1 /*
2 * FCC driver for Motorola MPC82xx (PQ2).
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/of_irq.h>
37 #include <linux/gfp.h>
38 #include <linux/pgtable.h>
39
40 #include <asm/immap_cpm2.h>
41 #include <asm/mpc8260.h>
42 #include <asm/cpm2.h>
43
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46
47 #include "fs_enet.h"
48
49 /*************************************************/
50
51 /* FCC access macros */
52
53 /* write, read, set bits, clear bits */
54 #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
55 #define R32(_p, _m) in_be32(&(_p)->_m)
56 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
57 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
58
59 #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
60 #define R16(_p, _m) in_be16(&(_p)->_m)
61 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
62 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
63
64 #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
65 #define R8(_p, _m) in_8(&(_p)->_m)
66 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
67 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
68
69 /*************************************************/
70
71 #define FCC_MAX_MULTICAST_ADDRS 64
72
73 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
74 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
75 #define mk_mii_end 0
76
77 #define MAX_CR_CMD_LOOPS 10000
78
fcc_cr_cmd(struct fs_enet_private * fep,u32 op)79 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
80 {
81 const struct fs_platform_info *fpi = fep->fpi;
82
83 return cpm_command(fpi->cp_command, op);
84 }
85
do_pd_setup(struct fs_enet_private * fep)86 static int do_pd_setup(struct fs_enet_private *fep)
87 {
88 struct platform_device *ofdev = to_platform_device(fep->dev);
89 struct fs_platform_info *fpi = fep->fpi;
90 int ret = -EINVAL;
91
92 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
93 if (!fep->interrupt)
94 goto out;
95
96 fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
97 if (!fep->fcc.fccp)
98 goto out;
99
100 fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
101 if (!fep->fcc.ep)
102 goto out_fccp;
103
104 fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
105 if (!fep->fcc.fcccp)
106 goto out_ep;
107
108 fep->fcc.mem = (void __iomem *)cpm2_immr;
109 fpi->dpram_offset = cpm_dpalloc(128, 32);
110 if (IS_ERR_VALUE(fpi->dpram_offset)) {
111 ret = fpi->dpram_offset;
112 goto out_fcccp;
113 }
114
115 return 0;
116
117 out_fcccp:
118 iounmap(fep->fcc.fcccp);
119 out_ep:
120 iounmap(fep->fcc.ep);
121 out_fccp:
122 iounmap(fep->fcc.fccp);
123 out:
124 return ret;
125 }
126
127 #define FCC_NAPI_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
128 #define FCC_EVENT (FCC_ENET_RXF | FCC_ENET_TXB)
129 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE)
130
setup_data(struct net_device * dev)131 static int setup_data(struct net_device *dev)
132 {
133 struct fs_enet_private *fep = netdev_priv(dev);
134
135 if (do_pd_setup(fep) != 0)
136 return -EINVAL;
137
138 fep->ev_napi = FCC_NAPI_EVENT_MSK;
139 fep->ev = FCC_EVENT;
140 fep->ev_err = FCC_ERR_EVENT_MSK;
141
142 return 0;
143 }
144
allocate_bd(struct net_device * dev)145 static int allocate_bd(struct net_device *dev)
146 {
147 struct fs_enet_private *fep = netdev_priv(dev);
148 const struct fs_platform_info *fpi = fep->fpi;
149
150 fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
151 (fpi->tx_ring + fpi->rx_ring) *
152 sizeof(cbd_t), &fep->ring_mem_addr,
153 GFP_KERNEL);
154 if (fep->ring_base == NULL)
155 return -ENOMEM;
156
157 return 0;
158 }
159
free_bd(struct net_device * dev)160 static void free_bd(struct net_device *dev)
161 {
162 struct fs_enet_private *fep = netdev_priv(dev);
163 const struct fs_platform_info *fpi = fep->fpi;
164
165 if (fep->ring_base)
166 dma_free_coherent(fep->dev,
167 (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
168 (void __force *)fep->ring_base, fep->ring_mem_addr);
169 }
170
cleanup_data(struct net_device * dev)171 static void cleanup_data(struct net_device *dev)
172 {
173 /* nothing */
174 }
175
set_promiscuous_mode(struct net_device * dev)176 static void set_promiscuous_mode(struct net_device *dev)
177 {
178 struct fs_enet_private *fep = netdev_priv(dev);
179 fcc_t __iomem *fccp = fep->fcc.fccp;
180
181 S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
182 }
183
set_multicast_start(struct net_device * dev)184 static void set_multicast_start(struct net_device *dev)
185 {
186 struct fs_enet_private *fep = netdev_priv(dev);
187 fcc_enet_t __iomem *ep = fep->fcc.ep;
188
189 W32(ep, fen_gaddrh, 0);
190 W32(ep, fen_gaddrl, 0);
191 }
192
set_multicast_one(struct net_device * dev,const u8 * mac)193 static void set_multicast_one(struct net_device *dev, const u8 *mac)
194 {
195 struct fs_enet_private *fep = netdev_priv(dev);
196 fcc_enet_t __iomem *ep = fep->fcc.ep;
197 u16 taddrh, taddrm, taddrl;
198
199 taddrh = ((u16)mac[5] << 8) | mac[4];
200 taddrm = ((u16)mac[3] << 8) | mac[2];
201 taddrl = ((u16)mac[1] << 8) | mac[0];
202
203 W16(ep, fen_taddrh, taddrh);
204 W16(ep, fen_taddrm, taddrm);
205 W16(ep, fen_taddrl, taddrl);
206 fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
207 }
208
set_multicast_finish(struct net_device * dev)209 static void set_multicast_finish(struct net_device *dev)
210 {
211 struct fs_enet_private *fep = netdev_priv(dev);
212 fcc_t __iomem *fccp = fep->fcc.fccp;
213 fcc_enet_t __iomem *ep = fep->fcc.ep;
214
215 /* clear promiscuous always */
216 C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
217
218 /* if all multi or too many multicasts; just enable all */
219 if ((dev->flags & IFF_ALLMULTI) != 0 ||
220 netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
221
222 W32(ep, fen_gaddrh, 0xffffffff);
223 W32(ep, fen_gaddrl, 0xffffffff);
224 }
225
226 /* read back */
227 fep->fcc.gaddrh = R32(ep, fen_gaddrh);
228 fep->fcc.gaddrl = R32(ep, fen_gaddrl);
229 }
230
set_multicast_list(struct net_device * dev)231 static void set_multicast_list(struct net_device *dev)
232 {
233 struct netdev_hw_addr *ha;
234
235 if ((dev->flags & IFF_PROMISC) == 0) {
236 set_multicast_start(dev);
237 netdev_for_each_mc_addr(ha, dev)
238 set_multicast_one(dev, ha->addr);
239 set_multicast_finish(dev);
240 } else
241 set_promiscuous_mode(dev);
242 }
243
restart(struct net_device * dev)244 static void restart(struct net_device *dev)
245 {
246 struct fs_enet_private *fep = netdev_priv(dev);
247 const struct fs_platform_info *fpi = fep->fpi;
248 fcc_t __iomem *fccp = fep->fcc.fccp;
249 fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
250 fcc_enet_t __iomem *ep = fep->fcc.ep;
251 dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
252 u16 paddrh, paddrm, paddrl;
253 const unsigned char *mac;
254 int i;
255
256 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
257
258 /* clear everything (slow & steady does it) */
259 for (i = 0; i < sizeof(*ep); i++)
260 out_8((u8 __iomem *)ep + i, 0);
261
262 /* get physical address */
263 rx_bd_base_phys = fep->ring_mem_addr;
264 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
265
266 /* point to bds */
267 W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
268 W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
269
270 /* Set maximum bytes per receive buffer.
271 * It must be a multiple of 32.
272 */
273 W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
274
275 W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
276 W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
277
278 /* Allocate space in the reserved FCC area of DPRAM for the
279 * internal buffers. No one uses this space (yet), so we
280 * can do this. Later, we will add resource management for
281 * this area.
282 */
283
284 W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
285 W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
286
287 W16(ep, fen_padptr, fpi->dpram_offset + 64);
288
289 /* fill with special symbol... */
290 memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
291
292 W32(ep, fen_genfcc.fcc_rbptr, 0);
293 W32(ep, fen_genfcc.fcc_tbptr, 0);
294 W32(ep, fen_genfcc.fcc_rcrc, 0);
295 W32(ep, fen_genfcc.fcc_tcrc, 0);
296 W16(ep, fen_genfcc.fcc_res1, 0);
297 W32(ep, fen_genfcc.fcc_res2, 0);
298
299 /* no CAM */
300 W32(ep, fen_camptr, 0);
301
302 /* Set CRC preset and mask */
303 W32(ep, fen_cmask, 0xdebb20e3);
304 W32(ep, fen_cpres, 0xffffffff);
305
306 W32(ep, fen_crcec, 0); /* CRC Error counter */
307 W32(ep, fen_alec, 0); /* alignment error counter */
308 W32(ep, fen_disfc, 0); /* discard frame counter */
309 W16(ep, fen_retlim, 15); /* Retry limit threshold */
310 W16(ep, fen_pper, 0); /* Normal persistence */
311
312 /* set group address */
313 W32(ep, fen_gaddrh, fep->fcc.gaddrh);
314 W32(ep, fen_gaddrl, fep->fcc.gaddrh);
315
316 /* Clear hash filter tables */
317 W32(ep, fen_iaddrh, 0);
318 W32(ep, fen_iaddrl, 0);
319
320 /* Clear the Out-of-sequence TxBD */
321 W16(ep, fen_tfcstat, 0);
322 W16(ep, fen_tfclen, 0);
323 W32(ep, fen_tfcptr, 0);
324
325 W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
326 W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
327
328 /* set address */
329 mac = dev->dev_addr;
330 paddrh = ((u16)mac[5] << 8) | mac[4];
331 paddrm = ((u16)mac[3] << 8) | mac[2];
332 paddrl = ((u16)mac[1] << 8) | mac[0];
333
334 W16(ep, fen_paddrh, paddrh);
335 W16(ep, fen_paddrm, paddrm);
336 W16(ep, fen_paddrl, paddrl);
337
338 W16(ep, fen_taddrh, 0);
339 W16(ep, fen_taddrm, 0);
340 W16(ep, fen_taddrl, 0);
341
342 W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
343 W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
344
345 /* Clear stat counters, in case we ever enable RMON */
346 W32(ep, fen_octc, 0);
347 W32(ep, fen_colc, 0);
348 W32(ep, fen_broc, 0);
349 W32(ep, fen_mulc, 0);
350 W32(ep, fen_uspc, 0);
351 W32(ep, fen_frgc, 0);
352 W32(ep, fen_ospc, 0);
353 W32(ep, fen_jbrc, 0);
354 W32(ep, fen_p64c, 0);
355 W32(ep, fen_p65c, 0);
356 W32(ep, fen_p128c, 0);
357 W32(ep, fen_p256c, 0);
358 W32(ep, fen_p512c, 0);
359 W32(ep, fen_p1024c, 0);
360
361 W16(ep, fen_rfthr, 0); /* Suggested by manual */
362 W16(ep, fen_rfcnt, 0);
363 W16(ep, fen_cftype, 0);
364
365 fs_init_bds(dev);
366
367 /* adjust to speed (for RMII mode) */
368 if (fpi->use_rmii) {
369 if (dev->phydev->speed == 100)
370 C8(fcccp, fcc_gfemr, 0x20);
371 else
372 S8(fcccp, fcc_gfemr, 0x20);
373 }
374
375 fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
376
377 /* clear events */
378 W16(fccp, fcc_fcce, 0xffff);
379
380 /* Enable interrupts we wish to service */
381 W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
382
383 /* Set GFMR to enable Ethernet operating mode */
384 W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
385
386 /* set sync/delimiters */
387 W16(fccp, fcc_fdsr, 0xd555);
388
389 W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
390
391 if (fpi->use_rmii)
392 S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
393
394 /* adjust to duplex mode */
395 if (dev->phydev->duplex)
396 S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
397 else
398 C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
399
400 /* Restore multicast and promiscuous settings */
401 set_multicast_list(dev);
402
403 S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
404 }
405
stop(struct net_device * dev)406 static void stop(struct net_device *dev)
407 {
408 struct fs_enet_private *fep = netdev_priv(dev);
409 fcc_t __iomem *fccp = fep->fcc.fccp;
410
411 /* stop ethernet */
412 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
413
414 /* clear events */
415 W16(fccp, fcc_fcce, 0xffff);
416
417 /* clear interrupt mask */
418 W16(fccp, fcc_fccm, 0);
419
420 fs_cleanup_bds(dev);
421 }
422
napi_clear_event_fs(struct net_device * dev)423 static void napi_clear_event_fs(struct net_device *dev)
424 {
425 struct fs_enet_private *fep = netdev_priv(dev);
426 fcc_t __iomem *fccp = fep->fcc.fccp;
427
428 W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
429 }
430
napi_enable_fs(struct net_device * dev)431 static void napi_enable_fs(struct net_device *dev)
432 {
433 struct fs_enet_private *fep = netdev_priv(dev);
434 fcc_t __iomem *fccp = fep->fcc.fccp;
435
436 S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
437 }
438
napi_disable_fs(struct net_device * dev)439 static void napi_disable_fs(struct net_device *dev)
440 {
441 struct fs_enet_private *fep = netdev_priv(dev);
442 fcc_t __iomem *fccp = fep->fcc.fccp;
443
444 C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
445 }
446
rx_bd_done(struct net_device * dev)447 static void rx_bd_done(struct net_device *dev)
448 {
449 /* nothing */
450 }
451
tx_kickstart(struct net_device * dev)452 static void tx_kickstart(struct net_device *dev)
453 {
454 struct fs_enet_private *fep = netdev_priv(dev);
455 fcc_t __iomem *fccp = fep->fcc.fccp;
456
457 S16(fccp, fcc_ftodr, 0x8000);
458 }
459
get_int_events(struct net_device * dev)460 static u32 get_int_events(struct net_device *dev)
461 {
462 struct fs_enet_private *fep = netdev_priv(dev);
463 fcc_t __iomem *fccp = fep->fcc.fccp;
464
465 return (u32)R16(fccp, fcc_fcce);
466 }
467
clear_int_events(struct net_device * dev,u32 int_events)468 static void clear_int_events(struct net_device *dev, u32 int_events)
469 {
470 struct fs_enet_private *fep = netdev_priv(dev);
471 fcc_t __iomem *fccp = fep->fcc.fccp;
472
473 W16(fccp, fcc_fcce, int_events & 0xffff);
474 }
475
ev_error(struct net_device * dev,u32 int_events)476 static void ev_error(struct net_device *dev, u32 int_events)
477 {
478 struct fs_enet_private *fep = netdev_priv(dev);
479
480 dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
481 }
482
get_regs(struct net_device * dev,void * p,int * sizep)483 static int get_regs(struct net_device *dev, void *p, int *sizep)
484 {
485 struct fs_enet_private *fep = netdev_priv(dev);
486
487 if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
488 return -EINVAL;
489
490 memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
491 p = (char *)p + sizeof(fcc_t);
492
493 memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
494 p = (char *)p + sizeof(fcc_enet_t);
495
496 memcpy_fromio(p, fep->fcc.fcccp, 1);
497 return 0;
498 }
499
get_regs_len(struct net_device * dev)500 static int get_regs_len(struct net_device *dev)
501 {
502 return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
503 }
504
505 /* Some transmit errors cause the transmitter to shut
506 * down. We now issue a restart transmit.
507 * Also, to workaround 8260 device erratum CPM37, we must
508 * disable and then re-enable the transmitterfollowing a
509 * Late Collision, Underrun, or Retry Limit error.
510 * In addition, tbptr may point beyond BDs beyond still marked
511 * as ready due to internal pipelining, so we need to look back
512 * through the BDs and adjust tbptr to point to the last BD
513 * marked as ready. This may result in some buffers being
514 * retransmitted.
515 */
tx_restart(struct net_device * dev)516 static void tx_restart(struct net_device *dev)
517 {
518 struct fs_enet_private *fep = netdev_priv(dev);
519 fcc_t __iomem *fccp = fep->fcc.fccp;
520 const struct fs_platform_info *fpi = fep->fpi;
521 fcc_enet_t __iomem *ep = fep->fcc.ep;
522 cbd_t __iomem *curr_tbptr;
523 cbd_t __iomem *recheck_bd;
524 cbd_t __iomem *prev_bd;
525 cbd_t __iomem *last_tx_bd;
526
527 last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
528
529 /* get the current bd held in TBPTR and scan back from this point */
530 recheck_bd = curr_tbptr = (cbd_t __iomem *)
531 ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
532 fep->ring_base);
533
534 prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
535
536 /* Move through the bds in reverse, look for the earliest buffer
537 * that is not ready. Adjust TBPTR to the following buffer */
538 while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
539 /* Go back one buffer */
540 recheck_bd = prev_bd;
541
542 /* update the previous buffer */
543 prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
544
545 /* We should never see all bds marked as ready, check anyway */
546 if (recheck_bd == curr_tbptr)
547 break;
548 }
549 /* Now update the TBPTR and dirty flag to the current buffer */
550 W32(ep, fen_genfcc.fcc_tbptr,
551 (uint) (((void *)recheck_bd - fep->ring_base) +
552 fep->ring_mem_addr));
553 fep->dirty_tx = recheck_bd;
554
555 C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
556 udelay(10);
557 S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
558
559 fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
560 }
561
562 /*************************************************************************/
563
564 const struct fs_ops fs_fcc_ops = {
565 .setup_data = setup_data,
566 .cleanup_data = cleanup_data,
567 .set_multicast_list = set_multicast_list,
568 .restart = restart,
569 .stop = stop,
570 .napi_clear_event = napi_clear_event_fs,
571 .napi_enable = napi_enable_fs,
572 .napi_disable = napi_disable_fs,
573 .rx_bd_done = rx_bd_done,
574 .tx_kickstart = tx_kickstart,
575 .get_int_events = get_int_events,
576 .clear_int_events = clear_int_events,
577 .ev_error = ev_error,
578 .get_regs = get_regs,
579 .get_regs_len = get_regs_len,
580 .tx_restart = tx_restart,
581 .allocate_bd = allocate_bd,
582 .free_bd = free_bd,
583 };
584