716 const int entry)
2717 {
2718 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2719 }
2720
tx_tiny_map(struct cas * cp,const int ring,const int entry,const int tentry)2721 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2722 const int entry, const int tentry)
2723 {
2724 cp->tx_tiny_use[ring][tentry].nbufs++;
2725 cp->tx_tiny_use[ring][entry].used = 1;
2726 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2727 }
2728
cas_xmit_tx_ringN(struct cas * cp,int ring,struct sk_buff * skb)2729 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2730 struct sk_buff *skb)
2731 {
2732 struct net_device *dev = cp->dev;
2733 int entry, nr_frags, frag, tabort, tentry;
2734 dma_addr_t mapping;
2735 unsigned long flags;
2736 u64 ctrl;
2737 u32 len;
2738
2739 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2740
2741 /* This is a hard error, log it. */
2742 if (TX_BUFFS_AVAIL(cp, ring) <=
2743 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2744 netif_stop_queue(dev);
2745 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2746 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2747 return 1;
2748 }
2749
2750 ctrl = 0;
2751 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2752 const u64 csum_start_off = skb_checksum_start_offset(skb);
2753 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2754
2755 ctrl = TX_DESC_CSUM_EN |
2756 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2757 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2758 }
2759
2760 entry = cp->tx_new[ring];
2761 cp->tx_skbs[ring][entry] = skb;
2762
2763 nr_frags = skb_shinfo(skb)->nr_frags;
2764 len = skb_headlen(skb);
2765 mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2766 offset_in_page(skb->data), len, DMA_TO_DEVICE);
2767
2768 tentry = entry;
2769 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2770 if (unlikely(tabort)) {
2771 /* NOTE: len is always > tabort */
2772 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2773 ctrl | TX_DESC_SOF, 0);
2774 entry = TX_DESC_NEXT(ring, entry);
2775
2776 skb_copy_from_linear_data_offset(skb, len - tabort,
2777 tx_tiny_buf(cp, ring, entry), tabort);
2778 mapping = tx_tiny_map(cp, ring, entry, tentry);
2779 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2780 (nr_frags == 0));
2781 } else {
2782 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2783 TX_DESC_SOF, (nr_frags == 0));
2784 }
2785 entry = TX_DESC_NEXT(ring, entry);
2786
2787 for (frag = 0; frag < nr_frags; frag++) {
2788 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2789
2790 len = skb_frag_size(fragp);
2791 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2792 DMA_TO_DEVICE);
2793
2794 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2795 if (unlikely(tabort)) {
2796 void *addr;
2797
2798 /* NOTE: len is always > tabort */
2799 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2800 ctrl, 0);
2801 entry = TX_DESC_NEXT(ring, entry);
2802
2803 addr = cas_page_map(skb_frag_page(fragp));
2804 memcpy(tx_tiny_buf(cp, ring, entry),
2805 addr + skb_frag_off(fragp) + len - tabort,
2806 tabort);
2807 cas_page_unmap(addr);
2808 mapping = tx_tiny_map(cp, ring, entry, tentry);
2809 len = tabort;
2810 }
2811
2812 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2813 (frag + 1 == nr_frags));
2814 entry = TX_DESC_NEXT(ring, entry);
2815 }
2816
2817 cp->tx_new[ring] = entry;
2818 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2819 netif_stop_queue(dev);
2820
2821 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2822 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2823 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2824 writel(entry, cp->regs + REG_TX_KICKN(ring));
2825 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2826 return 0;
2827 }
2828
cas_start_xmit(struct sk_buff * skb,struct net_device * dev)2829 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2830 {
2831 struct cas *cp = netdev_priv(dev);
2832
2833 /* this is only used as a load-balancing hint, so it doesn't
2834 * need to be SMP safe
2835 */
2836 static int ring;
2837
2838 if (skb_padto(skb, cp->min_frame_size))
2839 return NETDEV_TX_OK;
2840
2841 /* XXX: we need some higher-level QoS hooks to steer packets to
2842 * individual queues.
2843 */
2844 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2845 return NETDEV_TX_BUSY;
2846 return NETDEV_TX_OK;
2847 }
2848
cas_init_tx_dma(struct cas * cp)2849 static void cas_init_tx_dma(struct cas *cp)
2850 {
2851 u64 desc_dma = cp->block_dvma;
2852 unsigned long off;
2853 u32 val;
2854 int i;
2855
2856 /* set up tx completion writeback registers. must be 8-byte aligned */
2857 #ifdef USE_TX_COMPWB
2858 off = offsetof(struct cas_init_block, tx_compwb);
2859 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2860 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2861 #endif
2862
2863 /* enable completion writebacks, enable paced mode,
2864 * disable read pipe, and disable pre-interrupt compwbs
2865 */
2866 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2867 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2868 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2869 TX_CFG_INTR_COMPWB_DIS;
2870
2871 /* write out tx ring info and tx desc bases */
2872 for (i = 0; i < MAX_TX_RINGS; i++) {
2873 off = (unsigned long) cp->init_txds[i] -
2874 (unsigned long) cp->init_block;
2875
2876 val |= CAS_TX_RINGN_BASE(i);
2877 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2878 writel((desc_dma + off) & 0xffffffff, cp->regs +
2879 REG_TX_DBN_LOW(i));
2880 /* don't zero out the kick register here as the system
2881 * will wedge
2882 */
2883 }
2884 writel(val, cp->regs + REG_TX_CFG);
2885
2886 /* program max burst sizes. these numbers should be different
2887 * if doing QoS.
2888 */
2889 #ifdef USE_QOS
2890 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2891 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2892 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2893 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2894 #else
2895 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2896 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2897 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2898 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2899 #endif
2900 }
2901
2902 /* Must be invoked under cp->lock. */
cas_init_dma(struct cas * cp)2903 static inline void cas_init_dma(struct cas *cp)
2904 {
2905 cas_init_tx_dma(cp);
2906 cas_init_rx_dma(cp);
2907 }
2908
cas_process_mc_list(struct cas * cp)2909 static void cas_process_mc_list(struct cas *cp)
2910 {
2911 u16 hash_table[16];
2912 u32 crc;
2913 struct netdev_hw_addr *ha;
2914 int i = 1;
2915
2916 memset(hash_table, 0, sizeof(hash_table));
2917 netdev_for_each_mc_addr(ha, cp->dev) {
2918 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2919 /* use the alternate mac address registers for the
2920 * first 15 multicast addresses
2921 */
2922 writel((ha->addr[4] << 8) | ha->addr[5],
2923 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2924 writel((ha->addr[2] << 8) | ha->addr[3],
2925 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2926 writel((ha->addr[0] << 8) | ha->addr[1],
2927 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2928 i++;
2929 }
2930 else {
2931 /* use hw hash table for the next series of
2932 * multicast addresses
2933 */
2934 crc = ether_crc_le(ETH_ALEN, ha->addr);
2935 crc >>= 24;
2936 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2937 }
2938 }
2939 for (i = 0; i < 16; i++)
2940 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2941 }
2942
2943 /* Must be invoked under cp->lock. */
cas_setup_multicast(struct cas * cp)2944 static u32 cas_setup_multicast(struct cas *cp)
2945 {
2946 u32 rxcfg = 0;
2947 int i;
2948
2949 if (cp->dev->flags & IFF_PROMISC) {
2950 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2951
2952 } else if (cp->dev->flags & IFF_ALLMULTI) {
2953 for (i=0; i < 16; i++)
2954 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2955 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2956
2957 } else {
2958 cas_process_mc_list(cp);
2959 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2960 }
2961
2962 return rxcfg;
2963 }
2964
2965 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
cas_clear_mac_err(struct cas * cp)2966 static void cas_clear_mac_err(struct cas *cp)
2967 {
2968 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2969 writel(0, cp->regs + REG_MAC_COLL_FIRST);
2970 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2971 writel(0, cp->regs + REG_MAC_COLL_LATE);
2972 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2973 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2974 writel(0, cp->regs + REG_MAC_RECV_FRAME);
2975 writel(0, cp->regs + REG_MAC_LEN_ERR);
2976 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2977 writel(0, cp->regs + REG_MAC_FCS_ERR);
2978 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2979 }
2980
2981
cas_mac_reset(struct cas * cp)2982 static void cas_mac_reset(struct cas *cp)
2983 {
2984 int i;
2985
2986 /* do both TX and RX reset */
2987 writel(0x1, cp->regs + REG_MAC_TX_RESET);
2988 writel(0x1, cp->regs + REG_MAC_RX_RESET);
2989
2990 /* wait for TX */
2991 i = STOP_TRIES;
2992 while (i-- > 0) {
2993 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2994 break;
2995 udelay(10);
2996 }
2997
2998 /* wait for RX */
2999 i = STOP_TRIES;
3000 while (i-- > 0) {
3001 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3002 break;
3003 udelay(10);
3004 }
3005
3006 if (readl(cp->regs + REG_MAC_TX_RESET) |
3007 readl(cp->regs + REG_MAC_RX_RESET))
3008 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3009 readl(cp->regs + REG_MAC_TX_RESET),
3010 readl(cp->regs + REG_MAC_RX_RESET),
3011 readl(cp->regs + REG_MAC_STATE_MACHINE));
3012 }
3013
3014
3015 /* Must be invoked under cp->lock. */
cas_init_mac(struct cas * cp)3016 static void cas_init_mac(struct cas *cp)
3017 {
3018 const unsigned char *e = &cp->dev->dev_addr[0];
3019 int i;
3020 cas_mac_reset(cp);
3021
3022 /* setup core arbitration weight register */
3023 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3024
3025 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3026 /* set the infinite burst register for chips that don't have
3027 * pci issues.
3028 */
3029 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3030 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3031 #endif
3032
3033 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3034
3035 writel(0x00, cp->regs + REG_MAC_IPG0);
3036 writel(0x08, cp->regs + REG_MAC_IPG1);
3037 writel(0x04, cp->regs + REG_MAC_IPG2);
3038
3039 /* change later for 802.3z */
3040 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3041
3042 /* min frame + FCS */
3043 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3044
3045 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3046 * specify the maximum frame size to prevent RX tag errors on
3047 * oversized frames.
3048 */
3049 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3050 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3051 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3052 cp->regs + REG_MAC_FRAMESIZE_MAX);
3053
3054 /* NOTE: crc_size is used as a surrogate for half-duplex.
3055 * workaround saturn half-duplex issue by increasing preamble
3056 * size to 65 bytes.
3057 */
3058 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3059 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3060 else
3061 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3062 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3063 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3064 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3065
3066 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3067
3068 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3069 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3070 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3071 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3072 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3073
3074 /* setup mac address in perfect filter array */
3075 for (i = 0; i < 45; i++)
3076 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3077
3078 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3079 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3080 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3081
3082 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3083 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3084 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3085
3086 cp->mac_rx_cfg = cas_setup_multicast(cp);
3087
3088 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3089 cas_clear_mac_err(cp);
3090 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3091
3092 /* Setup MAC interrupts. We want to get all of the interesting
3093 * counter expiration events, but we do not want to hear about
3094 * normal rx/tx as the DMA engine tells us that.
3095 */
3096 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3097 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3098
3099 /* Don't enable even the PAUSE interrupts for now, we
3100 * make no use of those events other than to record them.
3101 */
3102 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3103 }
3104
3105 /* Must be invoked under cp->lock. */
cas_init_pause_thresholds(struct cas * cp)3106 static void cas_init_pause_thresholds(struct cas *cp)
3107 {
3108 /* Calculate pause thresholds. Setting the OFF threshold to the
3109 * full RX fifo size effectively disables PAUSE generation
3110 */
3111 if (cp->rx_fifo_size <= (2 * 1024)) {
3112 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3113 } else {
3114 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3115 if (max_frame * 3 > cp->rx_fifo_size) {
3116 cp->rx_pause_off = 7104;
3117 cp->rx_pause_on = 960;
3118 } else {
3119 int off = (cp->rx_fifo_size - (max_frame * 2));
3120 int on = off - max_frame;
3121 cp->rx_pause_off = off;
3122 cp->rx_pause_on = on;
3123 }
3124 }
3125 }
3126
cas_vpd_match(const void __iomem * p,const char * str)3127 static int cas_vpd_match(const void __iomem *p, const char *str)
3128 {
3129 int len = strlen(str) + 1;
3130 int i;
3131
3132 for (i = 0; i < len; i++) {
3133 if (readb(p + i) != str[i])
3134 return 0;
3135 }
3136 return 1;
3137 }
3138
3139
3140 /* get the mac address by reading the vpd information in the rom.
3141 * also get the phy type and determine if there's an entropy generator.
3142 * NOTE: this is a bit convoluted for the following reasons:
3143 * 1) vpd info has order-dependent mac addresses for multinic cards
3144 * 2) the only way to determine the nic order is to use the slot
3145 * number.
3146 * 3) fiber cards don't have bridges, so their slot numbers don't
3147 * mean anything.
3148 * 4) we don't actually know we have a fiber card until after
3149 * the mac addresses are parsed.
3150 */
cas_get_vpd_info(struct cas * cp,unsigned char * dev_addr,const int offset)3151 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3152 const int offset)
3153 {
3154 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3155 void __iomem *base, *kstart;
3156 int i, len;
3157 int found = 0;
3158 #define VPD_FOUND_MAC 0x01
3159 #define VPD_FOUND_PHY 0x02
3160
3161 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3162 int mac_off = 0;
3163
3164 #if defined(CONFIG_SPARC)
3165 const unsigned char *addr;
3166 #endif
3167
3168 /* give us access to the PROM */
3169 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3170 cp->regs + REG_BIM_LOCAL_DEV_EN);
3171
3172 /* check for an expansion rom */
3173 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3174 goto use_random_mac_addr;
3175
3176 /* search for beginning of vpd */
3177 base = NULL;
3178 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3179 /* check for PCIR */
3180 if ((readb(p + i + 0) == 0x50) &&
3181 (readb(p + i + 1) == 0x43) &&
3182 (readb(p + i + 2) == 0x49) &&
3183 (readb(p + i + 3) == 0x52)) {
3184 base = p + (readb(p + i + 8) |
3185 (readb(p + i + 9) << 8));
3186 break;
3187 }
3188 }
3189
3190 if (!base || (readb(base) != 0x82))
3191 goto use_random_mac_addr;
3192
3193 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3194 while (i < EXPANSION_ROM_SIZE) {
3195 if (readb(base + i) != 0x90) /* no vpd found */
3196 goto use_random_mac_addr;
3197
3198 /* found a vpd field */
3199 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3200
3201 /* extract keywords */
3202 kstart = base + i + 3;
3203 p = kstart;
3204 while ((p - kstart) < len) {
3205 int klen = readb(p + 2);
3206 int j;
3207 char type;
3208
3209 p += 3;
3210
3211 /* look for the following things:
3212 * -- correct length == 29
3213 * 3 (type) + 2 (size) +
3214 * 18 (strlen("local-mac-address") + 1) +
3215 * 6 (mac addr)
3216 * -- VPD Instance 'I'
3217 * -- VPD Type Bytes 'B'
3218 * -- VPD data length == 6
3219 * -- property string == local-mac-address
3220 *
3221 * -- correct length == 24
3222 * 3 (type) + 2 (size) +
3223 * 12 (strlen("entropy-dev") + 1) +
3224 * 7 (strlen("vms110") + 1)
3225 * -- VPD Instance 'I'
3226 * -- VPD Type String 'B'
3227 * -- VPD data length == 7
3228 * -- property string == entropy-dev
3229 *
3230 * -- correct length == 18
3231 * 3 (type) + 2 (size) +
3232 * 9 (strlen("phy-type") + 1) +
3233 * 4 (strlen("pcs") + 1)
3234 * -- VPD Instance 'I'
3235 * -- VPD Type String 'S'
3236 * -- VPD data length == 4
3237 * -- property string == phy-type
3238 *
3239 * -- correct length == 23
3240 * 3 (type) + 2 (size) +
3241 * 14 (strlen("phy-interface") + 1) +
3242 * 4 (strlen("pcs") + 1)
3243 * -- VPD Instance 'I'
3244 * -- VPD Type String 'S'
3245 * -- VPD data length == 4
3246 * -- property string == phy-interface
3247 */
3248 if (readb(p) != 'I')
3249 goto next;
3250
3251 /* finally, check string and length */
3252 type = readb(p + 3);
3253 if (type == 'B') {
3254 if ((klen == 29) && readb(p + 4) == 6 &&
3255 cas_vpd_match(p + 5,
3256 "local-mac-address")) {
3257 if (mac_off++ > offset)
3258 goto next;
3259
3260 /* set mac address */
3261 for (j = 0; j < 6; j++)
3262 dev_addr[j] =
3263 readb(p + 23 + j);
3264 goto found_mac;
3265 }
3266 }
3267
3268 if (type != 'S')
3269 goto next;
3270
3271 #ifdef USE_ENTROPY_DEV
3272 if ((klen == 24) &&
3273 cas_vpd_match(p + 5, "entropy-dev") &&
3274 cas_vpd_match(p + 17, "vms110")) {
3275 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3276 goto next;
3277 }
3278 #endif
3279
3280 if (found & VPD_FOUND_PHY)
3281 goto next;
3282
3283 if ((klen == 18) && readb(p + 4) == 4 &&
3284 cas_vpd_match(p + 5, "phy-type")) {
3285 if (cas_vpd_match(p + 14, "pcs")) {
3286 phy_type = CAS_PHY_SERDES;
3287 goto found_phy;
3288 }
3289 }
3290
3291 if ((klen == 23) && readb(p + 4) == 4 &&
3292 cas_vpd_match(p + 5, "phy-interface")) {
3293 if (cas_vpd_match(p + 19, "pcs")) {
3294 phy_type = CAS_PHY_SERDES;
3295 goto found_phy;
3296 }
3297 }
3298 found_mac:
3299 found |= VPD_FOUND_MAC;
3300 goto next;
3301
3302 found_phy:
3303 found |= VPD_FOUND_PHY;
3304
3305 next:
3306 p += klen;
3307 }
3308 i += len + 3;
3309 }
3310
3311 use_random_mac_addr:
3312 if (found & VPD_FOUND_MAC)
3313 goto done;
3314
3315 #if defined(CONFIG_SPARC)
3316 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3317 if (addr != NULL) {
3318 memcpy(dev_addr, addr, ETH_ALEN);
3319 goto done;
3320 }
3321 #endif
3322
3323 /* Sun MAC prefix then 3 random bytes. */
3324 pr_info("MAC address not found in ROM VPD\n");
3325 dev_addr[0] = 0x08;
3326 dev_addr[1] = 0x00;
3327 dev_addr[2] = 0x20;
3328 get_random_bytes(dev_addr + 3, 3);
3329
3330 done:
3331 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3332 return phy_type;
3333 }
3334
3335 /* check pci invariants */
cas_check_pci_invariants(struct cas * cp)3336 static void cas_check_pci_invariants(struct cas *cp)
3337 {
3338 struct pci_dev *pdev = cp->pdev;
3339
3340 cp->cas_flags = 0;
3341 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3342 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3343 if (pdev->revision >= CAS_ID_REVPLUS)
3344 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3345 if (pdev->revision < CAS_ID_REVPLUS02u)
3346 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3347
3348 /* Original Cassini supports HW CSUM, but it's not
3349 * enabled by default as it can trigger TX hangs.
3350 */
3351 if (pdev->revision < CAS_ID_REV2)
3352 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3353 } else {
3354 /* Only sun has original cassini chips. */
3355 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3356
3357 /* We use a flag because the same phy might be externally
3358 * connected.
3359 */
3360 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3361 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3362 cp->cas_flags |= CAS_FLAG_SATURN;
3363 }
3364 }
3365
3366
cas_check_invariants(struct cas * cp)3367 static int cas_check_invariants(struct cas *cp)
3368 {
3369 struct pci_dev *pdev = cp->pdev;
3370 u8 addr[ETH_ALEN];
3371 u32 cfg;
3372 int i;
3373
3374 /* get page size for rx buffers. */
3375 cp->page_order = 0;
3376 #ifdef USE_PAGE_ORDER
3377 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3378 /* see if we can allocate larger pages */
3379 struct page *page = alloc_pages(GFP_ATOMIC,
3380 CAS_JUMBO_PAGE_SHIFT -
3381 PAGE_SHIFT);
3382 if (page) {
3383 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3384 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3385 } else {
3386 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3387 }
3388 }
3389 #endif
3390 cp->page_size = (PAGE_SIZE << cp->page_order);
3391
3392 /* Fetch the FIFO configurations. */
3393 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3394 cp->rx_fifo_size = RX_FIFO_SIZE;
3395
3396 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3397 * they're both connected.
3398 */
3399 cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3400 eth_hw_addr_set(cp->dev, addr);
3401 if (cp->phy_type & CAS_PHY_SERDES) {
3402 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3403 return 0; /* no more checking needed */
3404 }
3405
3406 /* MII */
3407 cfg = readl(cp->regs + REG_MIF_CFG);
3408 if (cfg & MIF_CFG_MDIO_1) {
3409 cp->phy_type = CAS_PHY_MII_MDIO1;
3410 } else if (cfg & MIF_CFG_MDIO_0) {
3411 cp->phy_type = CAS_PHY_MII_MDIO0;
3412 }
3413
3414 cas_mif_poll(cp, 0);
3415 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3416
3417 for (i = 0; i < 32; i++) {
3418 u32 phy_id;
3419 int j;
3420
3421 for (j = 0; j < 3; j++) {
3422 cp->phy_addr = i;
3423 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3424 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3425 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3426 cp->phy_id = phy_id;
3427 goto done;
3428 }
3429 }
3430 }
3431 pr_err("MII phy did not respond [%08x]\n",
3432 readl(cp->regs + REG_MIF_STATE_MACHINE));
3433 return -1;
3434
3435 done:
3436 /* see if we can do gigabit */
3437 cfg = cas_phy_read(cp, MII_BMSR);
3438 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3439 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3440 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3441 return 0;
3442 }
3443
3444 /* Must be invoked under cp->lock. */
cas_start_dma(struct cas * cp)3445 static inline void cas_start_dma(struct cas *cp)
3446 {
3447 int i;
3448 u32 val;
3449 int txfailed = 0;
3450
3451 /* enable dma */
3452 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3453 writel(val, cp->regs + REG_TX_CFG);
3454 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3455 writel(val, cp->regs + REG_RX_CFG);
3456
3457 /* enable the mac */
3458 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3459 writel(val, cp->regs + REG_MAC_TX_CFG);
3460 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3461 writel(val, cp->regs + REG_MAC_RX_CFG);
3462
3463 i = STOP_TRIES;
3464 while (i-- > 0) {
3465 val = readl(cp->regs + REG_MAC_TX_CFG);
3466 if ((val & MAC_TX_CFG_EN))
3467 break;
3468 udelay(10);
3469 }
3470 if (i < 0) txfailed = 1;
3471 i = STOP_TRIES;
3472 while (i-- > 0) {
3473 val = readl(cp->regs + REG_MAC_RX_CFG);
3474 if ((val & MAC_RX_CFG_EN)) {
3475 if (txfailed) {
3476 netdev_err(cp->dev,
3477 "enabling mac failed [tx:%08x:%08x]\n",
3478 readl(cp->regs + REG_MIF_STATE_MACHINE),
3479 readl(cp->regs + REG_MAC_STATE_MACHINE));
3480 }
3481 goto enable_rx_done;
3482 }
3483 udelay(10);
3484 }
3485 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3486 (txfailed ? "tx,rx" : "rx"),
3487 readl(cp->regs + REG_MIF_STATE_MACHINE),
3488 readl(cp->regs + REG_MAC_STATE_MACHINE));
3489
3490 enable_rx_done:
3491 cas_unmask_intr(cp); /* enable interrupts */
3492 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3493 writel(0, cp->regs + REG_RX_COMP_TAIL);
3494
3495 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3496 if (N_RX_DESC_RINGS > 1)
3497 writel(RX_DESC_RINGN_SIZE(1) - 4,
3498 cp->regs + REG_PLUS_RX_KICK1);
3499 }
3500 }
3501
3502 /* Must be invoked under cp->lock. */
cas_read_pcs_link_mode(struct cas * cp,int * fd,int * spd,int * pause)3503 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3504 int *pause)
3505 {
3506 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3507 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3508 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3509 if (val & PCS_MII_LPA_ASYM_PAUSE)
3510 *pause |= 0x10;
3511 *spd = 1000;
3512 }
3513
3514 /* Must be invoked under cp->lock. */
cas_read_mii_link_mode(struct cas * cp,int * fd,int * spd,int * pause)3515 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3516 int *pause)
3517 {
3518 u32 val;
3519
3520 *fd = 0;
3521 *spd = 10;
3522 *pause = 0;
3523
3524 /* use GMII registers */
3525 val = cas_phy_read(cp, MII_LPA);
3526 if (val & CAS_LPA_PAUSE)
3527 *pause = 0x01;
3528
3529 if (val & CAS_LPA_ASYM_PAUSE)
3530 *pause |= 0x10;
3531
3532 if (val & LPA_DUPLEX)
3533 *fd = 1;
3534 if (val & LPA_100)
3535 *spd = 100;
3536
3537 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3538 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3539 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3540 *spd = 1000;
3541 if (val & CAS_LPA_1000FULL)
3542 *fd = 1;
3543 }
3544 }
3545
3546 /* A link-up condition has occurred, initialize and enable the
3547 * rest of the chip.
3548 *
3549 * Must be invoked under cp->lock.
3550 */
cas_set_link_modes(struct cas * cp)3551 static void cas_set_link_modes(struct cas *cp)
3552 {
3553 u32 val;
3554 int full_duplex, speed, pause;
3555
3556 full_duplex = 0;
3557 speed = 10;
3558 pause = 0;
3559
3560 if (CAS_PHY_MII(cp->phy_type)) {
3561 cas_mif_poll(cp, 0);
3562 val = cas_phy_read(cp, MII_BMCR);
3563 if (val & BMCR_ANENABLE) {
3564 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3565 &pause);
3566 } else {
3567 if (val & BMCR_FULLDPLX)
3568 full_duplex = 1;
3569
3570 if (val & BMCR_SPEED100)
3571 speed = 100;
3572 else if (val & CAS_BMCR_SPEED1000)
3573 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3574 1000 : 100;
3575 }
3576 cas_mif_poll(cp, 1);
3577
3578 } else {
3579 val = readl(cp->regs + REG_PCS_MII_CTRL);
3580 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3581 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3582 if (val & PCS_MII_CTRL_DUPLEX)
3583 full_duplex = 1;
3584 }
3585 }
3586
3587 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3588 speed, full_duplex ? "full" : "half");
3589
3590 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3591 if (CAS_PHY_MII(cp->phy_type)) {
3592 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3593 if (!full_duplex)
3594 val |= MAC_XIF_DISABLE_ECHO;
3595 }
3596 if (full_duplex)
3597 val |= MAC_XIF_FDPLX_LED;
3598 if (speed == 1000)
3599 val |= MAC_XIF_GMII_MODE;
3600 writel(val, cp->regs + REG_MAC_XIF_CFG);
3601
3602 /* deal with carrier and collision detect. */
3603 val = MAC_TX_CFG_IPG_EN;
3604 if (full_duplex) {
3605 val |= MAC_TX_CFG_IGNORE_CARRIER;
3606 val |= MAC_TX_CFG_IGNORE_COLL;
3607 } else {
3608 #ifndef USE_CSMA_CD_PROTO
3609 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3610 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3611 #endif
3612 }
3613 /* val now set up for REG_MAC_TX_CFG */
3614
3615 /* If gigabit and half-duplex, enable carrier extension
3616 * mode. increase slot time to 512 bytes as well.
3617 * else, disable it and make sure slot time is 64 bytes.
3618 * also activate checksum bug workaround
3619 */
3620 if ((speed == 1000) && !full_duplex) {
3621 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3622 cp->regs + REG_MAC_TX_CFG);
3623
3624 val = readl(cp->regs + REG_MAC_RX_CFG);
3625 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3626 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3627 cp->regs + REG_MAC_RX_CFG);
3628
3629 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3630
3631 cp->crc_size = 4;
3632 /* minimum size gigabit frame at half duplex */
3633 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3634
3635 } else {
3636 writel(val, cp->regs + REG_MAC_TX_CFG);
3637
3638 /* checksum bug workaround. don't strip FCS when in
3639 * half-duplex mode
3640 */
3641 val = readl(cp->regs + REG_MAC_RX_CFG);
3642 if (full_duplex) {
3643 val |= MAC_RX_CFG_STRIP_FCS;
3644 cp->crc_size = 0;
3645 cp->min_frame_size = CAS_MIN_MTU;
3646 } else {
3647 val &= ~MAC_RX_CFG_STRIP_FCS;
3648 cp->crc_size = 4;
3649 cp->min_frame_size = CAS_MIN_FRAME;
3650 }
3651 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3652 cp->regs + REG_MAC_RX_CFG);
3653 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3654 }
3655
3656 if (netif_msg_link(cp)) {
3657 if (pause & 0x01) {
3658 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3659 cp->rx_fifo_size,
3660 cp->rx_pause_off,
3661 cp->rx_pause_on);
3662 } else if (pause & 0x10) {
3663 netdev_info(cp->dev, "TX pause enabled\n");
3664 } else {
3665 netdev_info(cp->dev, "Pause is disabled\n");
3666 }
3667 }
3668
3669 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3670 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3671 if (pause) { /* symmetric or asymmetric pause */
3672 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3673 if (pause & 0x01) { /* symmetric pause */
3674 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3675 }
3676 }
3677 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3678 cas_start_dma(cp);
3679 }
3680
3681 /* Must be invoked under cp->lock. */
cas_init_hw(struct cas * cp,int restart_link)3682 static void cas_init_hw(struct cas *cp, int restart_link)
3683 {
3684 if (restart_link)
3685 cas_phy_init(cp);
3686
3687 cas_init_pause_thresholds(cp);
3688 cas_init_mac(cp);
3689 cas_init_dma(cp);
3690
3691 if (restart_link) {
3692 /* Default aneg parameters */
3693 cp->timer_ticks = 0;
3694 cas_begin_auto_negotiation(cp, NULL);
3695 } else if (cp->lstate == link_up) {
3696 cas_set_link_modes(cp);
3697 netif_carrier_on(cp->dev);
3698 }
3699 }
3700
3701 /* Must be invoked under cp->lock. on earlier cassini boards,
3702 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3703 * let it settle out, and then restore pci state.
3704 */
cas_hard_reset(struct cas * cp)3705 static void cas_hard_reset(struct cas *cp)
3706 {
3707 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3708 udelay(20);
3709 pci_restore_state(cp->pdev);
3710 }
3711
3712
cas_global_reset(struct cas * cp,int blkflag)3713 static void cas_global_reset(struct cas *cp, int blkflag)
3714 {
3715 int limit;
3716
3717 /* issue a global reset. don't use RSTOUT. */
3718 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3719 /* For PCS, when the blkflag is set, we should set the
3720 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3721 * the last autonegotiation from being cleared. We'll
3722 * need some special handling if the chip is set into a
3723 * loopback mode.
3724 */
3725 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3726 cp->regs + REG_SW_RESET);
3727 } else {
3728 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3729 }
3730
3731 /* need to wait at least 3ms before polling register */
3732 mdelay(3);
3733
3734 limit = STOP_TRIES;
3735 while (limit-- > 0) {
3736 u32 val = readl(cp->regs + REG_SW_RESET);
3737 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3738 goto done;
3739 udelay(10);
3740 }
3741 netdev_err(cp->dev, "sw reset failed\n");
3742
3743 done:
3744 /* enable various BIM interrupts */
3745 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3746 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3747
3748 /* clear out pci error status mask for handled errors.
3749 * we don't deal with DMA counter overflows as they happen
3750 * all the time.
3751 */
3752 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3753 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3754 PCI_ERR_BIM_DMA_READ), cp->regs +
3755 REG_PCI_ERR_STATUS_MASK);
3756
3757 /* set up for MII by default to address mac rx reset timeout
3758 * issue
3759 */
3760 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3761 }
3762
cas_reset(struct cas * cp,int blkflag)3763 static void cas_reset(struct cas *cp, int blkflag)
3764 {
3765 u32 val;
3766
3767 cas_mask_intr(cp);
3768 cas_global_reset(cp, blkflag);
3769 cas_mac_reset(cp);
3770 cas_entropy_reset(cp);
3771
3772 /* disable dma engines. */
3773 val = readl(cp->regs + REG_TX_CFG);
3774 val &= ~TX_CFG_DMA_EN;
3775 writel(val, cp->regs + REG_TX_CFG);
3776
3777 val = readl(cp->regs + REG_RX_CFG);
3778 val &= ~RX_CFG_DMA_EN;
3779 writel(val, cp->regs + REG_RX_CFG);
3780
3781 /* program header parser */
3782 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3783 (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3784 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3785 } else {
3786 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3787 }
3788
3789 /* clear out error registers */
3790 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3791 cas_clear_mac_err(cp);
3792 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3793 }
3794
3795 /* Shut down the chip, must be called with pm_mutex held. */
cas_shutdown(struct cas * cp)3796 static void cas_shutdown(struct cas *cp)
3797 {
3798 unsigned long flags;
3799
3800 /* Make us not-running to avoid timers respawning */
3801 cp->hw_running = 0;
3802
3803 del_timer_sync(&cp->link_timer);
3804
3805 /* Stop the reset task */
3806 #if 0
3807 while (atomic_read(&cp->reset_task_pending_mtu) ||
3808 atomic_read(&cp->reset_task_pending_spare) ||
3809 atomic_read(&cp->reset_task_pending_all))
3810 schedule();
3811
3812 #else
3813 while (atomic_read(&cp->reset_task_pending))
3814 schedule();
3815 #endif
3816 /* Actually stop the chip */
3817 cas_lock_all_save(cp, flags);
3818 cas_reset(cp, 0);
3819 if (cp->cas_flags & CAS_FLAG_SATURN)
3820 cas_phy_powerdown(cp);
3821 cas_unlock_all_restore(cp, flags);
3822 }
3823
cas_change_mtu(struct net_device * dev,int new_mtu)3824 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3825 {
3826 struct cas *cp = netdev_priv(dev);
3827
3828 dev->mtu = new_mtu;
3829 if (!netif_running(dev) || !netif_device_present(dev))
3830 return 0;
3831
3832 /* let the reset task handle it */
3833 #if 1
3834 atomic_inc(&cp->reset_task_pending);
3835 if ((cp->phy_type & CAS_PHY_SERDES)) {
3836 atomic_inc(&cp->reset_task_pending_all);
3837 } else {
3838 atomic_inc(&cp->reset_task_pending_mtu);
3839 }
3840 schedule_work(&cp->reset_task);
3841 #else
3842 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3843 CAS_RESET_ALL : CAS_RESET_MTU);
3844 pr_err("reset called in cas_change_mtu\n");
3845 schedule_work(&cp->reset_task);
3846 #endif
3847
3848 flush_work(&cp->reset_task);
3849 return 0;
3850 }
3851
cas_clean_txd(struct cas * cp,int ring)3852 static void cas_clean_txd(struct cas *cp, int ring)
3853 {
3854 struct cas_tx_desc *txd = cp->init_txds[ring];
3855 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3856 u64 daddr, dlen;
3857 int i, size;
3858
3859 size = TX_DESC_RINGN_SIZE(ring);
3860 for (i = 0; i < size; i++) {
3861 int frag;
3862
3863 if (skbs[i] == NULL)
3864 continue;
3865
3866 skb = skbs[i];
3867 skbs[i] = NULL;
3868
3869 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3870 int ent = i & (size - 1);
3871
3872 /* first buffer is never a tiny buffer and so
3873 * needs to be unmapped.
3874 */
3875 daddr = le64_to_cpu(txd[ent].buffer);
3876 dlen = CAS_VAL(TX_DESC_BUFLEN,
3877 le64_to_cpu(txd[ent].control));
3878 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3879 DMA_TO_DEVICE);
3880
3881 if (frag != skb_shinfo(skb)->nr_frags) {
3882 i++;
3883
3884 /* next buffer might by a tiny buffer.
3885 * skip past it.
3886 */
3887 ent = i & (size - 1);
3888 if (cp->tx_tiny_use[ring][ent].used)
3889 i++;
3890 }
3891 }
3892 dev_kfree_skb_any(skb);
3893 }
3894
3895 /* zero out tiny buf usage */
3896 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3897 }
3898
3899 /* freed on close */
cas_free_rx_desc(struct cas * cp,int ring)3900 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3901 {
3902 cas_page_t **page = cp->rx_pages[ring];
3903 int i, size;
3904
3905 size = RX_DESC_RINGN_SIZE(ring);
3906 for (i = 0; i < size; i++) {
3907 if (page[i]) {
3908 cas_page_free(cp, page[i]);
3909 page[i] = NULL;
3910 }
3911 }
3912 }
3913
cas_free_rxds(struct cas * cp)3914 static void cas_free_rxds(struct cas *cp)
3915 {
3916 int i;
3917
3918 for (i = 0; i < N_RX_DESC_RINGS; i++)
3919 cas_free_rx_desc(cp, i);
3920 }
3921
3922 /* Must be invoked under cp->lock. */
cas_clean_rings(struct cas * cp)3923 static void cas_clean_rings(struct cas *cp)
3924 {
3925 int i;
3926
3927 /* need to clean all tx rings */
3928 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3929 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3930 for (i = 0; i < N_TX_RINGS; i++)
3931 cas_clean_txd(cp, i);
3932
3933 /* zero out init block */
3934 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3935 cas_clean_rxds(cp);
3936 cas_clean_rxcs(cp);
3937 }
3938
3939 /* allocated on open */
cas_alloc_rx_desc(struct cas * cp,int ring)3940 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3941 {
3942 cas_page_t **page = cp->rx_pages[ring];
3943 int size, i = 0;
3944
3945 size = RX_DESC_RINGN_SIZE(ring);
3946 for (i = 0; i < size; i++) {
3947 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3948 return -1;
3949 }
3950 return 0;
3951 }
3952
cas_alloc_rxds(struct cas * cp)3953 static int cas_alloc_rxds(struct cas *cp)
3954 {
3955 int i;
3956
3957 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3958 if (cas_alloc_rx_desc(cp, i) < 0) {
3959 cas_free_rxds(cp);
3960 return -1;
3961 }
3962 }
3963 return 0;
3964 }
3965
cas_reset_task(struct work_struct * work)3966 static void cas_reset_task(struct work_struct *work)
3967 {
3968 struct cas *cp = container_of(work, struct cas, reset_task);
3969 #if 0
3970 int pending = atomic_read(&cp->reset_task_pending);
3971 #else
3972 int pending_all = atomic_read(&cp->reset_task_pending_all);
3973 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3974 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3975
3976 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3977 /* We can have more tasks scheduled than actually
3978 * needed.
3979 */
3980 atomic_dec(&cp->reset_task_pending);
3981 return;
3982 }
3983 #endif
3984 /* The link went down, we reset the ring, but keep
3985 * DMA stopped. Use this function for reset
3986 * on error as well.
3987 */
3988 if (cp->hw_running) {
3989 unsigned long flags;
3990
3991 /* Make sure we don't get interrupts or tx packets */
3992 netif_device_detach(cp->dev);
3993 cas_lock_all_save(cp, flags);
3994
3995 if (cp->opened) {
3996 /* We call cas_spare_recover when we call cas_open.
3997 * but we do not initialize the lists cas_spare_recover
3998 * uses until cas_open is called.
3999 */
4000 cas_spare_recover(cp, GFP_ATOMIC);
4001 }
4002 #if 1
4003 /* test => only pending_spare set */
4004 if (!pending_all && !pending_mtu)
4005 goto done;
4006 #else
4007 if (pending == CAS_RESET_SPARE)
4008 goto done;
4009 #endif
4010 /* when pending == CAS_RESET_ALL, the following
4011 * call to cas_init_hw will restart auto negotiation.
4012 * Setting the second argument of cas_reset to
4013 * !(pending == CAS_RESET_ALL) will set this argument
4014 * to 1 (avoiding reinitializing the PHY for the normal
4015 * PCS case) when auto negotiation is not restarted.
4016 */
4017 #if 1
4018 cas_reset(cp, !(pending_all > 0));
4019 if (cp->opened)
4020 cas_clean_rings(cp);
4021 cas_init_hw(cp, (pending_all > 0));
4022 #else
4023 cas_reset(cp, !(pending == CAS_RESET_ALL));
4024 if (cp->opened)
4025 cas_clean_rings(cp);
4026 cas_init_hw(cp, pending == CAS_RESET_ALL);
4027 #endif
4028
4029 done:
4030 cas_unlock_all_restore(cp, flags);
4031 netif_device_attach(cp->dev);
4032 }
4033 #if 1
4034 atomic_sub(pending_all, &cp->reset_task_pending_all);
4035 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4036 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4037 atomic_dec(&cp->reset_task_pending);
4038 #else
4039 atomic_set(&cp->reset_task_pending, 0);
4040 #endif
4041 }
4042
cas_link_timer(struct timer_list * t)4043 static void cas_link_timer(struct timer_list *t)
4044 {
4045 struct cas *cp = from_timer(cp, t, link_timer);
4046 int mask, pending = 0, reset = 0;
4047 unsigned long flags;
4048
4049 if (link_transition_timeout != 0 &&
4050 cp->link_transition_jiffies_valid &&
4051 time_is_before_jiffies(cp->link_transition_jiffies +
4052 link_transition_timeout)) {
4053 /* One-second counter so link-down workaround doesn't
4054 * cause resets to occur so fast as to fool the switch
4055 * into thinking the link is down.
4056 */
4057 cp->link_transition_jiffies_valid = 0;
4058 }
4059
4060 if (!cp->hw_running)
4061 return;
4062
4063 spin_lock_irqsave(&cp->lock, flags);
4064 cas_lock_tx(cp);
4065 cas_entropy_gather(cp);
4066
4067 /* If the link task is still pending, we just
4068 * reschedule the link timer
4069 */
4070 #if 1
4071 if (atomic_read(&cp->reset_task_pending_all) ||
4072 atomic_read(&cp->reset_task_pending_spare) ||
4073 atomic_read(&cp->reset_task_pending_mtu))
4074 goto done;
4075 #else
4076 if (atomic_read(&cp->reset_task_pending))
4077 goto done;
4078 #endif
4079
4080 /* check for rx cleaning */
4081 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4082 int i, rmask;
4083
4084 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4085 rmask = CAS_FLAG_RXD_POST(i);
4086 if ((mask & rmask) == 0)
4087 continue;
4088
4089 /* post_rxds will do a mod_timer */
4090 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4091 pending = 1;
4092 continue;
4093 }
4094 cp->cas_flags &= ~rmask;
4095 }
4096 }
4097
4098 if (CAS_PHY_MII(cp->phy_type)) {
4099 u16 bmsr;
4100 cas_mif_poll(cp, 0);
4101 bmsr = cas_phy_read(cp, MII_BMSR);
4102 /* WTZ: Solaris driver reads this twice, but that
4103 * may be due to the PCS case and the use of a
4104 * common implementation. Read it twice here to be
4105 * safe.
4106 */
4107 bmsr = cas_phy_read(cp, MII_BMSR);
4108 cas_mif_poll(cp, 1);
4109 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4110 reset = cas_mii_link_check(cp, bmsr);
4111 } else {
4112 reset = cas_pcs_link_check(cp);
4113 }
4114
4115 if (reset)
4116 goto done;
4117
4118 /* check for tx state machine confusion */
4119 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4120 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4121 u32 wptr, rptr;
4122 int tlm = CAS_VAL(MAC_SM_TLM, val);
4123
4124 if (((tlm == 0x5) || (tlm == 0x3)) &&
4125 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4126 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4127 "tx err: MAC_STATE[%08x]\n", val);
4128 reset = 1;
4129 goto done;
4130 }
4131
4132 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4133 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4134 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4135 if ((val == 0) && (wptr != rptr)) {
4136 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4137 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4138 val, wptr, rptr);
4139 reset = 1;
4140 }
4141
4142 if (reset)
4143 cas_hard_reset(cp);
4144 }
4145
4146 done:
4147 if (reset) {
4148 #if 1
4149 atomic_inc(&cp->reset_task_pending);
4150 atomic_inc(&cp->reset_task_pending_all);
4151 schedule_work(&cp->reset_task);
4152 #else
4153 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4154 pr_err("reset called in cas_link_timer\n");
4155 schedule_work(&cp->reset_task);
4156 #endif
4157 }
4158
4159 if (!pending)
4160 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4161 cas_unlock_tx(cp);
4162 spin_unlock_irqrestore(&cp->lock, flags);
4163 }
4164
4165 /* tiny buffers are used to avoid target abort issues with
4166 * older cassini's
4167 */
cas_tx_tiny_free(struct cas * cp)4168 static void cas_tx_tiny_free(struct cas *cp)
4169 {
4170 struct pci_dev *pdev = cp->pdev;
4171 int i;
4172
4173 for (i = 0; i < N_TX_RINGS; i++) {
4174 if (!cp->tx_tiny_bufs[i])
4175 continue;
4176
4177 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4178 cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4179 cp->tx_tiny_bufs[i] = NULL;
4180 }
4181 }
4182
cas_tx_tiny_alloc(struct cas * cp)4183 static int cas_tx_tiny_alloc(struct cas *cp)
4184 {
4185 struct pci_dev *pdev = cp->pdev;
4186 int i;
4187
4188 for (i = 0; i < N_TX_RINGS; i++) {
4189 cp->tx_tiny_bufs[i] =
4190 dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4191 &cp->tx_tiny_dvma[i], GFP_KERNEL);
4192 if (!cp->tx_tiny_bufs[i]) {
4193 cas_tx_tiny_free(cp);
4194 return -1;
4195 }
4196 }
4197 return 0;
4198 }
4199
4200
cas_open(struct net_device * dev)4201 static int cas_open(struct net_device *dev)
4202 {
4203 struct cas *cp = netdev_priv(dev);
4204 int hw_was_up, err;
4205 unsigned long flags;
4206
4207 mutex_lock(&cp->pm_mutex);
4208
4209 hw_was_up = cp->hw_running;
4210
4211 /* The power-management mutex protects the hw_running
4212 * etc. state so it is safe to do this bit without cp->lock
4213 */
4214 if (!cp->hw_running) {
4215 /* Reset the chip */
4216 cas_lock_all_save(cp, flags);
4217 /* We set the second arg to cas_reset to zero
4218 * because cas_init_hw below will have its second
4219 * argument set to non-zero, which will force
4220 * autonegotiation to start.
4221 */
4222 cas_reset(cp, 0);
4223 cp->hw_running = 1;
4224 cas_unlock_all_restore(cp, flags);
4225 }
4226
4227 err = -ENOMEM;
4228 if (cas_tx_tiny_alloc(cp) < 0)
4229 goto err_unlock;
4230
4231 /* alloc rx descriptors */
4232 if (cas_alloc_rxds(cp) < 0)
4233 goto err_tx_tiny;
4234
4235 /* allocate spares */
4236 cas_spare_init(cp);
4237 cas_spare_recover(cp, GFP_KERNEL);
4238
4239 /* We can now request the interrupt as we know it's masked
4240 * on the controller. cassini+ has up to 4 interrupts
4241 * that can be used, but you need to do explicit pci interrupt
4242 * mapping to expose them
4243 */
4244 if (request_irq(cp->pdev->irq, cas_interrupt,
4245 IRQF_SHARED, dev->name, (void *) dev)) {
4246 netdev_err(cp->dev, "failed to request irq !\n");
4247 err = -EAGAIN;
4248 goto err_spare;
4249 }
4250
4251 #ifdef USE_NAPI
4252 napi_enable(&cp->napi);
4253 #endif
4254 /* init hw */
4255 cas_lock_all_save(cp, flags);
4256 cas_clean_rings(cp);
4257 cas_init_hw(cp, !hw_was_up);
4258 cp->opened = 1;
4259 cas_unlock_all_restore(cp, flags);
4260
4261 netif_start_queue(dev);
4262 mutex_unlock(&cp->pm_mutex);
4263 return 0;
4264
4265 err_spare:
4266 cas_spare_free(cp);
4267 cas_free_rxds(cp);
4268 err_tx_tiny:
4269 cas_tx_tiny_free(cp);
4270 err_unlock:
4271 mutex_unlock(&cp->pm_mutex);
4272 return err;
4273 }
4274
cas_close(struct net_device * dev)4275 static int cas_close(struct net_device *dev)
4276 {
4277 unsigned long flags;
4278 struct cas *cp = netdev_priv(dev);
4279
4280 #ifdef USE_NAPI
4281 napi_disable(&cp->napi);
4282 #endif
4283 /* Make sure we don't get distracted by suspend/resume */
4284 mutex_lock(&cp->pm_mutex);
4285
4286 netif_stop_queue(dev);
4287
4288 /* Stop traffic, mark us closed */
4289 cas_lock_all_save(cp, flags);
4290 cp->opened = 0;
4291 cas_reset(cp, 0);
4292 cas_phy_init(cp);
4293 cas_begin_auto_negotiation(cp, NULL);
4294 cas_clean_rings(cp);
4295 cas_unlock_all_restore(cp, flags);
4296
4297 free_irq(cp->pdev->irq, (void *) dev);
4298 cas_spare_free(cp);
4299 cas_free_rxds(cp);
4300 cas_tx_tiny_free(cp);
4301 mutex_unlock(&cp->pm_mutex);
4302 return 0;
4303 }
4304
4305 static struct {
4306 const char name[ETH_GSTRING_LEN];
4307 } ethtool_cassini_statnames[] = {
4308 {"collisions"},
4309 {"rx_bytes"},
4310 {"rx_crc_errors"},
4311 {"rx_dropped"},
4312 {"rx_errors"},
4313 {"rx_fifo_errors"},
4314 {"rx_frame_errors"},
4315 {"rx_length_errors"},
4316 {"rx_over_errors"},
4317 {"rx_packets"},
4318 {"tx_aborted_errors"},
4319 {"tx_bytes"},
4320 {"tx_dropped"},
4321 {"tx_errors"},
4322 {"tx_fifo_errors"},
4323 {"tx_packets"}
4324 };
4325 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4326
4327 static struct {
4328 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4329 } ethtool_register_table[] = {
4330 {-MII_BMSR},
4331 {-MII_BMCR},
4332 {REG_CAWR},
4333 {REG_INF_BURST},
4334 {REG_BIM_CFG},
4335 {REG_RX_CFG},
4336 {REG_HP_CFG},
4337 {REG_MAC_TX_CFG},
4338 {REG_MAC_RX_CFG},
4339 {REG_MAC_CTRL_CFG},
4340 {REG_MAC_XIF_CFG},
4341 {REG_MIF_CFG},
4342 {REG_PCS_CFG},
4343 {REG_SATURN_PCFG},
4344 {REG_PCS_MII_STATUS},
4345 {REG_PCS_STATE_MACHINE},
4346 {REG_MAC_COLL_EXCESS},
4347 {REG_MAC_COLL_LATE}
4348 };
4349 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4350 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4351
cas_read_regs(struct cas * cp,u8 * ptr,int len)4352 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4353 {
4354 u8 *p;
4355 int i;
4356 unsigned long flags;
4357
4358 spin_lock_irqsave(&cp->lock, flags);
4359 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4360 u16 hval;
4361 u32 val;
4362 if (ethtool_register_table[i].offsets < 0) {
4363 hval = cas_phy_read(cp,
4364 -ethtool_register_table[i].offsets);
4365 val = hval;
4366 } else {
4367 val= readl(cp->regs+ethtool_register_table[i].offsets);
4368 }
4369 memcpy(p, (u8 *)&val, sizeof(u32));
4370 }
4371 spin_unlock_irqrestore(&cp->lock, flags);
4372 }
4373
cas_get_stats(struct net_device * dev)4374 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4375 {
4376 struct cas *cp = netdev_priv(dev);
4377 struct net_device_stats *stats = cp->net_stats;
4378 unsigned long flags;
4379 int i;
4380 unsigned long tmp;
4381
4382 /* we collate all of the stats into net_stats[N_TX_RING] */
4383 if (!cp->hw_running)
4384 return stats + N_TX_RINGS;
4385
4386 /* collect outstanding stats */
4387 /* WTZ: the Cassini spec gives these as 16 bit counters but
4388 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4389 * in case the chip somehow puts any garbage in the other bits.
4390 * Also, counter usage didn't seem to mach what Adrian did
4391 * in the parts of the code that set these quantities. Made
4392 * that consistent.
4393 */
4394 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4395 stats[N_TX_RINGS].rx_crc_errors +=
4396 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4397 stats[N_TX_RINGS].rx_frame_errors +=
4398 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4399 stats[N_TX_RINGS].rx_length_errors +=
4400 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4401 #if 1
4402 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4403 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4404 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4405 stats[N_TX_RINGS].collisions +=
4406 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4407 #else
4408 stats[N_TX_RINGS].tx_aborted_errors +=
4409 readl(cp->regs + REG_MAC_COLL_EXCESS);
4410 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4411 readl(cp->regs + REG_MAC_COLL_LATE);
4412 #endif
4413 cas_clear_mac_err(cp);
4414
4415 /* saved bits that are unique to ring 0 */
4416 spin_lock(&cp->stat_lock[0]);
4417 stats[N_TX_RINGS].collisions += stats[0].collisions;
4418 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4419 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4420 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4421 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4422 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4423 spin_unlock(&cp->stat_lock[0]);
4424
4425 for (i = 0; i < N_TX_RINGS; i++) {
4426 spin_lock(&cp->stat_lock[i]);
4427 stats[N_TX_RINGS].rx_length_errors +=
4428 stats[i].rx_length_errors;
4429 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4430 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4431 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4432 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4433 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4434 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4435 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4436 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4437 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4438 memset(stats + i, 0, sizeof(struct net_device_stats));
4439 spin_unlock(&cp->stat_lock[i]);
4440 }
4441 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4442 return stats + N_TX_RINGS;
4443 }
4444
4445
cas_set_multicast(struct net_device * dev)4446 static void cas_set_multicast(struct net_device *dev)
4447 {
4448 struct cas *cp = netdev_priv(dev);
4449 u32 rxcfg, rxcfg_new;
4450 unsigned long flags;
4451 int limit = STOP_TRIES;
4452
4453 if (!cp->hw_running)
4454 return;
4455
4456 spin_lock_irqsave(&cp->lock, flags);
4457 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4458
4459 /* disable RX MAC and wait for completion */
4460 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4461 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4462 if (!limit--)
4463 break;
4464 udelay(10);
4465 }
4466
4467 /* disable hash filter and wait for completion */
4468 limit = STOP_TRIES;
4469 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4470 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4471 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4472 if (!limit--)
4473 break;
4474 udelay(10);
4475 }
4476
4477 /* program hash filters */
4478 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4479 rxcfg |= rxcfg_new;
4480 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4481 spin_unlock_irqrestore(&cp->lock, flags);
4482 }
4483
cas_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)4484 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4485 {
4486 struct cas *cp = netdev_priv(dev);
4487 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4488 strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4489 strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4490 }
4491
cas_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)4492 static int cas_get_link_ksettings(struct net_device *dev,
4493 struct ethtool_link_ksettings *cmd)
4494 {
4495 struct cas *cp = netdev_priv(dev);
4496 u16 bmcr;
4497 int full_duplex, speed, pause;
4498 unsigned long flags;
4499 enum link_state linkstate = link_up;
4500 u32 supported, advertising;
4501
4502 advertising = 0;
4503 supported = SUPPORTED_Autoneg;
4504 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4505 supported |= SUPPORTED_1000baseT_Full;
4506 advertising |= ADVERTISED_1000baseT_Full;
4507 }
4508
4509 /* Record PHY settings if HW is on. */
4510 spin_lock_irqsave(&cp->lock, flags);
4511 bmcr = 0;
4512 linkstate = cp->lstate;
4513 if (CAS_PHY_MII(cp->phy_type)) {
4514 cmd->base.port = PORT_MII;
4515 cmd->base.phy_address = cp->phy_addr;
4516 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4517 ADVERTISED_10baseT_Half |
4518 ADVERTISED_10baseT_Full |
4519 ADVERTISED_100baseT_Half |
4520 ADVERTISED_100baseT_Full;
4521
4522 supported |=
4523 (SUPPORTED_10baseT_Half |
4524 SUPPORTED_10baseT_Full |
4525 SUPPORTED_100baseT_Half |
4526 SUPPORTED_100baseT_Full |
4527 SUPPORTED_TP | SUPPORTED_MII);
4528
4529 if (cp->hw_running) {
4530 cas_mif_poll(cp, 0);
4531 bmcr = cas_phy_read(cp, MII_BMCR);
4532 cas_read_mii_link_mode(cp, &full_duplex,
4533 &speed, &pause);
4534 cas_mif_poll(cp, 1);
4535 }
4536
4537 } else {
4538 cmd->base.port = PORT_FIBRE;
4539 cmd->base.phy_address = 0;
4540 supported |= SUPPORTED_FIBRE;
4541 advertising |= ADVERTISED_FIBRE;
4542
4543 if (cp->hw_running) {
4544 /* pcs uses the same bits as mii */
4545 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4546 cas_read_pcs_link_mode(cp, &full_duplex,
4547 &speed, &pause);
4548 }
4549 }
4550 spin_unlock_irqrestore(&cp->lock, flags);
4551
4552 if (bmcr & BMCR_ANENABLE) {
4553 advertising |= ADVERTISED_Autoneg;
4554 cmd->base.autoneg = AUTONEG_ENABLE;
4555 cmd->base.speed = ((speed == 10) ?
4556 SPEED_10 :
4557 ((speed == 1000) ?
4558 SPEED_1000 : SPEED_100));
4559 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4560 } else {
4561 cmd->base.autoneg = AUTONEG_DISABLE;
4562 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4563 SPEED_1000 :
4564 ((bmcr & BMCR_SPEED100) ?
4565 SPEED_100 : SPEED_10));
4566 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4567 DUPLEX_FULL : DUPLEX_HALF;
4568 }
4569 if (linkstate != link_up) {
4570 /* Force these to "unknown" if the link is not up and
4571 * autonogotiation in enabled. We can set the link
4572 * speed to 0, but not cmd->duplex,
4573 * because its legal values are 0 and 1. Ethtool will
4574 * print the value reported in parentheses after the
4575 * word "Unknown" for unrecognized values.
4576 *
4577 * If in forced mode, we report the speed and duplex
4578 * settings that we configured.
4579 */
4580 if (cp->link_cntl & BMCR_ANENABLE) {
4581 cmd->base.speed = 0;
4582 cmd->base.duplex = 0xff;
4583 } else {
4584 cmd->base.speed = SPEED_10;
4585 if (cp->link_cntl & BMCR_SPEED100) {
4586 cmd->base.speed = SPEED_100;
4587 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4588 cmd->base.speed = SPEED_1000;
4589 }
4590 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4591 DUPLEX_FULL : DUPLEX_HALF;
4592 }
4593 }
4594
4595 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4596 supported);
4597 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4598 advertising);
4599
4600 return 0;
4601 }
4602
cas_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)4603 static int cas_set_link_ksettings(struct net_device *dev,
4604 const struct ethtool_link_ksettings *cmd)
4605 {
4606 struct cas *cp = netdev_priv(dev);
4607 unsigned long flags;
4608 u32 speed = cmd->base.speed;
4609
4610 /* Verify the settings we care about. */
4611 if (cmd->base.autoneg != AUTONEG_ENABLE &&
4612 cmd->base.autoneg != AUTONEG_DISABLE)
4613 return -EINVAL;
4614
4615 if (cmd->base.autoneg == AUTONEG_DISABLE &&
4616 ((speed != SPEED_1000 &&
4617 speed != SPEED_100 &&
4618 speed != SPEED_10) ||
4619 (cmd->base.duplex != DUPLEX_HALF &&
4620 cmd->base.duplex != DUPLEX_FULL)))
4621 return -EINVAL;
4622
4623 /* Apply settings and restart link process. */
4624 spin_lock_irqsave(&cp->lock, flags);
4625 cas_begin_auto_negotiation(cp, cmd);
4626 spin_unlock_irqrestore(&cp->lock, flags);
4627 return 0;
4628 }
4629
cas_nway_reset(struct net_device * dev)4630 static int cas_nway_reset(struct net_device *dev)
4631 {
4632 struct cas *cp = netdev_priv(dev);
4633 unsigned long flags;
4634
4635 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4636 return -EINVAL;
4637
4638 /* Restart link process. */
4639 spin_lock_irqsave(&cp->lock, flags);
4640 cas_begin_auto_negotiation(cp, NULL);
4641 spin_unlock_irqrestore(&cp->lock, flags);
4642
4643 return 0;
4644 }
4645
cas_get_link(struct net_device * dev)4646 static u32 cas_get_link(struct net_device *dev)
4647 {
4648 struct cas *cp = netdev_priv(dev);
4649 return cp->lstate == link_up;
4650 }
4651
cas_get_msglevel(struct net_device * dev)4652 static u32 cas_get_msglevel(struct net_device *dev)
4653 {
4654 struct cas *cp = netdev_priv(dev);
4655 return cp->msg_enable;
4656 }
4657
cas_set_msglevel(struct net_device * dev,u32 value)4658 static void cas_set_msglevel(struct net_device *dev, u32 value)
4659 {
4660 struct cas *cp = netdev_priv(dev);
4661 cp->msg_enable = value;
4662 }
4663
cas_get_regs_len(struct net_device * dev)4664 static int cas_get_regs_len(struct net_device *dev)
4665 {
4666 struct cas *cp = netdev_priv(dev);
4667 return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4668 }
4669
cas_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)4670 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4671 void *p)
4672 {
4673 struct cas *cp = netdev_priv(dev);
4674 regs->version = 0;
4675 /* cas_read_regs handles locks (cp->lock). */
4676 cas_read_regs(cp, p, regs->len / sizeof(u32));
4677 }
4678
cas_get_sset_count(struct net_device * dev,int sset)4679 static int cas_get_sset_count(struct net_device *dev, int sset)
4680 {
4681 switch (sset) {
4682 case ETH_SS_STATS:
4683 return CAS_NUM_STAT_KEYS;
4684 default:
4685 return -EOPNOTSUPP;
4686 }
4687 }
4688
cas_get_strings(struct net_device * dev,u32 stringset,u8 * data)4689 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4690 {
4691 memcpy(data, ðtool_cassini_statnames,
4692 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4693 }
4694
cas_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * data)4695 static void cas_get_ethtool_stats(struct net_device *dev,
4696 struct ethtool_stats *estats, u64 *data)
4697 {
4698 struct cas *cp = netdev_priv(dev);
4699 struct net_device_stats *stats = cas_get_stats(cp->dev);
4700 int i = 0;
4701 data[i++] = stats->collisions;
4702 data[i++] = stats->rx_bytes;
4703 data[i++] = stats->rx_crc_errors;
4704 data[i++] = stats->rx_dropped;
4705 data[i++] = stats->rx_errors;
4706 data[i++] = stats->rx_fifo_errors;
4707 data[i++] = stats->rx_frame_errors;
4708 data[i++] = stats->rx_length_errors;
4709 data[i++] = stats->rx_over_errors;
4710 data[i++] = stats->rx_packets;
4711 data[i++] = stats->tx_aborted_errors;
4712 data[i++] = stats->tx_bytes;
4713 data[i++] = stats->tx_dropped;
4714 data[i++] = stats->tx_errors;
4715 data[i++] = stats->tx_fifo_errors;
4716 data[i++] = stats->tx_packets;
4717 BUG_ON(i != CAS_NUM_STAT_KEYS);
4718 }
4719
4720 static const struct ethtool_ops cas_ethtool_ops = {
4721 .get_drvinfo = cas_get_drvinfo,
4722 .nway_reset = cas_nway_reset,
4723 .get_link = cas_get_link,
4724 .get_msglevel = cas_get_msglevel,
4725 .set_msglevel = cas_set_msglevel,
4726 .get_regs_len = cas_get_regs_len,
4727 .get_regs = cas_get_regs,
4728 .get_sset_count = cas_get_sset_count,
4729 .get_strings = cas_get_strings,
4730 .get_ethtool_stats = cas_get_ethtool_stats,
4731 .get_link_ksettings = cas_get_link_ksettings,
4732 .set_link_ksettings = cas_set_link_ksettings,
4733 };
4734
cas_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)4735 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4736 {
4737 struct cas *cp = netdev_priv(dev);
4738 struct mii_ioctl_data *data = if_mii(ifr);
4739 unsigned long flags;
4740 int rc = -EOPNOTSUPP;
4741
4742 /* Hold the PM mutex while doing ioctl's or we may collide
4743 * with open/close and power management and oops.
4744 */
4745 mutex_lock(&cp->pm_mutex);
4746 switch (cmd) {
4747 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4748 data->phy_id = cp->phy_addr;
4749 fallthrough;
4750
4751 case SIOCGMIIREG: /* Read MII PHY register. */
4752 spin_lock_irqsave(&cp->lock, flags);
4753 cas_mif_poll(cp, 0);
4754 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4755 cas_mif_poll(cp, 1);
4756 spin_unlock_irqrestore(&cp->lock, flags);
4757 rc = 0;
4758 break;
4759
4760 case SIOCSMIIREG: /* Write MII PHY register. */
4761 spin_lock_irqsave(&cp->lock, flags);
4762 cas_mif_poll(cp, 0);
4763 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4764 cas_mif_poll(cp, 1);
4765 spin_unlock_irqrestore(&cp->lock, flags);
4766 break;
4767 default:
4768 break;
4769 }
4770
4771 mutex_unlock(&cp->pm_mutex);
4772 return rc;
4773 }
4774
4775 /* When this chip sits underneath an Intel 31154 bridge, it is the
4776 * only subordinate device and we can tweak the bridge settings to
4777 * reflect that fact.
4778 */
cas_program_bridge(struct pci_dev * cas_pdev)4779 static void cas_program_bridge(struct pci_dev *cas_pdev)
4780 {
4781 struct pci_dev *pdev = cas_pdev->bus->self;
4782 u32 val;
4783
4784 if (!pdev)
4785 return;
4786
4787 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4788 return;
4789
4790 /* Clear bit 10 (Bus Parking Control) in the Secondary
4791 * Arbiter Control/Status Register which lives at offset
4792 * 0x41. Using a 32-bit word read/modify/write at 0x40
4793 * is much simpler so that's how we do this.
4794 */
4795 pci_read_config_dword(pdev, 0x40, &val);
4796 val &= ~0x00040000;
4797 pci_write_config_dword(pdev, 0x40, val);
4798
4799 /* Max out the Multi-Transaction Timer settings since
4800 * Cassini is the only device present.
4801 *
4802 * The register is 16-bit and lives at 0x50. When the
4803 * settings are enabled, it extends the GRANT# signal
4804 * for a requestor after a transaction is complete. This
4805 * allows the next request to run without first needing
4806 * to negotiate the GRANT# signal back.
4807 *
4808 * Bits 12:10 define the grant duration:
4809 *
4810 * 1 -- 16 clocks
4811 * 2 -- 32 clocks
4812 * 3 -- 64 clocks
4813 * 4 -- 128 clocks
4814 * 5 -- 256 clocks
4815 *
4816 * All other values are illegal.
4817 *
4818 * Bits 09:00 define which REQ/GNT signal pairs get the
4819 * GRANT# signal treatment. We set them all.
4820 */
4821 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4822
4823 /* The Read Prefecth Policy register is 16-bit and sits at
4824 * offset 0x52. It enables a "smart" pre-fetch policy. We
4825 * enable it and max out all of the settings since only one
4826 * device is sitting underneath and thus bandwidth sharing is
4827 * not an issue.
4828 *
4829 * The register has several 3 bit fields, which indicates a
4830 * multiplier applied to the base amount of prefetching the
4831 * chip would do. These fields are at:
4832 *
4833 * 15:13 --- ReRead Primary Bus
4834 * 12:10 --- FirstRead Primary Bus
4835 * 09:07 --- ReRead Secondary Bus
4836 * 06:04 --- FirstRead Secondary Bus
4837 *
4838 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4839 * get enabled on. Bit 3 is a grouped enabler which controls
4840 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4841 * the individual REQ/GNT pairs [2:0].
4842 */
4843 pci_write_config_word(pdev, 0x52,
4844 (0x7 << 13) |
4845 (0x7 << 10) |
4846 (0x7 << 7) |
4847 (0x7 << 4) |
4848 (0xf << 0));
4849
4850 /* Force cacheline size to 0x8 */
4851 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4852
4853 /* Force latency timer to maximum setting so Cassini can
4854 * sit on the bus as long as it likes.
4855 */
4856 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4857 }
4858
4859 static const struct net_device_ops cas_netdev_ops = {
4860 .ndo_open = cas_open,
4861 .ndo_stop = cas_close,
4862 .ndo_start_xmit = cas_start_xmit,
4863 .ndo_get_stats = cas_get_stats,
4864 .ndo_set_rx_mode = cas_set_multicast,
4865 .ndo_eth_ioctl = cas_ioctl,
4866 .ndo_tx_timeout = cas_tx_timeout,
4867 .ndo_change_mtu = cas_change_mtu,
4868 .ndo_set_mac_address = eth_mac_addr,
4869 .ndo_validate_addr = eth_validate_addr,
4870 #ifdef CONFIG_NET_POLL_CONTROLLER
4871 .ndo_poll_controller = cas_netpoll,
4872 #endif
4873 };
4874
cas_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4875 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4876 {
4877 static int cas_version_printed = 0;
4878 unsigned long casreg_len;
4879 struct net_device *dev;
4880 struct cas *cp;
4881 u16 pci_cmd;
4882 int i, err;
4883 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4884
4885 if (cas_version_printed++ == 0)
4886 pr_info("%s", version);
4887
4888 err = pci_enable_device(pdev);
4889 if (err) {
4890 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4891 return err;
4892 }
4893
4894 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4895 dev_err(&pdev->dev, "Cannot find proper PCI device "
4896 "base address, aborting\n");
4897 err = -ENODEV;
4898 goto err_out_disable_pdev;
4899 }
4900
4901 dev = alloc_etherdev(sizeof(*cp));
4902 if (!dev) {
4903 err = -ENOMEM;
4904 goto err_out_disable_pdev;
4905 }
4906 SET_NETDEV_DEV(dev, &pdev->dev);
4907
4908 err = pci_request_regions(pdev, dev->name);
4909 if (err) {
4910 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4911 goto err_out_free_netdev;
4912 }
4913 pci_set_master(pdev);
4914
4915 /* we must always turn on parity response or else parity
4916 * doesn't get generated properly. disable SERR/PERR as well.
4917 * in addition, we want to turn MWI on.
4918 */
4919 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4920 pci_cmd &= ~PCI_COMMAND_SERR;
4921 pci_cmd |= PCI_COMMAND_PARITY;
4922 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4923 if (pci_try_set_mwi(pdev))
4924 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4925
4926 cas_program_bridge(pdev);
4927
4928 /*
4929 * On some architectures, the default cache line size set
4930 * by pci_try_set_mwi reduces perforamnce. We have to increase
4931 * it for this case. To start, we'll print some configuration
4932 * data.
4933 */
4934 #if 1
4935 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4936 &orig_cacheline_size);
4937 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4938 cas_cacheline_size =
4939 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4940 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4941 if (pci_write_config_byte(pdev,
4942 PCI_CACHE_LINE_SIZE,
4943 cas_cacheline_size)) {
4944 dev_err(&pdev->dev, "Could not set PCI cache "
4945 "line size\n");
4946 goto err_out_free_res;
4947 }
4948 }
4949 #endif
4950
4951
4952 /* Configure DMA attributes. */
4953 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4954 if (err) {
4955 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4956 goto err_out_free_res;
4957 }
4958
4959 casreg_len = pci_resource_len(pdev, 0);
4960
4961 cp = netdev_priv(dev);
4962 cp->pdev = pdev;
4963 #if 1
4964 /* A value of 0 indicates we never explicitly set it */
4965 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4966 #endif
4967 cp->dev = dev;
4968 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4969 cassini_debug;
4970
4971 #if defined(CONFIG_SPARC)
4972 cp->of_node = pci_device_to_OF_node(pdev);
4973 #endif
4974
4975 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4976 cp->link_transition_jiffies_valid = 0;
4977
4978 spin_lock_init(&cp->lock);
4979 spin_lock_init(&cp->rx_inuse_lock);
4980 spin_lock_init(&cp->rx_spare_lock);
4981 for (i = 0; i < N_TX_RINGS; i++) {
4982 spin_lock_init(&cp->stat_lock[i]);
4983 spin_lock_init(&cp->tx_lock[i]);
4984 }
4985 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4986 mutex_init(&cp->pm_mutex);
4987
4988 timer_setup(&cp->link_timer, cas_link_timer, 0);
4989
4990 #if 1
4991 /* Just in case the implementation of atomic operations
4992 * change so that an explicit initialization is necessary.
4993 */
4994 atomic_set(&cp->reset_task_pending, 0);
4995 atomic_set(&cp->reset_task_pending_all, 0);
4996 atomic_set(&cp->reset_task_pending_spare, 0);
4997 atomic_set(&cp->reset_task_pending_mtu, 0);
4998 #endif
4999 INIT_WORK(&cp->reset_task, cas_reset_task);
5000
5001 /* Default link parameters */
5002 if (link_mode >= 0 && link_mode < 6)
5003 cp->link_cntl = link_modes[link_mode];
5004 else
5005 cp->link_cntl = BMCR_ANENABLE;
5006 cp->lstate = link_down;
5007 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5008 netif_carrier_off(cp->dev);
5009 cp->timer_ticks = 0;
5010
5011 /* give us access to cassini registers */
5012 cp->regs = pci_iomap(pdev, 0, casreg_len);
5013 if (!cp->regs) {
5014 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5015 goto err_out_free_res;
5016 }
5017 cp->casreg_len = casreg_len;
5018
5019 pci_save_state(pdev);
5020 cas_check_pci_invariants(cp);
5021 cas_hard_reset(cp);
5022 cas_reset(cp, 0);
5023 if (cas_check_invariants(cp))
5024 goto err_out_iounmap;
5025 if (cp->cas_flags & CAS_FLAG_SATURN)
5026 cas_saturn_firmware_init(cp);
5027
5028 cp->init_block =
5029 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5030 &cp->block_dvma, GFP_KERNEL);
5031 if (!cp->init_block) {
5032 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5033 goto err_out_iounmap;
5034 }
5035
5036 for (i = 0; i < N_TX_RINGS; i++)
5037 cp->init_txds[i] = cp->init_block->txds[i];
5038
5039 for (i = 0; i < N_RX_DESC_RINGS; i++)
5040 cp->init_rxds[i] = cp->init_block->rxds[i];
5041
5042 for (i = 0; i < N_RX_COMP_RINGS; i++)
5043 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5044
5045 for (i = 0; i < N_RX_FLOWS; i++)
5046 skb_queue_head_init(&cp->rx_flows[i]);
5047
5048 dev->netdev_ops = &cas_netdev_ops;
5049 dev->ethtool_ops = &cas_ethtool_ops;
5050 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5051
5052 #ifdef USE_NAPI
5053 netif_napi_add(dev, &cp->napi, cas_poll);
5054 #endif
5055 dev->irq = pdev->irq;
5056 dev->dma = 0;
5057
5058 /* Cassini features. */
5059 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5060 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5061
5062 dev->features |= NETIF_F_HIGHDMA;
5063
5064 /* MTU range: 60 - varies or 9000 */
5065 dev->min_mtu = CAS_MIN_MTU;
5066 dev->max_mtu = CAS_MAX_MTU;
5067
5068 if (register_netdev(dev)) {
5069 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5070 goto err_out_free_consistent;
5071 }
5072
5073 i = readl(cp->regs + REG_BIM_CFG);
5074 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5075 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5076 (i & BIM_CFG_32BIT) ? "32" : "64",
5077 (i & BIM_CFG_66MHZ) ? "66" : "33",
5078 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5079 dev->dev_addr);
5080
5081 pci_set_drvdata(pdev, dev);
5082 cp->hw_running = 1;
5083 cas_entropy_reset(cp);
5084 cas_phy_init(cp);
5085 cas_begin_auto_negotiation(cp, NULL);
5086 return 0;
5087
5088 err_out_free_consistent:
5089 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5090 cp->init_block, cp->block_dvma);
5091
5092 err_out_iounmap:
5093 mutex_lock(&cp->pm_mutex);
5094 if (cp->hw_running)
5095 cas_shutdown(cp);
5096 mutex_unlock(&cp->pm_mutex);
5097
5098 pci_iounmap(pdev, cp->regs);
5099
5100
5101 err_out_free_res:
5102 pci_release_regions(pdev);
5103
5104 /* Try to restore it in case the error occurred after we
5105 * set it.
5106 */
5107 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5108
5109 err_out_free_netdev:
5110 free_netdev(dev);
5111
5112 err_out_disable_pdev:
5113 pci_disable_device(pdev);
5114 return -ENODEV;
5115 }
5116
cas_remove_one(struct pci_dev * pdev)5117 static void cas_remove_one(struct pci_dev *pdev)
5118 {
5119 struct net_device *dev = pci_get_drvdata(pdev);
5120 struct cas *cp;
5121 if (!dev)
5122 return;
5123
5124 cp = netdev_priv(dev);
5125 unregister_netdev(dev);
5126
5127 vfree(cp->fw_data);
5128
5129 mutex_lock(&cp->pm_mutex);
5130 cancel_work_sync(&cp->reset_task);
5131 if (cp->hw_running)
5132 cas_shutdown(cp);
5133 mutex_unlock(&cp->pm_mutex);
5134
5135 #if 1
5136 if (cp->orig_cacheline_size) {
5137 /* Restore the cache line size if we had modified
5138 * it.
5139 */
5140 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5141 cp->orig_cacheline_size);
5142 }
5143 #endif
5144 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5145 cp->init_block, cp->block_dvma);
5146 pci_iounmap(pdev, cp->regs);
5147 free_netdev(dev);
5148 pci_release_regions(pdev);
5149 pci_disable_device(pdev);
5150 }
5151
cas_suspend(struct device * dev_d)5152 static int __maybe_unused cas_suspend(struct device *dev_d)
5153 {
5154 struct net_device *dev = dev_get_drvdata(dev_d);
5155 struct cas *cp = netdev_priv(dev);
5156 unsigned long flags;
5157
5158 mutex_lock(&cp->pm_mutex);
5159
5160 /* If the driver is opened, we stop the DMA */
5161 if (cp->opened) {
5162 netif_device_detach(dev);
5163
5164 cas_lock_all_save(cp, flags);
5165
5166 /* We can set the second arg of cas_reset to 0
5167 * because on resume, we'll call cas_init_hw with
5168 * its second arg set so that autonegotiation is
5169 * restarted.
5170 */
5171 cas_reset(cp, 0);
5172 cas_clean_rings(cp);
5173 cas_unlock_all_restore(cp, flags);
5174 }
5175
5176 if (cp->hw_running)
5177 cas_shutdown(cp);
5178 mutex_unlock(&cp->pm_mutex);
5179
5180 return 0;
5181 }
5182
cas_resume(struct device * dev_d)5183 static int __maybe_unused cas_resume(struct device *dev_d)
5184 {
5185 struct net_device *dev = dev_get_drvdata(dev_d);
5186 struct cas *cp = netdev_priv(dev);
5187
5188 netdev_info(dev, "resuming\n");
5189
5190 mutex_lock(&cp->pm_mutex);
5191 cas_hard_reset(cp);
5192 if (cp->opened) {
5193 unsigned long flags;
5194 cas_lock_all_save(cp, flags);
5195 cas_reset(cp, 0);
5196 cp->hw_running = 1;
5197 cas_clean_rings(cp);
5198 cas_init_hw(cp, 1);
5199 cas_unlock_all_restore(cp, flags);
5200
5201 netif_device_attach(dev);
5202 }
5203 mutex_unlock(&cp->pm_mutex);
5204 return 0;
5205 }
5206
5207 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5208
5209 static struct pci_driver cas_driver = {
5210 .name = DRV_MODULE_NAME,
5211 .id_table = cas_pci_tbl,
5212 .probe = cas_init_one,
5213 .remove = cas_remove_one,
5214 .driver.pm = &cas_pm_ops,
5215 };
5216
cas_init(void)5217 static int __init cas_init(void)
5218 {
5219 if (linkdown_timeout > 0)
5220 link_transition_timeout = linkdown_timeout * HZ;
5221 else
5222 link_transition_timeout = 0;
5223
5224 return pci_register_driver(&cas_driver);
5225 }
5226
cas_cleanup(void)5227 static void __exit cas_cleanup(void)
5228 {
5229 pci_unregister_driver(&cas_driver);
5230 }
5231
5232 module_init(cas_init);
5233 module_exit(cas_cleanup);
5234