1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
28 "s0ix-enabled",
29 };
30
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33 #define E1000_STAT(str, m) { \
34 .stat_string = str, \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 .stat_string = str, \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 E1000_STAT("rx_packets", stats.gprc),
46 E1000_STAT("tx_packets", stats.gptc),
47 E1000_STAT("rx_bytes", stats.gorc),
48 E1000_STAT("tx_bytes", stats.gotc),
49 E1000_STAT("rx_broadcast", stats.bprc),
50 E1000_STAT("tx_broadcast", stats.bptc),
51 E1000_STAT("rx_multicast", stats.mprc),
52 E1000_STAT("tx_multicast", stats.mptc),
53 E1000_NETDEV_STAT("rx_errors", rx_errors),
54 E1000_NETDEV_STAT("tx_errors", tx_errors),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 E1000_STAT("multicast", stats.mprc),
57 E1000_STAT("collisions", stats.colc),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 E1000_STAT("rx_crc_errors", stats.crcerrs),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 E1000_STAT("rx_missed_errors", stats.mpc),
64 E1000_STAT("tx_aborted_errors", stats.ecol),
65 E1000_STAT("tx_carrier_errors", stats.tncrs),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 E1000_STAT("tx_window_errors", stats.latecol),
69 E1000_STAT("tx_abort_late_coll", stats.latecol),
70 E1000_STAT("tx_deferred_ok", stats.dc),
71 E1000_STAT("tx_single_coll_ok", stats.scc),
72 E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 E1000_STAT("tx_timeout_count", tx_timeout_count),
74 E1000_STAT("tx_restart_queue", restart_queue),
75 E1000_STAT("rx_long_length_errors", stats.roc),
76 E1000_STAT("rx_short_length_errors", stats.ruc),
77 E1000_STAT("rx_align_errors", stats.algnerrc),
78 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 E1000_STAT("rx_header_split", rx_hdr_split),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 E1000_STAT("tx_smbus", stats.mgptc),
89 E1000_STAT("rx_smbus", stats.mgprc),
90 E1000_STAT("dropped_smbus", stats.mgpdc),
91 E1000_STAT("rx_dma_failed", rx_dma_failed),
92 E1000_STAT("tx_dma_failed", tx_dma_failed),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 E1000_STAT("corr_ecc_errors", corr_errors),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 struct ethtool_link_ksettings *cmd)
112 {
113 struct e1000_adapter *adapter = netdev_priv(netdev);
114 struct e1000_hw *hw = &adapter->hw;
115 u32 speed, supported, advertising;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118 supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full |
123 SUPPORTED_Autoneg |
124 SUPPORTED_TP);
125 if (hw->phy.type == e1000_phy_ife)
126 supported &= ~SUPPORTED_1000baseT_Full;
127 advertising = ADVERTISED_TP;
128
129 if (hw->mac.autoneg == 1) {
130 advertising |= ADVERTISED_Autoneg;
131 /* the e1000 autoneg seems to match ethtool nicely */
132 advertising |= hw->phy.autoneg_advertised;
133 }
134
135 cmd->base.port = PORT_TP;
136 cmd->base.phy_address = hw->phy.addr;
137 } else {
138 supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 cmd->base.port = PORT_FIBRE;
147 }
148
149 speed = SPEED_UNKNOWN;
150 cmd->base.duplex = DUPLEX_UNKNOWN;
151
152 if (netif_running(netdev)) {
153 if (netif_carrier_ok(netdev)) {
154 speed = adapter->link_speed;
155 cmd->base.duplex = adapter->link_duplex - 1;
156 }
157 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
158 u32 status = er32(STATUS);
159
160 if (status & E1000_STATUS_LU) {
161 if (status & E1000_STATUS_SPEED_1000)
162 speed = SPEED_1000;
163 else if (status & E1000_STATUS_SPEED_100)
164 speed = SPEED_100;
165 else
166 speed = SPEED_10;
167
168 if (status & E1000_STATUS_FD)
169 cmd->base.duplex = DUPLEX_FULL;
170 else
171 cmd->base.duplex = DUPLEX_HALF;
172 }
173 }
174
175 cmd->base.speed = speed;
176 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179 /* MDI-X => 2; MDI =>1; Invalid =>0 */
180 if ((hw->phy.media_type == e1000_media_type_copper) &&
181 netif_carrier_ok(netdev))
182 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
183 ETH_TP_MDI_X : ETH_TP_MDI;
184 else
185 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187 if (hw->phy.mdix == AUTO_ALL_MODES)
188 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
189 else
190 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
191
192 if (hw->phy.media_type != e1000_media_type_copper)
193 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
194
195 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
196 supported);
197 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
198 advertising);
199
200 return 0;
201 }
202
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
204 {
205 struct e1000_mac_info *mac = &adapter->hw.mac;
206
207 mac->autoneg = 0;
208
209 /* Make sure dplx is at most 1 bit and lsb of speed is not set
210 * for the switch() below to work
211 */
212 if ((spd & 1) || (dplx & ~1))
213 goto err_inval;
214
215 /* Fiber NICs only allow 1000 gbps Full duplex */
216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
218 goto err_inval;
219 }
220
221 switch (spd + dplx) {
222 case SPEED_10 + DUPLEX_HALF:
223 mac->forced_speed_duplex = ADVERTISE_10_HALF;
224 break;
225 case SPEED_10 + DUPLEX_FULL:
226 mac->forced_speed_duplex = ADVERTISE_10_FULL;
227 break;
228 case SPEED_100 + DUPLEX_HALF:
229 mac->forced_speed_duplex = ADVERTISE_100_HALF;
230 break;
231 case SPEED_100 + DUPLEX_FULL:
232 mac->forced_speed_duplex = ADVERTISE_100_FULL;
233 break;
234 case SPEED_1000 + DUPLEX_FULL:
235 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
236 mac->autoneg = 1;
237 adapter->hw.phy.autoneg_advertised =
238 ADVERTISE_1000_FULL;
239 } else {
240 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
241 }
242 break;
243 case SPEED_1000 + DUPLEX_HALF: /* not supported */
244 default:
245 goto err_inval;
246 }
247
248 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
249 adapter->hw.phy.mdix = AUTO_ALL_MODES;
250
251 return 0;
252
253 err_inval:
254 e_err("Unsupported Speed/Duplex configuration\n");
255 return -EINVAL;
256 }
257
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)258 static int e1000_set_link_ksettings(struct net_device *netdev,
259 const struct ethtool_link_ksettings *cmd)
260 {
261 struct e1000_adapter *adapter = netdev_priv(netdev);
262 struct e1000_hw *hw = &adapter->hw;
263 int ret_val = 0;
264 u32 advertising;
265
266 ethtool_convert_link_mode_to_legacy_u32(&advertising,
267 cmd->link_modes.advertising);
268
269 pm_runtime_get_sync(netdev->dev.parent);
270
271 /* When SoL/IDER sessions are active, autoneg/speed/duplex
272 * cannot be changed
273 */
274 if (hw->phy.ops.check_reset_block &&
275 hw->phy.ops.check_reset_block(hw)) {
276 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277 ret_val = -EINVAL;
278 goto out;
279 }
280
281 /* MDI setting is only allowed when autoneg enabled because
282 * some hardware doesn't allow MDI setting when speed or
283 * duplex is forced.
284 */
285 if (cmd->base.eth_tp_mdix_ctrl) {
286 if (hw->phy.media_type != e1000_media_type_copper) {
287 ret_val = -EOPNOTSUPP;
288 goto out;
289 }
290
291 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292 (cmd->base.autoneg != AUTONEG_ENABLE)) {
293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294 ret_val = -EINVAL;
295 goto out;
296 }
297 }
298
299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 usleep_range(1000, 2000);
301
302 if (cmd->base.autoneg == AUTONEG_ENABLE) {
303 hw->mac.autoneg = 1;
304 if (hw->phy.media_type == e1000_media_type_fiber)
305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307 else
308 hw->phy.autoneg_advertised = advertising |
309 ADVERTISED_TP | ADVERTISED_Autoneg;
310 advertising = hw->phy.autoneg_advertised;
311 if (adapter->fc_autoneg)
312 hw->fc.requested_mode = e1000_fc_default;
313 } else {
314 u32 speed = cmd->base.speed;
315 /* calling this overrides forced MDI setting */
316 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
317 ret_val = -EINVAL;
318 goto out;
319 }
320 }
321
322 /* MDI-X => 2; MDI => 1; Auto => 3 */
323 if (cmd->base.eth_tp_mdix_ctrl) {
324 /* fix up the value for auto (3 => 0) as zero is mapped
325 * internally to auto
326 */
327 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328 hw->phy.mdix = AUTO_ALL_MODES;
329 else
330 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
331 }
332
333 /* reset the link */
334 if (netif_running(adapter->netdev)) {
335 e1000e_down(adapter, true);
336 e1000e_up(adapter);
337 } else {
338 e1000e_reset(adapter);
339 }
340
341 out:
342 pm_runtime_put_sync(netdev->dev.parent);
343 clear_bit(__E1000_RESETTING, &adapter->state);
344 return ret_val;
345 }
346
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)347 static void e1000_get_pauseparam(struct net_device *netdev,
348 struct ethtool_pauseparam *pause)
349 {
350 struct e1000_adapter *adapter = netdev_priv(netdev);
351 struct e1000_hw *hw = &adapter->hw;
352
353 pause->autoneg =
354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355
356 if (hw->fc.current_mode == e1000_fc_rx_pause) {
357 pause->rx_pause = 1;
358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359 pause->tx_pause = 1;
360 } else if (hw->fc.current_mode == e1000_fc_full) {
361 pause->rx_pause = 1;
362 pause->tx_pause = 1;
363 }
364 }
365
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)366 static int e1000_set_pauseparam(struct net_device *netdev,
367 struct ethtool_pauseparam *pause)
368 {
369 struct e1000_adapter *adapter = netdev_priv(netdev);
370 struct e1000_hw *hw = &adapter->hw;
371 int retval = 0;
372
373 adapter->fc_autoneg = pause->autoneg;
374
375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376 usleep_range(1000, 2000);
377
378 pm_runtime_get_sync(netdev->dev.parent);
379
380 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381 hw->fc.requested_mode = e1000_fc_default;
382 if (netif_running(adapter->netdev)) {
383 e1000e_down(adapter, true);
384 e1000e_up(adapter);
385 } else {
386 e1000e_reset(adapter);
387 }
388 } else {
389 if (pause->rx_pause && pause->tx_pause)
390 hw->fc.requested_mode = e1000_fc_full;
391 else if (pause->rx_pause && !pause->tx_pause)
392 hw->fc.requested_mode = e1000_fc_rx_pause;
393 else if (!pause->rx_pause && pause->tx_pause)
394 hw->fc.requested_mode = e1000_fc_tx_pause;
395 else if (!pause->rx_pause && !pause->tx_pause)
396 hw->fc.requested_mode = e1000_fc_none;
397
398 hw->fc.current_mode = hw->fc.requested_mode;
399
400 if (hw->phy.media_type == e1000_media_type_fiber) {
401 retval = hw->mac.ops.setup_link(hw);
402 /* implicit goto out */
403 } else {
404 retval = e1000e_force_mac_fc(hw);
405 if (retval)
406 goto out;
407 e1000e_set_fc_watermarks(hw);
408 }
409 }
410
411 out:
412 pm_runtime_put_sync(netdev->dev.parent);
413 clear_bit(__E1000_RESETTING, &adapter->state);
414 return retval;
415 }
416
e1000_get_msglevel(struct net_device * netdev)417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419 struct e1000_adapter *adapter = netdev_priv(netdev);
420 return adapter->msg_enable;
421 }
422
e1000_set_msglevel(struct net_device * netdev,u32 data)423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425 struct e1000_adapter *adapter = netdev_priv(netdev);
426 adapter->msg_enable = data;
427 }
428
e1000_get_regs_len(struct net_device __always_unused * netdev)429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32 /* overestimate */
432 return E1000_REGS_LEN * sizeof(u32);
433 }
434
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)435 static void e1000_get_regs(struct net_device *netdev,
436 struct ethtool_regs *regs, void *p)
437 {
438 struct e1000_adapter *adapter = netdev_priv(netdev);
439 struct e1000_hw *hw = &adapter->hw;
440 u32 *regs_buff = p;
441 u16 phy_data;
442
443 pm_runtime_get_sync(netdev->dev.parent);
444
445 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446
447 regs->version = (1u << 24) |
448 (adapter->pdev->revision << 16) |
449 adapter->pdev->device;
450
451 regs_buff[0] = er32(CTRL);
452 regs_buff[1] = er32(STATUS);
453
454 regs_buff[2] = er32(RCTL);
455 regs_buff[3] = er32(RDLEN(0));
456 regs_buff[4] = er32(RDH(0));
457 regs_buff[5] = er32(RDT(0));
458 regs_buff[6] = er32(RDTR);
459
460 regs_buff[7] = er32(TCTL);
461 regs_buff[8] = er32(TDLEN(0));
462 regs_buff[9] = er32(TDH(0));
463 regs_buff[10] = er32(TDT(0));
464 regs_buff[11] = er32(TIDV);
465
466 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
467
468 /* ethtool doesn't use anything past this point, so all this
469 * code is likely legacy junk for apps that may or may not exist
470 */
471 if (hw->phy.type == e1000_phy_m88) {
472 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
473 regs_buff[13] = (u32)phy_data; /* cable length */
474 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
475 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
476 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
478 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
479 regs_buff[18] = regs_buff[13]; /* cable polarity */
480 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
481 regs_buff[20] = regs_buff[17]; /* polarity correction */
482 /* phy receive errors */
483 regs_buff[22] = adapter->phy_stats.receive_errors;
484 regs_buff[23] = regs_buff[13]; /* mdix mode */
485 }
486 regs_buff[21] = 0; /* was idle_errors */
487 e1e_rphy(hw, MII_STAT1000, &phy_data);
488 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
489 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
490
491 pm_runtime_put_sync(netdev->dev.parent);
492 }
493
e1000_get_eeprom_len(struct net_device * netdev)494 static int e1000_get_eeprom_len(struct net_device *netdev)
495 {
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 return adapter->hw.nvm.word_size * 2;
498 }
499
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)500 static int e1000_get_eeprom(struct net_device *netdev,
501 struct ethtool_eeprom *eeprom, u8 *bytes)
502 {
503 struct e1000_adapter *adapter = netdev_priv(netdev);
504 struct e1000_hw *hw = &adapter->hw;
505 u16 *eeprom_buff;
506 int first_word;
507 int last_word;
508 int ret_val = 0;
509 u16 i;
510
511 if (eeprom->len == 0)
512 return -EINVAL;
513
514 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
515
516 first_word = eeprom->offset >> 1;
517 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518
519 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
520 GFP_KERNEL);
521 if (!eeprom_buff)
522 return -ENOMEM;
523
524 pm_runtime_get_sync(netdev->dev.parent);
525
526 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
527 ret_val = e1000_read_nvm(hw, first_word,
528 last_word - first_word + 1,
529 eeprom_buff);
530 } else {
531 for (i = 0; i < last_word - first_word + 1; i++) {
532 ret_val = e1000_read_nvm(hw, first_word + i, 1,
533 &eeprom_buff[i]);
534 if (ret_val)
535 break;
536 }
537 }
538
539 pm_runtime_put_sync(netdev->dev.parent);
540
541 if (ret_val) {
542 /* a read error occurred, throw away the result */
543 memset(eeprom_buff, 0xff, sizeof(u16) *
544 (last_word - first_word + 1));
545 } else {
546 /* Device's eeprom is always little-endian, word addressable */
547 for (i = 0; i < last_word - first_word + 1; i++)
548 le16_to_cpus(&eeprom_buff[i]);
549 }
550
551 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
552 kfree(eeprom_buff);
553
554 return ret_val;
555 }
556
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)557 static int e1000_set_eeprom(struct net_device *netdev,
558 struct ethtool_eeprom *eeprom, u8 *bytes)
559 {
560 struct e1000_adapter *adapter = netdev_priv(netdev);
561 struct e1000_hw *hw = &adapter->hw;
562 u16 *eeprom_buff;
563 void *ptr;
564 int max_len;
565 int first_word;
566 int last_word;
567 int ret_val = 0;
568 u16 i;
569
570 if (eeprom->len == 0)
571 return -EOPNOTSUPP;
572
573 if (eeprom->magic !=
574 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
575 return -EFAULT;
576
577 if (adapter->flags & FLAG_READ_ONLY_NVM)
578 return -EINVAL;
579
580 max_len = hw->nvm.word_size * 2;
581
582 first_word = eeprom->offset >> 1;
583 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
584 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
585 if (!eeprom_buff)
586 return -ENOMEM;
587
588 ptr = (void *)eeprom_buff;
589
590 pm_runtime_get_sync(netdev->dev.parent);
591
592 if (eeprom->offset & 1) {
593 /* need read/modify/write of first changed EEPROM word */
594 /* only the second byte of the word is being modified */
595 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
596 ptr++;
597 }
598 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
599 /* need read/modify/write of last changed EEPROM word */
600 /* only the first byte of the word is being modified */
601 ret_val = e1000_read_nvm(hw, last_word, 1,
602 &eeprom_buff[last_word - first_word]);
603
604 if (ret_val)
605 goto out;
606
607 /* Device's eeprom is always little-endian, word addressable */
608 for (i = 0; i < last_word - first_word + 1; i++)
609 le16_to_cpus(&eeprom_buff[i]);
610
611 memcpy(ptr, bytes, eeprom->len);
612
613 for (i = 0; i < last_word - first_word + 1; i++)
614 cpu_to_le16s(&eeprom_buff[i]);
615
616 ret_val = e1000_write_nvm(hw, first_word,
617 last_word - first_word + 1, eeprom_buff);
618
619 if (ret_val)
620 goto out;
621
622 /* Update the checksum over the first part of the EEPROM if needed
623 * and flush shadow RAM for applicable controllers
624 */
625 if ((first_word <= NVM_CHECKSUM_REG) ||
626 (hw->mac.type == e1000_82583) ||
627 (hw->mac.type == e1000_82574) ||
628 (hw->mac.type == e1000_82573))
629 ret_val = e1000e_update_nvm_checksum(hw);
630
631 out:
632 pm_runtime_put_sync(netdev->dev.parent);
633 kfree(eeprom_buff);
634 return ret_val;
635 }
636
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)637 static void e1000_get_drvinfo(struct net_device *netdev,
638 struct ethtool_drvinfo *drvinfo)
639 {
640 struct e1000_adapter *adapter = netdev_priv(netdev);
641
642 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
643
644 /* EEPROM image version # is reported as firmware version # for
645 * PCI-E controllers
646 */
647 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
648 "%d.%d-%d",
649 (adapter->eeprom_vers & 0xF000) >> 12,
650 (adapter->eeprom_vers & 0x0FF0) >> 4,
651 (adapter->eeprom_vers & 0x000F));
652
653 strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
654 sizeof(drvinfo->bus_info));
655 }
656
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)657 static void e1000_get_ringparam(struct net_device *netdev,
658 struct ethtool_ringparam *ring,
659 struct kernel_ethtool_ringparam *kernel_ring,
660 struct netlink_ext_ack *extack)
661 {
662 struct e1000_adapter *adapter = netdev_priv(netdev);
663
664 ring->rx_max_pending = E1000_MAX_RXD;
665 ring->tx_max_pending = E1000_MAX_TXD;
666 ring->rx_pending = adapter->rx_ring_count;
667 ring->tx_pending = adapter->tx_ring_count;
668 }
669
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)670 static int e1000_set_ringparam(struct net_device *netdev,
671 struct ethtool_ringparam *ring,
672 struct kernel_ethtool_ringparam *kernel_ring,
673 struct netlink_ext_ack *extack)
674 {
675 struct e1000_adapter *adapter = netdev_priv(netdev);
676 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
677 int err = 0, size = sizeof(struct e1000_ring);
678 bool set_tx = false, set_rx = false;
679 u16 new_rx_count, new_tx_count;
680
681 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
682 return -EINVAL;
683
684 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
685 E1000_MAX_RXD);
686 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
687
688 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
689 E1000_MAX_TXD);
690 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
691
692 if ((new_tx_count == adapter->tx_ring_count) &&
693 (new_rx_count == adapter->rx_ring_count))
694 /* nothing to do */
695 return 0;
696
697 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
698 usleep_range(1000, 2000);
699
700 if (!netif_running(adapter->netdev)) {
701 /* Set counts now and allocate resources during open() */
702 adapter->tx_ring->count = new_tx_count;
703 adapter->rx_ring->count = new_rx_count;
704 adapter->tx_ring_count = new_tx_count;
705 adapter->rx_ring_count = new_rx_count;
706 goto clear_reset;
707 }
708
709 set_tx = (new_tx_count != adapter->tx_ring_count);
710 set_rx = (new_rx_count != adapter->rx_ring_count);
711
712 /* Allocate temporary storage for ring updates */
713 if (set_tx) {
714 temp_tx = vmalloc(size);
715 if (!temp_tx) {
716 err = -ENOMEM;
717 goto free_temp;
718 }
719 }
720 if (set_rx) {
721 temp_rx = vmalloc(size);
722 if (!temp_rx) {
723 err = -ENOMEM;
724 goto free_temp;
725 }
726 }
727
728 pm_runtime_get_sync(netdev->dev.parent);
729
730 e1000e_down(adapter, true);
731
732 /* We can't just free everything and then setup again, because the
733 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
734 * structs. First, attempt to allocate new resources...
735 */
736 if (set_tx) {
737 memcpy(temp_tx, adapter->tx_ring, size);
738 temp_tx->count = new_tx_count;
739 err = e1000e_setup_tx_resources(temp_tx);
740 if (err)
741 goto err_setup;
742 }
743 if (set_rx) {
744 memcpy(temp_rx, adapter->rx_ring, size);
745 temp_rx->count = new_rx_count;
746 err = e1000e_setup_rx_resources(temp_rx);
747 if (err)
748 goto err_setup_rx;
749 }
750
751 /* ...then free the old resources and copy back any new ring data */
752 if (set_tx) {
753 e1000e_free_tx_resources(adapter->tx_ring);
754 memcpy(adapter->tx_ring, temp_tx, size);
755 adapter->tx_ring_count = new_tx_count;
756 }
757 if (set_rx) {
758 e1000e_free_rx_resources(adapter->rx_ring);
759 memcpy(adapter->rx_ring, temp_rx, size);
760 adapter->rx_ring_count = new_rx_count;
761 }
762
763 err_setup_rx:
764 if (err && set_tx)
765 e1000e_free_tx_resources(temp_tx);
766 err_setup:
767 e1000e_up(adapter);
768 pm_runtime_put_sync(netdev->dev.parent);
769 free_temp:
770 vfree(temp_tx);
771 vfree(temp_rx);
772 clear_reset:
773 clear_bit(__E1000_RESETTING, &adapter->state);
774 return err;
775 }
776
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)777 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
778 int reg, int offset, u32 mask, u32 write)
779 {
780 u32 pat, val;
781 static const u32 test[] = {
782 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
783 };
784 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
785 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
786 (test[pat] & write));
787 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
788 if (val != (test[pat] & write & mask)) {
789 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
790 reg + (offset << 2), val,
791 (test[pat] & write & mask));
792 *data = reg;
793 return true;
794 }
795 }
796 return false;
797 }
798
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)799 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
800 int reg, u32 mask, u32 write)
801 {
802 u32 val;
803
804 __ew32(&adapter->hw, reg, write & mask);
805 val = __er32(&adapter->hw, reg);
806 if ((write & mask) != (val & mask)) {
807 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
808 reg, (val & mask), (write & mask));
809 *data = reg;
810 return true;
811 }
812 return false;
813 }
814
815 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
816 do { \
817 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
818 return 1; \
819 } while (0)
820 #define REG_PATTERN_TEST(reg, mask, write) \
821 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
822
823 #define REG_SET_AND_CHECK(reg, mask, write) \
824 do { \
825 if (reg_set_and_check(adapter, data, reg, mask, write)) \
826 return 1; \
827 } while (0)
828
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)829 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
830 {
831 struct e1000_hw *hw = &adapter->hw;
832 struct e1000_mac_info *mac = &adapter->hw.mac;
833 u32 value;
834 u32 before;
835 u32 after;
836 u32 i;
837 u32 toggle;
838 u32 mask;
839 u32 wlock_mac = 0;
840
841 /* The status register is Read Only, so a write should fail.
842 * Some bits that get toggled are ignored. There are several bits
843 * on newer hardware that are r/w.
844 */
845 switch (mac->type) {
846 case e1000_82571:
847 case e1000_82572:
848 case e1000_80003es2lan:
849 toggle = 0x7FFFF3FF;
850 break;
851 default:
852 toggle = 0x7FFFF033;
853 break;
854 }
855
856 before = er32(STATUS);
857 value = (er32(STATUS) & toggle);
858 ew32(STATUS, toggle);
859 after = er32(STATUS) & toggle;
860 if (value != after) {
861 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
862 after, value);
863 *data = 1;
864 return 1;
865 }
866 /* restore previous status */
867 ew32(STATUS, before);
868
869 if (!(adapter->flags & FLAG_IS_ICH)) {
870 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
871 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
872 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
874 }
875
876 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
879 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
880 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
882 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
883 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
884 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
885 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
886
887 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
888
889 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
890 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
891 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
892
893 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
894 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
895 if (!(adapter->flags & FLAG_IS_ICH))
896 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
897 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
898 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
899 mask = 0x8003FFFF;
900 switch (mac->type) {
901 case e1000_ich10lan:
902 case e1000_pchlan:
903 case e1000_pch2lan:
904 case e1000_pch_lpt:
905 case e1000_pch_spt:
906 case e1000_pch_cnp:
907 case e1000_pch_tgp:
908 case e1000_pch_adp:
909 case e1000_pch_mtp:
910 case e1000_pch_lnp:
911 mask |= BIT(18);
912 break;
913 default:
914 break;
915 }
916
917 if (mac->type >= e1000_pch_lpt)
918 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
919 E1000_FWSM_WLOCK_MAC_SHIFT;
920
921 for (i = 0; i < mac->rar_entry_count; i++) {
922 if (mac->type >= e1000_pch_lpt) {
923 /* Cannot test write-protected SHRAL[n] registers */
924 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
925 continue;
926
927 /* SHRAH[9] different than the others */
928 if (i == 10)
929 mask |= BIT(30);
930 else
931 mask &= ~BIT(30);
932 }
933 if (mac->type == e1000_pch2lan) {
934 /* SHRAH[0,1,2] different than previous */
935 if (i == 1)
936 mask &= 0xFFF4FFFF;
937 /* SHRAH[3] different than SHRAH[0,1,2] */
938 if (i == 4)
939 mask |= BIT(30);
940 /* RAR[1-6] owned by management engine - skipping */
941 if (i > 0)
942 i += 6;
943 }
944
945 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
946 0xFFFFFFFF);
947 /* reset index to actual value */
948 if ((mac->type == e1000_pch2lan) && (i > 6))
949 i -= 6;
950 }
951
952 for (i = 0; i < mac->mta_reg_count; i++)
953 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
954
955 *data = 0;
956
957 return 0;
958 }
959
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)960 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
961 {
962 u16 temp;
963 u16 checksum = 0;
964 u16 i;
965
966 *data = 0;
967 /* Read and add up the contents of the EEPROM */
968 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
969 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
970 *data = 1;
971 return *data;
972 }
973 checksum += temp;
974 }
975
976 /* If Checksum is not Correct return error else test passed */
977 if ((checksum != (u16)NVM_SUM) && !(*data))
978 *data = 2;
979
980 return *data;
981 }
982
e1000_test_intr(int __always_unused irq,void * data)983 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
984 {
985 struct net_device *netdev = (struct net_device *)data;
986 struct e1000_adapter *adapter = netdev_priv(netdev);
987 struct e1000_hw *hw = &adapter->hw;
988
989 adapter->test_icr |= er32(ICR);
990
991 return IRQ_HANDLED;
992 }
993
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)994 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
995 {
996 struct net_device *netdev = adapter->netdev;
997 struct e1000_hw *hw = &adapter->hw;
998 u32 mask;
999 u32 shared_int = 1;
1000 u32 irq = adapter->pdev->irq;
1001 int i;
1002 int ret_val = 0;
1003 int int_mode = E1000E_INT_MODE_LEGACY;
1004
1005 *data = 0;
1006
1007 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1008 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1009 int_mode = adapter->int_mode;
1010 e1000e_reset_interrupt_capability(adapter);
1011 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1012 e1000e_set_interrupt_capability(adapter);
1013 }
1014 /* Hook up test interrupt handler just for this test */
1015 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1016 netdev)) {
1017 shared_int = 0;
1018 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1019 netdev)) {
1020 *data = 1;
1021 ret_val = -1;
1022 goto out;
1023 }
1024 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1025
1026 /* Disable all the interrupts */
1027 ew32(IMC, 0xFFFFFFFF);
1028 e1e_flush();
1029 usleep_range(10000, 11000);
1030
1031 /* Test each interrupt */
1032 for (i = 0; i < 10; i++) {
1033 /* Interrupt to test */
1034 mask = BIT(i);
1035
1036 if (adapter->flags & FLAG_IS_ICH) {
1037 switch (mask) {
1038 case E1000_ICR_RXSEQ:
1039 continue;
1040 case 0x00000100:
1041 if (adapter->hw.mac.type == e1000_ich8lan ||
1042 adapter->hw.mac.type == e1000_ich9lan)
1043 continue;
1044 break;
1045 default:
1046 break;
1047 }
1048 }
1049
1050 if (!shared_int) {
1051 /* Disable the interrupt to be reported in
1052 * the cause register and then force the same
1053 * interrupt and see if one gets posted. If
1054 * an interrupt was posted to the bus, the
1055 * test failed.
1056 */
1057 adapter->test_icr = 0;
1058 ew32(IMC, mask);
1059 ew32(ICS, mask);
1060 e1e_flush();
1061 usleep_range(10000, 11000);
1062
1063 if (adapter->test_icr & mask) {
1064 *data = 3;
1065 break;
1066 }
1067 }
1068
1069 /* Enable the interrupt to be reported in
1070 * the cause register and then force the same
1071 * interrupt and see if one gets posted. If
1072 * an interrupt was not posted to the bus, the
1073 * test failed.
1074 */
1075 adapter->test_icr = 0;
1076 ew32(IMS, mask);
1077 ew32(ICS, mask);
1078 e1e_flush();
1079 usleep_range(10000, 11000);
1080
1081 if (!(adapter->test_icr & mask)) {
1082 *data = 4;
1083 break;
1084 }
1085
1086 if (!shared_int) {
1087 /* Disable the other interrupts to be reported in
1088 * the cause register and then force the other
1089 * interrupts and see if any get posted. If
1090 * an interrupt was posted to the bus, the
1091 * test failed.
1092 */
1093 adapter->test_icr = 0;
1094 ew32(IMC, ~mask & 0x00007FFF);
1095 ew32(ICS, ~mask & 0x00007FFF);
1096 e1e_flush();
1097 usleep_range(10000, 11000);
1098
1099 if (adapter->test_icr) {
1100 *data = 5;
1101 break;
1102 }
1103 }
1104 }
1105
1106 /* Disable all the interrupts */
1107 ew32(IMC, 0xFFFFFFFF);
1108 e1e_flush();
1109 usleep_range(10000, 11000);
1110
1111 /* Unhook test interrupt handler */
1112 free_irq(irq, netdev);
1113
1114 out:
1115 if (int_mode == E1000E_INT_MODE_MSIX) {
1116 e1000e_reset_interrupt_capability(adapter);
1117 adapter->int_mode = int_mode;
1118 e1000e_set_interrupt_capability(adapter);
1119 }
1120
1121 return ret_val;
1122 }
1123
e1000_free_desc_rings(struct e1000_adapter * adapter)1124 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1125 {
1126 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1127 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1128 struct pci_dev *pdev = adapter->pdev;
1129 struct e1000_buffer *buffer_info;
1130 int i;
1131
1132 if (tx_ring->desc && tx_ring->buffer_info) {
1133 for (i = 0; i < tx_ring->count; i++) {
1134 buffer_info = &tx_ring->buffer_info[i];
1135
1136 if (buffer_info->dma)
1137 dma_unmap_single(&pdev->dev,
1138 buffer_info->dma,
1139 buffer_info->length,
1140 DMA_TO_DEVICE);
1141 dev_kfree_skb(buffer_info->skb);
1142 }
1143 }
1144
1145 if (rx_ring->desc && rx_ring->buffer_info) {
1146 for (i = 0; i < rx_ring->count; i++) {
1147 buffer_info = &rx_ring->buffer_info[i];
1148
1149 if (buffer_info->dma)
1150 dma_unmap_single(&pdev->dev,
1151 buffer_info->dma,
1152 2048, DMA_FROM_DEVICE);
1153 dev_kfree_skb(buffer_info->skb);
1154 }
1155 }
1156
1157 if (tx_ring->desc) {
1158 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1159 tx_ring->dma);
1160 tx_ring->desc = NULL;
1161 }
1162 if (rx_ring->desc) {
1163 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1164 rx_ring->dma);
1165 rx_ring->desc = NULL;
1166 }
1167
1168 kfree(tx_ring->buffer_info);
1169 tx_ring->buffer_info = NULL;
1170 kfree(rx_ring->buffer_info);
1171 rx_ring->buffer_info = NULL;
1172 }
1173
e1000_setup_desc_rings(struct e1000_adapter * adapter)1174 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1175 {
1176 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1177 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1178 struct pci_dev *pdev = adapter->pdev;
1179 struct e1000_hw *hw = &adapter->hw;
1180 u32 rctl;
1181 int i;
1182 int ret_val;
1183
1184 /* Setup Tx descriptor ring and Tx buffers */
1185
1186 if (!tx_ring->count)
1187 tx_ring->count = E1000_DEFAULT_TXD;
1188
1189 tx_ring->buffer_info = kcalloc(tx_ring->count,
1190 sizeof(struct e1000_buffer), GFP_KERNEL);
1191 if (!tx_ring->buffer_info) {
1192 ret_val = 1;
1193 goto err_nomem;
1194 }
1195
1196 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1197 tx_ring->size = ALIGN(tx_ring->size, 4096);
1198 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1199 &tx_ring->dma, GFP_KERNEL);
1200 if (!tx_ring->desc) {
1201 ret_val = 2;
1202 goto err_nomem;
1203 }
1204 tx_ring->next_to_use = 0;
1205 tx_ring->next_to_clean = 0;
1206
1207 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1208 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1209 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1210 ew32(TDH(0), 0);
1211 ew32(TDT(0), 0);
1212 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1213 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1214 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1215
1216 for (i = 0; i < tx_ring->count; i++) {
1217 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1218 struct sk_buff *skb;
1219 unsigned int skb_size = 1024;
1220
1221 skb = alloc_skb(skb_size, GFP_KERNEL);
1222 if (!skb) {
1223 ret_val = 3;
1224 goto err_nomem;
1225 }
1226 skb_put(skb, skb_size);
1227 tx_ring->buffer_info[i].skb = skb;
1228 tx_ring->buffer_info[i].length = skb->len;
1229 tx_ring->buffer_info[i].dma =
1230 dma_map_single(&pdev->dev, skb->data, skb->len,
1231 DMA_TO_DEVICE);
1232 if (dma_mapping_error(&pdev->dev,
1233 tx_ring->buffer_info[i].dma)) {
1234 ret_val = 4;
1235 goto err_nomem;
1236 }
1237 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1238 tx_desc->lower.data = cpu_to_le32(skb->len);
1239 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1240 E1000_TXD_CMD_IFCS |
1241 E1000_TXD_CMD_RS);
1242 tx_desc->upper.data = 0;
1243 }
1244
1245 /* Setup Rx descriptor ring and Rx buffers */
1246
1247 if (!rx_ring->count)
1248 rx_ring->count = E1000_DEFAULT_RXD;
1249
1250 rx_ring->buffer_info = kcalloc(rx_ring->count,
1251 sizeof(struct e1000_buffer), GFP_KERNEL);
1252 if (!rx_ring->buffer_info) {
1253 ret_val = 5;
1254 goto err_nomem;
1255 }
1256
1257 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1258 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1259 &rx_ring->dma, GFP_KERNEL);
1260 if (!rx_ring->desc) {
1261 ret_val = 6;
1262 goto err_nomem;
1263 }
1264 rx_ring->next_to_use = 0;
1265 rx_ring->next_to_clean = 0;
1266
1267 rctl = er32(RCTL);
1268 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1269 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1270 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1271 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1272 ew32(RDLEN(0), rx_ring->size);
1273 ew32(RDH(0), 0);
1274 ew32(RDT(0), 0);
1275 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1276 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1277 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1278 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1279 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1280 ew32(RCTL, rctl);
1281
1282 for (i = 0; i < rx_ring->count; i++) {
1283 union e1000_rx_desc_extended *rx_desc;
1284 struct sk_buff *skb;
1285
1286 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1287 if (!skb) {
1288 ret_val = 7;
1289 goto err_nomem;
1290 }
1291 skb_reserve(skb, NET_IP_ALIGN);
1292 rx_ring->buffer_info[i].skb = skb;
1293 rx_ring->buffer_info[i].dma =
1294 dma_map_single(&pdev->dev, skb->data, 2048,
1295 DMA_FROM_DEVICE);
1296 if (dma_mapping_error(&pdev->dev,
1297 rx_ring->buffer_info[i].dma)) {
1298 ret_val = 8;
1299 goto err_nomem;
1300 }
1301 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1302 rx_desc->read.buffer_addr =
1303 cpu_to_le64(rx_ring->buffer_info[i].dma);
1304 memset(skb->data, 0x00, skb->len);
1305 }
1306
1307 return 0;
1308
1309 err_nomem:
1310 e1000_free_desc_rings(adapter);
1311 return ret_val;
1312 }
1313
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1314 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1315 {
1316 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1317 e1e_wphy(&adapter->hw, 29, 0x001F);
1318 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1319 e1e_wphy(&adapter->hw, 29, 0x001A);
1320 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1321 }
1322
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1323 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1324 {
1325 struct e1000_hw *hw = &adapter->hw;
1326 u32 ctrl_reg = 0;
1327 u16 phy_reg = 0;
1328 s32 ret_val = 0;
1329
1330 hw->mac.autoneg = 0;
1331
1332 if (hw->phy.type == e1000_phy_ife) {
1333 /* force 100, set loopback */
1334 e1e_wphy(hw, MII_BMCR, 0x6100);
1335
1336 /* Now set up the MAC to the same speed/duplex as the PHY. */
1337 ctrl_reg = er32(CTRL);
1338 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1339 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1340 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1341 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1342 E1000_CTRL_FD); /* Force Duplex to FULL */
1343
1344 ew32(CTRL, ctrl_reg);
1345 e1e_flush();
1346 usleep_range(500, 1000);
1347
1348 return 0;
1349 }
1350
1351 /* Specific PHY configuration for loopback */
1352 switch (hw->phy.type) {
1353 case e1000_phy_m88:
1354 /* Auto-MDI/MDIX Off */
1355 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1356 /* reset to update Auto-MDI/MDIX */
1357 e1e_wphy(hw, MII_BMCR, 0x9140);
1358 /* autoneg off */
1359 e1e_wphy(hw, MII_BMCR, 0x8140);
1360 break;
1361 case e1000_phy_gg82563:
1362 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1363 break;
1364 case e1000_phy_bm:
1365 /* Set Default MAC Interface speed to 1GB */
1366 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1367 phy_reg &= ~0x0007;
1368 phy_reg |= 0x006;
1369 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1370 /* Assert SW reset for above settings to take effect */
1371 hw->phy.ops.commit(hw);
1372 usleep_range(1000, 2000);
1373 /* Force Full Duplex */
1374 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1375 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1376 /* Set Link Up (in force link) */
1377 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1378 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1379 /* Force Link */
1380 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1381 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1382 /* Set Early Link Enable */
1383 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1384 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1385 break;
1386 case e1000_phy_82577:
1387 case e1000_phy_82578:
1388 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1389 ret_val = hw->phy.ops.acquire(hw);
1390 if (ret_val) {
1391 e_err("Cannot setup 1Gbps loopback.\n");
1392 return ret_val;
1393 }
1394 e1000_configure_k1_ich8lan(hw, false);
1395 hw->phy.ops.release(hw);
1396 break;
1397 case e1000_phy_82579:
1398 /* Disable PHY energy detect power down */
1399 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1400 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1401 /* Disable full chip energy detect */
1402 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1403 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1404 /* Enable loopback on the PHY */
1405 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1406 break;
1407 default:
1408 break;
1409 }
1410
1411 /* force 1000, set loopback */
1412 e1e_wphy(hw, MII_BMCR, 0x4140);
1413 msleep(250);
1414
1415 /* Now set up the MAC to the same speed/duplex as the PHY. */
1416 ctrl_reg = er32(CTRL);
1417 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1418 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1419 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1420 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1421 E1000_CTRL_FD); /* Force Duplex to FULL */
1422
1423 if (adapter->flags & FLAG_IS_ICH)
1424 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1425
1426 if (hw->phy.media_type == e1000_media_type_copper &&
1427 hw->phy.type == e1000_phy_m88) {
1428 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1429 } else {
1430 /* Set the ILOS bit on the fiber Nic if half duplex link is
1431 * detected.
1432 */
1433 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1434 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1435 }
1436
1437 ew32(CTRL, ctrl_reg);
1438
1439 /* Disable the receiver on the PHY so when a cable is plugged in, the
1440 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1441 */
1442 if (hw->phy.type == e1000_phy_m88)
1443 e1000_phy_disable_receiver(adapter);
1444
1445 usleep_range(500, 1000);
1446
1447 return 0;
1448 }
1449
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1450 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1451 {
1452 struct e1000_hw *hw = &adapter->hw;
1453 u32 ctrl = er32(CTRL);
1454 int link;
1455
1456 /* special requirements for 82571/82572 fiber adapters */
1457
1458 /* jump through hoops to make sure link is up because serdes
1459 * link is hardwired up
1460 */
1461 ctrl |= E1000_CTRL_SLU;
1462 ew32(CTRL, ctrl);
1463
1464 /* disable autoneg */
1465 ctrl = er32(TXCW);
1466 ctrl &= ~BIT(31);
1467 ew32(TXCW, ctrl);
1468
1469 link = (er32(STATUS) & E1000_STATUS_LU);
1470
1471 if (!link) {
1472 /* set invert loss of signal */
1473 ctrl = er32(CTRL);
1474 ctrl |= E1000_CTRL_ILOS;
1475 ew32(CTRL, ctrl);
1476 }
1477
1478 /* special write to serdes control register to enable SerDes analog
1479 * loopback
1480 */
1481 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1482 e1e_flush();
1483 usleep_range(10000, 11000);
1484
1485 return 0;
1486 }
1487
1488 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1489 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1490 {
1491 struct e1000_hw *hw = &adapter->hw;
1492 u32 ctrlext = er32(CTRL_EXT);
1493 u32 ctrl = er32(CTRL);
1494
1495 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1496 * on mac_type 80003es2lan)
1497 */
1498 adapter->tx_fifo_head = ctrlext;
1499
1500 /* clear the serdes mode bits, putting the device into mac loopback */
1501 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1502 ew32(CTRL_EXT, ctrlext);
1503
1504 /* force speed to 1000/FD, link up */
1505 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1506 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1507 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1508 ew32(CTRL, ctrl);
1509
1510 /* set mac loopback */
1511 ctrl = er32(RCTL);
1512 ctrl |= E1000_RCTL_LBM_MAC;
1513 ew32(RCTL, ctrl);
1514
1515 /* set testing mode parameters (no need to reset later) */
1516 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1517 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1518 ew32(KMRNCTRLSTA,
1519 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1520
1521 return 0;
1522 }
1523
e1000_setup_loopback_test(struct e1000_adapter * adapter)1524 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1525 {
1526 struct e1000_hw *hw = &adapter->hw;
1527 u32 rctl, fext_nvm11, tarc0;
1528
1529 if (hw->mac.type >= e1000_pch_spt) {
1530 fext_nvm11 = er32(FEXTNVM11);
1531 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1532 ew32(FEXTNVM11, fext_nvm11);
1533 tarc0 = er32(TARC(0));
1534 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1535 tarc0 &= 0xcfffffff;
1536 /* set bit 29 (value of MULR requests is now 2) */
1537 tarc0 |= 0x20000000;
1538 ew32(TARC(0), tarc0);
1539 }
1540 if (hw->phy.media_type == e1000_media_type_fiber ||
1541 hw->phy.media_type == e1000_media_type_internal_serdes) {
1542 switch (hw->mac.type) {
1543 case e1000_80003es2lan:
1544 return e1000_set_es2lan_mac_loopback(adapter);
1545 case e1000_82571:
1546 case e1000_82572:
1547 return e1000_set_82571_fiber_loopback(adapter);
1548 default:
1549 rctl = er32(RCTL);
1550 rctl |= E1000_RCTL_LBM_TCVR;
1551 ew32(RCTL, rctl);
1552 return 0;
1553 }
1554 } else if (hw->phy.media_type == e1000_media_type_copper) {
1555 return e1000_integrated_phy_loopback(adapter);
1556 }
1557
1558 return 7;
1559 }
1560
e1000_loopback_cleanup(struct e1000_adapter * adapter)1561 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1562 {
1563 struct e1000_hw *hw = &adapter->hw;
1564 u32 rctl, fext_nvm11, tarc0;
1565 u16 phy_reg;
1566
1567 rctl = er32(RCTL);
1568 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1569 ew32(RCTL, rctl);
1570
1571 switch (hw->mac.type) {
1572 case e1000_pch_spt:
1573 case e1000_pch_cnp:
1574 case e1000_pch_tgp:
1575 case e1000_pch_adp:
1576 case e1000_pch_mtp:
1577 case e1000_pch_lnp:
1578 fext_nvm11 = er32(FEXTNVM11);
1579 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1580 ew32(FEXTNVM11, fext_nvm11);
1581 tarc0 = er32(TARC(0));
1582 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1583 /* set bit 29 (value of MULR requests is now 0) */
1584 tarc0 &= 0xcfffffff;
1585 ew32(TARC(0), tarc0);
1586 fallthrough;
1587 case e1000_80003es2lan:
1588 if (hw->phy.media_type == e1000_media_type_fiber ||
1589 hw->phy.media_type == e1000_media_type_internal_serdes) {
1590 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1591 ew32(CTRL_EXT, adapter->tx_fifo_head);
1592 adapter->tx_fifo_head = 0;
1593 }
1594 fallthrough;
1595 case e1000_82571:
1596 case e1000_82572:
1597 if (hw->phy.media_type == e1000_media_type_fiber ||
1598 hw->phy.media_type == e1000_media_type_internal_serdes) {
1599 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1600 e1e_flush();
1601 usleep_range(10000, 11000);
1602 break;
1603 }
1604 fallthrough;
1605 default:
1606 hw->mac.autoneg = 1;
1607 if (hw->phy.type == e1000_phy_gg82563)
1608 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1609 e1e_rphy(hw, MII_BMCR, &phy_reg);
1610 if (phy_reg & BMCR_LOOPBACK) {
1611 phy_reg &= ~BMCR_LOOPBACK;
1612 e1e_wphy(hw, MII_BMCR, phy_reg);
1613 if (hw->phy.ops.commit)
1614 hw->phy.ops.commit(hw);
1615 }
1616 break;
1617 }
1618 }
1619
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1620 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1621 unsigned int frame_size)
1622 {
1623 memset(skb->data, 0xFF, frame_size);
1624 frame_size &= ~1;
1625 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1626 skb->data[frame_size / 2 + 10] = 0xBE;
1627 skb->data[frame_size / 2 + 12] = 0xAF;
1628 }
1629
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1630 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1631 unsigned int frame_size)
1632 {
1633 frame_size &= ~1;
1634 if (*(skb->data + 3) == 0xFF)
1635 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1636 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1637 return 0;
1638 return 13;
1639 }
1640
e1000_run_loopback_test(struct e1000_adapter * adapter)1641 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1642 {
1643 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1644 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1645 struct pci_dev *pdev = adapter->pdev;
1646 struct e1000_hw *hw = &adapter->hw;
1647 struct e1000_buffer *buffer_info;
1648 int i, j, k, l;
1649 int lc;
1650 int good_cnt;
1651 int ret_val = 0;
1652 unsigned long time;
1653
1654 ew32(RDT(0), rx_ring->count - 1);
1655
1656 /* Calculate the loop count based on the largest descriptor ring
1657 * The idea is to wrap the largest ring a number of times using 64
1658 * send/receive pairs during each loop
1659 */
1660
1661 if (rx_ring->count <= tx_ring->count)
1662 lc = ((tx_ring->count / 64) * 2) + 1;
1663 else
1664 lc = ((rx_ring->count / 64) * 2) + 1;
1665
1666 k = 0;
1667 l = 0;
1668 /* loop count loop */
1669 for (j = 0; j <= lc; j++) {
1670 /* send the packets */
1671 for (i = 0; i < 64; i++) {
1672 buffer_info = &tx_ring->buffer_info[k];
1673
1674 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1675 dma_sync_single_for_device(&pdev->dev,
1676 buffer_info->dma,
1677 buffer_info->length,
1678 DMA_TO_DEVICE);
1679 k++;
1680 if (k == tx_ring->count)
1681 k = 0;
1682 }
1683 ew32(TDT(0), k);
1684 e1e_flush();
1685 msleep(200);
1686 time = jiffies; /* set the start time for the receive */
1687 good_cnt = 0;
1688 /* receive the sent packets */
1689 do {
1690 buffer_info = &rx_ring->buffer_info[l];
1691
1692 dma_sync_single_for_cpu(&pdev->dev,
1693 buffer_info->dma, 2048,
1694 DMA_FROM_DEVICE);
1695
1696 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1697 1024);
1698 if (!ret_val)
1699 good_cnt++;
1700 l++;
1701 if (l == rx_ring->count)
1702 l = 0;
1703 /* time + 20 msecs (200 msecs on 2.4) is more than
1704 * enough time to complete the receives, if it's
1705 * exceeded, break and error off
1706 */
1707 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1708 if (good_cnt != 64) {
1709 ret_val = 13; /* ret_val is the same as mis-compare */
1710 break;
1711 }
1712 if (time_after(jiffies, time + 20)) {
1713 ret_val = 14; /* error code for time out error */
1714 break;
1715 }
1716 }
1717 return ret_val;
1718 }
1719
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1720 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1721 {
1722 struct e1000_hw *hw = &adapter->hw;
1723
1724 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1725 if (hw->phy.ops.check_reset_block &&
1726 hw->phy.ops.check_reset_block(hw)) {
1727 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1728 *data = 0;
1729 goto out;
1730 }
1731
1732 *data = e1000_setup_desc_rings(adapter);
1733 if (*data)
1734 goto out;
1735
1736 *data = e1000_setup_loopback_test(adapter);
1737 if (*data)
1738 goto err_loopback;
1739
1740 *data = e1000_run_loopback_test(adapter);
1741 e1000_loopback_cleanup(adapter);
1742
1743 err_loopback:
1744 e1000_free_desc_rings(adapter);
1745 out:
1746 return *data;
1747 }
1748
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1749 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1750 {
1751 struct e1000_hw *hw = &adapter->hw;
1752
1753 *data = 0;
1754 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1755 int i = 0;
1756
1757 hw->mac.serdes_has_link = false;
1758
1759 /* On some blade server designs, link establishment
1760 * could take as long as 2-3 minutes
1761 */
1762 do {
1763 hw->mac.ops.check_for_link(hw);
1764 if (hw->mac.serdes_has_link)
1765 return *data;
1766 msleep(20);
1767 } while (i++ < 3750);
1768
1769 *data = 1;
1770 } else {
1771 hw->mac.ops.check_for_link(hw);
1772 if (hw->mac.autoneg)
1773 /* On some Phy/switch combinations, link establishment
1774 * can take a few seconds more than expected.
1775 */
1776 msleep_interruptible(5000);
1777
1778 if (!(er32(STATUS) & E1000_STATUS_LU))
1779 *data = 1;
1780 }
1781 return *data;
1782 }
1783
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1784 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1785 int sset)
1786 {
1787 switch (sset) {
1788 case ETH_SS_TEST:
1789 return E1000_TEST_LEN;
1790 case ETH_SS_STATS:
1791 return E1000_STATS_LEN;
1792 case ETH_SS_PRIV_FLAGS:
1793 return E1000E_PRIV_FLAGS_STR_LEN;
1794 default:
1795 return -EOPNOTSUPP;
1796 }
1797 }
1798
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1799 static void e1000_diag_test(struct net_device *netdev,
1800 struct ethtool_test *eth_test, u64 *data)
1801 {
1802 struct e1000_adapter *adapter = netdev_priv(netdev);
1803 u16 autoneg_advertised;
1804 u8 forced_speed_duplex;
1805 u8 autoneg;
1806 bool if_running = netif_running(netdev);
1807
1808 pm_runtime_get_sync(netdev->dev.parent);
1809
1810 set_bit(__E1000_TESTING, &adapter->state);
1811
1812 if (!if_running) {
1813 /* Get control of and reset hardware */
1814 if (adapter->flags & FLAG_HAS_AMT)
1815 e1000e_get_hw_control(adapter);
1816
1817 e1000e_power_up_phy(adapter);
1818
1819 adapter->hw.phy.autoneg_wait_to_complete = 1;
1820 e1000e_reset(adapter);
1821 adapter->hw.phy.autoneg_wait_to_complete = 0;
1822 }
1823
1824 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1825 /* Offline tests */
1826
1827 /* save speed, duplex, autoneg settings */
1828 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1829 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1830 autoneg = adapter->hw.mac.autoneg;
1831
1832 e_info("offline testing starting\n");
1833
1834 if (if_running)
1835 /* indicate we're in test mode */
1836 e1000e_close(netdev);
1837
1838 if (e1000_reg_test(adapter, &data[0]))
1839 eth_test->flags |= ETH_TEST_FL_FAILED;
1840
1841 e1000e_reset(adapter);
1842 if (e1000_eeprom_test(adapter, &data[1]))
1843 eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845 e1000e_reset(adapter);
1846 if (e1000_intr_test(adapter, &data[2]))
1847 eth_test->flags |= ETH_TEST_FL_FAILED;
1848
1849 e1000e_reset(adapter);
1850 if (e1000_loopback_test(adapter, &data[3]))
1851 eth_test->flags |= ETH_TEST_FL_FAILED;
1852
1853 /* force this routine to wait until autoneg complete/timeout */
1854 adapter->hw.phy.autoneg_wait_to_complete = 1;
1855 e1000e_reset(adapter);
1856 adapter->hw.phy.autoneg_wait_to_complete = 0;
1857
1858 if (e1000_link_test(adapter, &data[4]))
1859 eth_test->flags |= ETH_TEST_FL_FAILED;
1860
1861 /* restore speed, duplex, autoneg settings */
1862 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1863 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1864 adapter->hw.mac.autoneg = autoneg;
1865 e1000e_reset(adapter);
1866
1867 clear_bit(__E1000_TESTING, &adapter->state);
1868 if (if_running)
1869 e1000e_open(netdev);
1870 } else {
1871 /* Online tests */
1872
1873 e_info("online testing starting\n");
1874
1875 /* register, eeprom, intr and loopback tests not run online */
1876 data[0] = 0;
1877 data[1] = 0;
1878 data[2] = 0;
1879 data[3] = 0;
1880
1881 if (e1000_link_test(adapter, &data[4]))
1882 eth_test->flags |= ETH_TEST_FL_FAILED;
1883
1884 clear_bit(__E1000_TESTING, &adapter->state);
1885 }
1886
1887 if (!if_running) {
1888 e1000e_reset(adapter);
1889
1890 if (adapter->flags & FLAG_HAS_AMT)
1891 e1000e_release_hw_control(adapter);
1892 }
1893
1894 msleep_interruptible(4 * 1000);
1895
1896 pm_runtime_put_sync(netdev->dev.parent);
1897 }
1898
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1899 static void e1000_get_wol(struct net_device *netdev,
1900 struct ethtool_wolinfo *wol)
1901 {
1902 struct e1000_adapter *adapter = netdev_priv(netdev);
1903
1904 wol->supported = 0;
1905 wol->wolopts = 0;
1906
1907 if (!(adapter->flags & FLAG_HAS_WOL) ||
1908 !device_can_wakeup(&adapter->pdev->dev))
1909 return;
1910
1911 wol->supported = WAKE_UCAST | WAKE_MCAST |
1912 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1913
1914 /* apply any specific unsupported masks here */
1915 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1916 wol->supported &= ~WAKE_UCAST;
1917
1918 if (adapter->wol & E1000_WUFC_EX)
1919 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1920 }
1921
1922 if (adapter->wol & E1000_WUFC_EX)
1923 wol->wolopts |= WAKE_UCAST;
1924 if (adapter->wol & E1000_WUFC_MC)
1925 wol->wolopts |= WAKE_MCAST;
1926 if (adapter->wol & E1000_WUFC_BC)
1927 wol->wolopts |= WAKE_BCAST;
1928 if (adapter->wol & E1000_WUFC_MAG)
1929 wol->wolopts |= WAKE_MAGIC;
1930 if (adapter->wol & E1000_WUFC_LNKC)
1931 wol->wolopts |= WAKE_PHY;
1932 }
1933
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1934 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1935 {
1936 struct e1000_adapter *adapter = netdev_priv(netdev);
1937
1938 if (!(adapter->flags & FLAG_HAS_WOL) ||
1939 !device_can_wakeup(&adapter->pdev->dev) ||
1940 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1941 WAKE_MAGIC | WAKE_PHY)))
1942 return -EOPNOTSUPP;
1943
1944 /* these settings will always override what we currently have */
1945 adapter->wol = 0;
1946
1947 if (wol->wolopts & WAKE_UCAST)
1948 adapter->wol |= E1000_WUFC_EX;
1949 if (wol->wolopts & WAKE_MCAST)
1950 adapter->wol |= E1000_WUFC_MC;
1951 if (wol->wolopts & WAKE_BCAST)
1952 adapter->wol |= E1000_WUFC_BC;
1953 if (wol->wolopts & WAKE_MAGIC)
1954 adapter->wol |= E1000_WUFC_MAG;
1955 if (wol->wolopts & WAKE_PHY)
1956 adapter->wol |= E1000_WUFC_LNKC;
1957
1958 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1959
1960 return 0;
1961 }
1962
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1963 static int e1000_set_phys_id(struct net_device *netdev,
1964 enum ethtool_phys_id_state state)
1965 {
1966 struct e1000_adapter *adapter = netdev_priv(netdev);
1967 struct e1000_hw *hw = &adapter->hw;
1968
1969 switch (state) {
1970 case ETHTOOL_ID_ACTIVE:
1971 pm_runtime_get_sync(netdev->dev.parent);
1972
1973 if (!hw->mac.ops.blink_led)
1974 return 2; /* cycle on/off twice per second */
1975
1976 hw->mac.ops.blink_led(hw);
1977 break;
1978
1979 case ETHTOOL_ID_INACTIVE:
1980 if (hw->phy.type == e1000_phy_ife)
1981 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1982 hw->mac.ops.led_off(hw);
1983 hw->mac.ops.cleanup_led(hw);
1984 pm_runtime_put_sync(netdev->dev.parent);
1985 break;
1986
1987 case ETHTOOL_ID_ON:
1988 hw->mac.ops.led_on(hw);
1989 break;
1990
1991 case ETHTOOL_ID_OFF:
1992 hw->mac.ops.led_off(hw);
1993 break;
1994 }
1995
1996 return 0;
1997 }
1998
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1999 static int e1000_get_coalesce(struct net_device *netdev,
2000 struct ethtool_coalesce *ec,
2001 struct kernel_ethtool_coalesce *kernel_coal,
2002 struct netlink_ext_ack *extack)
2003 {
2004 struct e1000_adapter *adapter = netdev_priv(netdev);
2005
2006 if (adapter->itr_setting <= 4)
2007 ec->rx_coalesce_usecs = adapter->itr_setting;
2008 else
2009 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2010
2011 return 0;
2012 }
2013
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2014 static int e1000_set_coalesce(struct net_device *netdev,
2015 struct ethtool_coalesce *ec,
2016 struct kernel_ethtool_coalesce *kernel_coal,
2017 struct netlink_ext_ack *extack)
2018 {
2019 struct e1000_adapter *adapter = netdev_priv(netdev);
2020
2021 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2022 ((ec->rx_coalesce_usecs > 4) &&
2023 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2024 (ec->rx_coalesce_usecs == 2))
2025 return -EINVAL;
2026
2027 if (ec->rx_coalesce_usecs == 4) {
2028 adapter->itr_setting = 4;
2029 adapter->itr = adapter->itr_setting;
2030 } else if (ec->rx_coalesce_usecs <= 3) {
2031 adapter->itr = 20000;
2032 adapter->itr_setting = ec->rx_coalesce_usecs;
2033 } else {
2034 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2035 adapter->itr_setting = adapter->itr & ~3;
2036 }
2037
2038 pm_runtime_get_sync(netdev->dev.parent);
2039
2040 if (adapter->itr_setting != 0)
2041 e1000e_write_itr(adapter, adapter->itr);
2042 else
2043 e1000e_write_itr(adapter, 0);
2044
2045 pm_runtime_put_sync(netdev->dev.parent);
2046
2047 return 0;
2048 }
2049
e1000_nway_reset(struct net_device * netdev)2050 static int e1000_nway_reset(struct net_device *netdev)
2051 {
2052 struct e1000_adapter *adapter = netdev_priv(netdev);
2053
2054 if (!netif_running(netdev))
2055 return -EAGAIN;
2056
2057 if (!adapter->hw.mac.autoneg)
2058 return -EINVAL;
2059
2060 pm_runtime_get_sync(netdev->dev.parent);
2061 e1000e_reinit_locked(adapter);
2062 pm_runtime_put_sync(netdev->dev.parent);
2063
2064 return 0;
2065 }
2066
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2067 static void e1000_get_ethtool_stats(struct net_device *netdev,
2068 struct ethtool_stats __always_unused *stats,
2069 u64 *data)
2070 {
2071 struct e1000_adapter *adapter = netdev_priv(netdev);
2072 struct rtnl_link_stats64 net_stats;
2073 int i;
2074 char *p = NULL;
2075
2076 pm_runtime_get_sync(netdev->dev.parent);
2077
2078 dev_get_stats(netdev, &net_stats);
2079
2080 pm_runtime_put_sync(netdev->dev.parent);
2081
2082 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2083 switch (e1000_gstrings_stats[i].type) {
2084 case NETDEV_STATS:
2085 p = (char *)&net_stats +
2086 e1000_gstrings_stats[i].stat_offset;
2087 break;
2088 case E1000_STATS:
2089 p = (char *)adapter +
2090 e1000_gstrings_stats[i].stat_offset;
2091 break;
2092 default:
2093 data[i] = 0;
2094 continue;
2095 }
2096
2097 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2098 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2099 }
2100 }
2101
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2102 static void e1000_get_strings(struct net_device __always_unused *netdev,
2103 u32 stringset, u8 *data)
2104 {
2105 u8 *p = data;
2106 int i;
2107
2108 switch (stringset) {
2109 case ETH_SS_TEST:
2110 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2111 break;
2112 case ETH_SS_STATS:
2113 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2114 memcpy(p, e1000_gstrings_stats[i].stat_string,
2115 ETH_GSTRING_LEN);
2116 p += ETH_GSTRING_LEN;
2117 }
2118 break;
2119 case ETH_SS_PRIV_FLAGS:
2120 memcpy(data, e1000e_priv_flags_strings,
2121 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2122 break;
2123 }
2124 }
2125
e1000_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * info,u32 __always_unused * rule_locs)2126 static int e1000_get_rxnfc(struct net_device *netdev,
2127 struct ethtool_rxnfc *info,
2128 u32 __always_unused *rule_locs)
2129 {
2130 info->data = 0;
2131
2132 switch (info->cmd) {
2133 case ETHTOOL_GRXFH: {
2134 struct e1000_adapter *adapter = netdev_priv(netdev);
2135 struct e1000_hw *hw = &adapter->hw;
2136 u32 mrqc;
2137
2138 pm_runtime_get_sync(netdev->dev.parent);
2139 mrqc = er32(MRQC);
2140 pm_runtime_put_sync(netdev->dev.parent);
2141
2142 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2143 return 0;
2144
2145 switch (info->flow_type) {
2146 case TCP_V4_FLOW:
2147 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2148 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2149 fallthrough;
2150 case UDP_V4_FLOW:
2151 case SCTP_V4_FLOW:
2152 case AH_ESP_V4_FLOW:
2153 case IPV4_FLOW:
2154 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2155 info->data |= RXH_IP_SRC | RXH_IP_DST;
2156 break;
2157 case TCP_V6_FLOW:
2158 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2159 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2160 fallthrough;
2161 case UDP_V6_FLOW:
2162 case SCTP_V6_FLOW:
2163 case AH_ESP_V6_FLOW:
2164 case IPV6_FLOW:
2165 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2166 info->data |= RXH_IP_SRC | RXH_IP_DST;
2167 break;
2168 default:
2169 break;
2170 }
2171 return 0;
2172 }
2173 default:
2174 return -EOPNOTSUPP;
2175 }
2176 }
2177
e1000e_get_eee(struct net_device * netdev,struct ethtool_eee * edata)2178 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2179 {
2180 struct e1000_adapter *adapter = netdev_priv(netdev);
2181 struct e1000_hw *hw = &adapter->hw;
2182 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2183 u32 ret_val;
2184
2185 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2186 return -EOPNOTSUPP;
2187
2188 switch (hw->phy.type) {
2189 case e1000_phy_82579:
2190 cap_addr = I82579_EEE_CAPABILITY;
2191 lpa_addr = I82579_EEE_LP_ABILITY;
2192 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2193 break;
2194 case e1000_phy_i217:
2195 cap_addr = I217_EEE_CAPABILITY;
2196 lpa_addr = I217_EEE_LP_ABILITY;
2197 pcs_stat_addr = I217_EEE_PCS_STATUS;
2198 break;
2199 default:
2200 return -EOPNOTSUPP;
2201 }
2202
2203 pm_runtime_get_sync(netdev->dev.parent);
2204
2205 ret_val = hw->phy.ops.acquire(hw);
2206 if (ret_val) {
2207 pm_runtime_put_sync(netdev->dev.parent);
2208 return -EBUSY;
2209 }
2210
2211 /* EEE Capability */
2212 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2213 if (ret_val)
2214 goto release;
2215 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2216
2217 /* EEE Advertised */
2218 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2219
2220 /* EEE Link Partner Advertised */
2221 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2222 if (ret_val)
2223 goto release;
2224 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2225
2226 /* EEE PCS Status */
2227 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2228 if (ret_val)
2229 goto release;
2230 if (hw->phy.type == e1000_phy_82579)
2231 phy_data <<= 8;
2232
2233 /* Result of the EEE auto negotiation - there is no register that
2234 * has the status of the EEE negotiation so do a best-guess based
2235 * on whether Tx or Rx LPI indications have been received.
2236 */
2237 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2238 edata->eee_active = true;
2239
2240 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2241 edata->tx_lpi_enabled = true;
2242 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2243
2244 release:
2245 hw->phy.ops.release(hw);
2246 if (ret_val)
2247 ret_val = -ENODATA;
2248
2249 pm_runtime_put_sync(netdev->dev.parent);
2250
2251 return ret_val;
2252 }
2253
e1000e_set_eee(struct net_device * netdev,struct ethtool_eee * edata)2254 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2255 {
2256 struct e1000_adapter *adapter = netdev_priv(netdev);
2257 struct e1000_hw *hw = &adapter->hw;
2258 struct ethtool_eee eee_curr;
2259 s32 ret_val;
2260
2261 ret_val = e1000e_get_eee(netdev, &eee_curr);
2262 if (ret_val)
2263 return ret_val;
2264
2265 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2266 e_err("Setting EEE tx-lpi is not supported\n");
2267 return -EINVAL;
2268 }
2269
2270 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2271 e_err("Setting EEE Tx LPI timer is not supported\n");
2272 return -EINVAL;
2273 }
2274
2275 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2276 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2277 return -EINVAL;
2278 }
2279
2280 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2281
2282 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2283
2284 pm_runtime_get_sync(netdev->dev.parent);
2285
2286 /* reset the link */
2287 if (netif_running(netdev))
2288 e1000e_reinit_locked(adapter);
2289 else
2290 e1000e_reset(adapter);
2291
2292 pm_runtime_put_sync(netdev->dev.parent);
2293
2294 return 0;
2295 }
2296
e1000e_get_ts_info(struct net_device * netdev,struct ethtool_ts_info * info)2297 static int e1000e_get_ts_info(struct net_device *netdev,
2298 struct ethtool_ts_info *info)
2299 {
2300 struct e1000_adapter *adapter = netdev_priv(netdev);
2301
2302 ethtool_op_get_ts_info(netdev, info);
2303
2304 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2305 return 0;
2306
2307 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2308 SOF_TIMESTAMPING_RX_HARDWARE |
2309 SOF_TIMESTAMPING_RAW_HARDWARE);
2310
2311 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2312
2313 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2314 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2315 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2316 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2317 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2318 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2319 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2320 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2321 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2322 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2323 BIT(HWTSTAMP_FILTER_ALL));
2324
2325 if (adapter->ptp_clock)
2326 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2327
2328 return 0;
2329 }
2330
e1000e_get_priv_flags(struct net_device * netdev)2331 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2332 {
2333 struct e1000_adapter *adapter = netdev_priv(netdev);
2334 u32 priv_flags = 0;
2335
2336 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2337 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2338
2339 return priv_flags;
2340 }
2341
e1000e_set_priv_flags(struct net_device * netdev,u32 priv_flags)2342 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2343 {
2344 struct e1000_adapter *adapter = netdev_priv(netdev);
2345 unsigned int flags2 = adapter->flags2;
2346
2347 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2348 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2349 struct e1000_hw *hw = &adapter->hw;
2350
2351 if (hw->mac.type < e1000_pch_cnp)
2352 return -EINVAL;
2353 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2354 }
2355
2356 if (flags2 != adapter->flags2)
2357 adapter->flags2 = flags2;
2358
2359 return 0;
2360 }
2361
2362 static const struct ethtool_ops e1000_ethtool_ops = {
2363 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2364 .get_drvinfo = e1000_get_drvinfo,
2365 .get_regs_len = e1000_get_regs_len,
2366 .get_regs = e1000_get_regs,
2367 .get_wol = e1000_get_wol,
2368 .set_wol = e1000_set_wol,
2369 .get_msglevel = e1000_get_msglevel,
2370 .set_msglevel = e1000_set_msglevel,
2371 .nway_reset = e1000_nway_reset,
2372 .get_link = ethtool_op_get_link,
2373 .get_eeprom_len = e1000_get_eeprom_len,
2374 .get_eeprom = e1000_get_eeprom,
2375 .set_eeprom = e1000_set_eeprom,
2376 .get_ringparam = e1000_get_ringparam,
2377 .set_ringparam = e1000_set_ringparam,
2378 .get_pauseparam = e1000_get_pauseparam,
2379 .set_pauseparam = e1000_set_pauseparam,
2380 .self_test = e1000_diag_test,
2381 .get_strings = e1000_get_strings,
2382 .set_phys_id = e1000_set_phys_id,
2383 .get_ethtool_stats = e1000_get_ethtool_stats,
2384 .get_sset_count = e1000e_get_sset_count,
2385 .get_coalesce = e1000_get_coalesce,
2386 .set_coalesce = e1000_set_coalesce,
2387 .get_rxnfc = e1000_get_rxnfc,
2388 .get_ts_info = e1000e_get_ts_info,
2389 .get_eee = e1000e_get_eee,
2390 .set_eee = e1000e_set_eee,
2391 .get_link_ksettings = e1000_get_link_ksettings,
2392 .set_link_ksettings = e1000_set_link_ksettings,
2393 .get_priv_flags = e1000e_get_priv_flags,
2394 .set_priv_flags = e1000e_set_priv_flags,
2395 };
2396
e1000e_set_ethtool_ops(struct net_device * netdev)2397 void e1000e_set_ethtool_ops(struct net_device *netdev)
2398 {
2399 netdev->ethtool_ops = &e1000_ethtool_ops;
2400 }
2401