1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13
14 #define HCLGEVF_NAME "hclgevf"
15
16 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
17
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 unsigned long delay);
21
22 static struct hnae3_ae_algo ae_algovf;
23
24 static struct workqueue_struct *hclgevf_wq;
25
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 /* required last entry */
31 {0, }
32 };
33
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 HCLGEVF_RST_ING,
53 HCLGEVF_GRO_EN_REG};
54
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 HCLGEVF_RING_RX_ADDR_H_REG,
57 HCLGEVF_RING_RX_BD_NUM_REG,
58 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 HCLGEVF_RING_RX_MERGE_EN_REG,
60 HCLGEVF_RING_RX_TAIL_REG,
61 HCLGEVF_RING_RX_HEAD_REG,
62 HCLGEVF_RING_RX_FBD_NUM_REG,
63 HCLGEVF_RING_RX_OFFSET_REG,
64 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 HCLGEVF_RING_RX_STASH_REG,
66 HCLGEVF_RING_RX_BD_ERR_REG,
67 HCLGEVF_RING_TX_ADDR_L_REG,
68 HCLGEVF_RING_TX_ADDR_H_REG,
69 HCLGEVF_RING_TX_BD_NUM_REG,
70 HCLGEVF_RING_TX_PRIORITY_REG,
71 HCLGEVF_RING_TX_TC_REG,
72 HCLGEVF_RING_TX_MERGE_EN_REG,
73 HCLGEVF_RING_TX_TAIL_REG,
74 HCLGEVF_RING_TX_HEAD_REG,
75 HCLGEVF_RING_TX_FBD_NUM_REG,
76 HCLGEVF_RING_TX_OFFSET_REG,
77 HCLGEVF_RING_TX_EBD_NUM_REG,
78 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 HCLGEVF_RING_TX_BD_ERR_REG,
80 HCLGEVF_RING_EN_REG};
81
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 HCLGEVF_TQP_INTR_GL0_REG,
84 HCLGEVF_TQP_INTR_GL1_REG,
85 HCLGEVF_TQP_INTR_GL2_REG,
86 HCLGEVF_TQP_INTR_RL_REG};
87
88 /* hclgevf_cmd_send - send command to command queue
89 * @hw: pointer to the hw struct
90 * @desc: prefilled descriptor for describing the command
91 * @num : the number of descriptors to be sent
92 *
93 * This is the main send command for command queue, it
94 * sends the queue, cleans the queue, etc
95 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100
hclgevf_arq_init(struct hclgevf_dev * hdev)101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104
105 spin_lock(&cmdq->crq.lock);
106 /* initialize the pointers of async rx queue of mailbox */
107 hdev->arq.hdev = hdev;
108 hdev->arq.head = 0;
109 hdev->arq.tail = 0;
110 atomic_set(&hdev->arq.count, 0);
111 spin_unlock(&cmdq->crq.lock);
112 }
113
hclgevf_ae_get_hdev(struct hnae3_handle * handle)114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 if (!handle->client)
117 return container_of(handle, struct hclgevf_dev, nic);
118 else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 return container_of(handle, struct hclgevf_dev, roce);
120 else
121 return container_of(handle, struct hclgevf_dev, nic);
122 }
123
hclgevf_update_stats(struct hnae3_handle * handle,struct net_device_stats * net_stats)124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 struct net_device_stats *net_stats)
126 {
127 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 int status;
129
130 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 if (status)
132 dev_err(&hdev->pdev->dev,
133 "VF update of TQPS stats fail, status = %d.\n",
134 status);
135 }
136
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 if (strset == ETH_SS_TEST)
140 return -EOPNOTSUPP;
141 else if (strset == ETH_SS_STATS)
142 return hclge_comm_tqps_get_sset_count(handle);
143
144 return 0;
145 }
146
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 u8 *data)
149 {
150 u8 *p = (char *)data;
151
152 if (strset == ETH_SS_STATS)
153 p = hclge_comm_tqps_get_strings(handle, p);
154 }
155
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 hclge_comm_tqps_get_stats(handle, data);
159 }
160
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 u8 subcode)
163 {
164 if (msg) {
165 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 msg->code = code;
167 msg->subcode = subcode;
168 }
169 }
170
hclgevf_get_basic_info(struct hclgevf_dev * hdev)171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 struct hclge_basic_info *basic_info;
176 struct hclge_vf_to_pf_msg send_msg;
177 unsigned long caps;
178 int status;
179
180 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 sizeof(resp_msg));
183 if (status) {
184 dev_err(&hdev->pdev->dev,
185 "failed to get basic info from pf, ret = %d", status);
186 return status;
187 }
188
189 basic_info = (struct hclge_basic_info *)resp_msg;
190
191 hdev->hw_tc_map = basic_info->hw_tc_map;
192 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
193 caps = le32_to_cpu(basic_info->pf_caps);
194 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196
197 return 0;
198 }
199
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 struct hnae3_handle *nic = &hdev->nic;
203 struct hclge_vf_to_pf_msg send_msg;
204 u8 resp_msg;
205 int ret;
206
207 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 sizeof(u8));
211 if (ret) {
212 dev_err(&hdev->pdev->dev,
213 "VF request to get port based vlan state failed %d",
214 ret);
215 return ret;
216 }
217
218 nic->port_base_vlan_state = resp_msg;
219
220 return 0;
221 }
222
hclgevf_get_queue_info(struct hclgevf_dev * hdev)223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
226
227 struct hclge_mbx_vf_queue_info *queue_info;
228 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
229 struct hclge_vf_to_pf_msg send_msg;
230 int status;
231
232 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
233 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
234 HCLGEVF_TQPS_RSS_INFO_LEN);
235 if (status) {
236 dev_err(&hdev->pdev->dev,
237 "VF request to get tqp info from PF failed %d",
238 status);
239 return status;
240 }
241
242 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
243 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
244 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
245 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
246
247 return 0;
248 }
249
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)250 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
251 {
252 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
253
254 struct hclge_mbx_vf_queue_depth *queue_depth;
255 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
256 struct hclge_vf_to_pf_msg send_msg;
257 int ret;
258
259 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
261 HCLGEVF_TQPS_DEPTH_INFO_LEN);
262 if (ret) {
263 dev_err(&hdev->pdev->dev,
264 "VF request to get tqp depth info from PF failed %d",
265 ret);
266 return ret;
267 }
268
269 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
270 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
271 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
272
273 return 0;
274 }
275
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)276 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
277 {
278 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
279 struct hclge_vf_to_pf_msg send_msg;
280 u16 qid_in_pf = 0;
281 u8 resp_data[2];
282 int ret;
283
284 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
285 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
286 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
287 sizeof(resp_data));
288 if (!ret)
289 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
290
291 return qid_in_pf;
292 }
293
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)294 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
295 {
296 struct hclge_vf_to_pf_msg send_msg;
297 u8 resp_msg[2];
298 int ret;
299
300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
301 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
302 sizeof(resp_msg));
303 if (ret) {
304 dev_err(&hdev->pdev->dev,
305 "VF request to get the pf port media type failed %d",
306 ret);
307 return ret;
308 }
309
310 hdev->hw.mac.media_type = resp_msg[0];
311 hdev->hw.mac.module_type = resp_msg[1];
312
313 return 0;
314 }
315
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)316 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
317 {
318 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
319 struct hclge_comm_tqp *tqp;
320 int i;
321
322 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
323 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
324 if (!hdev->htqp)
325 return -ENOMEM;
326
327 tqp = hdev->htqp;
328
329 for (i = 0; i < hdev->num_tqps; i++) {
330 tqp->dev = &hdev->pdev->dev;
331 tqp->index = i;
332
333 tqp->q.ae_algo = &ae_algovf;
334 tqp->q.buf_size = hdev->rx_buf_len;
335 tqp->q.tx_desc_num = hdev->num_tx_desc;
336 tqp->q.rx_desc_num = hdev->num_rx_desc;
337
338 /* need an extended offset to configure queues >=
339 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
340 */
341 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
342 tqp->q.io_base = hdev->hw.hw.io_base +
343 HCLGEVF_TQP_REG_OFFSET +
344 i * HCLGEVF_TQP_REG_SIZE;
345 else
346 tqp->q.io_base = hdev->hw.hw.io_base +
347 HCLGEVF_TQP_REG_OFFSET +
348 HCLGEVF_TQP_EXT_REG_OFFSET +
349 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
350 HCLGEVF_TQP_REG_SIZE;
351
352 /* when device supports tx push and has device memory,
353 * the queue can execute push mode or doorbell mode on
354 * device memory.
355 */
356 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
357 tqp->q.mem_base = hdev->hw.hw.mem_base +
358 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
359
360 tqp++;
361 }
362
363 return 0;
364 }
365
hclgevf_knic_setup(struct hclgevf_dev * hdev)366 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
367 {
368 struct hnae3_handle *nic = &hdev->nic;
369 struct hnae3_knic_private_info *kinfo;
370 u16 new_tqps = hdev->num_tqps;
371 unsigned int i;
372 u8 num_tc = 0;
373
374 kinfo = &nic->kinfo;
375 kinfo->num_tx_desc = hdev->num_tx_desc;
376 kinfo->num_rx_desc = hdev->num_rx_desc;
377 kinfo->rx_buf_len = hdev->rx_buf_len;
378 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
379 if (hdev->hw_tc_map & BIT(i))
380 num_tc++;
381
382 num_tc = num_tc ? num_tc : 1;
383 kinfo->tc_info.num_tc = num_tc;
384 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
385 new_tqps = kinfo->rss_size * num_tc;
386 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
387
388 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
389 sizeof(struct hnae3_queue *), GFP_KERNEL);
390 if (!kinfo->tqp)
391 return -ENOMEM;
392
393 for (i = 0; i < kinfo->num_tqps; i++) {
394 hdev->htqp[i].q.handle = &hdev->nic;
395 hdev->htqp[i].q.tqp_index = i;
396 kinfo->tqp[i] = &hdev->htqp[i].q;
397 }
398
399 /* after init the max rss_size and tqps, adjust the default tqp numbers
400 * and rss size with the actual vector numbers
401 */
402 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
403 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
404 kinfo->rss_size);
405
406 return 0;
407 }
408
hclgevf_request_link_info(struct hclgevf_dev * hdev)409 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
410 {
411 struct hclge_vf_to_pf_msg send_msg;
412 int status;
413
414 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
415 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
416 if (status)
417 dev_err(&hdev->pdev->dev,
418 "VF failed to fetch link status(%d) from PF", status);
419 }
420
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)421 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
422 {
423 struct hnae3_handle *rhandle = &hdev->roce;
424 struct hnae3_handle *handle = &hdev->nic;
425 struct hnae3_client *rclient;
426 struct hnae3_client *client;
427
428 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
429 return;
430
431 client = handle->client;
432 rclient = hdev->roce_client;
433
434 link_state =
435 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
436 if (link_state != hdev->hw.mac.link) {
437 hdev->hw.mac.link = link_state;
438 client->ops->link_status_change(handle, !!link_state);
439 if (rclient && rclient->ops->link_status_change)
440 rclient->ops->link_status_change(rhandle, !!link_state);
441 }
442
443 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
444 }
445
hclgevf_update_link_mode(struct hclgevf_dev * hdev)446 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
447 {
448 #define HCLGEVF_ADVERTISING 0
449 #define HCLGEVF_SUPPORTED 1
450
451 struct hclge_vf_to_pf_msg send_msg;
452
453 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
454 send_msg.data[0] = HCLGEVF_ADVERTISING;
455 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
456 send_msg.data[0] = HCLGEVF_SUPPORTED;
457 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
458 }
459
hclgevf_set_handle_info(struct hclgevf_dev * hdev)460 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
461 {
462 struct hnae3_handle *nic = &hdev->nic;
463 int ret;
464
465 nic->ae_algo = &ae_algovf;
466 nic->pdev = hdev->pdev;
467 nic->numa_node_mask = hdev->numa_node_mask;
468 nic->flags |= HNAE3_SUPPORT_VF;
469 nic->kinfo.io_base = hdev->hw.hw.io_base;
470
471 ret = hclgevf_knic_setup(hdev);
472 if (ret)
473 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
474 ret);
475 return ret;
476 }
477
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)478 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
479 {
480 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
481 dev_warn(&hdev->pdev->dev,
482 "vector(vector_id %d) has been freed.\n", vector_id);
483 return;
484 }
485
486 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
487 hdev->num_msi_left += 1;
488 hdev->num_msi_used -= 1;
489 }
490
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)491 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
492 struct hnae3_vector_info *vector_info)
493 {
494 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
495 struct hnae3_vector_info *vector = vector_info;
496 int alloc = 0;
497 int i, j;
498
499 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
500 vector_num = min(hdev->num_msi_left, vector_num);
501
502 for (j = 0; j < vector_num; j++) {
503 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
504 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
505 vector->vector = pci_irq_vector(hdev->pdev, i);
506 vector->io_addr = hdev->hw.hw.io_base +
507 HCLGEVF_VECTOR_REG_BASE +
508 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
509 hdev->vector_status[i] = 0;
510 hdev->vector_irq[i] = vector->vector;
511
512 vector++;
513 alloc++;
514
515 break;
516 }
517 }
518 }
519 hdev->num_msi_left -= alloc;
520 hdev->num_msi_used += alloc;
521
522 return alloc;
523 }
524
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)525 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
526 {
527 int i;
528
529 for (i = 0; i < hdev->num_msi; i++)
530 if (vector == hdev->vector_irq[i])
531 return i;
532
533 return -EINVAL;
534 }
535
536 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)537 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
538 {
539 #define HCLGEVF_RSS_MBX_RESP_LEN 8
540 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
541 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
542 struct hclge_vf_to_pf_msg send_msg;
543 u16 msg_num, hash_key_index;
544 u8 index;
545 int ret;
546
547 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
548 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
549 HCLGEVF_RSS_MBX_RESP_LEN;
550 for (index = 0; index < msg_num; index++) {
551 send_msg.data[0] = index;
552 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
553 HCLGEVF_RSS_MBX_RESP_LEN);
554 if (ret) {
555 dev_err(&hdev->pdev->dev,
556 "VF get rss hash key from PF failed, ret=%d",
557 ret);
558 return ret;
559 }
560
561 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
562 if (index == msg_num - 1)
563 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
564 &resp_msg[0],
565 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
566 else
567 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
568 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
569 }
570
571 return 0;
572 }
573
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)574 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
575 u8 *hfunc)
576 {
577 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
578 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
579 int ret;
580
581 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
582 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
583 } else {
584 if (hfunc)
585 *hfunc = ETH_RSS_HASH_TOP;
586 if (key) {
587 ret = hclgevf_get_rss_hash_key(hdev);
588 if (ret)
589 return ret;
590 memcpy(key, rss_cfg->rss_hash_key,
591 HCLGE_COMM_RSS_KEY_SIZE);
592 }
593 }
594
595 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
596 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
597
598 return 0;
599 }
600
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)601 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
602 const u8 *key, const u8 hfunc)
603 {
604 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
605 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
606 int ret, i;
607
608 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
609 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
610 hfunc);
611 if (ret)
612 return ret;
613 }
614
615 /* update the shadow RSS table with user specified qids */
616 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
617 rss_cfg->rss_indirection_tbl[i] = indir[i];
618
619 /* update the hardware */
620 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
621 rss_cfg->rss_indirection_tbl);
622 }
623
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)624 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
625 struct ethtool_rxnfc *nfc)
626 {
627 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
628 int ret;
629
630 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
631 return -EOPNOTSUPP;
632
633 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
634 &hdev->rss_cfg, nfc);
635 if (ret)
636 dev_err(&hdev->pdev->dev,
637 "failed to set rss tuple, ret = %d.\n", ret);
638
639 return ret;
640 }
641
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)642 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
643 struct ethtool_rxnfc *nfc)
644 {
645 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
646 u8 tuple_sets;
647 int ret;
648
649 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
650 return -EOPNOTSUPP;
651
652 nfc->data = 0;
653
654 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
655 &tuple_sets);
656 if (ret || !tuple_sets)
657 return ret;
658
659 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
660
661 return 0;
662 }
663
hclgevf_get_tc_size(struct hnae3_handle * handle)664 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
665 {
666 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
667 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
668
669 return rss_cfg->rss_size;
670 }
671
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)672 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
673 int vector_id,
674 struct hnae3_ring_chain_node *ring_chain)
675 {
676 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
677 struct hclge_vf_to_pf_msg send_msg;
678 struct hnae3_ring_chain_node *node;
679 int status;
680 int i = 0;
681
682 memset(&send_msg, 0, sizeof(send_msg));
683 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
684 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
685 send_msg.vector_id = vector_id;
686
687 for (node = ring_chain; node; node = node->next) {
688 send_msg.param[i].ring_type =
689 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
690
691 send_msg.param[i].tqp_index = node->tqp_index;
692 send_msg.param[i].int_gl_index =
693 hnae3_get_field(node->int_gl_idx,
694 HNAE3_RING_GL_IDX_M,
695 HNAE3_RING_GL_IDX_S);
696
697 i++;
698 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
699 send_msg.ring_num = i;
700
701 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
702 NULL, 0);
703 if (status) {
704 dev_err(&hdev->pdev->dev,
705 "Map TQP fail, status is %d.\n",
706 status);
707 return status;
708 }
709 i = 0;
710 }
711 }
712
713 return 0;
714 }
715
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)716 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
717 struct hnae3_ring_chain_node *ring_chain)
718 {
719 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 int vector_id;
721
722 vector_id = hclgevf_get_vector_index(hdev, vector);
723 if (vector_id < 0) {
724 dev_err(&handle->pdev->dev,
725 "Get vector index fail. ret =%d\n", vector_id);
726 return vector_id;
727 }
728
729 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
730 }
731
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)732 static int hclgevf_unmap_ring_from_vector(
733 struct hnae3_handle *handle,
734 int vector,
735 struct hnae3_ring_chain_node *ring_chain)
736 {
737 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
738 int ret, vector_id;
739
740 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
741 return 0;
742
743 vector_id = hclgevf_get_vector_index(hdev, vector);
744 if (vector_id < 0) {
745 dev_err(&handle->pdev->dev,
746 "Get vector index fail. ret =%d\n", vector_id);
747 return vector_id;
748 }
749
750 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
751 if (ret)
752 dev_err(&handle->pdev->dev,
753 "Unmap ring from vector fail. vector=%d, ret =%d\n",
754 vector_id,
755 ret);
756
757 return ret;
758 }
759
hclgevf_put_vector(struct hnae3_handle * handle,int vector)760 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
761 {
762 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
763 int vector_id;
764
765 vector_id = hclgevf_get_vector_index(hdev, vector);
766 if (vector_id < 0) {
767 dev_err(&handle->pdev->dev,
768 "hclgevf_put_vector get vector index fail. ret =%d\n",
769 vector_id);
770 return vector_id;
771 }
772
773 hclgevf_free_vector(hdev, vector_id);
774
775 return 0;
776 }
777
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)778 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
779 bool en_uc_pmc, bool en_mc_pmc,
780 bool en_bc_pmc)
781 {
782 struct hnae3_handle *handle = &hdev->nic;
783 struct hclge_vf_to_pf_msg send_msg;
784 int ret;
785
786 memset(&send_msg, 0, sizeof(send_msg));
787 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
788 send_msg.en_bc = en_bc_pmc ? 1 : 0;
789 send_msg.en_uc = en_uc_pmc ? 1 : 0;
790 send_msg.en_mc = en_mc_pmc ? 1 : 0;
791 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
792 &handle->priv_flags) ? 1 : 0;
793
794 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
795 if (ret)
796 dev_err(&hdev->pdev->dev,
797 "Set promisc mode fail, status is %d.\n", ret);
798
799 return ret;
800 }
801
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)802 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
803 bool en_mc_pmc)
804 {
805 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
806 bool en_bc_pmc;
807
808 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
809
810 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
811 en_bc_pmc);
812 }
813
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)814 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
815 {
816 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817
818 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 hclgevf_task_schedule(hdev, 0);
820 }
821
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)822 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
823 {
824 struct hnae3_handle *handle = &hdev->nic;
825 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
826 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
827 int ret;
828
829 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
830 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
831 if (!ret)
832 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
833 }
834 }
835
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)836 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
837 u16 stream_id, bool enable)
838 {
839 struct hclgevf_cfg_com_tqp_queue_cmd *req;
840 struct hclge_desc desc;
841
842 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
843
844 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
845 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
846 req->stream_id = cpu_to_le16(stream_id);
847 if (enable)
848 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
849
850 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
851 }
852
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)853 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
854 {
855 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
856 int ret;
857 u16 i;
858
859 for (i = 0; i < handle->kinfo.num_tqps; i++) {
860 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
861 if (ret)
862 return ret;
863 }
864
865 return 0;
866 }
867
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)868 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
869 {
870 struct hclge_vf_to_pf_msg send_msg;
871 u8 host_mac[ETH_ALEN];
872 int status;
873
874 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
875 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
876 ETH_ALEN);
877 if (status) {
878 dev_err(&hdev->pdev->dev,
879 "fail to get VF MAC from host %d", status);
880 return status;
881 }
882
883 ether_addr_copy(p, host_mac);
884
885 return 0;
886 }
887
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)888 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 u8 host_mac_addr[ETH_ALEN];
892
893 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
894 return;
895
896 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
897 if (hdev->has_pf_mac)
898 ether_addr_copy(p, host_mac_addr);
899 else
900 ether_addr_copy(p, hdev->hw.mac.mac_addr);
901 }
902
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)903 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
904 bool is_first)
905 {
906 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
908 struct hclge_vf_to_pf_msg send_msg;
909 u8 *new_mac_addr = (u8 *)p;
910 int status;
911
912 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
913 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
914 ether_addr_copy(send_msg.data, new_mac_addr);
915 if (is_first && !hdev->has_pf_mac)
916 eth_zero_addr(&send_msg.data[ETH_ALEN]);
917 else
918 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
919 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
920 if (!status)
921 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
922
923 return status;
924 }
925
926 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)927 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
928 {
929 struct hclgevf_mac_addr_node *mac_node, *tmp;
930
931 list_for_each_entry_safe(mac_node, tmp, list, node)
932 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
933 return mac_node;
934
935 return NULL;
936 }
937
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)938 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
939 enum HCLGEVF_MAC_NODE_STATE state)
940 {
941 switch (state) {
942 /* from set_rx_mode or tmp_add_list */
943 case HCLGEVF_MAC_TO_ADD:
944 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
945 mac_node->state = HCLGEVF_MAC_ACTIVE;
946 break;
947 /* only from set_rx_mode */
948 case HCLGEVF_MAC_TO_DEL:
949 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
950 list_del(&mac_node->node);
951 kfree(mac_node);
952 } else {
953 mac_node->state = HCLGEVF_MAC_TO_DEL;
954 }
955 break;
956 /* only from tmp_add_list, the mac_node->state won't be
957 * HCLGEVF_MAC_ACTIVE
958 */
959 case HCLGEVF_MAC_ACTIVE:
960 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
961 mac_node->state = HCLGEVF_MAC_ACTIVE;
962 break;
963 }
964 }
965
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)966 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
967 enum HCLGEVF_MAC_NODE_STATE state,
968 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
969 const unsigned char *addr)
970 {
971 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
972 struct hclgevf_mac_addr_node *mac_node;
973 struct list_head *list;
974
975 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
976 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
977
978 spin_lock_bh(&hdev->mac_table.mac_list_lock);
979
980 /* if the mac addr is already in the mac list, no need to add a new
981 * one into it, just check the mac addr state, convert it to a new
982 * state, or just remove it, or do nothing.
983 */
984 mac_node = hclgevf_find_mac_node(list, addr);
985 if (mac_node) {
986 hclgevf_update_mac_node(mac_node, state);
987 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
988 return 0;
989 }
990 /* if this address is never added, unnecessary to delete */
991 if (state == HCLGEVF_MAC_TO_DEL) {
992 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 return -ENOENT;
994 }
995
996 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
997 if (!mac_node) {
998 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
999 return -ENOMEM;
1000 }
1001
1002 mac_node->state = state;
1003 ether_addr_copy(mac_node->mac_addr, addr);
1004 list_add_tail(&mac_node->node, list);
1005
1006 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1007 return 0;
1008 }
1009
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1010 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1011 const unsigned char *addr)
1012 {
1013 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 HCLGEVF_MAC_ADDR_UC, addr);
1015 }
1016
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1017 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1018 const unsigned char *addr)
1019 {
1020 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 HCLGEVF_MAC_ADDR_UC, addr);
1022 }
1023
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1024 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1025 const unsigned char *addr)
1026 {
1027 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1028 HCLGEVF_MAC_ADDR_MC, addr);
1029 }
1030
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1031 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1032 const unsigned char *addr)
1033 {
1034 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1035 HCLGEVF_MAC_ADDR_MC, addr);
1036 }
1037
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1038 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1039 struct hclgevf_mac_addr_node *mac_node,
1040 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1041 {
1042 struct hclge_vf_to_pf_msg send_msg;
1043 u8 code, subcode;
1044
1045 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1046 code = HCLGE_MBX_SET_UNICAST;
1047 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1048 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1049 else
1050 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1051 } else {
1052 code = HCLGE_MBX_SET_MULTICAST;
1053 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1054 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1055 else
1056 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1057 }
1058
1059 hclgevf_build_send_msg(&send_msg, code, subcode);
1060 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1061 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1062 }
1063
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1064 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1065 struct list_head *list,
1066 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1067 {
1068 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1069 struct hclgevf_mac_addr_node *mac_node, *tmp;
1070 int ret;
1071
1072 list_for_each_entry_safe(mac_node, tmp, list, node) {
1073 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1074 if (ret) {
1075 hnae3_format_mac_addr(format_mac_addr,
1076 mac_node->mac_addr);
1077 dev_err(&hdev->pdev->dev,
1078 "failed to configure mac %s, state = %d, ret = %d\n",
1079 format_mac_addr, mac_node->state, ret);
1080 return;
1081 }
1082 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1083 mac_node->state = HCLGEVF_MAC_ACTIVE;
1084 } else {
1085 list_del(&mac_node->node);
1086 kfree(mac_node);
1087 }
1088 }
1089 }
1090
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1091 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1092 struct list_head *mac_list)
1093 {
1094 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1095
1096 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1097 /* if the mac address from tmp_add_list is not in the
1098 * uc/mc_mac_list, it means have received a TO_DEL request
1099 * during the time window of sending mac config request to PF
1100 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1101 * then it will be removed at next time. If is TO_ADD, it means
1102 * send TO_ADD request failed, so just remove the mac node.
1103 */
1104 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1105 if (new_node) {
1106 hclgevf_update_mac_node(new_node, mac_node->state);
1107 list_del(&mac_node->node);
1108 kfree(mac_node);
1109 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1110 mac_node->state = HCLGEVF_MAC_TO_DEL;
1111 list_move_tail(&mac_node->node, mac_list);
1112 } else {
1113 list_del(&mac_node->node);
1114 kfree(mac_node);
1115 }
1116 }
1117 }
1118
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1119 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1120 struct list_head *mac_list)
1121 {
1122 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1123
1124 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1125 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1126 if (new_node) {
1127 /* If the mac addr is exist in the mac list, it means
1128 * received a new request TO_ADD during the time window
1129 * of sending mac addr configurrequest to PF, so just
1130 * change the mac state to ACTIVE.
1131 */
1132 new_node->state = HCLGEVF_MAC_ACTIVE;
1133 list_del(&mac_node->node);
1134 kfree(mac_node);
1135 } else {
1136 list_move_tail(&mac_node->node, mac_list);
1137 }
1138 }
1139 }
1140
hclgevf_clear_list(struct list_head * list)1141 static void hclgevf_clear_list(struct list_head *list)
1142 {
1143 struct hclgevf_mac_addr_node *mac_node, *tmp;
1144
1145 list_for_each_entry_safe(mac_node, tmp, list, node) {
1146 list_del(&mac_node->node);
1147 kfree(mac_node);
1148 }
1149 }
1150
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1151 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1152 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1153 {
1154 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1155 struct list_head tmp_add_list, tmp_del_list;
1156 struct list_head *list;
1157
1158 INIT_LIST_HEAD(&tmp_add_list);
1159 INIT_LIST_HEAD(&tmp_del_list);
1160
1161 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1162 * we can add/delete these mac addr outside the spin lock
1163 */
1164 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1165 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1166
1167 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1168
1169 list_for_each_entry_safe(mac_node, tmp, list, node) {
1170 switch (mac_node->state) {
1171 case HCLGEVF_MAC_TO_DEL:
1172 list_move_tail(&mac_node->node, &tmp_del_list);
1173 break;
1174 case HCLGEVF_MAC_TO_ADD:
1175 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1176 if (!new_node)
1177 goto stop_traverse;
1178
1179 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1180 new_node->state = mac_node->state;
1181 list_add_tail(&new_node->node, &tmp_add_list);
1182 break;
1183 default:
1184 break;
1185 }
1186 }
1187
1188 stop_traverse:
1189 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190
1191 /* delete first, in order to get max mac table space for adding */
1192 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1193 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1194
1195 /* if some mac addresses were added/deleted fail, move back to the
1196 * mac_list, and retry at next time.
1197 */
1198 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199
1200 hclgevf_sync_from_del_list(&tmp_del_list, list);
1201 hclgevf_sync_from_add_list(&tmp_add_list, list);
1202
1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1206 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1207 {
1208 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1209 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1210 }
1211
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1212 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1213 {
1214 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1215
1216 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1217 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1218
1219 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1220 }
1221
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1222 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1223 {
1224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1226 struct hclge_vf_to_pf_msg send_msg;
1227
1228 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1229 return -EOPNOTSUPP;
1230
1231 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1232 HCLGE_MBX_ENABLE_VLAN_FILTER);
1233 send_msg.data[0] = enable ? 1 : 0;
1234
1235 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1236 }
1237
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1238 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1239 __be16 proto, u16 vlan_id,
1240 bool is_kill)
1241 {
1242 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1243 struct hclge_mbx_vlan_filter *vlan_filter;
1244 struct hclge_vf_to_pf_msg send_msg;
1245 int ret;
1246
1247 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1248 return -EINVAL;
1249
1250 if (proto != htons(ETH_P_8021Q))
1251 return -EPROTONOSUPPORT;
1252
1253 /* When device is resetting or reset failed, firmware is unable to
1254 * handle mailbox. Just record the vlan id, and remove it after
1255 * reset finished.
1256 */
1257 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1258 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1259 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1260 return -EBUSY;
1261 }
1262
1263 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1264 HCLGE_MBX_VLAN_FILTER);
1265 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1266 vlan_filter->is_kill = is_kill;
1267 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1268 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1269
1270 /* when remove hw vlan filter failed, record the vlan id,
1271 * and try to remove it from hw later, to be consistence
1272 * with stack.
1273 */
1274 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1275 if (is_kill && ret)
1276 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1277
1278 return ret;
1279 }
1280
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1282 {
1283 #define HCLGEVF_MAX_SYNC_COUNT 60
1284 struct hnae3_handle *handle = &hdev->nic;
1285 int ret, sync_cnt = 0;
1286 u16 vlan_id;
1287
1288 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1289 while (vlan_id != VLAN_N_VID) {
1290 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1291 vlan_id, true);
1292 if (ret)
1293 return;
1294
1295 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1296 sync_cnt++;
1297 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1298 return;
1299
1300 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1301 }
1302 }
1303
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1305 {
1306 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 struct hclge_vf_to_pf_msg send_msg;
1308
1309 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1310 HCLGE_MBX_VLAN_RX_OFF_CFG);
1311 send_msg.data[0] = enable ? 1 : 0;
1312 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1313 }
1314
hclgevf_reset_tqp(struct hnae3_handle * handle)1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1316 {
1317 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1318 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 struct hclge_vf_to_pf_msg send_msg;
1320 u8 return_status = 0;
1321 int ret;
1322 u16 i;
1323
1324 /* disable vf queue before send queue reset msg to PF */
1325 ret = hclgevf_tqp_enable(handle, false);
1326 if (ret) {
1327 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1328 ret);
1329 return ret;
1330 }
1331
1332 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1333
1334 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1335 sizeof(return_status));
1336 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1337 return ret;
1338
1339 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1340 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1341 *(__le16 *)send_msg.data = cpu_to_le16(i);
1342 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343 if (ret)
1344 return ret;
1345 }
1346
1347 return 0;
1348 }
1349
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1350 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1351 {
1352 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1353 struct hclge_mbx_mtu_info *mtu_info;
1354 struct hclge_vf_to_pf_msg send_msg;
1355
1356 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1357 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1358 mtu_info->mtu = cpu_to_le32(new_mtu);
1359
1360 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1361 }
1362
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1363 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1364 enum hnae3_reset_notify_type type)
1365 {
1366 struct hnae3_client *client = hdev->nic_client;
1367 struct hnae3_handle *handle = &hdev->nic;
1368 int ret;
1369
1370 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1371 !client)
1372 return 0;
1373
1374 if (!client->ops->reset_notify)
1375 return -EOPNOTSUPP;
1376
1377 ret = client->ops->reset_notify(handle, type);
1378 if (ret)
1379 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1380 type, ret);
1381
1382 return ret;
1383 }
1384
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1385 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1386 enum hnae3_reset_notify_type type)
1387 {
1388 struct hnae3_client *client = hdev->roce_client;
1389 struct hnae3_handle *handle = &hdev->roce;
1390 int ret;
1391
1392 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1393 return 0;
1394
1395 if (!client->ops->reset_notify)
1396 return -EOPNOTSUPP;
1397
1398 ret = client->ops->reset_notify(handle, type);
1399 if (ret)
1400 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1401 type, ret);
1402 return ret;
1403 }
1404
hclgevf_reset_wait(struct hclgevf_dev * hdev)1405 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1406 {
1407 #define HCLGEVF_RESET_WAIT_US 20000
1408 #define HCLGEVF_RESET_WAIT_CNT 2000
1409 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1410 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1411
1412 u32 val;
1413 int ret;
1414
1415 if (hdev->reset_type == HNAE3_VF_RESET)
1416 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1417 HCLGEVF_VF_RST_ING, val,
1418 !(val & HCLGEVF_VF_RST_ING_BIT),
1419 HCLGEVF_RESET_WAIT_US,
1420 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1421 else
1422 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1423 HCLGEVF_RST_ING, val,
1424 !(val & HCLGEVF_RST_ING_BITS),
1425 HCLGEVF_RESET_WAIT_US,
1426 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1427
1428 /* hardware completion status should be available by this time */
1429 if (ret) {
1430 dev_err(&hdev->pdev->dev,
1431 "couldn't get reset done status from h/w, timeout!\n");
1432 return ret;
1433 }
1434
1435 /* we will wait a bit more to let reset of the stack to complete. This
1436 * might happen in case reset assertion was made by PF. Yes, this also
1437 * means we might end up waiting bit more even for VF reset.
1438 */
1439 msleep(5000);
1440
1441 return 0;
1442 }
1443
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1444 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1445 {
1446 u32 reg_val;
1447
1448 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1449 if (enable)
1450 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1451 else
1452 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1453
1454 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1455 reg_val);
1456 }
1457
hclgevf_reset_stack(struct hclgevf_dev * hdev)1458 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1459 {
1460 int ret;
1461
1462 /* uninitialize the nic client */
1463 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1464 if (ret)
1465 return ret;
1466
1467 /* re-initialize the hclge device */
1468 ret = hclgevf_reset_hdev(hdev);
1469 if (ret) {
1470 dev_err(&hdev->pdev->dev,
1471 "hclge device re-init failed, VF is disabled!\n");
1472 return ret;
1473 }
1474
1475 /* bring up the nic client again */
1476 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1477 if (ret)
1478 return ret;
1479
1480 /* clear handshake status with IMP */
1481 hclgevf_reset_handshake(hdev, false);
1482
1483 /* bring up the nic to enable TX/RX again */
1484 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1485 }
1486
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1487 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1488 {
1489 #define HCLGEVF_RESET_SYNC_TIME 100
1490
1491 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1492 struct hclge_vf_to_pf_msg send_msg;
1493 int ret;
1494
1495 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1496 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1497 if (ret) {
1498 dev_err(&hdev->pdev->dev,
1499 "failed to assert VF reset, ret = %d\n", ret);
1500 return ret;
1501 }
1502 hdev->rst_stats.vf_func_rst_cnt++;
1503 }
1504
1505 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1506 /* inform hardware that preparatory work is done */
1507 msleep(HCLGEVF_RESET_SYNC_TIME);
1508 hclgevf_reset_handshake(hdev, true);
1509 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1510 hdev->reset_type);
1511
1512 return 0;
1513 }
1514
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1515 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1516 {
1517 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1518 hdev->rst_stats.vf_func_rst_cnt);
1519 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1520 hdev->rst_stats.flr_rst_cnt);
1521 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1522 hdev->rst_stats.vf_rst_cnt);
1523 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1524 hdev->rst_stats.rst_done_cnt);
1525 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1526 hdev->rst_stats.hw_rst_done_cnt);
1527 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1528 hdev->rst_stats.rst_cnt);
1529 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1530 hdev->rst_stats.rst_fail_cnt);
1531 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1532 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1533 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1534 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1535 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1536 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1537 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1538 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1539 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1540 }
1541
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1542 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1543 {
1544 /* recover handshake status with IMP when reset fail */
1545 hclgevf_reset_handshake(hdev, true);
1546 hdev->rst_stats.rst_fail_cnt++;
1547 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1548 hdev->rst_stats.rst_fail_cnt);
1549
1550 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1551 set_bit(hdev->reset_type, &hdev->reset_pending);
1552
1553 if (hclgevf_is_reset_pending(hdev)) {
1554 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1555 hclgevf_reset_task_schedule(hdev);
1556 } else {
1557 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1558 hclgevf_dump_rst_info(hdev);
1559 }
1560 }
1561
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1562 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1563 {
1564 int ret;
1565
1566 hdev->rst_stats.rst_cnt++;
1567
1568 /* perform reset of the stack & ae device for a client */
1569 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1570 if (ret)
1571 return ret;
1572
1573 rtnl_lock();
1574 /* bring down the nic to stop any ongoing TX/RX */
1575 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1576 rtnl_unlock();
1577 if (ret)
1578 return ret;
1579
1580 return hclgevf_reset_prepare_wait(hdev);
1581 }
1582
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1583 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1584 {
1585 int ret;
1586
1587 hdev->rst_stats.hw_rst_done_cnt++;
1588 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1589 if (ret)
1590 return ret;
1591
1592 rtnl_lock();
1593 /* now, re-initialize the nic client and ae device */
1594 ret = hclgevf_reset_stack(hdev);
1595 rtnl_unlock();
1596 if (ret) {
1597 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1598 return ret;
1599 }
1600
1601 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1602 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1603 * times
1604 */
1605 if (ret &&
1606 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1607 return ret;
1608
1609 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1610 if (ret)
1611 return ret;
1612
1613 hdev->last_reset_time = jiffies;
1614 hdev->rst_stats.rst_done_cnt++;
1615 hdev->rst_stats.rst_fail_cnt = 0;
1616 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1617
1618 return 0;
1619 }
1620
hclgevf_reset(struct hclgevf_dev * hdev)1621 static void hclgevf_reset(struct hclgevf_dev *hdev)
1622 {
1623 if (hclgevf_reset_prepare(hdev))
1624 goto err_reset;
1625
1626 /* check if VF could successfully fetch the hardware reset completion
1627 * status from the hardware
1628 */
1629 if (hclgevf_reset_wait(hdev)) {
1630 /* can't do much in this situation, will disable VF */
1631 dev_err(&hdev->pdev->dev,
1632 "failed to fetch H/W reset completion status\n");
1633 goto err_reset;
1634 }
1635
1636 if (hclgevf_reset_rebuild(hdev))
1637 goto err_reset;
1638
1639 return;
1640
1641 err_reset:
1642 hclgevf_reset_err_handle(hdev);
1643 }
1644
hclgevf_get_reset_level(struct hclgevf_dev * hdev,unsigned long * addr)1645 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1646 unsigned long *addr)
1647 {
1648 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1649
1650 /* return the highest priority reset level amongst all */
1651 if (test_bit(HNAE3_VF_RESET, addr)) {
1652 rst_level = HNAE3_VF_RESET;
1653 clear_bit(HNAE3_VF_RESET, addr);
1654 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1655 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1656 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1657 rst_level = HNAE3_VF_FULL_RESET;
1658 clear_bit(HNAE3_VF_FULL_RESET, addr);
1659 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1660 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1661 rst_level = HNAE3_VF_PF_FUNC_RESET;
1662 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1663 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1664 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1665 rst_level = HNAE3_VF_FUNC_RESET;
1666 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1667 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1668 rst_level = HNAE3_FLR_RESET;
1669 clear_bit(HNAE3_FLR_RESET, addr);
1670 }
1671
1672 return rst_level;
1673 }
1674
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1675 static void hclgevf_reset_event(struct pci_dev *pdev,
1676 struct hnae3_handle *handle)
1677 {
1678 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1679 struct hclgevf_dev *hdev = ae_dev->priv;
1680
1681 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1682
1683 if (hdev->default_reset_request)
1684 hdev->reset_level =
1685 hclgevf_get_reset_level(hdev,
1686 &hdev->default_reset_request);
1687 else
1688 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1689
1690 /* reset of this VF requested */
1691 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1692 hclgevf_reset_task_schedule(hdev);
1693
1694 hdev->last_reset_time = jiffies;
1695 }
1696
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1697 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1698 enum hnae3_reset_type rst_type)
1699 {
1700 struct hclgevf_dev *hdev = ae_dev->priv;
1701
1702 set_bit(rst_type, &hdev->default_reset_request);
1703 }
1704
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1705 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1706 {
1707 writel(en ? 1 : 0, vector->addr);
1708 }
1709
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1710 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1711 enum hnae3_reset_type rst_type)
1712 {
1713 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1714 #define HCLGEVF_RESET_RETRY_CNT 5
1715
1716 struct hclgevf_dev *hdev = ae_dev->priv;
1717 int retry_cnt = 0;
1718 int ret;
1719
1720 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1721 down(&hdev->reset_sem);
1722 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1723 hdev->reset_type = rst_type;
1724 ret = hclgevf_reset_prepare(hdev);
1725 if (!ret && !hdev->reset_pending)
1726 break;
1727
1728 dev_err(&hdev->pdev->dev,
1729 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1730 ret, hdev->reset_pending, retry_cnt);
1731 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1732 up(&hdev->reset_sem);
1733 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1734 }
1735
1736 /* disable misc vector before reset done */
1737 hclgevf_enable_vector(&hdev->misc_vector, false);
1738
1739 if (hdev->reset_type == HNAE3_FLR_RESET)
1740 hdev->rst_stats.flr_rst_cnt++;
1741 }
1742
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1743 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1744 {
1745 struct hclgevf_dev *hdev = ae_dev->priv;
1746 int ret;
1747
1748 hclgevf_enable_vector(&hdev->misc_vector, true);
1749
1750 ret = hclgevf_reset_rebuild(hdev);
1751 if (ret)
1752 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1753 ret);
1754
1755 hdev->reset_type = HNAE3_NONE_RESET;
1756 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1757 up(&hdev->reset_sem);
1758 }
1759
hclgevf_get_fw_version(struct hnae3_handle * handle)1760 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1761 {
1762 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763
1764 return hdev->fw_version;
1765 }
1766
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1767 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1768 {
1769 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1770
1771 vector->vector_irq = pci_irq_vector(hdev->pdev,
1772 HCLGEVF_MISC_VECTOR_NUM);
1773 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1774 /* vector status always valid for Vector 0 */
1775 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1776 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1777
1778 hdev->num_msi_left -= 1;
1779 hdev->num_msi_used += 1;
1780 }
1781
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1782 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1783 {
1784 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1785 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1786 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1787 &hdev->state))
1788 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1789 }
1790
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1791 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1792 {
1793 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1794 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1795 &hdev->state))
1796 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1797 }
1798
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1799 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1800 unsigned long delay)
1801 {
1802 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1803 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1804 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1805 }
1806
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1807 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1808 {
1809 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1810
1811 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1812 return;
1813
1814 down(&hdev->reset_sem);
1815 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1816
1817 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1818 &hdev->reset_state)) {
1819 /* PF has intimated that it is about to reset the hardware.
1820 * We now have to poll & check if hardware has actually
1821 * completed the reset sequence. On hardware reset completion,
1822 * VF needs to reset the client and ae device.
1823 */
1824 hdev->reset_attempts = 0;
1825
1826 hdev->last_reset_time = jiffies;
1827 hdev->reset_type =
1828 hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1829 if (hdev->reset_type != HNAE3_NONE_RESET)
1830 hclgevf_reset(hdev);
1831 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1832 &hdev->reset_state)) {
1833 /* we could be here when either of below happens:
1834 * 1. reset was initiated due to watchdog timeout caused by
1835 * a. IMP was earlier reset and our TX got choked down and
1836 * which resulted in watchdog reacting and inducing VF
1837 * reset. This also means our cmdq would be unreliable.
1838 * b. problem in TX due to other lower layer(example link
1839 * layer not functioning properly etc.)
1840 * 2. VF reset might have been initiated due to some config
1841 * change.
1842 *
1843 * NOTE: Theres no clear way to detect above cases than to react
1844 * to the response of PF for this reset request. PF will ack the
1845 * 1b and 2. cases but we will not get any intimation about 1a
1846 * from PF as cmdq would be in unreliable state i.e. mailbox
1847 * communication between PF and VF would be broken.
1848 *
1849 * if we are never geting into pending state it means either:
1850 * 1. PF is not receiving our request which could be due to IMP
1851 * reset
1852 * 2. PF is screwed
1853 * We cannot do much for 2. but to check first we can try reset
1854 * our PCIe + stack and see if it alleviates the problem.
1855 */
1856 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1857 /* prepare for full reset of stack + pcie interface */
1858 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1859
1860 /* "defer" schedule the reset task again */
1861 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1862 } else {
1863 hdev->reset_attempts++;
1864
1865 set_bit(hdev->reset_level, &hdev->reset_pending);
1866 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1867 }
1868 hclgevf_reset_task_schedule(hdev);
1869 }
1870
1871 hdev->reset_type = HNAE3_NONE_RESET;
1872 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1873 up(&hdev->reset_sem);
1874 }
1875
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1876 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1877 {
1878 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1879 return;
1880
1881 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1882 return;
1883
1884 hclgevf_mbx_async_handler(hdev);
1885
1886 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1887 }
1888
hclgevf_keep_alive(struct hclgevf_dev * hdev)1889 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1890 {
1891 struct hclge_vf_to_pf_msg send_msg;
1892 int ret;
1893
1894 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1895 return;
1896
1897 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1898 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1899 if (ret)
1900 dev_err(&hdev->pdev->dev,
1901 "VF sends keep alive cmd failed(=%d)\n", ret);
1902 }
1903
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1904 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1905 {
1906 unsigned long delta = round_jiffies_relative(HZ);
1907 struct hnae3_handle *handle = &hdev->nic;
1908
1909 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1910 return;
1911
1912 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1913 delta = jiffies - hdev->last_serv_processed;
1914
1915 if (delta < round_jiffies_relative(HZ)) {
1916 delta = round_jiffies_relative(HZ) - delta;
1917 goto out;
1918 }
1919 }
1920
1921 hdev->serv_processed_cnt++;
1922 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1923 hclgevf_keep_alive(hdev);
1924
1925 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1926 hdev->last_serv_processed = jiffies;
1927 goto out;
1928 }
1929
1930 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1931 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1932
1933 /* VF does not need to request link status when this bit is set, because
1934 * PF will push its link status to VFs when link status changed.
1935 */
1936 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1937 hclgevf_request_link_info(hdev);
1938
1939 hclgevf_update_link_mode(hdev);
1940
1941 hclgevf_sync_vlan_filter(hdev);
1942
1943 hclgevf_sync_mac_table(hdev);
1944
1945 hclgevf_sync_promisc_mode(hdev);
1946
1947 hdev->last_serv_processed = jiffies;
1948
1949 out:
1950 hclgevf_task_schedule(hdev, delta);
1951 }
1952
hclgevf_service_task(struct work_struct * work)1953 static void hclgevf_service_task(struct work_struct *work)
1954 {
1955 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1956 service_task.work);
1957
1958 hclgevf_reset_service_task(hdev);
1959 hclgevf_mailbox_service_task(hdev);
1960 hclgevf_periodic_service_task(hdev);
1961
1962 /* Handle reset and mbx again in case periodical task delays the
1963 * handling by calling hclgevf_task_schedule() in
1964 * hclgevf_periodic_service_task()
1965 */
1966 hclgevf_reset_service_task(hdev);
1967 hclgevf_mailbox_service_task(hdev);
1968 }
1969
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)1970 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1971 {
1972 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1973 }
1974
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)1975 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1976 u32 *clearval)
1977 {
1978 u32 val, cmdq_stat_reg, rst_ing_reg;
1979
1980 /* fetch the events from their corresponding regs */
1981 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1982 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1983 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1984 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1985 dev_info(&hdev->pdev->dev,
1986 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1987 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1988 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1989 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1990 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1991 hdev->rst_stats.vf_rst_cnt++;
1992 /* set up VF hardware reset status, its PF will clear
1993 * this status when PF has initialized done.
1994 */
1995 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1996 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1997 val | HCLGEVF_VF_RST_ING_BIT);
1998 return HCLGEVF_VECTOR0_EVENT_RST;
1999 }
2000
2001 /* check for vector0 mailbox(=CMDQ RX) event source */
2002 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2003 /* for revision 0x21, clearing interrupt is writing bit 0
2004 * to the clear register, writing bit 1 means to keep the
2005 * old value.
2006 * for revision 0x20, the clear register is a read & write
2007 * register, so we should just write 0 to the bit we are
2008 * handling, and keep other bits as cmdq_stat_reg.
2009 */
2010 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2011 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2012 else
2013 *clearval = cmdq_stat_reg &
2014 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2015
2016 return HCLGEVF_VECTOR0_EVENT_MBX;
2017 }
2018
2019 /* print other vector0 event source */
2020 dev_info(&hdev->pdev->dev,
2021 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2022 cmdq_stat_reg);
2023
2024 return HCLGEVF_VECTOR0_EVENT_OTHER;
2025 }
2026
hclgevf_misc_irq_handle(int irq,void * data)2027 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2028 {
2029 enum hclgevf_evt_cause event_cause;
2030 struct hclgevf_dev *hdev = data;
2031 u32 clearval;
2032
2033 hclgevf_enable_vector(&hdev->misc_vector, false);
2034 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2035 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2036 hclgevf_clear_event_cause(hdev, clearval);
2037
2038 switch (event_cause) {
2039 case HCLGEVF_VECTOR0_EVENT_RST:
2040 hclgevf_reset_task_schedule(hdev);
2041 break;
2042 case HCLGEVF_VECTOR0_EVENT_MBX:
2043 hclgevf_mbx_handler(hdev);
2044 break;
2045 default:
2046 break;
2047 }
2048
2049 hclgevf_enable_vector(&hdev->misc_vector, true);
2050
2051 return IRQ_HANDLED;
2052 }
2053
hclgevf_configure(struct hclgevf_dev * hdev)2054 static int hclgevf_configure(struct hclgevf_dev *hdev)
2055 {
2056 int ret;
2057
2058 hdev->gro_en = true;
2059
2060 ret = hclgevf_get_basic_info(hdev);
2061 if (ret)
2062 return ret;
2063
2064 /* get current port based vlan state from PF */
2065 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2066 if (ret)
2067 return ret;
2068
2069 /* get queue configuration from PF */
2070 ret = hclgevf_get_queue_info(hdev);
2071 if (ret)
2072 return ret;
2073
2074 /* get queue depth info from PF */
2075 ret = hclgevf_get_queue_depth(hdev);
2076 if (ret)
2077 return ret;
2078
2079 return hclgevf_get_pf_media_type(hdev);
2080 }
2081
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2082 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2083 {
2084 struct pci_dev *pdev = ae_dev->pdev;
2085 struct hclgevf_dev *hdev;
2086
2087 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2088 if (!hdev)
2089 return -ENOMEM;
2090
2091 hdev->pdev = pdev;
2092 hdev->ae_dev = ae_dev;
2093 ae_dev->priv = hdev;
2094
2095 return 0;
2096 }
2097
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2098 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2099 {
2100 struct hnae3_handle *roce = &hdev->roce;
2101 struct hnae3_handle *nic = &hdev->nic;
2102
2103 roce->rinfo.num_vectors = hdev->num_roce_msix;
2104
2105 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2106 hdev->num_msi_left == 0)
2107 return -EINVAL;
2108
2109 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2110
2111 roce->rinfo.netdev = nic->kinfo.netdev;
2112 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2113 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2114
2115 roce->pdev = nic->pdev;
2116 roce->ae_algo = nic->ae_algo;
2117 roce->numa_node_mask = nic->numa_node_mask;
2118
2119 return 0;
2120 }
2121
hclgevf_config_gro(struct hclgevf_dev * hdev)2122 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2123 {
2124 struct hclgevf_cfg_gro_status_cmd *req;
2125 struct hclge_desc desc;
2126 int ret;
2127
2128 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2129 return 0;
2130
2131 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2132 false);
2133 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2134
2135 req->gro_en = hdev->gro_en ? 1 : 0;
2136
2137 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2138 if (ret)
2139 dev_err(&hdev->pdev->dev,
2140 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2141
2142 return ret;
2143 }
2144
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2145 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2146 {
2147 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2148 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2149 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2150 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2151 int ret;
2152
2153 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2154 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2155 rss_cfg->rss_algo,
2156 rss_cfg->rss_hash_key);
2157 if (ret)
2158 return ret;
2159
2160 ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2161 false, rss_cfg);
2162 if (ret)
2163 return ret;
2164 }
2165
2166 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2167 rss_cfg->rss_indirection_tbl);
2168 if (ret)
2169 return ret;
2170
2171 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2172 tc_offset, tc_valid, tc_size);
2173
2174 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2175 tc_valid, tc_size);
2176 }
2177
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2178 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2179 {
2180 struct hnae3_handle *nic = &hdev->nic;
2181 int ret;
2182
2183 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2184 if (ret) {
2185 dev_err(&hdev->pdev->dev,
2186 "failed to enable rx vlan offload, ret = %d\n", ret);
2187 return ret;
2188 }
2189
2190 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2191 false);
2192 }
2193
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2194 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2195 {
2196 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2197
2198 unsigned long last = hdev->serv_processed_cnt;
2199 int i = 0;
2200
2201 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2202 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2203 last == hdev->serv_processed_cnt)
2204 usleep_range(1, 1);
2205 }
2206
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2207 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2208 {
2209 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2210
2211 if (enable) {
2212 hclgevf_task_schedule(hdev, 0);
2213 } else {
2214 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2215
2216 /* flush memory to make sure DOWN is seen by service task */
2217 smp_mb__before_atomic();
2218 hclgevf_flush_link_update(hdev);
2219 }
2220 }
2221
hclgevf_ae_start(struct hnae3_handle * handle)2222 static int hclgevf_ae_start(struct hnae3_handle *handle)
2223 {
2224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2225
2226 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2227 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2228
2229 hclge_comm_reset_tqp_stats(handle);
2230
2231 hclgevf_request_link_info(hdev);
2232
2233 hclgevf_update_link_mode(hdev);
2234
2235 return 0;
2236 }
2237
hclgevf_ae_stop(struct hnae3_handle * handle)2238 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2239 {
2240 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2241
2242 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2243
2244 if (hdev->reset_type != HNAE3_VF_RESET)
2245 hclgevf_reset_tqp(handle);
2246
2247 hclge_comm_reset_tqp_stats(handle);
2248 hclgevf_update_link_status(hdev, 0);
2249 }
2250
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2251 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2252 {
2253 #define HCLGEVF_STATE_ALIVE 1
2254 #define HCLGEVF_STATE_NOT_ALIVE 0
2255
2256 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2257 struct hclge_vf_to_pf_msg send_msg;
2258
2259 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2260 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2261 HCLGEVF_STATE_NOT_ALIVE;
2262 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2263 }
2264
hclgevf_client_start(struct hnae3_handle * handle)2265 static int hclgevf_client_start(struct hnae3_handle *handle)
2266 {
2267 return hclgevf_set_alive(handle, true);
2268 }
2269
hclgevf_client_stop(struct hnae3_handle * handle)2270 static void hclgevf_client_stop(struct hnae3_handle *handle)
2271 {
2272 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2273 int ret;
2274
2275 ret = hclgevf_set_alive(handle, false);
2276 if (ret)
2277 dev_warn(&hdev->pdev->dev,
2278 "%s failed %d\n", __func__, ret);
2279 }
2280
hclgevf_state_init(struct hclgevf_dev * hdev)2281 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2282 {
2283 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2284 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2285 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2286
2287 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2288
2289 mutex_init(&hdev->mbx_resp.mbx_mutex);
2290 sema_init(&hdev->reset_sem, 1);
2291
2292 spin_lock_init(&hdev->mac_table.mac_list_lock);
2293 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2294 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2295
2296 /* bring the device down */
2297 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2298 }
2299
hclgevf_state_uninit(struct hclgevf_dev * hdev)2300 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2301 {
2302 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2303 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2304
2305 if (hdev->service_task.work.func)
2306 cancel_delayed_work_sync(&hdev->service_task);
2307
2308 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2309 }
2310
hclgevf_init_msi(struct hclgevf_dev * hdev)2311 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2312 {
2313 struct pci_dev *pdev = hdev->pdev;
2314 int vectors;
2315 int i;
2316
2317 if (hnae3_dev_roce_supported(hdev))
2318 vectors = pci_alloc_irq_vectors(pdev,
2319 hdev->roce_base_msix_offset + 1,
2320 hdev->num_msi,
2321 PCI_IRQ_MSIX);
2322 else
2323 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2324 hdev->num_msi,
2325 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2326
2327 if (vectors < 0) {
2328 dev_err(&pdev->dev,
2329 "failed(%d) to allocate MSI/MSI-X vectors\n",
2330 vectors);
2331 return vectors;
2332 }
2333 if (vectors < hdev->num_msi)
2334 dev_warn(&hdev->pdev->dev,
2335 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2336 hdev->num_msi, vectors);
2337
2338 hdev->num_msi = vectors;
2339 hdev->num_msi_left = vectors;
2340
2341 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2342 sizeof(u16), GFP_KERNEL);
2343 if (!hdev->vector_status) {
2344 pci_free_irq_vectors(pdev);
2345 return -ENOMEM;
2346 }
2347
2348 for (i = 0; i < hdev->num_msi; i++)
2349 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2350
2351 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2352 sizeof(int), GFP_KERNEL);
2353 if (!hdev->vector_irq) {
2354 devm_kfree(&pdev->dev, hdev->vector_status);
2355 pci_free_irq_vectors(pdev);
2356 return -ENOMEM;
2357 }
2358
2359 return 0;
2360 }
2361
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2362 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2363 {
2364 struct pci_dev *pdev = hdev->pdev;
2365
2366 devm_kfree(&pdev->dev, hdev->vector_status);
2367 devm_kfree(&pdev->dev, hdev->vector_irq);
2368 pci_free_irq_vectors(pdev);
2369 }
2370
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2371 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2372 {
2373 int ret;
2374
2375 hclgevf_get_misc_vector(hdev);
2376
2377 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2378 HCLGEVF_NAME, pci_name(hdev->pdev));
2379 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2380 0, hdev->misc_vector.name, hdev);
2381 if (ret) {
2382 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2383 hdev->misc_vector.vector_irq);
2384 return ret;
2385 }
2386
2387 hclgevf_clear_event_cause(hdev, 0);
2388
2389 /* enable misc. vector(vector 0) */
2390 hclgevf_enable_vector(&hdev->misc_vector, true);
2391
2392 return ret;
2393 }
2394
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2395 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2396 {
2397 /* disable misc vector(vector 0) */
2398 hclgevf_enable_vector(&hdev->misc_vector, false);
2399 synchronize_irq(hdev->misc_vector.vector_irq);
2400 free_irq(hdev->misc_vector.vector_irq, hdev);
2401 hclgevf_free_vector(hdev, 0);
2402 }
2403
hclgevf_info_show(struct hclgevf_dev * hdev)2404 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2405 {
2406 struct device *dev = &hdev->pdev->dev;
2407
2408 dev_info(dev, "VF info begin:\n");
2409
2410 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2411 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2412 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2413 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2414 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2415 dev_info(dev, "PF media type of this VF: %u\n",
2416 hdev->hw.mac.media_type);
2417
2418 dev_info(dev, "VF info end.\n");
2419 }
2420
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2421 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2422 struct hnae3_client *client)
2423 {
2424 struct hclgevf_dev *hdev = ae_dev->priv;
2425 int rst_cnt = hdev->rst_stats.rst_cnt;
2426 int ret;
2427
2428 ret = client->ops->init_instance(&hdev->nic);
2429 if (ret)
2430 return ret;
2431
2432 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2433 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2434 rst_cnt != hdev->rst_stats.rst_cnt) {
2435 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2436
2437 client->ops->uninit_instance(&hdev->nic, 0);
2438 return -EBUSY;
2439 }
2440
2441 hnae3_set_client_init_flag(client, ae_dev, 1);
2442
2443 if (netif_msg_drv(&hdev->nic))
2444 hclgevf_info_show(hdev);
2445
2446 return 0;
2447 }
2448
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2449 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2450 struct hnae3_client *client)
2451 {
2452 struct hclgevf_dev *hdev = ae_dev->priv;
2453 int ret;
2454
2455 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2456 !hdev->nic_client)
2457 return 0;
2458
2459 ret = hclgevf_init_roce_base_info(hdev);
2460 if (ret)
2461 return ret;
2462
2463 ret = client->ops->init_instance(&hdev->roce);
2464 if (ret)
2465 return ret;
2466
2467 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2468 hnae3_set_client_init_flag(client, ae_dev, 1);
2469
2470 return 0;
2471 }
2472
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2473 static int hclgevf_init_client_instance(struct hnae3_client *client,
2474 struct hnae3_ae_dev *ae_dev)
2475 {
2476 struct hclgevf_dev *hdev = ae_dev->priv;
2477 int ret;
2478
2479 switch (client->type) {
2480 case HNAE3_CLIENT_KNIC:
2481 hdev->nic_client = client;
2482 hdev->nic.client = client;
2483
2484 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2485 if (ret)
2486 goto clear_nic;
2487
2488 ret = hclgevf_init_roce_client_instance(ae_dev,
2489 hdev->roce_client);
2490 if (ret)
2491 goto clear_roce;
2492
2493 break;
2494 case HNAE3_CLIENT_ROCE:
2495 if (hnae3_dev_roce_supported(hdev)) {
2496 hdev->roce_client = client;
2497 hdev->roce.client = client;
2498 }
2499
2500 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2501 if (ret)
2502 goto clear_roce;
2503
2504 break;
2505 default:
2506 return -EINVAL;
2507 }
2508
2509 return 0;
2510
2511 clear_nic:
2512 hdev->nic_client = NULL;
2513 hdev->nic.client = NULL;
2514 return ret;
2515 clear_roce:
2516 hdev->roce_client = NULL;
2517 hdev->roce.client = NULL;
2518 return ret;
2519 }
2520
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2521 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2522 struct hnae3_ae_dev *ae_dev)
2523 {
2524 struct hclgevf_dev *hdev = ae_dev->priv;
2525
2526 /* un-init roce, if it exists */
2527 if (hdev->roce_client) {
2528 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2529 msleep(HCLGEVF_WAIT_RESET_DONE);
2530 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2531
2532 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2533 hdev->roce_client = NULL;
2534 hdev->roce.client = NULL;
2535 }
2536
2537 /* un-init nic/unic, if this was not called by roce client */
2538 if (client->ops->uninit_instance && hdev->nic_client &&
2539 client->type != HNAE3_CLIENT_ROCE) {
2540 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2541 msleep(HCLGEVF_WAIT_RESET_DONE);
2542 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2543
2544 client->ops->uninit_instance(&hdev->nic, 0);
2545 hdev->nic_client = NULL;
2546 hdev->nic.client = NULL;
2547 }
2548 }
2549
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2550 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2551 {
2552 struct pci_dev *pdev = hdev->pdev;
2553 struct hclgevf_hw *hw = &hdev->hw;
2554
2555 /* for device does not have device memory, return directly */
2556 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2557 return 0;
2558
2559 hw->hw.mem_base =
2560 devm_ioremap_wc(&pdev->dev,
2561 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2562 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2563 if (!hw->hw.mem_base) {
2564 dev_err(&pdev->dev, "failed to map device memory\n");
2565 return -EFAULT;
2566 }
2567
2568 return 0;
2569 }
2570
hclgevf_pci_init(struct hclgevf_dev * hdev)2571 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2572 {
2573 struct pci_dev *pdev = hdev->pdev;
2574 struct hclgevf_hw *hw;
2575 int ret;
2576
2577 ret = pci_enable_device(pdev);
2578 if (ret) {
2579 dev_err(&pdev->dev, "failed to enable PCI device\n");
2580 return ret;
2581 }
2582
2583 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2584 if (ret) {
2585 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2586 goto err_disable_device;
2587 }
2588
2589 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2590 if (ret) {
2591 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2592 goto err_disable_device;
2593 }
2594
2595 pci_set_master(pdev);
2596 hw = &hdev->hw;
2597 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2598 if (!hw->hw.io_base) {
2599 dev_err(&pdev->dev, "can't map configuration register space\n");
2600 ret = -ENOMEM;
2601 goto err_clr_master;
2602 }
2603
2604 ret = hclgevf_dev_mem_map(hdev);
2605 if (ret)
2606 goto err_unmap_io_base;
2607
2608 return 0;
2609
2610 err_unmap_io_base:
2611 pci_iounmap(pdev, hdev->hw.hw.io_base);
2612 err_clr_master:
2613 pci_clear_master(pdev);
2614 pci_release_regions(pdev);
2615 err_disable_device:
2616 pci_disable_device(pdev);
2617
2618 return ret;
2619 }
2620
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2621 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2622 {
2623 struct pci_dev *pdev = hdev->pdev;
2624
2625 if (hdev->hw.hw.mem_base)
2626 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2627
2628 pci_iounmap(pdev, hdev->hw.hw.io_base);
2629 pci_clear_master(pdev);
2630 pci_release_regions(pdev);
2631 pci_disable_device(pdev);
2632 }
2633
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2634 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2635 {
2636 struct hclgevf_query_res_cmd *req;
2637 struct hclge_desc desc;
2638 int ret;
2639
2640 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2641 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2642 if (ret) {
2643 dev_err(&hdev->pdev->dev,
2644 "query vf resource failed, ret = %d.\n", ret);
2645 return ret;
2646 }
2647
2648 req = (struct hclgevf_query_res_cmd *)desc.data;
2649
2650 if (hnae3_dev_roce_supported(hdev)) {
2651 hdev->roce_base_msix_offset =
2652 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2653 HCLGEVF_MSIX_OFT_ROCEE_M,
2654 HCLGEVF_MSIX_OFT_ROCEE_S);
2655 hdev->num_roce_msix =
2656 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2657 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2658
2659 /* nic's msix numbers is always equals to the roce's. */
2660 hdev->num_nic_msix = hdev->num_roce_msix;
2661
2662 /* VF should have NIC vectors and Roce vectors, NIC vectors
2663 * are queued before Roce vectors. The offset is fixed to 64.
2664 */
2665 hdev->num_msi = hdev->num_roce_msix +
2666 hdev->roce_base_msix_offset;
2667 } else {
2668 hdev->num_msi =
2669 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2670 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2671
2672 hdev->num_nic_msix = hdev->num_msi;
2673 }
2674
2675 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2676 dev_err(&hdev->pdev->dev,
2677 "Just %u msi resources, not enough for vf(min:2).\n",
2678 hdev->num_nic_msix);
2679 return -EINVAL;
2680 }
2681
2682 return 0;
2683 }
2684
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2685 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2686 {
2687 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2688
2689 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2690
2691 ae_dev->dev_specs.max_non_tso_bd_num =
2692 HCLGEVF_MAX_NON_TSO_BD_NUM;
2693 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2694 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2695 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2696 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2697 }
2698
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2699 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2700 struct hclge_desc *desc)
2701 {
2702 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2703 struct hclgevf_dev_specs_0_cmd *req0;
2704 struct hclgevf_dev_specs_1_cmd *req1;
2705
2706 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2707 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2708
2709 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2710 ae_dev->dev_specs.rss_ind_tbl_size =
2711 le16_to_cpu(req0->rss_ind_tbl_size);
2712 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2713 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2714 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2715 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2716 }
2717
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2718 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2719 {
2720 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2721
2722 if (!dev_specs->max_non_tso_bd_num)
2723 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2724 if (!dev_specs->rss_ind_tbl_size)
2725 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2726 if (!dev_specs->rss_key_size)
2727 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2728 if (!dev_specs->max_int_gl)
2729 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2730 if (!dev_specs->max_frm_size)
2731 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2732 }
2733
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2734 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2735 {
2736 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2737 int ret;
2738 int i;
2739
2740 /* set default specifications as devices lower than version V3 do not
2741 * support querying specifications from firmware.
2742 */
2743 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2744 hclgevf_set_default_dev_specs(hdev);
2745 return 0;
2746 }
2747
2748 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2749 hclgevf_cmd_setup_basic_desc(&desc[i],
2750 HCLGE_OPC_QUERY_DEV_SPECS, true);
2751 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2752 }
2753 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2754
2755 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2756 if (ret)
2757 return ret;
2758
2759 hclgevf_parse_dev_specs(hdev, desc);
2760 hclgevf_check_dev_specs(hdev);
2761
2762 return 0;
2763 }
2764
hclgevf_pci_reset(struct hclgevf_dev * hdev)2765 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2766 {
2767 struct pci_dev *pdev = hdev->pdev;
2768 int ret = 0;
2769
2770 if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2771 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2772 hclgevf_misc_irq_uninit(hdev);
2773 hclgevf_uninit_msi(hdev);
2774 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2775 }
2776
2777 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2778 pci_set_master(pdev);
2779 ret = hclgevf_init_msi(hdev);
2780 if (ret) {
2781 dev_err(&pdev->dev,
2782 "failed(%d) to init MSI/MSI-X\n", ret);
2783 return ret;
2784 }
2785
2786 ret = hclgevf_misc_irq_init(hdev);
2787 if (ret) {
2788 hclgevf_uninit_msi(hdev);
2789 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2790 ret);
2791 return ret;
2792 }
2793
2794 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2795 }
2796
2797 return ret;
2798 }
2799
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2800 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2801 {
2802 struct hclge_vf_to_pf_msg send_msg;
2803
2804 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2805 HCLGE_MBX_VPORT_LIST_CLEAR);
2806 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2807 }
2808
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2809 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2810 {
2811 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2812 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2813 }
2814
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2815 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2816 {
2817 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2818 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2819 }
2820
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2821 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2822 {
2823 struct pci_dev *pdev = hdev->pdev;
2824 int ret;
2825
2826 ret = hclgevf_pci_reset(hdev);
2827 if (ret) {
2828 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2829 return ret;
2830 }
2831
2832 hclgevf_arq_init(hdev);
2833 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2834 &hdev->fw_version, false,
2835 hdev->reset_pending);
2836 if (ret) {
2837 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2838 return ret;
2839 }
2840
2841 ret = hclgevf_rss_init_hw(hdev);
2842 if (ret) {
2843 dev_err(&hdev->pdev->dev,
2844 "failed(%d) to initialize RSS\n", ret);
2845 return ret;
2846 }
2847
2848 ret = hclgevf_config_gro(hdev);
2849 if (ret)
2850 return ret;
2851
2852 ret = hclgevf_init_vlan_config(hdev);
2853 if (ret) {
2854 dev_err(&hdev->pdev->dev,
2855 "failed(%d) to initialize VLAN config\n", ret);
2856 return ret;
2857 }
2858
2859 /* get current port based vlan state from PF */
2860 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2861 if (ret)
2862 return ret;
2863
2864 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2865
2866 hclgevf_init_rxd_adv_layout(hdev);
2867
2868 dev_info(&hdev->pdev->dev, "Reset done\n");
2869
2870 return 0;
2871 }
2872
hclgevf_init_hdev(struct hclgevf_dev * hdev)2873 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2874 {
2875 struct pci_dev *pdev = hdev->pdev;
2876 int ret;
2877
2878 ret = hclgevf_pci_init(hdev);
2879 if (ret)
2880 return ret;
2881
2882 ret = hclgevf_devlink_init(hdev);
2883 if (ret)
2884 goto err_devlink_init;
2885
2886 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2887 if (ret)
2888 goto err_cmd_queue_init;
2889
2890 hclgevf_arq_init(hdev);
2891 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2892 &hdev->fw_version, false,
2893 hdev->reset_pending);
2894 if (ret)
2895 goto err_cmd_init;
2896
2897 /* Get vf resource */
2898 ret = hclgevf_query_vf_resource(hdev);
2899 if (ret)
2900 goto err_cmd_init;
2901
2902 ret = hclgevf_query_dev_specs(hdev);
2903 if (ret) {
2904 dev_err(&pdev->dev,
2905 "failed to query dev specifications, ret = %d\n", ret);
2906 goto err_cmd_init;
2907 }
2908
2909 ret = hclgevf_init_msi(hdev);
2910 if (ret) {
2911 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2912 goto err_cmd_init;
2913 }
2914
2915 hclgevf_state_init(hdev);
2916 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2917 hdev->reset_type = HNAE3_NONE_RESET;
2918
2919 ret = hclgevf_misc_irq_init(hdev);
2920 if (ret)
2921 goto err_misc_irq_init;
2922
2923 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2924
2925 ret = hclgevf_configure(hdev);
2926 if (ret) {
2927 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2928 goto err_config;
2929 }
2930
2931 ret = hclgevf_alloc_tqps(hdev);
2932 if (ret) {
2933 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2934 goto err_config;
2935 }
2936
2937 ret = hclgevf_set_handle_info(hdev);
2938 if (ret)
2939 goto err_config;
2940
2941 ret = hclgevf_config_gro(hdev);
2942 if (ret)
2943 goto err_config;
2944
2945 /* Initialize RSS for this VF */
2946 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2947 &hdev->rss_cfg);
2948 if (ret) {
2949 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2950 goto err_config;
2951 }
2952
2953 ret = hclgevf_rss_init_hw(hdev);
2954 if (ret) {
2955 dev_err(&hdev->pdev->dev,
2956 "failed(%d) to initialize RSS\n", ret);
2957 goto err_config;
2958 }
2959
2960 /* ensure vf tbl list as empty before init */
2961 ret = hclgevf_clear_vport_list(hdev);
2962 if (ret) {
2963 dev_err(&pdev->dev,
2964 "failed to clear tbl list configuration, ret = %d.\n",
2965 ret);
2966 goto err_config;
2967 }
2968
2969 ret = hclgevf_init_vlan_config(hdev);
2970 if (ret) {
2971 dev_err(&hdev->pdev->dev,
2972 "failed(%d) to initialize VLAN config\n", ret);
2973 goto err_config;
2974 }
2975
2976 hclgevf_init_rxd_adv_layout(hdev);
2977
2978 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2979
2980 hdev->last_reset_time = jiffies;
2981 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2982 HCLGEVF_DRIVER_NAME);
2983
2984 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2985
2986 return 0;
2987
2988 err_config:
2989 hclgevf_misc_irq_uninit(hdev);
2990 err_misc_irq_init:
2991 hclgevf_state_uninit(hdev);
2992 hclgevf_uninit_msi(hdev);
2993 err_cmd_init:
2994 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2995 err_cmd_queue_init:
2996 hclgevf_devlink_uninit(hdev);
2997 err_devlink_init:
2998 hclgevf_pci_uninit(hdev);
2999 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3000 return ret;
3001 }
3002
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3003 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3004 {
3005 struct hclge_vf_to_pf_msg send_msg;
3006
3007 hclgevf_state_uninit(hdev);
3008 hclgevf_uninit_rxd_adv_layout(hdev);
3009
3010 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3011 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3012
3013 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3014 hclgevf_misc_irq_uninit(hdev);
3015 hclgevf_uninit_msi(hdev);
3016 }
3017
3018 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3019 hclgevf_devlink_uninit(hdev);
3020 hclgevf_pci_uninit(hdev);
3021 hclgevf_uninit_mac_list(hdev);
3022 }
3023
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3024 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3025 {
3026 struct pci_dev *pdev = ae_dev->pdev;
3027 int ret;
3028
3029 ret = hclgevf_alloc_hdev(ae_dev);
3030 if (ret) {
3031 dev_err(&pdev->dev, "hclge device allocation failed\n");
3032 return ret;
3033 }
3034
3035 ret = hclgevf_init_hdev(ae_dev->priv);
3036 if (ret) {
3037 dev_err(&pdev->dev, "hclge device initialization failed\n");
3038 return ret;
3039 }
3040
3041 return 0;
3042 }
3043
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3044 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3045 {
3046 struct hclgevf_dev *hdev = ae_dev->priv;
3047
3048 hclgevf_uninit_hdev(hdev);
3049 ae_dev->priv = NULL;
3050 }
3051
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3052 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3053 {
3054 struct hnae3_handle *nic = &hdev->nic;
3055 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3056
3057 return min_t(u32, hdev->rss_size_max,
3058 hdev->num_tqps / kinfo->tc_info.num_tc);
3059 }
3060
3061 /**
3062 * hclgevf_get_channels - Get the current channels enabled and max supported.
3063 * @handle: hardware information for network interface
3064 * @ch: ethtool channels structure
3065 *
3066 * We don't support separate tx and rx queues as channels. The other count
3067 * represents how many queues are being used for control. max_combined counts
3068 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3069 * q_vectors since we support a lot more queue pairs than q_vectors.
3070 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3071 static void hclgevf_get_channels(struct hnae3_handle *handle,
3072 struct ethtool_channels *ch)
3073 {
3074 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3075
3076 ch->max_combined = hclgevf_get_max_channels(hdev);
3077 ch->other_count = 0;
3078 ch->max_other = 0;
3079 ch->combined_count = handle->kinfo.rss_size;
3080 }
3081
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3082 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3083 u16 *alloc_tqps, u16 *max_rss_size)
3084 {
3085 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3086
3087 *alloc_tqps = hdev->num_tqps;
3088 *max_rss_size = hdev->rss_size_max;
3089 }
3090
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3091 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3092 u32 new_tqps_num)
3093 {
3094 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3095 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3096 u16 max_rss_size;
3097
3098 kinfo->req_rss_size = new_tqps_num;
3099
3100 max_rss_size = min_t(u16, hdev->rss_size_max,
3101 hdev->num_tqps / kinfo->tc_info.num_tc);
3102
3103 /* Use the user's configuration when it is not larger than
3104 * max_rss_size, otherwise, use the maximum specification value.
3105 */
3106 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3107 kinfo->req_rss_size <= max_rss_size)
3108 kinfo->rss_size = kinfo->req_rss_size;
3109 else if (kinfo->rss_size > max_rss_size ||
3110 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3111 kinfo->rss_size = max_rss_size;
3112
3113 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3114 }
3115
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3116 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3117 bool rxfh_configured)
3118 {
3119 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3120 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3121 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3122 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3123 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3124 u16 cur_rss_size = kinfo->rss_size;
3125 u16 cur_tqps = kinfo->num_tqps;
3126 u32 *rss_indir;
3127 unsigned int i;
3128 int ret;
3129
3130 hclgevf_update_rss_size(handle, new_tqps_num);
3131
3132 hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3133 tc_offset, tc_valid, tc_size);
3134 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3135 tc_valid, tc_size);
3136 if (ret)
3137 return ret;
3138
3139 /* RSS indirection table has been configured by user */
3140 if (rxfh_configured)
3141 goto out;
3142
3143 /* Reinitializes the rss indirect table according to the new RSS size */
3144 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3145 sizeof(u32), GFP_KERNEL);
3146 if (!rss_indir)
3147 return -ENOMEM;
3148
3149 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3150 rss_indir[i] = i % kinfo->rss_size;
3151
3152 hdev->rss_cfg.rss_size = kinfo->rss_size;
3153
3154 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3155 if (ret)
3156 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3157 ret);
3158
3159 kfree(rss_indir);
3160
3161 out:
3162 if (!ret)
3163 dev_info(&hdev->pdev->dev,
3164 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3165 cur_rss_size, kinfo->rss_size,
3166 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3167
3168 return ret;
3169 }
3170
hclgevf_get_status(struct hnae3_handle * handle)3171 static int hclgevf_get_status(struct hnae3_handle *handle)
3172 {
3173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3174
3175 return hdev->hw.mac.link;
3176 }
3177
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3178 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3179 u8 *auto_neg, u32 *speed,
3180 u8 *duplex, u32 *lane_num)
3181 {
3182 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3183
3184 if (speed)
3185 *speed = hdev->hw.mac.speed;
3186 if (duplex)
3187 *duplex = hdev->hw.mac.duplex;
3188 if (auto_neg)
3189 *auto_neg = AUTONEG_DISABLE;
3190 }
3191
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3192 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3193 u8 duplex)
3194 {
3195 hdev->hw.mac.speed = speed;
3196 hdev->hw.mac.duplex = duplex;
3197 }
3198
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3199 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3200 {
3201 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3202 bool gro_en_old = hdev->gro_en;
3203 int ret;
3204
3205 hdev->gro_en = enable;
3206 ret = hclgevf_config_gro(hdev);
3207 if (ret)
3208 hdev->gro_en = gro_en_old;
3209
3210 return ret;
3211 }
3212
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3213 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3214 u8 *module_type)
3215 {
3216 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3217
3218 if (media_type)
3219 *media_type = hdev->hw.mac.media_type;
3220
3221 if (module_type)
3222 *module_type = hdev->hw.mac.module_type;
3223 }
3224
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3225 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3226 {
3227 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3228
3229 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3230 }
3231
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3232 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3233 {
3234 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3235
3236 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3237 }
3238
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3239 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3240 {
3241 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3242
3243 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3244 }
3245
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3246 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3247 {
3248 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3249
3250 return hdev->rst_stats.hw_rst_done_cnt;
3251 }
3252
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3253 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3254 unsigned long *supported,
3255 unsigned long *advertising)
3256 {
3257 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3258
3259 *supported = hdev->hw.mac.supported;
3260 *advertising = hdev->hw.mac.advertising;
3261 }
3262
3263 #define MAX_SEPARATE_NUM 4
3264 #define SEPARATOR_VALUE 0xFDFCFBFA
3265 #define REG_NUM_PER_LINE 4
3266 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
3267
hclgevf_get_regs_len(struct hnae3_handle * handle)3268 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3269 {
3270 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3271 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3272
3273 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3274 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3275 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3276 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3277
3278 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3279 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3280 }
3281
hclgevf_get_regs(struct hnae3_handle * handle,u32 * version,void * data)3282 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3283 void *data)
3284 {
3285 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3286 int i, j, reg_um, separator_num;
3287 u32 *reg = data;
3288
3289 *version = hdev->fw_version;
3290
3291 /* fetching per-VF registers values from VF PCIe register space */
3292 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3293 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3294 for (i = 0; i < reg_um; i++)
3295 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3296 for (i = 0; i < separator_num; i++)
3297 *reg++ = SEPARATOR_VALUE;
3298
3299 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3300 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3301 for (i = 0; i < reg_um; i++)
3302 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3303 for (i = 0; i < separator_num; i++)
3304 *reg++ = SEPARATOR_VALUE;
3305
3306 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3307 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3308 for (j = 0; j < hdev->num_tqps; j++) {
3309 for (i = 0; i < reg_um; i++)
3310 *reg++ = hclgevf_read_dev(&hdev->hw,
3311 ring_reg_addr_list[i] +
3312 HCLGEVF_TQP_REG_SIZE * j);
3313 for (i = 0; i < separator_num; i++)
3314 *reg++ = SEPARATOR_VALUE;
3315 }
3316
3317 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3318 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3319 for (j = 0; j < hdev->num_msi_used - 1; j++) {
3320 for (i = 0; i < reg_um; i++)
3321 *reg++ = hclgevf_read_dev(&hdev->hw,
3322 tqp_intr_reg_addr_list[i] +
3323 4 * j);
3324 for (i = 0; i < separator_num; i++)
3325 *reg++ = SEPARATOR_VALUE;
3326 }
3327 }
3328
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3329 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3330 struct hclge_mbx_port_base_vlan *port_base_vlan)
3331 {
3332 struct hnae3_handle *nic = &hdev->nic;
3333 struct hclge_vf_to_pf_msg send_msg;
3334 int ret;
3335
3336 rtnl_lock();
3337
3338 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3339 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3340 dev_warn(&hdev->pdev->dev,
3341 "is resetting when updating port based vlan info\n");
3342 rtnl_unlock();
3343 return;
3344 }
3345
3346 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3347 if (ret) {
3348 rtnl_unlock();
3349 return;
3350 }
3351
3352 /* send msg to PF and wait update port based vlan info */
3353 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3354 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3355 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3356 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3357 if (!ret) {
3358 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3359 nic->port_base_vlan_state = state;
3360 else
3361 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3362 }
3363
3364 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3365 rtnl_unlock();
3366 }
3367
3368 static const struct hnae3_ae_ops hclgevf_ops = {
3369 .init_ae_dev = hclgevf_init_ae_dev,
3370 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3371 .reset_prepare = hclgevf_reset_prepare_general,
3372 .reset_done = hclgevf_reset_done,
3373 .init_client_instance = hclgevf_init_client_instance,
3374 .uninit_client_instance = hclgevf_uninit_client_instance,
3375 .start = hclgevf_ae_start,
3376 .stop = hclgevf_ae_stop,
3377 .client_start = hclgevf_client_start,
3378 .client_stop = hclgevf_client_stop,
3379 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3380 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3381 .get_vector = hclgevf_get_vector,
3382 .put_vector = hclgevf_put_vector,
3383 .reset_queue = hclgevf_reset_tqp,
3384 .get_mac_addr = hclgevf_get_mac_addr,
3385 .set_mac_addr = hclgevf_set_mac_addr,
3386 .add_uc_addr = hclgevf_add_uc_addr,
3387 .rm_uc_addr = hclgevf_rm_uc_addr,
3388 .add_mc_addr = hclgevf_add_mc_addr,
3389 .rm_mc_addr = hclgevf_rm_mc_addr,
3390 .get_stats = hclgevf_get_stats,
3391 .update_stats = hclgevf_update_stats,
3392 .get_strings = hclgevf_get_strings,
3393 .get_sset_count = hclgevf_get_sset_count,
3394 .get_rss_key_size = hclge_comm_get_rss_key_size,
3395 .get_rss = hclgevf_get_rss,
3396 .set_rss = hclgevf_set_rss,
3397 .get_rss_tuple = hclgevf_get_rss_tuple,
3398 .set_rss_tuple = hclgevf_set_rss_tuple,
3399 .get_tc_size = hclgevf_get_tc_size,
3400 .get_fw_version = hclgevf_get_fw_version,
3401 .set_vlan_filter = hclgevf_set_vlan_filter,
3402 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3403 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3404 .reset_event = hclgevf_reset_event,
3405 .set_default_reset_request = hclgevf_set_def_reset_request,
3406 .set_channels = hclgevf_set_channels,
3407 .get_channels = hclgevf_get_channels,
3408 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3409 .get_regs_len = hclgevf_get_regs_len,
3410 .get_regs = hclgevf_get_regs,
3411 .get_status = hclgevf_get_status,
3412 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3413 .get_media_type = hclgevf_get_media_type,
3414 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3415 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3416 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3417 .set_gro_en = hclgevf_gro_en,
3418 .set_mtu = hclgevf_set_mtu,
3419 .get_global_queue_id = hclgevf_get_qid_global,
3420 .set_timer_task = hclgevf_set_timer_task,
3421 .get_link_mode = hclgevf_get_link_mode,
3422 .set_promisc_mode = hclgevf_set_promisc_mode,
3423 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3424 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3425 };
3426
3427 static struct hnae3_ae_algo ae_algovf = {
3428 .ops = &hclgevf_ops,
3429 .pdev_id_table = ae_algovf_pci_tbl,
3430 };
3431
hclgevf_init(void)3432 static int __init hclgevf_init(void)
3433 {
3434 pr_info("%s is initializing\n", HCLGEVF_NAME);
3435
3436 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3437 if (!hclgevf_wq) {
3438 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3439 return -ENOMEM;
3440 }
3441
3442 hnae3_register_ae_algo(&ae_algovf);
3443
3444 return 0;
3445 }
3446
hclgevf_exit(void)3447 static void __exit hclgevf_exit(void)
3448 {
3449 hnae3_unregister_ae_algo(&ae_algovf);
3450 destroy_workqueue(hclgevf_wq);
3451 }
3452 module_init(hclgevf_init);
3453 module_exit(hclgevf_exit);
3454
3455 MODULE_LICENSE("GPL");
3456 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3457 MODULE_DESCRIPTION("HCLGEVF Driver");
3458 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3459