1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "ice_devlink.h"
9 #include "ice_eswitch.h"
10 #include "ice_fw_update.h"
11 
12 static int ice_active_port_option = -1;
13 
14 /* context for devlink info version reporting */
15 struct ice_info_ctx {
16 	char buf[128];
17 	struct ice_orom_info pending_orom;
18 	struct ice_nvm_info pending_nvm;
19 	struct ice_netlist_info pending_netlist;
20 	struct ice_hw_dev_caps dev_caps;
21 };
22 
23 /* The following functions are used to format specific strings for various
24  * devlink info versions. The ctx parameter is used to provide the storage
25  * buffer, as well as any ancillary information calculated when the info
26  * request was made.
27  *
28  * If a version does not exist, for example when attempting to get the
29  * inactive version of flash when there is no pending update, the function
30  * should leave the buffer in the ctx structure empty.
31  */
32 
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)33 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
34 {
35 	u8 dsn[8];
36 
37 	/* Copy the DSN into an array in Big Endian format */
38 	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
39 
40 	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
41 }
42 
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)43 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
44 {
45 	struct ice_hw *hw = &pf->hw;
46 	int status;
47 
48 	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
49 	if (status)
50 		/* We failed to locate the PBA, so just skip this entry */
51 		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
52 			status);
53 }
54 
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)55 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
56 {
57 	struct ice_hw *hw = &pf->hw;
58 
59 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
60 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
61 }
62 
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)63 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
64 {
65 	struct ice_hw *hw = &pf->hw;
66 
67 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
68 		 hw->api_min_ver, hw->api_patch);
69 }
70 
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)71 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
72 {
73 	struct ice_hw *hw = &pf->hw;
74 
75 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
76 }
77 
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)78 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
79 {
80 	struct ice_orom_info *orom = &pf->hw.flash.orom;
81 
82 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
83 		 orom->major, orom->build, orom->patch);
84 }
85 
86 static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)87 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
88 			  struct ice_info_ctx *ctx)
89 {
90 	struct ice_orom_info *orom = &ctx->pending_orom;
91 
92 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
93 		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
94 			 orom->major, orom->build, orom->patch);
95 }
96 
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)97 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
98 {
99 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
100 
101 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
102 }
103 
104 static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)105 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
106 			 struct ice_info_ctx *ctx)
107 {
108 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
109 
110 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
111 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
112 			 nvm->major, nvm->minor);
113 }
114 
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)115 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
116 {
117 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
118 
119 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
120 }
121 
122 static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)123 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
124 {
125 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
126 
127 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
128 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
129 }
130 
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)131 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
132 {
133 	struct ice_hw *hw = &pf->hw;
134 
135 	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
136 }
137 
138 static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)139 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
140 {
141 	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
142 
143 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
144 		 pkg->major, pkg->minor, pkg->update, pkg->draft);
145 }
146 
147 static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)148 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
149 {
150 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
151 }
152 
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)153 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
154 {
155 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
156 
157 	/* The netlist version fields are BCD formatted */
158 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
159 		 netlist->major, netlist->minor,
160 		 netlist->type >> 16, netlist->type & 0xFFFF,
161 		 netlist->rev, netlist->cust_ver);
162 }
163 
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)164 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
165 {
166 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
167 
168 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
169 }
170 
171 static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)172 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
173 			     struct ice_info_ctx *ctx)
174 {
175 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
176 
177 	/* The netlist version fields are BCD formatted */
178 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
179 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
180 			 netlist->major, netlist->minor,
181 			 netlist->type >> 16, netlist->type & 0xFFFF,
182 			 netlist->rev, netlist->cust_ver);
183 }
184 
185 static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)186 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
187 			       struct ice_info_ctx *ctx)
188 {
189 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
190 
191 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
192 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
193 }
194 
195 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
196 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
197 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
198 
199 /* The combined() macro inserts both the running entry as well as a stored
200  * entry. The running entry will always report the version from the active
201  * handler. The stored entry will first try the pending handler, and fallback
202  * to the active handler if the pending function does not report a version.
203  * The pending handler should check the status of a pending update for the
204  * relevant flash component. It should only fill in the buffer in the case
205  * where a valid pending version is available. This ensures that the related
206  * stored and running versions remain in sync, and that stored versions are
207  * correctly reported as expected.
208  */
209 #define combined(key, active, pending) \
210 	running(key, active), \
211 	stored(key, pending, active)
212 
213 enum ice_version_type {
214 	ICE_VERSION_FIXED,
215 	ICE_VERSION_RUNNING,
216 	ICE_VERSION_STORED,
217 };
218 
219 static const struct ice_devlink_version {
220 	enum ice_version_type type;
221 	const char *key;
222 	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
223 	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
224 } ice_devlink_versions[] = {
225 	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
226 	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
227 	running("fw.mgmt.api", ice_info_fw_api),
228 	running("fw.mgmt.build", ice_info_fw_build),
229 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
230 	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
231 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
232 	running("fw.app.name", ice_info_ddp_pkg_name),
233 	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
234 	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
235 	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
236 	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
237 };
238 
239 /**
240  * ice_devlink_info_get - .info_get devlink handler
241  * @devlink: devlink instance structure
242  * @req: the devlink info request
243  * @extack: extended netdev ack structure
244  *
245  * Callback for the devlink .info_get operation. Reports information about the
246  * device.
247  *
248  * Return: zero on success or an error code on failure.
249  */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)250 static int ice_devlink_info_get(struct devlink *devlink,
251 				struct devlink_info_req *req,
252 				struct netlink_ext_ack *extack)
253 {
254 	struct ice_pf *pf = devlink_priv(devlink);
255 	struct device *dev = ice_pf_to_dev(pf);
256 	struct ice_hw *hw = &pf->hw;
257 	struct ice_info_ctx *ctx;
258 	size_t i;
259 	int err;
260 
261 	err = ice_wait_for_reset(pf, 10 * HZ);
262 	if (err) {
263 		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
264 		return err;
265 	}
266 
267 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
268 	if (!ctx)
269 		return -ENOMEM;
270 
271 	/* discover capabilities first */
272 	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
273 	if (err) {
274 		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
275 			err, ice_aq_str(hw->adminq.sq_last_status));
276 		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
277 		goto out_free_ctx;
278 	}
279 
280 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
281 		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
282 		if (err) {
283 			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
284 				err, ice_aq_str(hw->adminq.sq_last_status));
285 
286 			/* disable display of pending Option ROM */
287 			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
288 		}
289 	}
290 
291 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
292 		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
293 		if (err) {
294 			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
295 				err, ice_aq_str(hw->adminq.sq_last_status));
296 
297 			/* disable display of pending Option ROM */
298 			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
299 		}
300 	}
301 
302 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
303 		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
304 		if (err) {
305 			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
306 				err, ice_aq_str(hw->adminq.sq_last_status));
307 
308 			/* disable display of pending Option ROM */
309 			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
310 		}
311 	}
312 
313 	err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
314 	if (err) {
315 		NL_SET_ERR_MSG_MOD(extack, "Unable to set driver name");
316 		goto out_free_ctx;
317 	}
318 
319 	ice_info_get_dsn(pf, ctx);
320 
321 	err = devlink_info_serial_number_put(req, ctx->buf);
322 	if (err) {
323 		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
324 		goto out_free_ctx;
325 	}
326 
327 	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
328 		enum ice_version_type type = ice_devlink_versions[i].type;
329 		const char *key = ice_devlink_versions[i].key;
330 
331 		memset(ctx->buf, 0, sizeof(ctx->buf));
332 
333 		ice_devlink_versions[i].getter(pf, ctx);
334 
335 		/* If the default getter doesn't report a version, use the
336 		 * fallback function. This is primarily useful in the case of
337 		 * "stored" versions that want to report the same value as the
338 		 * running version in the normal case of no pending update.
339 		 */
340 		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
341 			ice_devlink_versions[i].fallback(pf, ctx);
342 
343 		/* Do not report missing versions */
344 		if (ctx->buf[0] == '\0')
345 			continue;
346 
347 		switch (type) {
348 		case ICE_VERSION_FIXED:
349 			err = devlink_info_version_fixed_put(req, key, ctx->buf);
350 			if (err) {
351 				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
352 				goto out_free_ctx;
353 			}
354 			break;
355 		case ICE_VERSION_RUNNING:
356 			err = devlink_info_version_running_put(req, key, ctx->buf);
357 			if (err) {
358 				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
359 				goto out_free_ctx;
360 			}
361 			break;
362 		case ICE_VERSION_STORED:
363 			err = devlink_info_version_stored_put(req, key, ctx->buf);
364 			if (err) {
365 				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
366 				goto out_free_ctx;
367 			}
368 			break;
369 		}
370 	}
371 
372 out_free_ctx:
373 	kfree(ctx);
374 	return err;
375 }
376 
377 /**
378  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
379  * @devlink: pointer to the devlink instance to reload
380  * @netns_change: if true, the network namespace is changing
381  * @action: the action to perform. Must be DEVLINK_RELOAD_ACTION_FW_ACTIVATE
382  * @limit: limits on what reload should do, such as not resetting
383  * @extack: netlink extended ACK structure
384  *
385  * Allow user to activate new Embedded Management Processor firmware by
386  * issuing device specific EMP reset. Called in response to
387  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
388  *
389  * Note that teardown and rebuild of the driver state happens automatically as
390  * part of an interrupt and watchdog task. This is because all physical
391  * functions on the device must be able to reset when an EMP reset occurs from
392  * any source.
393  */
394 static int
ice_devlink_reload_empr_start(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)395 ice_devlink_reload_empr_start(struct devlink *devlink, bool netns_change,
396 			      enum devlink_reload_action action,
397 			      enum devlink_reload_limit limit,
398 			      struct netlink_ext_ack *extack)
399 {
400 	struct ice_pf *pf = devlink_priv(devlink);
401 	struct device *dev = ice_pf_to_dev(pf);
402 	struct ice_hw *hw = &pf->hw;
403 	u8 pending;
404 	int err;
405 
406 	err = ice_get_pending_updates(pf, &pending, extack);
407 	if (err)
408 		return err;
409 
410 	/* pending is a bitmask of which flash banks have a pending update,
411 	 * including the main NVM bank, the Option ROM bank, and the netlist
412 	 * bank. If any of these bits are set, then there is a pending update
413 	 * waiting to be activated.
414 	 */
415 	if (!pending) {
416 		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
417 		return -ECANCELED;
418 	}
419 
420 	if (pf->fw_emp_reset_disabled) {
421 		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
422 		return -ECANCELED;
423 	}
424 
425 	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
426 
427 	err = ice_aq_nvm_update_empr(hw);
428 	if (err) {
429 		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
430 			err, ice_aq_str(hw->adminq.sq_last_status));
431 		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
432 		return err;
433 	}
434 
435 	return 0;
436 }
437 
438 /**
439  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
440  * @devlink: pointer to the devlink instance reloading
441  * @action: the action requested
442  * @limit: limits imposed by userspace, such as not resetting
443  * @actions_performed: on return, indicate what actions actually performed
444  * @extack: netlink extended ACK structure
445  *
446  * Wait for driver to finish rebuilding after EMP reset is completed. This
447  * includes time to wait for both the actual device reset as well as the time
448  * for the driver's rebuild to complete.
449  */
450 static int
ice_devlink_reload_empr_finish(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)451 ice_devlink_reload_empr_finish(struct devlink *devlink,
452 			       enum devlink_reload_action action,
453 			       enum devlink_reload_limit limit,
454 			       u32 *actions_performed,
455 			       struct netlink_ext_ack *extack)
456 {
457 	struct ice_pf *pf = devlink_priv(devlink);
458 	int err;
459 
460 	*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
461 
462 	err = ice_wait_for_reset(pf, 60 * HZ);
463 	if (err) {
464 		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
465 		return err;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * ice_devlink_port_opt_speed_str - convert speed to a string
473  * @speed: speed value
474  */
ice_devlink_port_opt_speed_str(u8 speed)475 static const char *ice_devlink_port_opt_speed_str(u8 speed)
476 {
477 	switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
478 	case ICE_AQC_PORT_OPT_MAX_LANE_100M:
479 		return "0.1";
480 	case ICE_AQC_PORT_OPT_MAX_LANE_1G:
481 		return "1";
482 	case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
483 		return "2.5";
484 	case ICE_AQC_PORT_OPT_MAX_LANE_5G:
485 		return "5";
486 	case ICE_AQC_PORT_OPT_MAX_LANE_10G:
487 		return "10";
488 	case ICE_AQC_PORT_OPT_MAX_LANE_25G:
489 		return "25";
490 	case ICE_AQC_PORT_OPT_MAX_LANE_50G:
491 		return "50";
492 	case ICE_AQC_PORT_OPT_MAX_LANE_100G:
493 		return "100";
494 	}
495 
496 	return "-";
497 }
498 
499 #define ICE_PORT_OPT_DESC_LEN	50
500 /**
501  * ice_devlink_port_options_print - Print available port split options
502  * @pf: the PF to print split port options
503  *
504  * Prints a table with available port split options and max port speeds
505  */
ice_devlink_port_options_print(struct ice_pf * pf)506 static void ice_devlink_port_options_print(struct ice_pf *pf)
507 {
508 	u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
509 	struct ice_aqc_get_port_options_elem *options, *opt;
510 	struct device *dev = ice_pf_to_dev(pf);
511 	bool active_valid, pending_valid;
512 	char desc[ICE_PORT_OPT_DESC_LEN];
513 	const char *str;
514 	int status;
515 
516 	options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
517 			  sizeof(*options), GFP_KERNEL);
518 	if (!options)
519 		return;
520 
521 	for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
522 		opt = options + i * ICE_AQC_PORT_OPT_MAX;
523 		options_count = ICE_AQC_PORT_OPT_MAX;
524 		active_valid = 0;
525 
526 		status = ice_aq_get_port_options(&pf->hw, opt, &options_count,
527 						 i, true, &active_idx,
528 						 &active_valid, &pending_idx,
529 						 &pending_valid);
530 		if (status) {
531 			dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
532 				i, status);
533 			goto err;
534 		}
535 	}
536 
537 	dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
538 	dev_dbg(dev, "Status  Split      Quad 0          Quad 1\n");
539 	dev_dbg(dev, "        count  L0  L1  L2  L3  L4  L5  L6  L7\n");
540 
541 	for (i = 0; i < options_count; i++) {
542 		cnt = 0;
543 
544 		if (i == ice_active_port_option)
545 			str = "Active";
546 		else if ((i == pending_idx) && pending_valid)
547 			str = "Pending";
548 		else
549 			str = "";
550 
551 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
552 				"%-8s", str);
553 
554 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
555 				"%-6u", options[i].pmd);
556 
557 		for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
558 			speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
559 			str = ice_devlink_port_opt_speed_str(speed);
560 			cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
561 					"%3s ", str);
562 		}
563 
564 		dev_dbg(dev, "%s\n", desc);
565 	}
566 
567 err:
568 	kfree(options);
569 }
570 
571 /**
572  * ice_devlink_aq_set_port_option - Send set port option admin queue command
573  * @pf: the PF to print split port options
574  * @option_idx: selected port option
575  * @extack: extended netdev ack structure
576  *
577  * Sends set port option admin queue command with selected port option and
578  * calls NVM write activate.
579  */
580 static int
ice_devlink_aq_set_port_option(struct ice_pf * pf,u8 option_idx,struct netlink_ext_ack * extack)581 ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
582 			       struct netlink_ext_ack *extack)
583 {
584 	struct device *dev = ice_pf_to_dev(pf);
585 	int status;
586 
587 	status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx);
588 	if (status) {
589 		dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
590 			status, pf->hw.adminq.sq_last_status);
591 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
592 		return -EIO;
593 	}
594 
595 	status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE);
596 	if (status) {
597 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
598 			status, pf->hw.adminq.sq_last_status);
599 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
600 		return -EIO;
601 	}
602 
603 	status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
604 	if (status) {
605 		dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
606 			status, pf->hw.adminq.sq_last_status);
607 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
608 		ice_release_nvm(&pf->hw);
609 		return -EIO;
610 	}
611 
612 	ice_release_nvm(&pf->hw);
613 
614 	NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
615 	return 0;
616 }
617 
618 /**
619  * ice_devlink_port_split - .port_split devlink handler
620  * @devlink: devlink instance structure
621  * @port: devlink port structure
622  * @count: number of ports to split to
623  * @extack: extended netdev ack structure
624  *
625  * Callback for the devlink .port_split operation.
626  *
627  * Unfortunately, the devlink expression of available options is limited
628  * to just a number, so search for an FW port option which supports
629  * the specified number. As there could be multiple FW port options with
630  * the same port split count, allow switching between them. When the same
631  * port split count request is issued again, switch to the next FW port
632  * option with the same port split count.
633  *
634  * Return: zero on success or an error code on failure.
635  */
636 static int
ice_devlink_port_split(struct devlink * devlink,struct devlink_port * port,unsigned int count,struct netlink_ext_ack * extack)637 ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
638 		       unsigned int count, struct netlink_ext_ack *extack)
639 {
640 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
641 	u8 i, j, active_idx, pending_idx, new_option;
642 	struct ice_pf *pf = devlink_priv(devlink);
643 	u8 option_count = ICE_AQC_PORT_OPT_MAX;
644 	struct device *dev = ice_pf_to_dev(pf);
645 	bool active_valid, pending_valid;
646 	int status;
647 
648 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
649 					 0, true, &active_idx, &active_valid,
650 					 &pending_idx, &pending_valid);
651 	if (status) {
652 		dev_dbg(dev, "Couldn't read port split options, err = %d\n",
653 			status);
654 		NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
655 		return -EIO;
656 	}
657 
658 	new_option = ICE_AQC_PORT_OPT_MAX;
659 	active_idx = pending_valid ? pending_idx : active_idx;
660 	for (i = 1; i <= option_count; i++) {
661 		/* In order to allow switching between FW port options with
662 		 * the same port split count, search for a new option starting
663 		 * from the active/pending option (with array wrap around).
664 		 */
665 		j = (active_idx + i) % option_count;
666 
667 		if (count == options[j].pmd) {
668 			new_option = j;
669 			break;
670 		}
671 	}
672 
673 	if (new_option == active_idx) {
674 		dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
675 			count);
676 		NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
677 		ice_devlink_port_options_print(pf);
678 		return -EINVAL;
679 	}
680 
681 	if (new_option == ICE_AQC_PORT_OPT_MAX) {
682 		dev_dbg(dev, "request to split: count: %u not found\n", count);
683 		NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
684 		ice_devlink_port_options_print(pf);
685 		return -EINVAL;
686 	}
687 
688 	status = ice_devlink_aq_set_port_option(pf, new_option, extack);
689 	if (status)
690 		return status;
691 
692 	ice_devlink_port_options_print(pf);
693 
694 	return 0;
695 }
696 
697 /**
698  * ice_devlink_port_unsplit - .port_unsplit devlink handler
699  * @devlink: devlink instance structure
700  * @port: devlink port structure
701  * @extack: extended netdev ack structure
702  *
703  * Callback for the devlink .port_unsplit operation.
704  * Calls ice_devlink_port_split with split count set to 1.
705  * There could be no FW option available with split count 1.
706  *
707  * Return: zero on success or an error code on failure.
708  */
709 static int
ice_devlink_port_unsplit(struct devlink * devlink,struct devlink_port * port,struct netlink_ext_ack * extack)710 ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
711 			 struct netlink_ext_ack *extack)
712 {
713 	return ice_devlink_port_split(devlink, port, 1, extack);
714 }
715 
716 static const struct devlink_ops ice_devlink_ops = {
717 	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
718 	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
719 	/* The ice driver currently does not support driver reinit */
720 	.reload_down = ice_devlink_reload_empr_start,
721 	.reload_up = ice_devlink_reload_empr_finish,
722 	.port_split = ice_devlink_port_split,
723 	.port_unsplit = ice_devlink_port_unsplit,
724 	.eswitch_mode_get = ice_eswitch_mode_get,
725 	.eswitch_mode_set = ice_eswitch_mode_set,
726 	.info_get = ice_devlink_info_get,
727 	.flash_update = ice_devlink_flash_update,
728 };
729 
730 static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)731 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
732 			    struct devlink_param_gset_ctx *ctx)
733 {
734 	struct ice_pf *pf = devlink_priv(devlink);
735 
736 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
737 
738 	return 0;
739 }
740 
741 static int
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)742 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
743 			    struct devlink_param_gset_ctx *ctx)
744 {
745 	struct ice_pf *pf = devlink_priv(devlink);
746 	bool roce_ena = ctx->val.vbool;
747 	int ret;
748 
749 	if (!roce_ena) {
750 		ice_unplug_aux_dev(pf);
751 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
752 		return 0;
753 	}
754 
755 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
756 	ret = ice_plug_aux_dev(pf);
757 	if (ret)
758 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
759 
760 	return ret;
761 }
762 
763 static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)764 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
765 				 union devlink_param_value val,
766 				 struct netlink_ext_ack *extack)
767 {
768 	struct ice_pf *pf = devlink_priv(devlink);
769 
770 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
771 		return -EOPNOTSUPP;
772 
773 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
774 		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
775 		return -EOPNOTSUPP;
776 	}
777 
778 	return 0;
779 }
780 
781 static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)782 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
783 			  struct devlink_param_gset_ctx *ctx)
784 {
785 	struct ice_pf *pf = devlink_priv(devlink);
786 
787 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
788 
789 	return 0;
790 }
791 
792 static int
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)793 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
794 			  struct devlink_param_gset_ctx *ctx)
795 {
796 	struct ice_pf *pf = devlink_priv(devlink);
797 	bool iw_ena = ctx->val.vbool;
798 	int ret;
799 
800 	if (!iw_ena) {
801 		ice_unplug_aux_dev(pf);
802 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
803 		return 0;
804 	}
805 
806 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
807 	ret = ice_plug_aux_dev(pf);
808 	if (ret)
809 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
810 
811 	return ret;
812 }
813 
814 static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)815 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
816 			       union devlink_param_value val,
817 			       struct netlink_ext_ack *extack)
818 {
819 	struct ice_pf *pf = devlink_priv(devlink);
820 
821 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
822 		return -EOPNOTSUPP;
823 
824 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
825 		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
826 		return -EOPNOTSUPP;
827 	}
828 
829 	return 0;
830 }
831 
832 static const struct devlink_param ice_devlink_params[] = {
833 	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
834 			      ice_devlink_enable_roce_get,
835 			      ice_devlink_enable_roce_set,
836 			      ice_devlink_enable_roce_validate),
837 	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
838 			      ice_devlink_enable_iw_get,
839 			      ice_devlink_enable_iw_set,
840 			      ice_devlink_enable_iw_validate),
841 
842 };
843 
ice_devlink_free(void * devlink_ptr)844 static void ice_devlink_free(void *devlink_ptr)
845 {
846 	devlink_free((struct devlink *)devlink_ptr);
847 }
848 
849 /**
850  * ice_allocate_pf - Allocate devlink and return PF structure pointer
851  * @dev: the device to allocate for
852  *
853  * Allocate a devlink instance for this device and return the private area as
854  * the PF structure. The devlink memory is kept track of through devres by
855  * adding an action to remove it when unwinding.
856  */
ice_allocate_pf(struct device * dev)857 struct ice_pf *ice_allocate_pf(struct device *dev)
858 {
859 	struct devlink *devlink;
860 
861 	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
862 	if (!devlink)
863 		return NULL;
864 
865 	/* Add an action to teardown the devlink when unwinding the driver */
866 	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
867 		return NULL;
868 
869 	return devlink_priv(devlink);
870 }
871 
872 /**
873  * ice_devlink_register - Register devlink interface for this PF
874  * @pf: the PF to register the devlink for.
875  *
876  * Register the devlink instance associated with this physical function.
877  *
878  * Return: zero on success or an error code on failure.
879  */
ice_devlink_register(struct ice_pf * pf)880 void ice_devlink_register(struct ice_pf *pf)
881 {
882 	struct devlink *devlink = priv_to_devlink(pf);
883 
884 	devlink_set_features(devlink, DEVLINK_F_RELOAD);
885 	devlink_register(devlink);
886 }
887 
888 /**
889  * ice_devlink_unregister - Unregister devlink resources for this PF.
890  * @pf: the PF structure to cleanup
891  *
892  * Releases resources used by devlink and cleans up associated memory.
893  */
ice_devlink_unregister(struct ice_pf * pf)894 void ice_devlink_unregister(struct ice_pf *pf)
895 {
896 	devlink_unregister(priv_to_devlink(pf));
897 }
898 
899 /**
900  * ice_devlink_set_switch_id - Set unique switch id based on pci dsn
901  * @pf: the PF to create a devlink port for
902  * @ppid: struct with switch id information
903  */
904 static void
ice_devlink_set_switch_id(struct ice_pf * pf,struct netdev_phys_item_id * ppid)905 ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
906 {
907 	struct pci_dev *pdev = pf->pdev;
908 	u64 id;
909 
910 	id = pci_get_dsn(pdev);
911 
912 	ppid->id_len = sizeof(id);
913 	put_unaligned_be64(id, &ppid->id);
914 }
915 
ice_devlink_register_params(struct ice_pf * pf)916 int ice_devlink_register_params(struct ice_pf *pf)
917 {
918 	struct devlink *devlink = priv_to_devlink(pf);
919 	union devlink_param_value value;
920 	int err;
921 
922 	err = devlink_params_register(devlink, ice_devlink_params,
923 				      ARRAY_SIZE(ice_devlink_params));
924 	if (err)
925 		return err;
926 
927 	value.vbool = false;
928 	devlink_param_driverinit_value_set(devlink,
929 					   DEVLINK_PARAM_GENERIC_ID_ENABLE_IWARP,
930 					   value);
931 
932 	value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags) ? true : false;
933 	devlink_param_driverinit_value_set(devlink,
934 					   DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE,
935 					   value);
936 
937 	return 0;
938 }
939 
ice_devlink_unregister_params(struct ice_pf * pf)940 void ice_devlink_unregister_params(struct ice_pf *pf)
941 {
942 	devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
943 				  ARRAY_SIZE(ice_devlink_params));
944 }
945 
946 /**
947  * ice_devlink_set_port_split_options - Set port split options
948  * @pf: the PF to set port split options
949  * @attrs: devlink attributes
950  *
951  * Sets devlink port split options based on available FW port options
952  */
953 static void
ice_devlink_set_port_split_options(struct ice_pf * pf,struct devlink_port_attrs * attrs)954 ice_devlink_set_port_split_options(struct ice_pf *pf,
955 				   struct devlink_port_attrs *attrs)
956 {
957 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
958 	u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
959 	bool active_valid, pending_valid;
960 	int status;
961 
962 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
963 					 0, true, &active_idx, &active_valid,
964 					 &pending_idx, &pending_valid);
965 	if (status) {
966 		dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
967 			status);
968 		return;
969 	}
970 
971 	/* find the biggest available port split count */
972 	for (i = 0; i < option_count; i++)
973 		attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
974 
975 	attrs->splittable = attrs->lanes ? 1 : 0;
976 	ice_active_port_option = active_idx;
977 }
978 
979 /**
980  * ice_devlink_create_pf_port - Create a devlink port for this PF
981  * @pf: the PF to create a devlink port for
982  *
983  * Create and register a devlink_port for this PF.
984  *
985  * Return: zero on success or an error code on failure.
986  */
ice_devlink_create_pf_port(struct ice_pf * pf)987 int ice_devlink_create_pf_port(struct ice_pf *pf)
988 {
989 	struct devlink_port_attrs attrs = {};
990 	struct devlink_port *devlink_port;
991 	struct devlink *devlink;
992 	struct ice_vsi *vsi;
993 	struct device *dev;
994 	int err;
995 
996 	dev = ice_pf_to_dev(pf);
997 
998 	devlink_port = &pf->devlink_port;
999 
1000 	vsi = ice_get_main_vsi(pf);
1001 	if (!vsi)
1002 		return -EIO;
1003 
1004 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1005 	attrs.phys.port_number = pf->hw.bus.func;
1006 
1007 	/* As FW supports only port split options for whole device,
1008 	 * set port split options only for first PF.
1009 	 */
1010 	if (pf->hw.pf_id == 0)
1011 		ice_devlink_set_port_split_options(pf, &attrs);
1012 
1013 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1014 
1015 	devlink_port_attrs_set(devlink_port, &attrs);
1016 	devlink = priv_to_devlink(pf);
1017 
1018 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1019 	if (err) {
1020 		dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
1021 			pf->hw.pf_id, err);
1022 		return err;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /**
1029  * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
1030  * @pf: the PF to cleanup
1031  *
1032  * Unregisters the devlink_port structure associated with this PF.
1033  */
ice_devlink_destroy_pf_port(struct ice_pf * pf)1034 void ice_devlink_destroy_pf_port(struct ice_pf *pf)
1035 {
1036 	struct devlink_port *devlink_port;
1037 
1038 	devlink_port = &pf->devlink_port;
1039 
1040 	devlink_port_type_clear(devlink_port);
1041 	devlink_port_unregister(devlink_port);
1042 }
1043 
1044 /**
1045  * ice_devlink_create_vf_port - Create a devlink port for this VF
1046  * @vf: the VF to create a port for
1047  *
1048  * Create and register a devlink_port for this VF.
1049  *
1050  * Return: zero on success or an error code on failure.
1051  */
ice_devlink_create_vf_port(struct ice_vf * vf)1052 int ice_devlink_create_vf_port(struct ice_vf *vf)
1053 {
1054 	struct devlink_port_attrs attrs = {};
1055 	struct devlink_port *devlink_port;
1056 	struct devlink *devlink;
1057 	struct ice_vsi *vsi;
1058 	struct device *dev;
1059 	struct ice_pf *pf;
1060 	int err;
1061 
1062 	pf = vf->pf;
1063 	dev = ice_pf_to_dev(pf);
1064 	devlink_port = &vf->devlink_port;
1065 
1066 	vsi = ice_get_vf_vsi(vf);
1067 	if (!vsi)
1068 		return -EINVAL;
1069 
1070 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
1071 	attrs.pci_vf.pf = pf->hw.bus.func;
1072 	attrs.pci_vf.vf = vf->vf_id;
1073 
1074 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1075 
1076 	devlink_port_attrs_set(devlink_port, &attrs);
1077 	devlink = priv_to_devlink(pf);
1078 
1079 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1080 	if (err) {
1081 		dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
1082 			vf->vf_id, err);
1083 		return err;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 /**
1090  * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
1091  * @vf: the VF to cleanup
1092  *
1093  * Unregisters the devlink_port structure associated with this VF.
1094  */
ice_devlink_destroy_vf_port(struct ice_vf * vf)1095 void ice_devlink_destroy_vf_port(struct ice_vf *vf)
1096 {
1097 	struct devlink_port *devlink_port;
1098 
1099 	devlink_port = &vf->devlink_port;
1100 
1101 	devlink_port_type_clear(devlink_port);
1102 	devlink_port_unregister(devlink_port);
1103 }
1104 
1105 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1106 
1107 /**
1108  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1109  * @devlink: the devlink instance
1110  * @ops: the devlink region being snapshotted
1111  * @extack: extended ACK response structure
1112  * @data: on exit points to snapshot data buffer
1113  *
1114  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1115  * the nvm-flash devlink region. It captures a snapshot of the full NVM flash
1116  * contents, including both banks of flash. This snapshot can later be viewed
1117  * via the devlink-region interface.
1118  *
1119  * It captures the flash using the FLASH_ONLY bit set when reading via
1120  * firmware, so it does not read the current Shadow RAM contents. For that,
1121  * use the shadow-ram region.
1122  *
1123  * @returns zero on success, and updates the data pointer. Returns a non-zero
1124  * error code on failure.
1125  */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1126 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1127 				    const struct devlink_region_ops *ops,
1128 				    struct netlink_ext_ack *extack, u8 **data)
1129 {
1130 	struct ice_pf *pf = devlink_priv(devlink);
1131 	struct device *dev = ice_pf_to_dev(pf);
1132 	struct ice_hw *hw = &pf->hw;
1133 	u8 *nvm_data, *tmp, i;
1134 	u32 nvm_size, left;
1135 	s8 num_blks;
1136 	int status;
1137 
1138 	nvm_size = hw->flash.flash_size;
1139 	nvm_data = vzalloc(nvm_size);
1140 	if (!nvm_data)
1141 		return -ENOMEM;
1142 
1143 
1144 	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1145 	tmp = nvm_data;
1146 	left = nvm_size;
1147 
1148 	/* Some systems take longer to read the NVM than others which causes the
1149 	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1150 	 * this by breaking the reads of the NVM into smaller chunks that will
1151 	 * probably not take as long. This has some overhead since we are
1152 	 * increasing the number of AQ commands, but it should always work
1153 	 */
1154 	for (i = 0; i < num_blks; i++) {
1155 		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1156 
1157 		status = ice_acquire_nvm(hw, ICE_RES_READ);
1158 		if (status) {
1159 			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1160 				status, hw->adminq.sq_last_status);
1161 			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1162 			vfree(nvm_data);
1163 			return -EIO;
1164 		}
1165 
1166 		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1167 					   &read_sz, tmp, false);
1168 		if (status) {
1169 			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1170 				read_sz, status, hw->adminq.sq_last_status);
1171 			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1172 			ice_release_nvm(hw);
1173 			vfree(nvm_data);
1174 			return -EIO;
1175 		}
1176 		ice_release_nvm(hw);
1177 
1178 		tmp += read_sz;
1179 		left -= read_sz;
1180 	}
1181 
1182 	*data = nvm_data;
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * ice_devlink_sram_snapshot - Capture a snapshot of the Shadow RAM contents
1189  * @devlink: the devlink instance
1190  * @ops: the devlink region being snapshotted
1191  * @extack: extended ACK response structure
1192  * @data: on exit points to snapshot data buffer
1193  *
1194  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1195  * the shadow-ram devlink region. It captures a snapshot of the shadow ram
1196  * contents. This snapshot can later be viewed via the devlink-region
1197  * interface.
1198  *
1199  * @returns zero on success, and updates the data pointer. Returns a non-zero
1200  * error code on failure.
1201  */
1202 static int
ice_devlink_sram_snapshot(struct devlink * devlink,const struct devlink_region_ops __always_unused * ops,struct netlink_ext_ack * extack,u8 ** data)1203 ice_devlink_sram_snapshot(struct devlink *devlink,
1204 			  const struct devlink_region_ops __always_unused *ops,
1205 			  struct netlink_ext_ack *extack, u8 **data)
1206 {
1207 	struct ice_pf *pf = devlink_priv(devlink);
1208 	struct device *dev = ice_pf_to_dev(pf);
1209 	struct ice_hw *hw = &pf->hw;
1210 	u8 *sram_data;
1211 	u32 sram_size;
1212 	int err;
1213 
1214 	sram_size = hw->flash.sr_words * 2u;
1215 	sram_data = vzalloc(sram_size);
1216 	if (!sram_data)
1217 		return -ENOMEM;
1218 
1219 	err = ice_acquire_nvm(hw, ICE_RES_READ);
1220 	if (err) {
1221 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1222 			err, hw->adminq.sq_last_status);
1223 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1224 		vfree(sram_data);
1225 		return err;
1226 	}
1227 
1228 	/* Read from the Shadow RAM, rather than directly from NVM */
1229 	err = ice_read_flat_nvm(hw, 0, &sram_size, sram_data, true);
1230 	if (err) {
1231 		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1232 			sram_size, err, hw->adminq.sq_last_status);
1233 		NL_SET_ERR_MSG_MOD(extack,
1234 				   "Failed to read Shadow RAM contents");
1235 		ice_release_nvm(hw);
1236 		vfree(sram_data);
1237 		return err;
1238 	}
1239 
1240 	ice_release_nvm(hw);
1241 
1242 	*data = sram_data;
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1249  * @devlink: the devlink instance
1250  * @ops: the devlink region being snapshotted
1251  * @extack: extended ACK response structure
1252  * @data: on exit points to snapshot data buffer
1253  *
1254  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1255  * the device-caps devlink region. It captures a snapshot of the device
1256  * capabilities reported by firmware.
1257  *
1258  * @returns zero on success, and updates the data pointer. Returns a non-zero
1259  * error code on failure.
1260  */
1261 static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1262 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1263 			     const struct devlink_region_ops *ops,
1264 			     struct netlink_ext_ack *extack, u8 **data)
1265 {
1266 	struct ice_pf *pf = devlink_priv(devlink);
1267 	struct device *dev = ice_pf_to_dev(pf);
1268 	struct ice_hw *hw = &pf->hw;
1269 	void *devcaps;
1270 	int status;
1271 
1272 	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1273 	if (!devcaps)
1274 		return -ENOMEM;
1275 
1276 	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1277 				  ice_aqc_opc_list_dev_caps, NULL);
1278 	if (status) {
1279 		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1280 			status, hw->adminq.sq_last_status);
1281 		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1282 		vfree(devcaps);
1283 		return status;
1284 	}
1285 
1286 	*data = (u8 *)devcaps;
1287 
1288 	return 0;
1289 }
1290 
1291 static const struct devlink_region_ops ice_nvm_region_ops = {
1292 	.name = "nvm-flash",
1293 	.destructor = vfree,
1294 	.snapshot = ice_devlink_nvm_snapshot,
1295 };
1296 
1297 static const struct devlink_region_ops ice_sram_region_ops = {
1298 	.name = "shadow-ram",
1299 	.destructor = vfree,
1300 	.snapshot = ice_devlink_sram_snapshot,
1301 };
1302 
1303 static const struct devlink_region_ops ice_devcaps_region_ops = {
1304 	.name = "device-caps",
1305 	.destructor = vfree,
1306 	.snapshot = ice_devlink_devcaps_snapshot,
1307 };
1308 
1309 /**
1310  * ice_devlink_init_regions - Initialize devlink regions
1311  * @pf: the PF device structure
1312  *
1313  * Create devlink regions used to enable access to dump the contents of the
1314  * flash memory on the device.
1315  */
ice_devlink_init_regions(struct ice_pf * pf)1316 void ice_devlink_init_regions(struct ice_pf *pf)
1317 {
1318 	struct devlink *devlink = priv_to_devlink(pf);
1319 	struct device *dev = ice_pf_to_dev(pf);
1320 	u64 nvm_size, sram_size;
1321 
1322 	nvm_size = pf->hw.flash.flash_size;
1323 	pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
1324 					       nvm_size);
1325 	if (IS_ERR(pf->nvm_region)) {
1326 		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1327 			PTR_ERR(pf->nvm_region));
1328 		pf->nvm_region = NULL;
1329 	}
1330 
1331 	sram_size = pf->hw.flash.sr_words * 2u;
1332 	pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1333 						1, sram_size);
1334 	if (IS_ERR(pf->sram_region)) {
1335 		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1336 			PTR_ERR(pf->sram_region));
1337 		pf->sram_region = NULL;
1338 	}
1339 
1340 	pf->devcaps_region = devlink_region_create(devlink,
1341 						   &ice_devcaps_region_ops, 10,
1342 						   ICE_AQ_MAX_BUF_LEN);
1343 	if (IS_ERR(pf->devcaps_region)) {
1344 		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1345 			PTR_ERR(pf->devcaps_region));
1346 		pf->devcaps_region = NULL;
1347 	}
1348 }
1349 
1350 /**
1351  * ice_devlink_destroy_regions - Destroy devlink regions
1352  * @pf: the PF device structure
1353  *
1354  * Remove previously created regions for this PF.
1355  */
ice_devlink_destroy_regions(struct ice_pf * pf)1356 void ice_devlink_destroy_regions(struct ice_pf *pf)
1357 {
1358 	if (pf->nvm_region)
1359 		devlink_region_destroy(pf->nvm_region);
1360 
1361 	if (pf->sram_region)
1362 		devlink_region_destroy(pf->sram_region);
1363 
1364 	if (pf->devcaps_region)
1365 		devlink_region_destroy(pf->devcaps_region);
1366 }
1367