1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9
10 /**
11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13 *
14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15 */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 unsigned int offset, i;
19
20 mutex_lock(qs_cfg->qs_mutex);
21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 0, qs_cfg->q_count, 0);
23 if (offset >= qs_cfg->pf_map_size) {
24 mutex_unlock(qs_cfg->qs_mutex);
25 return -ENOMEM;
26 }
27
28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 for (i = 0; i < qs_cfg->q_count; i++)
30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 mutex_unlock(qs_cfg->qs_mutex);
32
33 return 0;
34 }
35
36 /**
37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39 *
40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41 */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 unsigned int i, index = 0;
45
46 mutex_lock(qs_cfg->qs_mutex);
47 for (i = 0; i < qs_cfg->q_count; i++) {
48 index = find_next_zero_bit(qs_cfg->pf_map,
49 qs_cfg->pf_map_size, index);
50 if (index >= qs_cfg->pf_map_size)
51 goto err_scatter;
52 set_bit(index, qs_cfg->pf_map);
53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 }
55 mutex_unlock(qs_cfg->qs_mutex);
56
57 return 0;
58 err_scatter:
59 for (index = 0; index < i; index++) {
60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 }
63 mutex_unlock(qs_cfg->qs_mutex);
64
65 return -ENOMEM;
66 }
67
68 /**
69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70 * @pf: the PF being configured
71 * @pf_q: the PF queue
72 * @ena: enable or disable state of the queue
73 *
74 * This routine will wait for the given Rx queue of the PF to reach the
75 * enabled or disabled state.
76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
77 * multiple retries; else will return 0 in case of success.
78 */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 int i;
82
83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 QRX_CTRL_QENA_STAT_M))
86 return 0;
87
88 usleep_range(20, 40);
89 }
90
91 return -ETIMEDOUT;
92 }
93
94 /**
95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96 * @vsi: the VSI being configured
97 * @v_idx: index of the vector in the VSI struct
98 *
99 * We allocate one q_vector and set default value for ITR setting associated
100 * with this q_vector. If allocation fails we return -ENOMEM.
101 */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 struct ice_pf *pf = vsi->back;
105 struct ice_q_vector *q_vector;
106
107 /* allocate q_vector */
108 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
109 GFP_KERNEL);
110 if (!q_vector)
111 return -ENOMEM;
112
113 q_vector->vsi = vsi;
114 q_vector->v_idx = v_idx;
115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 q_vector->tx.itr_mode = ITR_DYNAMIC;
118 q_vector->rx.itr_mode = ITR_DYNAMIC;
119 q_vector->tx.type = ICE_TX_CONTAINER;
120 q_vector->rx.type = ICE_RX_CONTAINER;
121
122 if (vsi->type == ICE_VSI_VF)
123 goto out;
124 /* only set affinity_mask if the CPU is online */
125 if (cpu_online(v_idx))
126 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
127
128 /* This will not be called in the driver load path because the netdev
129 * will not be created yet. All other cases with register the NAPI
130 * handler here (i.e. resume, reset/rebuild, etc.)
131 */
132 if (vsi->netdev)
133 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
134
135 out:
136 /* tie q_vector and VSI together */
137 vsi->q_vectors[v_idx] = q_vector;
138
139 return 0;
140 }
141
142 /**
143 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
144 * @vsi: VSI having the memory freed
145 * @v_idx: index of the vector to be freed
146 */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)147 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
148 {
149 struct ice_q_vector *q_vector;
150 struct ice_pf *pf = vsi->back;
151 struct ice_tx_ring *tx_ring;
152 struct ice_rx_ring *rx_ring;
153 struct device *dev;
154
155 dev = ice_pf_to_dev(pf);
156 if (!vsi->q_vectors[v_idx]) {
157 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
158 return;
159 }
160 q_vector = vsi->q_vectors[v_idx];
161
162 ice_for_each_tx_ring(tx_ring, q_vector->tx)
163 tx_ring->q_vector = NULL;
164 ice_for_each_rx_ring(rx_ring, q_vector->rx)
165 rx_ring->q_vector = NULL;
166
167 /* only VSI with an associated netdev is set up with NAPI */
168 if (vsi->netdev)
169 netif_napi_del(&q_vector->napi);
170
171 devm_kfree(dev, q_vector);
172 vsi->q_vectors[v_idx] = NULL;
173 }
174
175 /**
176 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
177 * @hw: board specific structure
178 */
ice_cfg_itr_gran(struct ice_hw * hw)179 static void ice_cfg_itr_gran(struct ice_hw *hw)
180 {
181 u32 regval = rd32(hw, GLINT_CTL);
182
183 /* no need to update global register if ITR gran is already set */
184 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
185 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
186 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
187 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
188 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
189 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
190 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
191 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
192 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
193 return;
194
195 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
196 GLINT_CTL_ITR_GRAN_200_M) |
197 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
198 GLINT_CTL_ITR_GRAN_100_M) |
199 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
200 GLINT_CTL_ITR_GRAN_50_M) |
201 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
202 GLINT_CTL_ITR_GRAN_25_M);
203 wr32(hw, GLINT_CTL, regval);
204 }
205
206 /**
207 * ice_calc_txq_handle - calculate the queue handle
208 * @vsi: VSI that ring belongs to
209 * @ring: ring to get the absolute queue index
210 * @tc: traffic class number
211 */
ice_calc_txq_handle(struct ice_vsi * vsi,struct ice_tx_ring * ring,u8 tc)212 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
213 {
214 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
215
216 if (ring->ch)
217 return ring->q_index - ring->ch->base_q;
218
219 /* Idea here for calculation is that we subtract the number of queue
220 * count from TC that ring belongs to from it's absolute queue index
221 * and as a result we get the queue's index within TC.
222 */
223 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
224 }
225
226 /**
227 * ice_eswitch_calc_txq_handle
228 * @ring: pointer to ring which unique index is needed
229 *
230 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
231 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
232 * here by finding index in vsi->tx_rings of this ring.
233 *
234 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
235 * because VSI is get from ring->vsi, so it has to be present in this VSI.
236 */
ice_eswitch_calc_txq_handle(struct ice_tx_ring * ring)237 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
238 {
239 struct ice_vsi *vsi = ring->vsi;
240 int i;
241
242 ice_for_each_txq(vsi, i) {
243 if (vsi->tx_rings[i] == ring)
244 return i;
245 }
246
247 return ICE_INVAL_Q_INDEX;
248 }
249
250 /**
251 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
252 * @ring: The Tx ring to configure
253 *
254 * This enables/disables XPS for a given Tx descriptor ring
255 * based on the TCs enabled for the VSI that ring belongs to.
256 */
ice_cfg_xps_tx_ring(struct ice_tx_ring * ring)257 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
258 {
259 if (!ring->q_vector || !ring->netdev)
260 return;
261
262 /* We only initialize XPS once, so as not to overwrite user settings */
263 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
264 return;
265
266 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
267 ring->q_index);
268 }
269
270 /**
271 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
272 * @ring: The Tx ring to configure
273 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
274 * @pf_q: queue index in the PF space
275 *
276 * Configure the Tx descriptor ring in TLAN context.
277 */
278 static void
ice_setup_tx_ctx(struct ice_tx_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)279 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
280 {
281 struct ice_vsi *vsi = ring->vsi;
282 struct ice_hw *hw = &vsi->back->hw;
283
284 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
285
286 tlan_ctx->port_num = vsi->port_info->lport;
287
288 /* Transmit Queue Length */
289 tlan_ctx->qlen = ring->count;
290
291 ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
292
293 /* PF number */
294 tlan_ctx->pf_num = hw->pf_id;
295
296 /* queue belongs to a specific VSI type
297 * VF / VM index should be programmed per vmvf_type setting:
298 * for vmvf_type = VF, it is VF number between 0-256
299 * for vmvf_type = VM, it is VM number between 0-767
300 * for PF or EMP this field should be set to zero
301 */
302 switch (vsi->type) {
303 case ICE_VSI_LB:
304 case ICE_VSI_CTRL:
305 case ICE_VSI_PF:
306 if (ring->ch)
307 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
308 else
309 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
310 break;
311 case ICE_VSI_VF:
312 /* Firmware expects vmvf_num to be absolute VF ID */
313 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
314 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
315 break;
316 case ICE_VSI_SWITCHDEV_CTRL:
317 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
318 break;
319 default:
320 return;
321 }
322
323 /* make sure the context is associated with the right VSI */
324 if (ring->ch)
325 tlan_ctx->src_vsi = ring->ch->vsi_num;
326 else
327 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
328
329 /* Restrict Tx timestamps to the PF VSI */
330 switch (vsi->type) {
331 case ICE_VSI_PF:
332 tlan_ctx->tsyn_ena = 1;
333 break;
334 default:
335 break;
336 }
337
338 tlan_ctx->tso_ena = ICE_TX_LEGACY;
339 tlan_ctx->tso_qnum = pf_q;
340
341 /* Legacy or Advanced Host Interface:
342 * 0: Advanced Host Interface
343 * 1: Legacy Host Interface
344 */
345 tlan_ctx->legacy_int = ICE_TX_LEGACY;
346 }
347
348 /**
349 * ice_rx_offset - Return expected offset into page to access data
350 * @rx_ring: Ring we are requesting offset of
351 *
352 * Returns the offset value for ring into the data buffer.
353 */
ice_rx_offset(struct ice_rx_ring * rx_ring)354 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
355 {
356 if (ice_ring_uses_build_skb(rx_ring))
357 return ICE_SKB_PAD;
358 else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
359 return XDP_PACKET_HEADROOM;
360
361 return 0;
362 }
363
364 /**
365 * ice_setup_rx_ctx - Configure a receive ring context
366 * @ring: The Rx ring to configure
367 *
368 * Configure the Rx descriptor ring in RLAN context.
369 */
ice_setup_rx_ctx(struct ice_rx_ring * ring)370 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
371 {
372 int chain_len = ICE_MAX_CHAINED_RX_BUFS;
373 struct ice_vsi *vsi = ring->vsi;
374 u32 rxdid = ICE_RXDID_FLEX_NIC;
375 struct ice_rlan_ctx rlan_ctx;
376 struct ice_hw *hw;
377 u16 pf_q;
378 int err;
379
380 hw = &vsi->back->hw;
381
382 /* what is Rx queue number in global space of 2K Rx queues */
383 pf_q = vsi->rxq_map[ring->q_index];
384
385 /* clear the context structure first */
386 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
387
388 /* Receive Queue Base Address.
389 * Indicates the starting address of the descriptor queue defined in
390 * 128 Byte units.
391 */
392 rlan_ctx.base = ring->dma >> 7;
393
394 rlan_ctx.qlen = ring->count;
395
396 /* Receive Packet Data Buffer Size.
397 * The Packet Data Buffer Size is defined in 128 byte units.
398 */
399 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
400
401 /* use 32 byte descriptors */
402 rlan_ctx.dsize = 1;
403
404 /* Strip the Ethernet CRC bytes before the packet is posted to host
405 * memory.
406 */
407 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
408
409 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor
410 * and it needs to remain 1 for non-DVM capable configurations to not
411 * break backward compatibility for VF drivers. Setting this field to 0
412 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
413 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
414 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
415 * check for the tag
416 */
417 if (ice_is_dvm_ena(hw))
418 if (vsi->type == ICE_VSI_VF &&
419 ice_vf_is_port_vlan_ena(vsi->vf))
420 rlan_ctx.l2tsel = 1;
421 else
422 rlan_ctx.l2tsel = 0;
423 else
424 rlan_ctx.l2tsel = 1;
425
426 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
427 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
428 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
429
430 /* This controls whether VLAN is stripped from inner headers
431 * The VLAN in the inner L2 header is stripped to the receive
432 * descriptor if enabled by this flag.
433 */
434 rlan_ctx.showiv = 0;
435
436 /* For AF_XDP ZC, we disallow packets to span on
437 * multiple buffers, thus letting us skip that
438 * handling in the fast-path.
439 */
440 if (ring->xsk_pool)
441 chain_len = 1;
442 /* Max packet size for this queue - must not be set to a larger value
443 * than 5 x DBUF
444 */
445 rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
446 chain_len * ring->rx_buf_len);
447
448 /* Rx queue threshold in units of 64 */
449 rlan_ctx.lrxqthresh = 1;
450
451 /* Enable Flexible Descriptors in the queue context which
452 * allows this driver to select a specific receive descriptor format
453 * increasing context priority to pick up profile ID; default is 0x01;
454 * setting to 0x03 to ensure profile is programming if prev context is
455 * of same priority
456 */
457 if (vsi->type != ICE_VSI_VF)
458 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
459 else
460 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
461 false);
462
463 /* Absolute queue number out of 2K needs to be passed */
464 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
465 if (err) {
466 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
467 pf_q, err);
468 return -EIO;
469 }
470
471 if (vsi->type == ICE_VSI_VF)
472 return 0;
473
474 /* configure Rx buffer alignment */
475 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
476 ice_clear_ring_build_skb_ena(ring);
477 else
478 ice_set_ring_build_skb_ena(ring);
479
480 ring->rx_offset = ice_rx_offset(ring);
481
482 /* init queue specific tail register */
483 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
484 writel(0, ring->tail);
485
486 return 0;
487 }
488
489 /**
490 * ice_vsi_cfg_rxq - Configure an Rx queue
491 * @ring: the ring being configured
492 *
493 * Return 0 on success and a negative value on error.
494 */
ice_vsi_cfg_rxq(struct ice_rx_ring * ring)495 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
496 {
497 struct device *dev = ice_pf_to_dev(ring->vsi->back);
498 u16 num_bufs = ICE_DESC_UNUSED(ring);
499 int err;
500
501 ring->rx_buf_len = ring->vsi->rx_buf_len;
502
503 if (ring->vsi->type == ICE_VSI_PF) {
504 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
505 /* coverity[check_return] */
506 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
507 ring->q_index, ring->q_vector->napi.napi_id);
508
509 ring->xsk_pool = ice_xsk_pool(ring);
510 if (ring->xsk_pool) {
511 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
512
513 ring->rx_buf_len =
514 xsk_pool_get_rx_frame_size(ring->xsk_pool);
515 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
516 MEM_TYPE_XSK_BUFF_POOL,
517 NULL);
518 if (err)
519 return err;
520 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
521
522 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
523 ring->q_index);
524 } else {
525 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
526 /* coverity[check_return] */
527 xdp_rxq_info_reg(&ring->xdp_rxq,
528 ring->netdev,
529 ring->q_index, ring->q_vector->napi.napi_id);
530
531 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
532 MEM_TYPE_PAGE_SHARED,
533 NULL);
534 if (err)
535 return err;
536 }
537 }
538
539 err = ice_setup_rx_ctx(ring);
540 if (err) {
541 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
542 ring->q_index, err);
543 return err;
544 }
545
546 if (ring->xsk_pool) {
547 bool ok;
548
549 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
550 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
551 num_bufs, ring->q_index);
552 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
553
554 return 0;
555 }
556
557 ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
558 if (!ok) {
559 u16 pf_q = ring->vsi->rxq_map[ring->q_index];
560
561 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
562 ring->q_index, pf_q);
563 }
564
565 return 0;
566 }
567
568 ice_alloc_rx_bufs(ring, num_bufs);
569
570 return 0;
571 }
572
573 /**
574 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
575 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
576 *
577 * This function first tries to find contiguous space. If it is not successful,
578 * it tries with the scatter approach.
579 *
580 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
581 */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)582 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
583 {
584 int ret = 0;
585
586 ret = __ice_vsi_get_qs_contig(qs_cfg);
587 if (ret) {
588 /* contig failed, so try with scatter approach */
589 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
590 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
591 qs_cfg->scatter_count);
592 ret = __ice_vsi_get_qs_sc(qs_cfg);
593 }
594 return ret;
595 }
596
597 /**
598 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
599 * @vsi: the VSI being configured
600 * @ena: start or stop the Rx ring
601 * @rxq_idx: 0-based Rx queue index for the VSI passed in
602 * @wait: wait or don't wait for configuration to finish in hardware
603 *
604 * Return 0 on success and negative on error.
605 */
606 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)607 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
608 {
609 int pf_q = vsi->rxq_map[rxq_idx];
610 struct ice_pf *pf = vsi->back;
611 struct ice_hw *hw = &pf->hw;
612 u32 rx_reg;
613
614 rx_reg = rd32(hw, QRX_CTRL(pf_q));
615
616 /* Skip if the queue is already in the requested state */
617 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
618 return 0;
619
620 /* turn on/off the queue */
621 if (ena)
622 rx_reg |= QRX_CTRL_QENA_REQ_M;
623 else
624 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
625 wr32(hw, QRX_CTRL(pf_q), rx_reg);
626
627 if (!wait)
628 return 0;
629
630 ice_flush(hw);
631 return ice_pf_rxq_wait(pf, pf_q, ena);
632 }
633
634 /**
635 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
636 * @vsi: the VSI being configured
637 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
638 * @rxq_idx: 0-based Rx queue index for the VSI passed in
639 *
640 * This routine will wait for the given Rx queue of the VSI to reach the
641 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
642 * the requested state after multiple retries; else will return 0 in case of
643 * success.
644 */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)645 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
646 {
647 int pf_q = vsi->rxq_map[rxq_idx];
648 struct ice_pf *pf = vsi->back;
649
650 return ice_pf_rxq_wait(pf, pf_q, ena);
651 }
652
653 /**
654 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
655 * @vsi: the VSI being configured
656 *
657 * We allocate one q_vector per queue interrupt. If allocation fails we
658 * return -ENOMEM.
659 */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)660 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
661 {
662 struct device *dev = ice_pf_to_dev(vsi->back);
663 u16 v_idx;
664 int err;
665
666 if (vsi->q_vectors[0]) {
667 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
668 return -EEXIST;
669 }
670
671 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
672 err = ice_vsi_alloc_q_vector(vsi, v_idx);
673 if (err)
674 goto err_out;
675 }
676
677 return 0;
678
679 err_out:
680 while (v_idx--)
681 ice_free_q_vector(vsi, v_idx);
682
683 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
684 vsi->num_q_vectors, vsi->vsi_num, err);
685 vsi->num_q_vectors = 0;
686 return err;
687 }
688
689 /**
690 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
691 * @vsi: the VSI being configured
692 *
693 * This function maps descriptor rings to the queue-specific vectors allotted
694 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
695 * and Rx rings to the vector as "efficiently" as possible.
696 */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)697 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
698 {
699 int q_vectors = vsi->num_q_vectors;
700 u16 tx_rings_rem, rx_rings_rem;
701 int v_id;
702
703 /* initially assigning remaining rings count to VSIs num queue value */
704 tx_rings_rem = vsi->num_txq;
705 rx_rings_rem = vsi->num_rxq;
706
707 for (v_id = 0; v_id < q_vectors; v_id++) {
708 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
709 u8 tx_rings_per_v, rx_rings_per_v;
710 u16 q_id, q_base;
711
712 /* Tx rings mapping to vector */
713 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
714 q_vectors - v_id);
715 q_vector->num_ring_tx = tx_rings_per_v;
716 q_vector->tx.tx_ring = NULL;
717 q_vector->tx.itr_idx = ICE_TX_ITR;
718 q_base = vsi->num_txq - tx_rings_rem;
719
720 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
721 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
722
723 tx_ring->q_vector = q_vector;
724 tx_ring->next = q_vector->tx.tx_ring;
725 q_vector->tx.tx_ring = tx_ring;
726 }
727 tx_rings_rem -= tx_rings_per_v;
728
729 /* Rx rings mapping to vector */
730 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
731 q_vectors - v_id);
732 q_vector->num_ring_rx = rx_rings_per_v;
733 q_vector->rx.rx_ring = NULL;
734 q_vector->rx.itr_idx = ICE_RX_ITR;
735 q_base = vsi->num_rxq - rx_rings_rem;
736
737 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
738 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
739
740 rx_ring->q_vector = q_vector;
741 rx_ring->next = q_vector->rx.rx_ring;
742 q_vector->rx.rx_ring = rx_ring;
743 }
744 rx_rings_rem -= rx_rings_per_v;
745 }
746 }
747
748 /**
749 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
750 * @vsi: the VSI having memory freed
751 */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)752 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
753 {
754 int v_idx;
755
756 ice_for_each_q_vector(vsi, v_idx)
757 ice_free_q_vector(vsi, v_idx);
758 }
759
760 /**
761 * ice_vsi_cfg_txq - Configure single Tx queue
762 * @vsi: the VSI that queue belongs to
763 * @ring: Tx ring to be configured
764 * @qg_buf: queue group buffer
765 */
766 int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)767 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
768 struct ice_aqc_add_tx_qgrp *qg_buf)
769 {
770 u8 buf_len = struct_size(qg_buf, txqs, 1);
771 struct ice_tlan_ctx tlan_ctx = { 0 };
772 struct ice_aqc_add_txqs_perq *txq;
773 struct ice_channel *ch = ring->ch;
774 struct ice_pf *pf = vsi->back;
775 struct ice_hw *hw = &pf->hw;
776 int status;
777 u16 pf_q;
778 u8 tc;
779
780 /* Configure XPS */
781 ice_cfg_xps_tx_ring(ring);
782
783 pf_q = ring->reg_idx;
784 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
785 /* copy context contents into the qg_buf */
786 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
787 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
788 ice_tlan_ctx_info);
789
790 /* init queue specific tail reg. It is referred as
791 * transmit comm scheduler queue doorbell.
792 */
793 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
794
795 if (IS_ENABLED(CONFIG_DCB))
796 tc = ring->dcb_tc;
797 else
798 tc = 0;
799
800 /* Add unique software queue handle of the Tx queue per
801 * TC into the VSI Tx ring
802 */
803 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
804 ring->q_handle = ice_eswitch_calc_txq_handle(ring);
805
806 if (ring->q_handle == ICE_INVAL_Q_INDEX)
807 return -ENODEV;
808 } else {
809 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
810 }
811
812 if (ch)
813 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
814 ring->q_handle, 1, qg_buf, buf_len,
815 NULL);
816 else
817 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
818 ring->q_handle, 1, qg_buf, buf_len,
819 NULL);
820 if (status) {
821 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
822 status);
823 return status;
824 }
825
826 /* Add Tx Queue TEID into the VSI Tx ring from the
827 * response. This will complete configuring and
828 * enabling the queue.
829 */
830 txq = &qg_buf->txqs[0];
831 if (pf_q == le16_to_cpu(txq->txq_id))
832 ring->txq_teid = le32_to_cpu(txq->q_teid);
833
834 return 0;
835 }
836
837 /**
838 * ice_cfg_itr - configure the initial interrupt throttle values
839 * @hw: pointer to the HW structure
840 * @q_vector: interrupt vector that's being configured
841 *
842 * Configure interrupt throttling values for the ring containers that are
843 * associated with the interrupt vector passed in.
844 */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)845 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
846 {
847 ice_cfg_itr_gran(hw);
848
849 if (q_vector->num_ring_rx)
850 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
851
852 if (q_vector->num_ring_tx)
853 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
854
855 ice_write_intrl(q_vector, q_vector->intrl);
856 }
857
858 /**
859 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
860 * @vsi: the VSI being configured
861 * @txq: Tx queue being mapped to MSI-X vector
862 * @msix_idx: MSI-X vector index within the function
863 * @itr_idx: ITR index of the interrupt cause
864 *
865 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
866 * within the function space.
867 */
868 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)869 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
870 {
871 struct ice_pf *pf = vsi->back;
872 struct ice_hw *hw = &pf->hw;
873 u32 val;
874
875 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
876
877 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
878 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
879
880 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
881 if (ice_is_xdp_ena_vsi(vsi)) {
882 u32 xdp_txq = txq + vsi->num_xdp_txq;
883
884 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
885 val);
886 }
887 ice_flush(hw);
888 }
889
890 /**
891 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
892 * @vsi: the VSI being configured
893 * @rxq: Rx queue being mapped to MSI-X vector
894 * @msix_idx: MSI-X vector index within the function
895 * @itr_idx: ITR index of the interrupt cause
896 *
897 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
898 * within the function space.
899 */
900 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)901 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
902 {
903 struct ice_pf *pf = vsi->back;
904 struct ice_hw *hw = &pf->hw;
905 u32 val;
906
907 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
908
909 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
910 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
911
912 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
913
914 ice_flush(hw);
915 }
916
917 /**
918 * ice_trigger_sw_intr - trigger a software interrupt
919 * @hw: pointer to the HW structure
920 * @q_vector: interrupt vector to trigger the software interrupt for
921 */
ice_trigger_sw_intr(struct ice_hw * hw,struct ice_q_vector * q_vector)922 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
923 {
924 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
925 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
926 GLINT_DYN_CTL_SWINT_TRIG_M |
927 GLINT_DYN_CTL_INTENA_M);
928 }
929
930 /**
931 * ice_vsi_stop_tx_ring - Disable single Tx ring
932 * @vsi: the VSI being configured
933 * @rst_src: reset source
934 * @rel_vmvf_num: Relative ID of VF/VM
935 * @ring: Tx ring to be stopped
936 * @txq_meta: Meta data of Tx ring to be stopped
937 */
938 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)939 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
940 u16 rel_vmvf_num, struct ice_tx_ring *ring,
941 struct ice_txq_meta *txq_meta)
942 {
943 struct ice_pf *pf = vsi->back;
944 struct ice_q_vector *q_vector;
945 struct ice_hw *hw = &pf->hw;
946 int status;
947 u32 val;
948
949 /* clear cause_ena bit for disabled queues */
950 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
951 val &= ~QINT_TQCTL_CAUSE_ENA_M;
952 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
953
954 /* software is expected to wait for 100 ns */
955 ndelay(100);
956
957 /* trigger a software interrupt for the vector
958 * associated to the queue to schedule NAPI handler
959 */
960 q_vector = ring->q_vector;
961 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
962 ice_trigger_sw_intr(hw, q_vector);
963
964 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
965 txq_meta->tc, 1, &txq_meta->q_handle,
966 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
967 rel_vmvf_num, NULL);
968
969 /* if the disable queue command was exercised during an
970 * active reset flow, -EBUSY is returned.
971 * This is not an error as the reset operation disables
972 * queues at the hardware level anyway.
973 */
974 if (status == -EBUSY) {
975 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
976 } else if (status == -ENOENT) {
977 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
978 } else if (status) {
979 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
980 status);
981 return status;
982 }
983
984 return 0;
985 }
986
987 /**
988 * ice_fill_txq_meta - Prepare the Tx queue's meta data
989 * @vsi: VSI that ring belongs to
990 * @ring: ring that txq_meta will be based on
991 * @txq_meta: a helper struct that wraps Tx queue's information
992 *
993 * Set up a helper struct that will contain all the necessary fields that
994 * are needed for stopping Tx queue
995 */
996 void
ice_fill_txq_meta(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)997 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
998 struct ice_txq_meta *txq_meta)
999 {
1000 struct ice_channel *ch = ring->ch;
1001 u8 tc;
1002
1003 if (IS_ENABLED(CONFIG_DCB))
1004 tc = ring->dcb_tc;
1005 else
1006 tc = 0;
1007
1008 txq_meta->q_id = ring->reg_idx;
1009 txq_meta->q_teid = ring->txq_teid;
1010 txq_meta->q_handle = ring->q_handle;
1011 if (ch) {
1012 txq_meta->vsi_idx = ch->ch_vsi->idx;
1013 txq_meta->tc = 0;
1014 } else {
1015 txq_meta->vsi_idx = vsi->idx;
1016 txq_meta->tc = tc;
1017 }
1018 }
1019