1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/tcp.h>
36 #include <linux/iopoll.h>
37 #include <linux/phy/phy.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/ptp_classify.h>
40 #include <linux/reset.h>
41 #include <linux/firmware/xlnx-zynqmp.h>
42 #include "macb.h"
43 
44 /* This structure is only used for MACB on SiFive FU540 devices */
45 struct sifive_fu540_macb_mgmt {
46 	void __iomem *reg;
47 	unsigned long rate;
48 	struct clk_hw hw;
49 };
50 
51 #define MACB_RX_BUFFER_SIZE	128
52 #define RX_BUFFER_MULTIPLE	64  /* bytes */
53 
54 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
55 #define MIN_RX_RING_SIZE	64
56 #define MAX_RX_RING_SIZE	8192
57 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
58 				 * (bp)->rx_ring_size)
59 
60 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
61 #define MIN_TX_RING_SIZE	64
62 #define MAX_TX_RING_SIZE	4096
63 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
64 				 * (bp)->tx_ring_size)
65 
66 /* level of occupied TX descriptors under which we wake up TX process */
67 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
68 
69 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
70 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
71 					| MACB_BIT(ISR_RLE)		\
72 					| MACB_BIT(TXERR))
73 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
74 					| MACB_BIT(TXUBR))
75 
76 /* Max length of transmit frame must be a multiple of 8 bytes */
77 #define MACB_TX_LEN_ALIGN	8
78 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
80  * false amba_error in TX path from the DMA assuming there is not enough
81  * space in the SRAM (16KB) even when there is.
82  */
83 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
84 
85 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
86 #define MACB_NETIF_LSO		NETIF_F_TSO
87 
88 #define MACB_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
89 #define MACB_WOL_ENABLED		(0x1 << 1)
90 
91 #define HS_SPEED_10000M			4
92 #define MACB_SERDES_RATE_10G		1
93 
94 /* Graceful stop timeouts in us. We should allow up to
95  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
96  */
97 #define MACB_HALT_TIMEOUT	1230
98 
99 #define MACB_PM_TIMEOUT  100 /* ms */
100 
101 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
102 
103 /* DMA buffer descriptor might be different size
104  * depends on hardware configuration:
105  *
106  * 1. dma address width 32 bits:
107  *    word 1: 32 bit address of Data Buffer
108  *    word 2: control
109  *
110  * 2. dma address width 64 bits:
111  *    word 1: 32 bit address of Data Buffer
112  *    word 2: control
113  *    word 3: upper 32 bit address of Data Buffer
114  *    word 4: unused
115  *
116  * 3. dma address width 32 bits with hardware timestamping:
117  *    word 1: 32 bit address of Data Buffer
118  *    word 2: control
119  *    word 3: timestamp word 1
120  *    word 4: timestamp word 2
121  *
122  * 4. dma address width 64 bits with hardware timestamping:
123  *    word 1: 32 bit address of Data Buffer
124  *    word 2: control
125  *    word 3: upper 32 bit address of Data Buffer
126  *    word 4: unused
127  *    word 5: timestamp word 1
128  *    word 6: timestamp word 2
129  */
macb_dma_desc_get_size(struct macb * bp)130 static unsigned int macb_dma_desc_get_size(struct macb *bp)
131 {
132 #ifdef MACB_EXT_DESC
133 	unsigned int desc_size;
134 
135 	switch (bp->hw_dma_cap) {
136 	case HW_DMA_CAP_64B:
137 		desc_size = sizeof(struct macb_dma_desc)
138 			+ sizeof(struct macb_dma_desc_64);
139 		break;
140 	case HW_DMA_CAP_PTP:
141 		desc_size = sizeof(struct macb_dma_desc)
142 			+ sizeof(struct macb_dma_desc_ptp);
143 		break;
144 	case HW_DMA_CAP_64B_PTP:
145 		desc_size = sizeof(struct macb_dma_desc)
146 			+ sizeof(struct macb_dma_desc_64)
147 			+ sizeof(struct macb_dma_desc_ptp);
148 		break;
149 	default:
150 		desc_size = sizeof(struct macb_dma_desc);
151 	}
152 	return desc_size;
153 #endif
154 	return sizeof(struct macb_dma_desc);
155 }
156 
macb_adj_dma_desc_idx(struct macb * bp,unsigned int desc_idx)157 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
158 {
159 #ifdef MACB_EXT_DESC
160 	switch (bp->hw_dma_cap) {
161 	case HW_DMA_CAP_64B:
162 	case HW_DMA_CAP_PTP:
163 		desc_idx <<= 1;
164 		break;
165 	case HW_DMA_CAP_64B_PTP:
166 		desc_idx *= 3;
167 		break;
168 	default:
169 		break;
170 	}
171 #endif
172 	return desc_idx;
173 }
174 
175 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
macb_64b_desc(struct macb * bp,struct macb_dma_desc * desc)176 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
177 {
178 	return (struct macb_dma_desc_64 *)((void *)desc
179 		+ sizeof(struct macb_dma_desc));
180 }
181 #endif
182 
183 /* Ring buffer accessors */
macb_tx_ring_wrap(struct macb * bp,unsigned int index)184 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
185 {
186 	return index & (bp->tx_ring_size - 1);
187 }
188 
macb_tx_desc(struct macb_queue * queue,unsigned int index)189 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
190 					  unsigned int index)
191 {
192 	index = macb_tx_ring_wrap(queue->bp, index);
193 	index = macb_adj_dma_desc_idx(queue->bp, index);
194 	return &queue->tx_ring[index];
195 }
196 
macb_tx_skb(struct macb_queue * queue,unsigned int index)197 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
198 				       unsigned int index)
199 {
200 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
201 }
202 
macb_tx_dma(struct macb_queue * queue,unsigned int index)203 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
204 {
205 	dma_addr_t offset;
206 
207 	offset = macb_tx_ring_wrap(queue->bp, index) *
208 			macb_dma_desc_get_size(queue->bp);
209 
210 	return queue->tx_ring_dma + offset;
211 }
212 
macb_rx_ring_wrap(struct macb * bp,unsigned int index)213 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
214 {
215 	return index & (bp->rx_ring_size - 1);
216 }
217 
macb_rx_desc(struct macb_queue * queue,unsigned int index)218 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
219 {
220 	index = macb_rx_ring_wrap(queue->bp, index);
221 	index = macb_adj_dma_desc_idx(queue->bp, index);
222 	return &queue->rx_ring[index];
223 }
224 
macb_rx_buffer(struct macb_queue * queue,unsigned int index)225 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
226 {
227 	return queue->rx_buffers + queue->bp->rx_buffer_size *
228 	       macb_rx_ring_wrap(queue->bp, index);
229 }
230 
231 /* I/O accessors */
hw_readl_native(struct macb * bp,int offset)232 static u32 hw_readl_native(struct macb *bp, int offset)
233 {
234 	return __raw_readl(bp->regs + offset);
235 }
236 
hw_writel_native(struct macb * bp,int offset,u32 value)237 static void hw_writel_native(struct macb *bp, int offset, u32 value)
238 {
239 	__raw_writel(value, bp->regs + offset);
240 }
241 
hw_readl(struct macb * bp,int offset)242 static u32 hw_readl(struct macb *bp, int offset)
243 {
244 	return readl_relaxed(bp->regs + offset);
245 }
246 
hw_writel(struct macb * bp,int offset,u32 value)247 static void hw_writel(struct macb *bp, int offset, u32 value)
248 {
249 	writel_relaxed(value, bp->regs + offset);
250 }
251 
252 /* Find the CPU endianness by using the loopback bit of NCR register. When the
253  * CPU is in big endian we need to program swapped mode for management
254  * descriptor access.
255  */
hw_is_native_io(void __iomem * addr)256 static bool hw_is_native_io(void __iomem *addr)
257 {
258 	u32 value = MACB_BIT(LLB);
259 
260 	__raw_writel(value, addr + MACB_NCR);
261 	value = __raw_readl(addr + MACB_NCR);
262 
263 	/* Write 0 back to disable everything */
264 	__raw_writel(0, addr + MACB_NCR);
265 
266 	return value == MACB_BIT(LLB);
267 }
268 
hw_is_gem(void __iomem * addr,bool native_io)269 static bool hw_is_gem(void __iomem *addr, bool native_io)
270 {
271 	u32 id;
272 
273 	if (native_io)
274 		id = __raw_readl(addr + MACB_MID);
275 	else
276 		id = readl_relaxed(addr + MACB_MID);
277 
278 	return MACB_BFEXT(IDNUM, id) >= 0x2;
279 }
280 
macb_set_hwaddr(struct macb * bp)281 static void macb_set_hwaddr(struct macb *bp)
282 {
283 	u32 bottom;
284 	u16 top;
285 
286 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
287 	macb_or_gem_writel(bp, SA1B, bottom);
288 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
289 	macb_or_gem_writel(bp, SA1T, top);
290 
291 	/* Clear unused address register sets */
292 	macb_or_gem_writel(bp, SA2B, 0);
293 	macb_or_gem_writel(bp, SA2T, 0);
294 	macb_or_gem_writel(bp, SA3B, 0);
295 	macb_or_gem_writel(bp, SA3T, 0);
296 	macb_or_gem_writel(bp, SA4B, 0);
297 	macb_or_gem_writel(bp, SA4T, 0);
298 }
299 
macb_get_hwaddr(struct macb * bp)300 static void macb_get_hwaddr(struct macb *bp)
301 {
302 	u32 bottom;
303 	u16 top;
304 	u8 addr[6];
305 	int i;
306 
307 	/* Check all 4 address register for valid address */
308 	for (i = 0; i < 4; i++) {
309 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
310 		top = macb_or_gem_readl(bp, SA1T + i * 8);
311 
312 		addr[0] = bottom & 0xff;
313 		addr[1] = (bottom >> 8) & 0xff;
314 		addr[2] = (bottom >> 16) & 0xff;
315 		addr[3] = (bottom >> 24) & 0xff;
316 		addr[4] = top & 0xff;
317 		addr[5] = (top >> 8) & 0xff;
318 
319 		if (is_valid_ether_addr(addr)) {
320 			eth_hw_addr_set(bp->dev, addr);
321 			return;
322 		}
323 	}
324 
325 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
326 	eth_hw_addr_random(bp->dev);
327 }
328 
macb_mdio_wait_for_idle(struct macb * bp)329 static int macb_mdio_wait_for_idle(struct macb *bp)
330 {
331 	u32 val;
332 
333 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
334 				  1, MACB_MDIO_TIMEOUT);
335 }
336 
macb_mdio_read(struct mii_bus * bus,int mii_id,int regnum)337 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
338 {
339 	struct macb *bp = bus->priv;
340 	int status;
341 
342 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
343 	if (status < 0)
344 		goto mdio_pm_exit;
345 
346 	status = macb_mdio_wait_for_idle(bp);
347 	if (status < 0)
348 		goto mdio_read_exit;
349 
350 	if (regnum & MII_ADDR_C45) {
351 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
352 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
353 			    | MACB_BF(PHYA, mii_id)
354 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
355 			    | MACB_BF(DATA, regnum & 0xFFFF)
356 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
357 
358 		status = macb_mdio_wait_for_idle(bp);
359 		if (status < 0)
360 			goto mdio_read_exit;
361 
362 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
363 			    | MACB_BF(RW, MACB_MAN_C45_READ)
364 			    | MACB_BF(PHYA, mii_id)
365 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
366 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
367 	} else {
368 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
369 				| MACB_BF(RW, MACB_MAN_C22_READ)
370 				| MACB_BF(PHYA, mii_id)
371 				| MACB_BF(REGA, regnum)
372 				| MACB_BF(CODE, MACB_MAN_C22_CODE)));
373 	}
374 
375 	status = macb_mdio_wait_for_idle(bp);
376 	if (status < 0)
377 		goto mdio_read_exit;
378 
379 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
380 
381 mdio_read_exit:
382 	pm_runtime_mark_last_busy(&bp->pdev->dev);
383 	pm_runtime_put_autosuspend(&bp->pdev->dev);
384 mdio_pm_exit:
385 	return status;
386 }
387 
macb_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)388 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
389 			   u16 value)
390 {
391 	struct macb *bp = bus->priv;
392 	int status;
393 
394 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
395 	if (status < 0)
396 		goto mdio_pm_exit;
397 
398 	status = macb_mdio_wait_for_idle(bp);
399 	if (status < 0)
400 		goto mdio_write_exit;
401 
402 	if (regnum & MII_ADDR_C45) {
403 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
404 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
405 			    | MACB_BF(PHYA, mii_id)
406 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
407 			    | MACB_BF(DATA, regnum & 0xFFFF)
408 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
409 
410 		status = macb_mdio_wait_for_idle(bp);
411 		if (status < 0)
412 			goto mdio_write_exit;
413 
414 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
415 			    | MACB_BF(RW, MACB_MAN_C45_WRITE)
416 			    | MACB_BF(PHYA, mii_id)
417 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
418 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)
419 			    | MACB_BF(DATA, value)));
420 	} else {
421 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
422 				| MACB_BF(RW, MACB_MAN_C22_WRITE)
423 				| MACB_BF(PHYA, mii_id)
424 				| MACB_BF(REGA, regnum)
425 				| MACB_BF(CODE, MACB_MAN_C22_CODE)
426 				| MACB_BF(DATA, value)));
427 	}
428 
429 	status = macb_mdio_wait_for_idle(bp);
430 	if (status < 0)
431 		goto mdio_write_exit;
432 
433 mdio_write_exit:
434 	pm_runtime_mark_last_busy(&bp->pdev->dev);
435 	pm_runtime_put_autosuspend(&bp->pdev->dev);
436 mdio_pm_exit:
437 	return status;
438 }
439 
macb_init_buffers(struct macb * bp)440 static void macb_init_buffers(struct macb *bp)
441 {
442 	struct macb_queue *queue;
443 	unsigned int q;
444 
445 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
446 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
447 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
448 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
449 			queue_writel(queue, RBQPH,
450 				     upper_32_bits(queue->rx_ring_dma));
451 #endif
452 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
453 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
454 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
455 			queue_writel(queue, TBQPH,
456 				     upper_32_bits(queue->tx_ring_dma));
457 #endif
458 	}
459 }
460 
461 /**
462  * macb_set_tx_clk() - Set a clock to a new frequency
463  * @bp:		pointer to struct macb
464  * @speed:	New frequency in Hz
465  */
macb_set_tx_clk(struct macb * bp,int speed)466 static void macb_set_tx_clk(struct macb *bp, int speed)
467 {
468 	long ferr, rate, rate_rounded;
469 
470 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
471 		return;
472 
473 	/* In case of MII the PHY is the clock master */
474 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
475 		return;
476 
477 	switch (speed) {
478 	case SPEED_10:
479 		rate = 2500000;
480 		break;
481 	case SPEED_100:
482 		rate = 25000000;
483 		break;
484 	case SPEED_1000:
485 		rate = 125000000;
486 		break;
487 	default:
488 		return;
489 	}
490 
491 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
492 	if (rate_rounded < 0)
493 		return;
494 
495 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
496 	 * is not satisfied.
497 	 */
498 	ferr = abs(rate_rounded - rate);
499 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
500 	if (ferr > 5)
501 		netdev_warn(bp->dev,
502 			    "unable to generate target frequency: %ld Hz\n",
503 			    rate);
504 
505 	if (clk_set_rate(bp->tx_clk, rate_rounded))
506 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
507 }
508 
macb_usx_pcs_link_up(struct phylink_pcs * pcs,unsigned int mode,phy_interface_t interface,int speed,int duplex)509 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
510 				 phy_interface_t interface, int speed,
511 				 int duplex)
512 {
513 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
514 	u32 config;
515 
516 	config = gem_readl(bp, USX_CONTROL);
517 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
518 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
519 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
520 	config |= GEM_BIT(TX_EN);
521 	gem_writel(bp, USX_CONTROL, config);
522 }
523 
macb_usx_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)524 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
525 				   struct phylink_link_state *state)
526 {
527 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
528 	u32 val;
529 
530 	state->speed = SPEED_10000;
531 	state->duplex = 1;
532 	state->an_complete = 1;
533 
534 	val = gem_readl(bp, USX_STATUS);
535 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
536 	val = gem_readl(bp, NCFGR);
537 	if (val & GEM_BIT(PAE))
538 		state->pause = MLO_PAUSE_RX;
539 }
540 
macb_usx_pcs_config(struct phylink_pcs * pcs,unsigned int mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)541 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
542 			       unsigned int mode,
543 			       phy_interface_t interface,
544 			       const unsigned long *advertising,
545 			       bool permit_pause_to_mac)
546 {
547 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
548 
549 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
550 		   GEM_BIT(SIGNAL_OK));
551 
552 	return 0;
553 }
554 
macb_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)555 static void macb_pcs_get_state(struct phylink_pcs *pcs,
556 			       struct phylink_link_state *state)
557 {
558 	state->link = 0;
559 }
560 
macb_pcs_an_restart(struct phylink_pcs * pcs)561 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
562 {
563 	/* Not supported */
564 }
565 
macb_pcs_config(struct phylink_pcs * pcs,unsigned int mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)566 static int macb_pcs_config(struct phylink_pcs *pcs,
567 			   unsigned int mode,
568 			   phy_interface_t interface,
569 			   const unsigned long *advertising,
570 			   bool permit_pause_to_mac)
571 {
572 	return 0;
573 }
574 
575 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
576 	.pcs_get_state = macb_usx_pcs_get_state,
577 	.pcs_config = macb_usx_pcs_config,
578 	.pcs_link_up = macb_usx_pcs_link_up,
579 };
580 
581 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
582 	.pcs_get_state = macb_pcs_get_state,
583 	.pcs_an_restart = macb_pcs_an_restart,
584 	.pcs_config = macb_pcs_config,
585 };
586 
macb_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)587 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
588 			    const struct phylink_link_state *state)
589 {
590 	struct net_device *ndev = to_net_dev(config->dev);
591 	struct macb *bp = netdev_priv(ndev);
592 	unsigned long flags;
593 	u32 old_ctrl, ctrl;
594 	u32 old_ncr, ncr;
595 
596 	spin_lock_irqsave(&bp->lock, flags);
597 
598 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
599 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
600 
601 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
602 		if (state->interface == PHY_INTERFACE_MODE_RMII)
603 			ctrl |= MACB_BIT(RM9200_RMII);
604 	} else if (macb_is_gem(bp)) {
605 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
606 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
607 
608 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
609 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
610 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
611 			ctrl |= GEM_BIT(PCSSEL);
612 			ncr |= GEM_BIT(ENABLE_HS_MAC);
613 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
614 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
615 			ncr |= MACB_BIT(MIIONRGMII);
616 		}
617 	}
618 
619 	/* Apply the new configuration, if any */
620 	if (old_ctrl ^ ctrl)
621 		macb_or_gem_writel(bp, NCFGR, ctrl);
622 
623 	if (old_ncr ^ ncr)
624 		macb_or_gem_writel(bp, NCR, ncr);
625 
626 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
627 	 * Must be written after PCSSEL is set in NCFGR,
628 	 * otherwise writes will not take effect.
629 	 */
630 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
631 		u32 pcsctrl, old_pcsctrl;
632 
633 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
634 		if (mode == MLO_AN_FIXED)
635 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
636 		else
637 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
638 		if (old_pcsctrl != pcsctrl)
639 			gem_writel(bp, PCSCNTRL, pcsctrl);
640 	}
641 
642 	spin_unlock_irqrestore(&bp->lock, flags);
643 }
644 
macb_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)645 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
646 			       phy_interface_t interface)
647 {
648 	struct net_device *ndev = to_net_dev(config->dev);
649 	struct macb *bp = netdev_priv(ndev);
650 	struct macb_queue *queue;
651 	unsigned int q;
652 	u32 ctrl;
653 
654 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
655 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
656 			queue_writel(queue, IDR,
657 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
658 
659 	/* Disable Rx and Tx */
660 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
661 	macb_writel(bp, NCR, ctrl);
662 
663 	netif_tx_stop_all_queues(ndev);
664 }
665 
macb_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)666 static void macb_mac_link_up(struct phylink_config *config,
667 			     struct phy_device *phy,
668 			     unsigned int mode, phy_interface_t interface,
669 			     int speed, int duplex,
670 			     bool tx_pause, bool rx_pause)
671 {
672 	struct net_device *ndev = to_net_dev(config->dev);
673 	struct macb *bp = netdev_priv(ndev);
674 	struct macb_queue *queue;
675 	unsigned long flags;
676 	unsigned int q;
677 	u32 ctrl;
678 
679 	spin_lock_irqsave(&bp->lock, flags);
680 
681 	ctrl = macb_or_gem_readl(bp, NCFGR);
682 
683 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
684 
685 	if (speed == SPEED_100)
686 		ctrl |= MACB_BIT(SPD);
687 
688 	if (duplex)
689 		ctrl |= MACB_BIT(FD);
690 
691 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
692 		ctrl &= ~MACB_BIT(PAE);
693 		if (macb_is_gem(bp)) {
694 			ctrl &= ~GEM_BIT(GBE);
695 
696 			if (speed == SPEED_1000)
697 				ctrl |= GEM_BIT(GBE);
698 		}
699 
700 		if (rx_pause)
701 			ctrl |= MACB_BIT(PAE);
702 
703 		macb_set_tx_clk(bp, speed);
704 
705 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
706 		 * cleared the pipeline and control registers.
707 		 */
708 		bp->macbgem_ops.mog_init_rings(bp);
709 		macb_init_buffers(bp);
710 
711 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
712 			queue_writel(queue, IER,
713 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
714 	}
715 
716 	macb_or_gem_writel(bp, NCFGR, ctrl);
717 
718 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
719 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
720 							gem_readl(bp, HS_MAC_CONFIG)));
721 
722 	spin_unlock_irqrestore(&bp->lock, flags);
723 
724 	/* Enable Rx and Tx */
725 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE));
726 
727 	netif_tx_wake_all_queues(ndev);
728 }
729 
macb_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)730 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
731 					       phy_interface_t interface)
732 {
733 	struct net_device *ndev = to_net_dev(config->dev);
734 	struct macb *bp = netdev_priv(ndev);
735 
736 	if (interface == PHY_INTERFACE_MODE_10GBASER)
737 		return &bp->phylink_usx_pcs;
738 	else if (interface == PHY_INTERFACE_MODE_SGMII)
739 		return &bp->phylink_sgmii_pcs;
740 	else
741 		return NULL;
742 }
743 
744 static const struct phylink_mac_ops macb_phylink_ops = {
745 	.validate = phylink_generic_validate,
746 	.mac_select_pcs = macb_mac_select_pcs,
747 	.mac_config = macb_mac_config,
748 	.mac_link_down = macb_mac_link_down,
749 	.mac_link_up = macb_mac_link_up,
750 };
751 
macb_phy_handle_exists(struct device_node * dn)752 static bool macb_phy_handle_exists(struct device_node *dn)
753 {
754 	dn = of_parse_phandle(dn, "phy-handle", 0);
755 	of_node_put(dn);
756 	return dn != NULL;
757 }
758 
macb_phylink_connect(struct macb * bp)759 static int macb_phylink_connect(struct macb *bp)
760 {
761 	struct device_node *dn = bp->pdev->dev.of_node;
762 	struct net_device *dev = bp->dev;
763 	struct phy_device *phydev;
764 	int ret;
765 
766 	if (dn)
767 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
768 
769 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
770 		phydev = phy_find_first(bp->mii_bus);
771 		if (!phydev) {
772 			netdev_err(dev, "no PHY found\n");
773 			return -ENXIO;
774 		}
775 
776 		/* attach the mac to the phy */
777 		ret = phylink_connect_phy(bp->phylink, phydev);
778 	}
779 
780 	if (ret) {
781 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
782 		return ret;
783 	}
784 
785 	phylink_start(bp->phylink);
786 
787 	return 0;
788 }
789 
macb_get_pcs_fixed_state(struct phylink_config * config,struct phylink_link_state * state)790 static void macb_get_pcs_fixed_state(struct phylink_config *config,
791 				     struct phylink_link_state *state)
792 {
793 	struct net_device *ndev = to_net_dev(config->dev);
794 	struct macb *bp = netdev_priv(ndev);
795 
796 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
797 }
798 
799 /* based on au1000_eth. c*/
macb_mii_probe(struct net_device * dev)800 static int macb_mii_probe(struct net_device *dev)
801 {
802 	struct macb *bp = netdev_priv(dev);
803 
804 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
805 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
806 
807 	bp->phylink_config.dev = &dev->dev;
808 	bp->phylink_config.type = PHYLINK_NETDEV;
809 	bp->phylink_config.mac_managed_pm = true;
810 
811 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
812 		bp->phylink_config.poll_fixed_state = true;
813 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
814 	}
815 
816 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
817 		MAC_10 | MAC_100;
818 
819 	__set_bit(PHY_INTERFACE_MODE_MII,
820 		  bp->phylink_config.supported_interfaces);
821 	__set_bit(PHY_INTERFACE_MODE_RMII,
822 		  bp->phylink_config.supported_interfaces);
823 
824 	/* Determine what modes are supported */
825 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
826 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
827 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
828 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
829 
830 		__set_bit(PHY_INTERFACE_MODE_GMII,
831 			  bp->phylink_config.supported_interfaces);
832 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
833 
834 		if (bp->caps & MACB_CAPS_PCS)
835 			__set_bit(PHY_INTERFACE_MODE_SGMII,
836 				  bp->phylink_config.supported_interfaces);
837 
838 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
839 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
840 				  bp->phylink_config.supported_interfaces);
841 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
842 		}
843 	}
844 
845 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
846 				     bp->phy_interface, &macb_phylink_ops);
847 	if (IS_ERR(bp->phylink)) {
848 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
849 			   PTR_ERR(bp->phylink));
850 		return PTR_ERR(bp->phylink);
851 	}
852 
853 	return 0;
854 }
855 
macb_mdiobus_register(struct macb * bp)856 static int macb_mdiobus_register(struct macb *bp)
857 {
858 	struct device_node *child, *np = bp->pdev->dev.of_node;
859 
860 	/* If we have a child named mdio, probe it instead of looking for PHYs
861 	 * directly under the MAC node
862 	 */
863 	child = of_get_child_by_name(np, "mdio");
864 	if (child) {
865 		int ret = of_mdiobus_register(bp->mii_bus, child);
866 
867 		of_node_put(child);
868 		return ret;
869 	}
870 
871 	if (of_phy_is_fixed_link(np))
872 		return mdiobus_register(bp->mii_bus);
873 
874 	/* Only create the PHY from the device tree if at least one PHY is
875 	 * described. Otherwise scan the entire MDIO bus. We do this to support
876 	 * old device tree that did not follow the best practices and did not
877 	 * describe their network PHYs.
878 	 */
879 	for_each_available_child_of_node(np, child)
880 		if (of_mdiobus_child_is_phy(child)) {
881 			/* The loop increments the child refcount,
882 			 * decrement it before returning.
883 			 */
884 			of_node_put(child);
885 
886 			return of_mdiobus_register(bp->mii_bus, np);
887 		}
888 
889 	return mdiobus_register(bp->mii_bus);
890 }
891 
macb_mii_init(struct macb * bp)892 static int macb_mii_init(struct macb *bp)
893 {
894 	int err = -ENXIO;
895 
896 	/* Enable management port */
897 	macb_writel(bp, NCR, MACB_BIT(MPE));
898 
899 	bp->mii_bus = mdiobus_alloc();
900 	if (!bp->mii_bus) {
901 		err = -ENOMEM;
902 		goto err_out;
903 	}
904 
905 	bp->mii_bus->name = "MACB_mii_bus";
906 	bp->mii_bus->read = &macb_mdio_read;
907 	bp->mii_bus->write = &macb_mdio_write;
908 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
909 		 bp->pdev->name, bp->pdev->id);
910 	bp->mii_bus->priv = bp;
911 	bp->mii_bus->parent = &bp->pdev->dev;
912 
913 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
914 
915 	err = macb_mdiobus_register(bp);
916 	if (err)
917 		goto err_out_free_mdiobus;
918 
919 	err = macb_mii_probe(bp->dev);
920 	if (err)
921 		goto err_out_unregister_bus;
922 
923 	return 0;
924 
925 err_out_unregister_bus:
926 	mdiobus_unregister(bp->mii_bus);
927 err_out_free_mdiobus:
928 	mdiobus_free(bp->mii_bus);
929 err_out:
930 	return err;
931 }
932 
macb_update_stats(struct macb * bp)933 static void macb_update_stats(struct macb *bp)
934 {
935 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
936 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
937 	int offset = MACB_PFR;
938 
939 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
940 
941 	for (; p < end; p++, offset += 4)
942 		*p += bp->macb_reg_readl(bp, offset);
943 }
944 
macb_halt_tx(struct macb * bp)945 static int macb_halt_tx(struct macb *bp)
946 {
947 	unsigned long	halt_time, timeout;
948 	u32		status;
949 
950 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
951 
952 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
953 	do {
954 		halt_time = jiffies;
955 		status = macb_readl(bp, TSR);
956 		if (!(status & MACB_BIT(TGO)))
957 			return 0;
958 
959 		udelay(250);
960 	} while (time_before(halt_time, timeout));
961 
962 	return -ETIMEDOUT;
963 }
964 
macb_tx_unmap(struct macb * bp,struct macb_tx_skb * tx_skb,int budget)965 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
966 {
967 	if (tx_skb->mapping) {
968 		if (tx_skb->mapped_as_page)
969 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
970 				       tx_skb->size, DMA_TO_DEVICE);
971 		else
972 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
973 					 tx_skb->size, DMA_TO_DEVICE);
974 		tx_skb->mapping = 0;
975 	}
976 
977 	if (tx_skb->skb) {
978 		napi_consume_skb(tx_skb->skb, budget);
979 		tx_skb->skb = NULL;
980 	}
981 }
982 
macb_set_addr(struct macb * bp,struct macb_dma_desc * desc,dma_addr_t addr)983 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
984 {
985 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
986 	struct macb_dma_desc_64 *desc_64;
987 
988 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
989 		desc_64 = macb_64b_desc(bp, desc);
990 		desc_64->addrh = upper_32_bits(addr);
991 		/* The low bits of RX address contain the RX_USED bit, clearing
992 		 * of which allows packet RX. Make sure the high bits are also
993 		 * visible to HW at that point.
994 		 */
995 		dma_wmb();
996 	}
997 #endif
998 	desc->addr = lower_32_bits(addr);
999 }
1000 
macb_get_addr(struct macb * bp,struct macb_dma_desc * desc)1001 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1002 {
1003 	dma_addr_t addr = 0;
1004 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1005 	struct macb_dma_desc_64 *desc_64;
1006 
1007 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1008 		desc_64 = macb_64b_desc(bp, desc);
1009 		addr = ((u64)(desc_64->addrh) << 32);
1010 	}
1011 #endif
1012 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1013 	return addr;
1014 }
1015 
macb_tx_error_task(struct work_struct * work)1016 static void macb_tx_error_task(struct work_struct *work)
1017 {
1018 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1019 						      tx_error_task);
1020 	struct macb		*bp = queue->bp;
1021 	struct macb_tx_skb	*tx_skb;
1022 	struct macb_dma_desc	*desc;
1023 	struct sk_buff		*skb;
1024 	unsigned int		tail;
1025 	unsigned long		flags;
1026 
1027 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1028 		    (unsigned int)(queue - bp->queues),
1029 		    queue->tx_tail, queue->tx_head);
1030 
1031 	/* Prevent the queue NAPI TX poll from running, as it calls
1032 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1033 	 * As explained below, we have to halt the transmission before updating
1034 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1035 	 * network engine about the macb/gem being halted.
1036 	 */
1037 	napi_disable(&queue->napi_tx);
1038 	spin_lock_irqsave(&bp->lock, flags);
1039 
1040 	/* Make sure nobody is trying to queue up new packets */
1041 	netif_tx_stop_all_queues(bp->dev);
1042 
1043 	/* Stop transmission now
1044 	 * (in case we have just queued new packets)
1045 	 * macb/gem must be halted to write TBQP register
1046 	 */
1047 	if (macb_halt_tx(bp))
1048 		/* Just complain for now, reinitializing TX path can be good */
1049 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1050 
1051 	/* Treat frames in TX queue including the ones that caused the error.
1052 	 * Free transmit buffers in upper layer.
1053 	 */
1054 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1055 		u32	ctrl;
1056 
1057 		desc = macb_tx_desc(queue, tail);
1058 		ctrl = desc->ctrl;
1059 		tx_skb = macb_tx_skb(queue, tail);
1060 		skb = tx_skb->skb;
1061 
1062 		if (ctrl & MACB_BIT(TX_USED)) {
1063 			/* skb is set for the last buffer of the frame */
1064 			while (!skb) {
1065 				macb_tx_unmap(bp, tx_skb, 0);
1066 				tail++;
1067 				tx_skb = macb_tx_skb(queue, tail);
1068 				skb = tx_skb->skb;
1069 			}
1070 
1071 			/* ctrl still refers to the first buffer descriptor
1072 			 * since it's the only one written back by the hardware
1073 			 */
1074 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1075 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1076 					    macb_tx_ring_wrap(bp, tail),
1077 					    skb->data);
1078 				bp->dev->stats.tx_packets++;
1079 				queue->stats.tx_packets++;
1080 				bp->dev->stats.tx_bytes += skb->len;
1081 				queue->stats.tx_bytes += skb->len;
1082 			}
1083 		} else {
1084 			/* "Buffers exhausted mid-frame" errors may only happen
1085 			 * if the driver is buggy, so complain loudly about
1086 			 * those. Statistics are updated by hardware.
1087 			 */
1088 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1089 				netdev_err(bp->dev,
1090 					   "BUG: TX buffers exhausted mid-frame\n");
1091 
1092 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1093 		}
1094 
1095 		macb_tx_unmap(bp, tx_skb, 0);
1096 	}
1097 
1098 	/* Set end of TX queue */
1099 	desc = macb_tx_desc(queue, 0);
1100 	macb_set_addr(bp, desc, 0);
1101 	desc->ctrl = MACB_BIT(TX_USED);
1102 
1103 	/* Make descriptor updates visible to hardware */
1104 	wmb();
1105 
1106 	/* Reinitialize the TX desc queue */
1107 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1108 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1109 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1110 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1111 #endif
1112 	/* Make TX ring reflect state of hardware */
1113 	queue->tx_head = 0;
1114 	queue->tx_tail = 0;
1115 
1116 	/* Housework before enabling TX IRQ */
1117 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1118 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1119 
1120 	/* Now we are ready to start transmission again */
1121 	netif_tx_start_all_queues(bp->dev);
1122 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1123 
1124 	spin_unlock_irqrestore(&bp->lock, flags);
1125 	napi_enable(&queue->napi_tx);
1126 }
1127 
ptp_one_step_sync(struct sk_buff * skb)1128 static bool ptp_one_step_sync(struct sk_buff *skb)
1129 {
1130 	struct ptp_header *hdr;
1131 	unsigned int ptp_class;
1132 	u8 msgtype;
1133 
1134 	/* No need to parse packet if PTP TS is not involved */
1135 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1136 		goto not_oss;
1137 
1138 	/* Identify and return whether PTP one step sync is being processed */
1139 	ptp_class = ptp_classify_raw(skb);
1140 	if (ptp_class == PTP_CLASS_NONE)
1141 		goto not_oss;
1142 
1143 	hdr = ptp_parse_header(skb, ptp_class);
1144 	if (!hdr)
1145 		goto not_oss;
1146 
1147 	if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1148 		goto not_oss;
1149 
1150 	msgtype = ptp_get_msgtype(hdr, ptp_class);
1151 	if (msgtype == PTP_MSGTYPE_SYNC)
1152 		return true;
1153 
1154 not_oss:
1155 	return false;
1156 }
1157 
macb_tx_complete(struct macb_queue * queue,int budget)1158 static int macb_tx_complete(struct macb_queue *queue, int budget)
1159 {
1160 	struct macb *bp = queue->bp;
1161 	u16 queue_index = queue - bp->queues;
1162 	unsigned int tail;
1163 	unsigned int head;
1164 	int packets = 0;
1165 
1166 	spin_lock(&queue->tx_ptr_lock);
1167 	head = queue->tx_head;
1168 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1169 		struct macb_tx_skb	*tx_skb;
1170 		struct sk_buff		*skb;
1171 		struct macb_dma_desc	*desc;
1172 		u32			ctrl;
1173 
1174 		desc = macb_tx_desc(queue, tail);
1175 
1176 		/* Make hw descriptor updates visible to CPU */
1177 		rmb();
1178 
1179 		ctrl = desc->ctrl;
1180 
1181 		/* TX_USED bit is only set by hardware on the very first buffer
1182 		 * descriptor of the transmitted frame.
1183 		 */
1184 		if (!(ctrl & MACB_BIT(TX_USED)))
1185 			break;
1186 
1187 		/* Process all buffers of the current transmitted frame */
1188 		for (;; tail++) {
1189 			tx_skb = macb_tx_skb(queue, tail);
1190 			skb = tx_skb->skb;
1191 
1192 			/* First, update TX stats if needed */
1193 			if (skb) {
1194 				if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1195 				    !ptp_one_step_sync(skb) &&
1196 				    gem_ptp_do_txstamp(queue, skb, desc) == 0) {
1197 					/* skb now belongs to timestamp buffer
1198 					 * and will be removed later
1199 					 */
1200 					tx_skb->skb = NULL;
1201 				}
1202 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1203 					    macb_tx_ring_wrap(bp, tail),
1204 					    skb->data);
1205 				bp->dev->stats.tx_packets++;
1206 				queue->stats.tx_packets++;
1207 				bp->dev->stats.tx_bytes += skb->len;
1208 				queue->stats.tx_bytes += skb->len;
1209 				packets++;
1210 			}
1211 
1212 			/* Now we can safely release resources */
1213 			macb_tx_unmap(bp, tx_skb, budget);
1214 
1215 			/* skb is set only for the last buffer of the frame.
1216 			 * WARNING: at this point skb has been freed by
1217 			 * macb_tx_unmap().
1218 			 */
1219 			if (skb)
1220 				break;
1221 		}
1222 	}
1223 
1224 	queue->tx_tail = tail;
1225 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1226 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1227 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1228 		netif_wake_subqueue(bp->dev, queue_index);
1229 	spin_unlock(&queue->tx_ptr_lock);
1230 
1231 	return packets;
1232 }
1233 
gem_rx_refill(struct macb_queue * queue)1234 static void gem_rx_refill(struct macb_queue *queue)
1235 {
1236 	unsigned int		entry;
1237 	struct sk_buff		*skb;
1238 	dma_addr_t		paddr;
1239 	struct macb *bp = queue->bp;
1240 	struct macb_dma_desc *desc;
1241 
1242 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1243 			bp->rx_ring_size) > 0) {
1244 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1245 
1246 		/* Make hw descriptor updates visible to CPU */
1247 		rmb();
1248 
1249 		desc = macb_rx_desc(queue, entry);
1250 
1251 		if (!queue->rx_skbuff[entry]) {
1252 			/* allocate sk_buff for this free entry in ring */
1253 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1254 			if (unlikely(!skb)) {
1255 				netdev_err(bp->dev,
1256 					   "Unable to allocate sk_buff\n");
1257 				break;
1258 			}
1259 
1260 			/* now fill corresponding descriptor entry */
1261 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1262 					       bp->rx_buffer_size,
1263 					       DMA_FROM_DEVICE);
1264 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1265 				dev_kfree_skb(skb);
1266 				break;
1267 			}
1268 
1269 			queue->rx_skbuff[entry] = skb;
1270 
1271 			if (entry == bp->rx_ring_size - 1)
1272 				paddr |= MACB_BIT(RX_WRAP);
1273 			desc->ctrl = 0;
1274 			/* Setting addr clears RX_USED and allows reception,
1275 			 * make sure ctrl is cleared first to avoid a race.
1276 			 */
1277 			dma_wmb();
1278 			macb_set_addr(bp, desc, paddr);
1279 
1280 			/* properly align Ethernet header */
1281 			skb_reserve(skb, NET_IP_ALIGN);
1282 		} else {
1283 			desc->ctrl = 0;
1284 			dma_wmb();
1285 			desc->addr &= ~MACB_BIT(RX_USED);
1286 		}
1287 		queue->rx_prepared_head++;
1288 	}
1289 
1290 	/* Make descriptor updates visible to hardware */
1291 	wmb();
1292 
1293 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1294 			queue, queue->rx_prepared_head, queue->rx_tail);
1295 }
1296 
1297 /* Mark DMA descriptors from begin up to and not including end as unused */
discard_partial_frame(struct macb_queue * queue,unsigned int begin,unsigned int end)1298 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1299 				  unsigned int end)
1300 {
1301 	unsigned int frag;
1302 
1303 	for (frag = begin; frag != end; frag++) {
1304 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1305 
1306 		desc->addr &= ~MACB_BIT(RX_USED);
1307 	}
1308 
1309 	/* Make descriptor updates visible to hardware */
1310 	wmb();
1311 
1312 	/* When this happens, the hardware stats registers for
1313 	 * whatever caused this is updated, so we don't have to record
1314 	 * anything.
1315 	 */
1316 }
1317 
gem_rx(struct macb_queue * queue,struct napi_struct * napi,int budget)1318 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1319 		  int budget)
1320 {
1321 	struct macb *bp = queue->bp;
1322 	unsigned int		len;
1323 	unsigned int		entry;
1324 	struct sk_buff		*skb;
1325 	struct macb_dma_desc	*desc;
1326 	int			count = 0;
1327 
1328 	while (count < budget) {
1329 		u32 ctrl;
1330 		dma_addr_t addr;
1331 		bool rxused;
1332 
1333 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1334 		desc = macb_rx_desc(queue, entry);
1335 
1336 		/* Make hw descriptor updates visible to CPU */
1337 		rmb();
1338 
1339 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1340 		addr = macb_get_addr(bp, desc);
1341 
1342 		if (!rxused)
1343 			break;
1344 
1345 		/* Ensure ctrl is at least as up-to-date as rxused */
1346 		dma_rmb();
1347 
1348 		ctrl = desc->ctrl;
1349 
1350 		queue->rx_tail++;
1351 		count++;
1352 
1353 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1354 			netdev_err(bp->dev,
1355 				   "not whole frame pointed by descriptor\n");
1356 			bp->dev->stats.rx_dropped++;
1357 			queue->stats.rx_dropped++;
1358 			break;
1359 		}
1360 		skb = queue->rx_skbuff[entry];
1361 		if (unlikely(!skb)) {
1362 			netdev_err(bp->dev,
1363 				   "inconsistent Rx descriptor chain\n");
1364 			bp->dev->stats.rx_dropped++;
1365 			queue->stats.rx_dropped++;
1366 			break;
1367 		}
1368 		/* now everything is ready for receiving packet */
1369 		queue->rx_skbuff[entry] = NULL;
1370 		len = ctrl & bp->rx_frm_len_mask;
1371 
1372 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1373 
1374 		skb_put(skb, len);
1375 		dma_unmap_single(&bp->pdev->dev, addr,
1376 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1377 
1378 		skb->protocol = eth_type_trans(skb, bp->dev);
1379 		skb_checksum_none_assert(skb);
1380 		if (bp->dev->features & NETIF_F_RXCSUM &&
1381 		    !(bp->dev->flags & IFF_PROMISC) &&
1382 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1383 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1384 
1385 		bp->dev->stats.rx_packets++;
1386 		queue->stats.rx_packets++;
1387 		bp->dev->stats.rx_bytes += skb->len;
1388 		queue->stats.rx_bytes += skb->len;
1389 
1390 		gem_ptp_do_rxstamp(bp, skb, desc);
1391 
1392 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1393 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1394 			    skb->len, skb->csum);
1395 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1396 			       skb_mac_header(skb), 16, true);
1397 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1398 			       skb->data, 32, true);
1399 #endif
1400 
1401 		napi_gro_receive(napi, skb);
1402 	}
1403 
1404 	gem_rx_refill(queue);
1405 
1406 	return count;
1407 }
1408 
macb_rx_frame(struct macb_queue * queue,struct napi_struct * napi,unsigned int first_frag,unsigned int last_frag)1409 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1410 			 unsigned int first_frag, unsigned int last_frag)
1411 {
1412 	unsigned int len;
1413 	unsigned int frag;
1414 	unsigned int offset;
1415 	struct sk_buff *skb;
1416 	struct macb_dma_desc *desc;
1417 	struct macb *bp = queue->bp;
1418 
1419 	desc = macb_rx_desc(queue, last_frag);
1420 	len = desc->ctrl & bp->rx_frm_len_mask;
1421 
1422 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1423 		macb_rx_ring_wrap(bp, first_frag),
1424 		macb_rx_ring_wrap(bp, last_frag), len);
1425 
1426 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1427 	 * first buffer. Since the header is 14 bytes, this makes the
1428 	 * payload word-aligned.
1429 	 *
1430 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1431 	 * the two padding bytes into the skb so that we avoid hitting
1432 	 * the slowpath in memcpy(), and pull them off afterwards.
1433 	 */
1434 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1435 	if (!skb) {
1436 		bp->dev->stats.rx_dropped++;
1437 		for (frag = first_frag; ; frag++) {
1438 			desc = macb_rx_desc(queue, frag);
1439 			desc->addr &= ~MACB_BIT(RX_USED);
1440 			if (frag == last_frag)
1441 				break;
1442 		}
1443 
1444 		/* Make descriptor updates visible to hardware */
1445 		wmb();
1446 
1447 		return 1;
1448 	}
1449 
1450 	offset = 0;
1451 	len += NET_IP_ALIGN;
1452 	skb_checksum_none_assert(skb);
1453 	skb_put(skb, len);
1454 
1455 	for (frag = first_frag; ; frag++) {
1456 		unsigned int frag_len = bp->rx_buffer_size;
1457 
1458 		if (offset + frag_len > len) {
1459 			if (unlikely(frag != last_frag)) {
1460 				dev_kfree_skb_any(skb);
1461 				return -1;
1462 			}
1463 			frag_len = len - offset;
1464 		}
1465 		skb_copy_to_linear_data_offset(skb, offset,
1466 					       macb_rx_buffer(queue, frag),
1467 					       frag_len);
1468 		offset += bp->rx_buffer_size;
1469 		desc = macb_rx_desc(queue, frag);
1470 		desc->addr &= ~MACB_BIT(RX_USED);
1471 
1472 		if (frag == last_frag)
1473 			break;
1474 	}
1475 
1476 	/* Make descriptor updates visible to hardware */
1477 	wmb();
1478 
1479 	__skb_pull(skb, NET_IP_ALIGN);
1480 	skb->protocol = eth_type_trans(skb, bp->dev);
1481 
1482 	bp->dev->stats.rx_packets++;
1483 	bp->dev->stats.rx_bytes += skb->len;
1484 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1485 		    skb->len, skb->csum);
1486 	napi_gro_receive(napi, skb);
1487 
1488 	return 0;
1489 }
1490 
macb_init_rx_ring(struct macb_queue * queue)1491 static inline void macb_init_rx_ring(struct macb_queue *queue)
1492 {
1493 	struct macb *bp = queue->bp;
1494 	dma_addr_t addr;
1495 	struct macb_dma_desc *desc = NULL;
1496 	int i;
1497 
1498 	addr = queue->rx_buffers_dma;
1499 	for (i = 0; i < bp->rx_ring_size; i++) {
1500 		desc = macb_rx_desc(queue, i);
1501 		macb_set_addr(bp, desc, addr);
1502 		desc->ctrl = 0;
1503 		addr += bp->rx_buffer_size;
1504 	}
1505 	desc->addr |= MACB_BIT(RX_WRAP);
1506 	queue->rx_tail = 0;
1507 }
1508 
macb_rx(struct macb_queue * queue,struct napi_struct * napi,int budget)1509 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1510 		   int budget)
1511 {
1512 	struct macb *bp = queue->bp;
1513 	bool reset_rx_queue = false;
1514 	int received = 0;
1515 	unsigned int tail;
1516 	int first_frag = -1;
1517 
1518 	for (tail = queue->rx_tail; budget > 0; tail++) {
1519 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1520 		u32 ctrl;
1521 
1522 		/* Make hw descriptor updates visible to CPU */
1523 		rmb();
1524 
1525 		if (!(desc->addr & MACB_BIT(RX_USED)))
1526 			break;
1527 
1528 		/* Ensure ctrl is at least as up-to-date as addr */
1529 		dma_rmb();
1530 
1531 		ctrl = desc->ctrl;
1532 
1533 		if (ctrl & MACB_BIT(RX_SOF)) {
1534 			if (first_frag != -1)
1535 				discard_partial_frame(queue, first_frag, tail);
1536 			first_frag = tail;
1537 		}
1538 
1539 		if (ctrl & MACB_BIT(RX_EOF)) {
1540 			int dropped;
1541 
1542 			if (unlikely(first_frag == -1)) {
1543 				reset_rx_queue = true;
1544 				continue;
1545 			}
1546 
1547 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1548 			first_frag = -1;
1549 			if (unlikely(dropped < 0)) {
1550 				reset_rx_queue = true;
1551 				continue;
1552 			}
1553 			if (!dropped) {
1554 				received++;
1555 				budget--;
1556 			}
1557 		}
1558 	}
1559 
1560 	if (unlikely(reset_rx_queue)) {
1561 		unsigned long flags;
1562 		u32 ctrl;
1563 
1564 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1565 
1566 		spin_lock_irqsave(&bp->lock, flags);
1567 
1568 		ctrl = macb_readl(bp, NCR);
1569 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1570 
1571 		macb_init_rx_ring(queue);
1572 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1573 
1574 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1575 
1576 		spin_unlock_irqrestore(&bp->lock, flags);
1577 		return received;
1578 	}
1579 
1580 	if (first_frag != -1)
1581 		queue->rx_tail = first_frag;
1582 	else
1583 		queue->rx_tail = tail;
1584 
1585 	return received;
1586 }
1587 
macb_rx_pending(struct macb_queue * queue)1588 static bool macb_rx_pending(struct macb_queue *queue)
1589 {
1590 	struct macb *bp = queue->bp;
1591 	unsigned int		entry;
1592 	struct macb_dma_desc	*desc;
1593 
1594 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1595 	desc = macb_rx_desc(queue, entry);
1596 
1597 	/* Make hw descriptor updates visible to CPU */
1598 	rmb();
1599 
1600 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1601 }
1602 
macb_rx_poll(struct napi_struct * napi,int budget)1603 static int macb_rx_poll(struct napi_struct *napi, int budget)
1604 {
1605 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1606 	struct macb *bp = queue->bp;
1607 	int work_done;
1608 
1609 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1610 
1611 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1612 		    (unsigned int)(queue - bp->queues), work_done, budget);
1613 
1614 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1615 		queue_writel(queue, IER, bp->rx_intr_mask);
1616 
1617 		/* Packet completions only seem to propagate to raise
1618 		 * interrupts when interrupts are enabled at the time, so if
1619 		 * packets were received while interrupts were disabled,
1620 		 * they will not cause another interrupt to be generated when
1621 		 * interrupts are re-enabled.
1622 		 * Check for this case here to avoid losing a wakeup. This can
1623 		 * potentially race with the interrupt handler doing the same
1624 		 * actions if an interrupt is raised just after enabling them,
1625 		 * but this should be harmless.
1626 		 */
1627 		if (macb_rx_pending(queue)) {
1628 			queue_writel(queue, IDR, bp->rx_intr_mask);
1629 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1630 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1631 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1632 			napi_schedule(napi);
1633 		}
1634 	}
1635 
1636 	/* TODO: Handle errors */
1637 
1638 	return work_done;
1639 }
1640 
macb_tx_restart(struct macb_queue * queue)1641 static void macb_tx_restart(struct macb_queue *queue)
1642 {
1643 	struct macb *bp = queue->bp;
1644 	unsigned int head_idx, tbqp;
1645 
1646 	spin_lock(&queue->tx_ptr_lock);
1647 
1648 	if (queue->tx_head == queue->tx_tail)
1649 		goto out_tx_ptr_unlock;
1650 
1651 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1652 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1653 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1654 
1655 	if (tbqp == head_idx)
1656 		goto out_tx_ptr_unlock;
1657 
1658 	spin_lock_irq(&bp->lock);
1659 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1660 	spin_unlock_irq(&bp->lock);
1661 
1662 out_tx_ptr_unlock:
1663 	spin_unlock(&queue->tx_ptr_lock);
1664 }
1665 
macb_tx_complete_pending(struct macb_queue * queue)1666 static bool macb_tx_complete_pending(struct macb_queue *queue)
1667 {
1668 	bool retval = false;
1669 
1670 	spin_lock(&queue->tx_ptr_lock);
1671 	if (queue->tx_head != queue->tx_tail) {
1672 		/* Make hw descriptor updates visible to CPU */
1673 		rmb();
1674 
1675 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1676 			retval = true;
1677 	}
1678 	spin_unlock(&queue->tx_ptr_lock);
1679 	return retval;
1680 }
1681 
macb_tx_poll(struct napi_struct * napi,int budget)1682 static int macb_tx_poll(struct napi_struct *napi, int budget)
1683 {
1684 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1685 	struct macb *bp = queue->bp;
1686 	int work_done;
1687 
1688 	work_done = macb_tx_complete(queue, budget);
1689 
1690 	rmb(); // ensure txubr_pending is up to date
1691 	if (queue->txubr_pending) {
1692 		queue->txubr_pending = false;
1693 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1694 		macb_tx_restart(queue);
1695 	}
1696 
1697 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1698 		    (unsigned int)(queue - bp->queues), work_done, budget);
1699 
1700 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1701 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1702 
1703 		/* Packet completions only seem to propagate to raise
1704 		 * interrupts when interrupts are enabled at the time, so if
1705 		 * packets were sent while interrupts were disabled,
1706 		 * they will not cause another interrupt to be generated when
1707 		 * interrupts are re-enabled.
1708 		 * Check for this case here to avoid losing a wakeup. This can
1709 		 * potentially race with the interrupt handler doing the same
1710 		 * actions if an interrupt is raised just after enabling them,
1711 		 * but this should be harmless.
1712 		 */
1713 		if (macb_tx_complete_pending(queue)) {
1714 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1715 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1716 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1717 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1718 			napi_schedule(napi);
1719 		}
1720 	}
1721 
1722 	return work_done;
1723 }
1724 
macb_hresp_error_task(struct tasklet_struct * t)1725 static void macb_hresp_error_task(struct tasklet_struct *t)
1726 {
1727 	struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet);
1728 	struct net_device *dev = bp->dev;
1729 	struct macb_queue *queue;
1730 	unsigned int q;
1731 	u32 ctrl;
1732 
1733 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1734 		queue_writel(queue, IDR, bp->rx_intr_mask |
1735 					 MACB_TX_INT_FLAGS |
1736 					 MACB_BIT(HRESP));
1737 	}
1738 	ctrl = macb_readl(bp, NCR);
1739 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1740 	macb_writel(bp, NCR, ctrl);
1741 
1742 	netif_tx_stop_all_queues(dev);
1743 	netif_carrier_off(dev);
1744 
1745 	bp->macbgem_ops.mog_init_rings(bp);
1746 
1747 	/* Initialize TX and RX buffers */
1748 	macb_init_buffers(bp);
1749 
1750 	/* Enable interrupts */
1751 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1752 		queue_writel(queue, IER,
1753 			     bp->rx_intr_mask |
1754 			     MACB_TX_INT_FLAGS |
1755 			     MACB_BIT(HRESP));
1756 
1757 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1758 	macb_writel(bp, NCR, ctrl);
1759 
1760 	netif_carrier_on(dev);
1761 	netif_tx_start_all_queues(dev);
1762 }
1763 
macb_wol_interrupt(int irq,void * dev_id)1764 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1765 {
1766 	struct macb_queue *queue = dev_id;
1767 	struct macb *bp = queue->bp;
1768 	u32 status;
1769 
1770 	status = queue_readl(queue, ISR);
1771 
1772 	if (unlikely(!status))
1773 		return IRQ_NONE;
1774 
1775 	spin_lock(&bp->lock);
1776 
1777 	if (status & MACB_BIT(WOL)) {
1778 		queue_writel(queue, IDR, MACB_BIT(WOL));
1779 		macb_writel(bp, WOL, 0);
1780 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1781 			    (unsigned int)(queue - bp->queues),
1782 			    (unsigned long)status);
1783 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1784 			queue_writel(queue, ISR, MACB_BIT(WOL));
1785 		pm_wakeup_event(&bp->pdev->dev, 0);
1786 	}
1787 
1788 	spin_unlock(&bp->lock);
1789 
1790 	return IRQ_HANDLED;
1791 }
1792 
gem_wol_interrupt(int irq,void * dev_id)1793 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1794 {
1795 	struct macb_queue *queue = dev_id;
1796 	struct macb *bp = queue->bp;
1797 	u32 status;
1798 
1799 	status = queue_readl(queue, ISR);
1800 
1801 	if (unlikely(!status))
1802 		return IRQ_NONE;
1803 
1804 	spin_lock(&bp->lock);
1805 
1806 	if (status & GEM_BIT(WOL)) {
1807 		queue_writel(queue, IDR, GEM_BIT(WOL));
1808 		gem_writel(bp, WOL, 0);
1809 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1810 			    (unsigned int)(queue - bp->queues),
1811 			    (unsigned long)status);
1812 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1813 			queue_writel(queue, ISR, GEM_BIT(WOL));
1814 		pm_wakeup_event(&bp->pdev->dev, 0);
1815 	}
1816 
1817 	spin_unlock(&bp->lock);
1818 
1819 	return IRQ_HANDLED;
1820 }
1821 
macb_interrupt(int irq,void * dev_id)1822 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1823 {
1824 	struct macb_queue *queue = dev_id;
1825 	struct macb *bp = queue->bp;
1826 	struct net_device *dev = bp->dev;
1827 	u32 status, ctrl;
1828 
1829 	status = queue_readl(queue, ISR);
1830 
1831 	if (unlikely(!status))
1832 		return IRQ_NONE;
1833 
1834 	spin_lock(&bp->lock);
1835 
1836 	while (status) {
1837 		/* close possible race with dev_close */
1838 		if (unlikely(!netif_running(dev))) {
1839 			queue_writel(queue, IDR, -1);
1840 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1841 				queue_writel(queue, ISR, -1);
1842 			break;
1843 		}
1844 
1845 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1846 			    (unsigned int)(queue - bp->queues),
1847 			    (unsigned long)status);
1848 
1849 		if (status & bp->rx_intr_mask) {
1850 			/* There's no point taking any more interrupts
1851 			 * until we have processed the buffers. The
1852 			 * scheduling call may fail if the poll routine
1853 			 * is already scheduled, so disable interrupts
1854 			 * now.
1855 			 */
1856 			queue_writel(queue, IDR, bp->rx_intr_mask);
1857 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1858 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1859 
1860 			if (napi_schedule_prep(&queue->napi_rx)) {
1861 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1862 				__napi_schedule(&queue->napi_rx);
1863 			}
1864 		}
1865 
1866 		if (status & (MACB_BIT(TCOMP) |
1867 			      MACB_BIT(TXUBR))) {
1868 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1869 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1870 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1871 							 MACB_BIT(TXUBR));
1872 
1873 			if (status & MACB_BIT(TXUBR)) {
1874 				queue->txubr_pending = true;
1875 				wmb(); // ensure softirq can see update
1876 			}
1877 
1878 			if (napi_schedule_prep(&queue->napi_tx)) {
1879 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1880 				__napi_schedule(&queue->napi_tx);
1881 			}
1882 		}
1883 
1884 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1885 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1886 			schedule_work(&queue->tx_error_task);
1887 
1888 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1889 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1890 
1891 			break;
1892 		}
1893 
1894 		/* Link change detection isn't possible with RMII, so we'll
1895 		 * add that if/when we get our hands on a full-blown MII PHY.
1896 		 */
1897 
1898 		/* There is a hardware issue under heavy load where DMA can
1899 		 * stop, this causes endless "used buffer descriptor read"
1900 		 * interrupts but it can be cleared by re-enabling RX. See
1901 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1902 		 * section 16.7.4 for details. RXUBR is only enabled for
1903 		 * these two versions.
1904 		 */
1905 		if (status & MACB_BIT(RXUBR)) {
1906 			ctrl = macb_readl(bp, NCR);
1907 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1908 			wmb();
1909 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1910 
1911 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1912 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1913 		}
1914 
1915 		if (status & MACB_BIT(ISR_ROVR)) {
1916 			/* We missed at least one packet */
1917 			if (macb_is_gem(bp))
1918 				bp->hw_stats.gem.rx_overruns++;
1919 			else
1920 				bp->hw_stats.macb.rx_overruns++;
1921 
1922 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1923 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1924 		}
1925 
1926 		if (status & MACB_BIT(HRESP)) {
1927 			tasklet_schedule(&bp->hresp_err_tasklet);
1928 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1929 
1930 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1931 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1932 		}
1933 		status = queue_readl(queue, ISR);
1934 	}
1935 
1936 	spin_unlock(&bp->lock);
1937 
1938 	return IRQ_HANDLED;
1939 }
1940 
1941 #ifdef CONFIG_NET_POLL_CONTROLLER
1942 /* Polling receive - used by netconsole and other diagnostic tools
1943  * to allow network i/o with interrupts disabled.
1944  */
macb_poll_controller(struct net_device * dev)1945 static void macb_poll_controller(struct net_device *dev)
1946 {
1947 	struct macb *bp = netdev_priv(dev);
1948 	struct macb_queue *queue;
1949 	unsigned long flags;
1950 	unsigned int q;
1951 
1952 	local_irq_save(flags);
1953 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1954 		macb_interrupt(dev->irq, queue);
1955 	local_irq_restore(flags);
1956 }
1957 #endif
1958 
macb_tx_map(struct macb * bp,struct macb_queue * queue,struct sk_buff * skb,unsigned int hdrlen)1959 static unsigned int macb_tx_map(struct macb *bp,
1960 				struct macb_queue *queue,
1961 				struct sk_buff *skb,
1962 				unsigned int hdrlen)
1963 {
1964 	dma_addr_t mapping;
1965 	unsigned int len, entry, i, tx_head = queue->tx_head;
1966 	struct macb_tx_skb *tx_skb = NULL;
1967 	struct macb_dma_desc *desc;
1968 	unsigned int offset, size, count = 0;
1969 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1970 	unsigned int eof = 1, mss_mfs = 0;
1971 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
1972 
1973 	/* LSO */
1974 	if (skb_shinfo(skb)->gso_size != 0) {
1975 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
1976 			/* UDP - UFO */
1977 			lso_ctrl = MACB_LSO_UFO_ENABLE;
1978 		else
1979 			/* TCP - TSO */
1980 			lso_ctrl = MACB_LSO_TSO_ENABLE;
1981 	}
1982 
1983 	/* First, map non-paged data */
1984 	len = skb_headlen(skb);
1985 
1986 	/* first buffer length */
1987 	size = hdrlen;
1988 
1989 	offset = 0;
1990 	while (len) {
1991 		entry = macb_tx_ring_wrap(bp, tx_head);
1992 		tx_skb = &queue->tx_skb[entry];
1993 
1994 		mapping = dma_map_single(&bp->pdev->dev,
1995 					 skb->data + offset,
1996 					 size, DMA_TO_DEVICE);
1997 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1998 			goto dma_error;
1999 
2000 		/* Save info to properly release resources */
2001 		tx_skb->skb = NULL;
2002 		tx_skb->mapping = mapping;
2003 		tx_skb->size = size;
2004 		tx_skb->mapped_as_page = false;
2005 
2006 		len -= size;
2007 		offset += size;
2008 		count++;
2009 		tx_head++;
2010 
2011 		size = min(len, bp->max_tx_length);
2012 	}
2013 
2014 	/* Then, map paged data from fragments */
2015 	for (f = 0; f < nr_frags; f++) {
2016 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2017 
2018 		len = skb_frag_size(frag);
2019 		offset = 0;
2020 		while (len) {
2021 			size = min(len, bp->max_tx_length);
2022 			entry = macb_tx_ring_wrap(bp, tx_head);
2023 			tx_skb = &queue->tx_skb[entry];
2024 
2025 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2026 						   offset, size, DMA_TO_DEVICE);
2027 			if (dma_mapping_error(&bp->pdev->dev, mapping))
2028 				goto dma_error;
2029 
2030 			/* Save info to properly release resources */
2031 			tx_skb->skb = NULL;
2032 			tx_skb->mapping = mapping;
2033 			tx_skb->size = size;
2034 			tx_skb->mapped_as_page = true;
2035 
2036 			len -= size;
2037 			offset += size;
2038 			count++;
2039 			tx_head++;
2040 		}
2041 	}
2042 
2043 	/* Should never happen */
2044 	if (unlikely(!tx_skb)) {
2045 		netdev_err(bp->dev, "BUG! empty skb!\n");
2046 		return 0;
2047 	}
2048 
2049 	/* This is the last buffer of the frame: save socket buffer */
2050 	tx_skb->skb = skb;
2051 
2052 	/* Update TX ring: update buffer descriptors in reverse order
2053 	 * to avoid race condition
2054 	 */
2055 
2056 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2057 	 * to set the end of TX queue
2058 	 */
2059 	i = tx_head;
2060 	entry = macb_tx_ring_wrap(bp, i);
2061 	ctrl = MACB_BIT(TX_USED);
2062 	desc = macb_tx_desc(queue, entry);
2063 	desc->ctrl = ctrl;
2064 
2065 	if (lso_ctrl) {
2066 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2067 			/* include header and FCS in value given to h/w */
2068 			mss_mfs = skb_shinfo(skb)->gso_size +
2069 					skb_transport_offset(skb) +
2070 					ETH_FCS_LEN;
2071 		else /* TSO */ {
2072 			mss_mfs = skb_shinfo(skb)->gso_size;
2073 			/* TCP Sequence Number Source Select
2074 			 * can be set only for TSO
2075 			 */
2076 			seq_ctrl = 0;
2077 		}
2078 	}
2079 
2080 	do {
2081 		i--;
2082 		entry = macb_tx_ring_wrap(bp, i);
2083 		tx_skb = &queue->tx_skb[entry];
2084 		desc = macb_tx_desc(queue, entry);
2085 
2086 		ctrl = (u32)tx_skb->size;
2087 		if (eof) {
2088 			ctrl |= MACB_BIT(TX_LAST);
2089 			eof = 0;
2090 		}
2091 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2092 			ctrl |= MACB_BIT(TX_WRAP);
2093 
2094 		/* First descriptor is header descriptor */
2095 		if (i == queue->tx_head) {
2096 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2097 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2098 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2099 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2100 			    !ptp_one_step_sync(skb))
2101 				ctrl |= MACB_BIT(TX_NOCRC);
2102 		} else
2103 			/* Only set MSS/MFS on payload descriptors
2104 			 * (second or later descriptor)
2105 			 */
2106 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2107 
2108 		/* Set TX buffer descriptor */
2109 		macb_set_addr(bp, desc, tx_skb->mapping);
2110 		/* desc->addr must be visible to hardware before clearing
2111 		 * 'TX_USED' bit in desc->ctrl.
2112 		 */
2113 		wmb();
2114 		desc->ctrl = ctrl;
2115 	} while (i != queue->tx_head);
2116 
2117 	queue->tx_head = tx_head;
2118 
2119 	return count;
2120 
2121 dma_error:
2122 	netdev_err(bp->dev, "TX DMA map failed\n");
2123 
2124 	for (i = queue->tx_head; i != tx_head; i++) {
2125 		tx_skb = macb_tx_skb(queue, i);
2126 
2127 		macb_tx_unmap(bp, tx_skb, 0);
2128 	}
2129 
2130 	return 0;
2131 }
2132 
macb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2133 static netdev_features_t macb_features_check(struct sk_buff *skb,
2134 					     struct net_device *dev,
2135 					     netdev_features_t features)
2136 {
2137 	unsigned int nr_frags, f;
2138 	unsigned int hdrlen;
2139 
2140 	/* Validate LSO compatibility */
2141 
2142 	/* there is only one buffer or protocol is not UDP */
2143 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2144 		return features;
2145 
2146 	/* length of header */
2147 	hdrlen = skb_transport_offset(skb);
2148 
2149 	/* For UFO only:
2150 	 * When software supplies two or more payload buffers all payload buffers
2151 	 * apart from the last must be a multiple of 8 bytes in size.
2152 	 */
2153 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2154 		return features & ~MACB_NETIF_LSO;
2155 
2156 	nr_frags = skb_shinfo(skb)->nr_frags;
2157 	/* No need to check last fragment */
2158 	nr_frags--;
2159 	for (f = 0; f < nr_frags; f++) {
2160 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2161 
2162 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2163 			return features & ~MACB_NETIF_LSO;
2164 	}
2165 	return features;
2166 }
2167 
macb_clear_csum(struct sk_buff * skb)2168 static inline int macb_clear_csum(struct sk_buff *skb)
2169 {
2170 	/* no change for packets without checksum offloading */
2171 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2172 		return 0;
2173 
2174 	/* make sure we can modify the header */
2175 	if (unlikely(skb_cow_head(skb, 0)))
2176 		return -1;
2177 
2178 	/* initialize checksum field
2179 	 * This is required - at least for Zynq, which otherwise calculates
2180 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2181 	 */
2182 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2183 	return 0;
2184 }
2185 
macb_pad_and_fcs(struct sk_buff ** skb,struct net_device * ndev)2186 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2187 {
2188 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2189 		      skb_is_nonlinear(*skb);
2190 	int padlen = ETH_ZLEN - (*skb)->len;
2191 	int headroom = skb_headroom(*skb);
2192 	int tailroom = skb_tailroom(*skb);
2193 	struct sk_buff *nskb;
2194 	u32 fcs;
2195 
2196 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2197 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2198 	    skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2199 		return 0;
2200 
2201 	if (padlen <= 0) {
2202 		/* FCS could be appeded to tailroom. */
2203 		if (tailroom >= ETH_FCS_LEN)
2204 			goto add_fcs;
2205 		/* FCS could be appeded by moving data to headroom. */
2206 		else if (!cloned && headroom + tailroom >= ETH_FCS_LEN)
2207 			padlen = 0;
2208 		/* No room for FCS, need to reallocate skb. */
2209 		else
2210 			padlen = ETH_FCS_LEN;
2211 	} else {
2212 		/* Add room for FCS. */
2213 		padlen += ETH_FCS_LEN;
2214 	}
2215 
2216 	if (!cloned && headroom + tailroom >= padlen) {
2217 		(*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len);
2218 		skb_set_tail_pointer(*skb, (*skb)->len);
2219 	} else {
2220 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2221 		if (!nskb)
2222 			return -ENOMEM;
2223 
2224 		dev_consume_skb_any(*skb);
2225 		*skb = nskb;
2226 	}
2227 
2228 	if (padlen > ETH_FCS_LEN)
2229 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2230 
2231 add_fcs:
2232 	/* set FCS to packet */
2233 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2234 	fcs = ~fcs;
2235 
2236 	skb_put_u8(*skb, fcs		& 0xff);
2237 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2238 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2239 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2240 
2241 	return 0;
2242 }
2243 
macb_start_xmit(struct sk_buff * skb,struct net_device * dev)2244 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2245 {
2246 	u16 queue_index = skb_get_queue_mapping(skb);
2247 	struct macb *bp = netdev_priv(dev);
2248 	struct macb_queue *queue = &bp->queues[queue_index];
2249 	unsigned int desc_cnt, nr_frags, frag_size, f;
2250 	unsigned int hdrlen;
2251 	bool is_lso;
2252 	netdev_tx_t ret = NETDEV_TX_OK;
2253 
2254 	if (macb_clear_csum(skb)) {
2255 		dev_kfree_skb_any(skb);
2256 		return ret;
2257 	}
2258 
2259 	if (macb_pad_and_fcs(&skb, dev)) {
2260 		dev_kfree_skb_any(skb);
2261 		return ret;
2262 	}
2263 
2264 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2265 
2266 	if (is_lso) {
2267 		/* length of headers */
2268 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2269 			/* only queue eth + ip headers separately for UDP */
2270 			hdrlen = skb_transport_offset(skb);
2271 		else
2272 			hdrlen = skb_tcp_all_headers(skb);
2273 		if (skb_headlen(skb) < hdrlen) {
2274 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2275 			/* if this is required, would need to copy to single buffer */
2276 			return NETDEV_TX_BUSY;
2277 		}
2278 	} else
2279 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2280 
2281 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2282 	netdev_vdbg(bp->dev,
2283 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2284 		    queue_index, skb->len, skb->head, skb->data,
2285 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2286 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2287 		       skb->data, 16, true);
2288 #endif
2289 
2290 	/* Count how many TX buffer descriptors are needed to send this
2291 	 * socket buffer: skb fragments of jumbo frames may need to be
2292 	 * split into many buffer descriptors.
2293 	 */
2294 	if (is_lso && (skb_headlen(skb) > hdrlen))
2295 		/* extra header descriptor if also payload in first buffer */
2296 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2297 	else
2298 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2299 	nr_frags = skb_shinfo(skb)->nr_frags;
2300 	for (f = 0; f < nr_frags; f++) {
2301 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2302 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2303 	}
2304 
2305 	spin_lock_bh(&queue->tx_ptr_lock);
2306 
2307 	/* This is a hard error, log it. */
2308 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2309 		       bp->tx_ring_size) < desc_cnt) {
2310 		netif_stop_subqueue(dev, queue_index);
2311 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2312 			   queue->tx_head, queue->tx_tail);
2313 		ret = NETDEV_TX_BUSY;
2314 		goto unlock;
2315 	}
2316 
2317 	/* Map socket buffer for DMA transfer */
2318 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2319 		dev_kfree_skb_any(skb);
2320 		goto unlock;
2321 	}
2322 
2323 	/* Make newly initialized descriptor visible to hardware */
2324 	wmb();
2325 	skb_tx_timestamp(skb);
2326 
2327 	spin_lock_irq(&bp->lock);
2328 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2329 	spin_unlock_irq(&bp->lock);
2330 
2331 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2332 		netif_stop_subqueue(dev, queue_index);
2333 
2334 unlock:
2335 	spin_unlock_bh(&queue->tx_ptr_lock);
2336 
2337 	return ret;
2338 }
2339 
macb_init_rx_buffer_size(struct macb * bp,size_t size)2340 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2341 {
2342 	if (!macb_is_gem(bp)) {
2343 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2344 	} else {
2345 		bp->rx_buffer_size = size;
2346 
2347 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2348 			netdev_dbg(bp->dev,
2349 				   "RX buffer must be multiple of %d bytes, expanding\n",
2350 				   RX_BUFFER_MULTIPLE);
2351 			bp->rx_buffer_size =
2352 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2353 		}
2354 	}
2355 
2356 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2357 		   bp->dev->mtu, bp->rx_buffer_size);
2358 }
2359 
gem_free_rx_buffers(struct macb * bp)2360 static void gem_free_rx_buffers(struct macb *bp)
2361 {
2362 	struct sk_buff		*skb;
2363 	struct macb_dma_desc	*desc;
2364 	struct macb_queue *queue;
2365 	dma_addr_t		addr;
2366 	unsigned int q;
2367 	int i;
2368 
2369 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2370 		if (!queue->rx_skbuff)
2371 			continue;
2372 
2373 		for (i = 0; i < bp->rx_ring_size; i++) {
2374 			skb = queue->rx_skbuff[i];
2375 
2376 			if (!skb)
2377 				continue;
2378 
2379 			desc = macb_rx_desc(queue, i);
2380 			addr = macb_get_addr(bp, desc);
2381 
2382 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2383 					DMA_FROM_DEVICE);
2384 			dev_kfree_skb_any(skb);
2385 			skb = NULL;
2386 		}
2387 
2388 		kfree(queue->rx_skbuff);
2389 		queue->rx_skbuff = NULL;
2390 	}
2391 }
2392 
macb_free_rx_buffers(struct macb * bp)2393 static void macb_free_rx_buffers(struct macb *bp)
2394 {
2395 	struct macb_queue *queue = &bp->queues[0];
2396 
2397 	if (queue->rx_buffers) {
2398 		dma_free_coherent(&bp->pdev->dev,
2399 				  bp->rx_ring_size * bp->rx_buffer_size,
2400 				  queue->rx_buffers, queue->rx_buffers_dma);
2401 		queue->rx_buffers = NULL;
2402 	}
2403 }
2404 
macb_free_consistent(struct macb * bp)2405 static void macb_free_consistent(struct macb *bp)
2406 {
2407 	struct macb_queue *queue;
2408 	unsigned int q;
2409 	int size;
2410 
2411 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2412 
2413 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2414 		kfree(queue->tx_skb);
2415 		queue->tx_skb = NULL;
2416 		if (queue->tx_ring) {
2417 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2418 			dma_free_coherent(&bp->pdev->dev, size,
2419 					  queue->tx_ring, queue->tx_ring_dma);
2420 			queue->tx_ring = NULL;
2421 		}
2422 		if (queue->rx_ring) {
2423 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2424 			dma_free_coherent(&bp->pdev->dev, size,
2425 					  queue->rx_ring, queue->rx_ring_dma);
2426 			queue->rx_ring = NULL;
2427 		}
2428 	}
2429 }
2430 
gem_alloc_rx_buffers(struct macb * bp)2431 static int gem_alloc_rx_buffers(struct macb *bp)
2432 {
2433 	struct macb_queue *queue;
2434 	unsigned int q;
2435 	int size;
2436 
2437 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2438 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2439 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2440 		if (!queue->rx_skbuff)
2441 			return -ENOMEM;
2442 		else
2443 			netdev_dbg(bp->dev,
2444 				   "Allocated %d RX struct sk_buff entries at %p\n",
2445 				   bp->rx_ring_size, queue->rx_skbuff);
2446 	}
2447 	return 0;
2448 }
2449 
macb_alloc_rx_buffers(struct macb * bp)2450 static int macb_alloc_rx_buffers(struct macb *bp)
2451 {
2452 	struct macb_queue *queue = &bp->queues[0];
2453 	int size;
2454 
2455 	size = bp->rx_ring_size * bp->rx_buffer_size;
2456 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2457 					    &queue->rx_buffers_dma, GFP_KERNEL);
2458 	if (!queue->rx_buffers)
2459 		return -ENOMEM;
2460 
2461 	netdev_dbg(bp->dev,
2462 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2463 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2464 	return 0;
2465 }
2466 
macb_alloc_consistent(struct macb * bp)2467 static int macb_alloc_consistent(struct macb *bp)
2468 {
2469 	struct macb_queue *queue;
2470 	unsigned int q;
2471 	int size;
2472 
2473 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2474 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2475 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2476 						    &queue->tx_ring_dma,
2477 						    GFP_KERNEL);
2478 		if (!queue->tx_ring)
2479 			goto out_err;
2480 		netdev_dbg(bp->dev,
2481 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2482 			   q, size, (unsigned long)queue->tx_ring_dma,
2483 			   queue->tx_ring);
2484 
2485 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2486 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2487 		if (!queue->tx_skb)
2488 			goto out_err;
2489 
2490 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2491 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2492 						 &queue->rx_ring_dma, GFP_KERNEL);
2493 		if (!queue->rx_ring)
2494 			goto out_err;
2495 		netdev_dbg(bp->dev,
2496 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2497 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2498 	}
2499 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2500 		goto out_err;
2501 
2502 	return 0;
2503 
2504 out_err:
2505 	macb_free_consistent(bp);
2506 	return -ENOMEM;
2507 }
2508 
gem_init_rings(struct macb * bp)2509 static void gem_init_rings(struct macb *bp)
2510 {
2511 	struct macb_queue *queue;
2512 	struct macb_dma_desc *desc = NULL;
2513 	unsigned int q;
2514 	int i;
2515 
2516 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2517 		for (i = 0; i < bp->tx_ring_size; i++) {
2518 			desc = macb_tx_desc(queue, i);
2519 			macb_set_addr(bp, desc, 0);
2520 			desc->ctrl = MACB_BIT(TX_USED);
2521 		}
2522 		desc->ctrl |= MACB_BIT(TX_WRAP);
2523 		queue->tx_head = 0;
2524 		queue->tx_tail = 0;
2525 
2526 		queue->rx_tail = 0;
2527 		queue->rx_prepared_head = 0;
2528 
2529 		gem_rx_refill(queue);
2530 	}
2531 
2532 }
2533 
macb_init_rings(struct macb * bp)2534 static void macb_init_rings(struct macb *bp)
2535 {
2536 	int i;
2537 	struct macb_dma_desc *desc = NULL;
2538 
2539 	macb_init_rx_ring(&bp->queues[0]);
2540 
2541 	for (i = 0; i < bp->tx_ring_size; i++) {
2542 		desc = macb_tx_desc(&bp->queues[0], i);
2543 		macb_set_addr(bp, desc, 0);
2544 		desc->ctrl = MACB_BIT(TX_USED);
2545 	}
2546 	bp->queues[0].tx_head = 0;
2547 	bp->queues[0].tx_tail = 0;
2548 	desc->ctrl |= MACB_BIT(TX_WRAP);
2549 }
2550 
macb_reset_hw(struct macb * bp)2551 static void macb_reset_hw(struct macb *bp)
2552 {
2553 	struct macb_queue *queue;
2554 	unsigned int q;
2555 	u32 ctrl = macb_readl(bp, NCR);
2556 
2557 	/* Disable RX and TX (XXX: Should we halt the transmission
2558 	 * more gracefully?)
2559 	 */
2560 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2561 
2562 	/* Clear the stats registers (XXX: Update stats first?) */
2563 	ctrl |= MACB_BIT(CLRSTAT);
2564 
2565 	macb_writel(bp, NCR, ctrl);
2566 
2567 	/* Clear all status flags */
2568 	macb_writel(bp, TSR, -1);
2569 	macb_writel(bp, RSR, -1);
2570 
2571 	/* Disable all interrupts */
2572 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2573 		queue_writel(queue, IDR, -1);
2574 		queue_readl(queue, ISR);
2575 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2576 			queue_writel(queue, ISR, -1);
2577 	}
2578 }
2579 
gem_mdc_clk_div(struct macb * bp)2580 static u32 gem_mdc_clk_div(struct macb *bp)
2581 {
2582 	u32 config;
2583 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2584 
2585 	if (pclk_hz <= 20000000)
2586 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2587 	else if (pclk_hz <= 40000000)
2588 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2589 	else if (pclk_hz <= 80000000)
2590 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2591 	else if (pclk_hz <= 120000000)
2592 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2593 	else if (pclk_hz <= 160000000)
2594 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2595 	else
2596 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2597 
2598 	return config;
2599 }
2600 
macb_mdc_clk_div(struct macb * bp)2601 static u32 macb_mdc_clk_div(struct macb *bp)
2602 {
2603 	u32 config;
2604 	unsigned long pclk_hz;
2605 
2606 	if (macb_is_gem(bp))
2607 		return gem_mdc_clk_div(bp);
2608 
2609 	pclk_hz = clk_get_rate(bp->pclk);
2610 	if (pclk_hz <= 20000000)
2611 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2612 	else if (pclk_hz <= 40000000)
2613 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2614 	else if (pclk_hz <= 80000000)
2615 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2616 	else
2617 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2618 
2619 	return config;
2620 }
2621 
2622 /* Get the DMA bus width field of the network configuration register that we
2623  * should program.  We find the width from decoding the design configuration
2624  * register to find the maximum supported data bus width.
2625  */
macb_dbw(struct macb * bp)2626 static u32 macb_dbw(struct macb *bp)
2627 {
2628 	if (!macb_is_gem(bp))
2629 		return 0;
2630 
2631 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2632 	case 4:
2633 		return GEM_BF(DBW, GEM_DBW128);
2634 	case 2:
2635 		return GEM_BF(DBW, GEM_DBW64);
2636 	case 1:
2637 	default:
2638 		return GEM_BF(DBW, GEM_DBW32);
2639 	}
2640 }
2641 
2642 /* Configure the receive DMA engine
2643  * - use the correct receive buffer size
2644  * - set best burst length for DMA operations
2645  *   (if not supported by FIFO, it will fallback to default)
2646  * - set both rx/tx packet buffers to full memory size
2647  * These are configurable parameters for GEM.
2648  */
macb_configure_dma(struct macb * bp)2649 static void macb_configure_dma(struct macb *bp)
2650 {
2651 	struct macb_queue *queue;
2652 	u32 buffer_size;
2653 	unsigned int q;
2654 	u32 dmacfg;
2655 
2656 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2657 	if (macb_is_gem(bp)) {
2658 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2659 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2660 			if (q)
2661 				queue_writel(queue, RBQS, buffer_size);
2662 			else
2663 				dmacfg |= GEM_BF(RXBS, buffer_size);
2664 		}
2665 		if (bp->dma_burst_length)
2666 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2667 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2668 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2669 
2670 		if (bp->native_io)
2671 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2672 		else
2673 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2674 
2675 		if (bp->dev->features & NETIF_F_HW_CSUM)
2676 			dmacfg |= GEM_BIT(TXCOEN);
2677 		else
2678 			dmacfg &= ~GEM_BIT(TXCOEN);
2679 
2680 		dmacfg &= ~GEM_BIT(ADDR64);
2681 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2682 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2683 			dmacfg |= GEM_BIT(ADDR64);
2684 #endif
2685 #ifdef CONFIG_MACB_USE_HWSTAMP
2686 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2687 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2688 #endif
2689 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2690 			   dmacfg);
2691 		gem_writel(bp, DMACFG, dmacfg);
2692 	}
2693 }
2694 
macb_init_hw(struct macb * bp)2695 static void macb_init_hw(struct macb *bp)
2696 {
2697 	u32 config;
2698 
2699 	macb_reset_hw(bp);
2700 	macb_set_hwaddr(bp);
2701 
2702 	config = macb_mdc_clk_div(bp);
2703 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2704 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2705 	if (bp->caps & MACB_CAPS_JUMBO)
2706 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2707 	else
2708 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2709 	if (bp->dev->flags & IFF_PROMISC)
2710 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2711 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2712 		config |= GEM_BIT(RXCOEN);
2713 	if (!(bp->dev->flags & IFF_BROADCAST))
2714 		config |= MACB_BIT(NBC);	/* No BroadCast */
2715 	config |= macb_dbw(bp);
2716 	macb_writel(bp, NCFGR, config);
2717 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2718 		gem_writel(bp, JML, bp->jumbo_max_len);
2719 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2720 	if (bp->caps & MACB_CAPS_JUMBO)
2721 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2722 
2723 	macb_configure_dma(bp);
2724 }
2725 
2726 /* The hash address register is 64 bits long and takes up two
2727  * locations in the memory map.  The least significant bits are stored
2728  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2729  *
2730  * The unicast hash enable and the multicast hash enable bits in the
2731  * network configuration register enable the reception of hash matched
2732  * frames. The destination address is reduced to a 6 bit index into
2733  * the 64 bit hash register using the following hash function.  The
2734  * hash function is an exclusive or of every sixth bit of the
2735  * destination address.
2736  *
2737  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2738  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2739  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2740  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2741  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2742  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2743  *
2744  * da[0] represents the least significant bit of the first byte
2745  * received, that is, the multicast/unicast indicator, and da[47]
2746  * represents the most significant bit of the last byte received.  If
2747  * the hash index, hi[n], points to a bit that is set in the hash
2748  * register then the frame will be matched according to whether the
2749  * frame is multicast or unicast.  A multicast match will be signalled
2750  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2751  * index points to a bit set in the hash register.  A unicast match
2752  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2753  * and the hash index points to a bit set in the hash register.  To
2754  * receive all multicast frames, the hash register should be set with
2755  * all ones and the multicast hash enable bit should be set in the
2756  * network configuration register.
2757  */
2758 
hash_bit_value(int bitnr,__u8 * addr)2759 static inline int hash_bit_value(int bitnr, __u8 *addr)
2760 {
2761 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2762 		return 1;
2763 	return 0;
2764 }
2765 
2766 /* Return the hash index value for the specified address. */
hash_get_index(__u8 * addr)2767 static int hash_get_index(__u8 *addr)
2768 {
2769 	int i, j, bitval;
2770 	int hash_index = 0;
2771 
2772 	for (j = 0; j < 6; j++) {
2773 		for (i = 0, bitval = 0; i < 8; i++)
2774 			bitval ^= hash_bit_value(i * 6 + j, addr);
2775 
2776 		hash_index |= (bitval << j);
2777 	}
2778 
2779 	return hash_index;
2780 }
2781 
2782 /* Add multicast addresses to the internal multicast-hash table. */
macb_sethashtable(struct net_device * dev)2783 static void macb_sethashtable(struct net_device *dev)
2784 {
2785 	struct netdev_hw_addr *ha;
2786 	unsigned long mc_filter[2];
2787 	unsigned int bitnr;
2788 	struct macb *bp = netdev_priv(dev);
2789 
2790 	mc_filter[0] = 0;
2791 	mc_filter[1] = 0;
2792 
2793 	netdev_for_each_mc_addr(ha, dev) {
2794 		bitnr = hash_get_index(ha->addr);
2795 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2796 	}
2797 
2798 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2799 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2800 }
2801 
2802 /* Enable/Disable promiscuous and multicast modes. */
macb_set_rx_mode(struct net_device * dev)2803 static void macb_set_rx_mode(struct net_device *dev)
2804 {
2805 	unsigned long cfg;
2806 	struct macb *bp = netdev_priv(dev);
2807 
2808 	cfg = macb_readl(bp, NCFGR);
2809 
2810 	if (dev->flags & IFF_PROMISC) {
2811 		/* Enable promiscuous mode */
2812 		cfg |= MACB_BIT(CAF);
2813 
2814 		/* Disable RX checksum offload */
2815 		if (macb_is_gem(bp))
2816 			cfg &= ~GEM_BIT(RXCOEN);
2817 	} else {
2818 		/* Disable promiscuous mode */
2819 		cfg &= ~MACB_BIT(CAF);
2820 
2821 		/* Enable RX checksum offload only if requested */
2822 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2823 			cfg |= GEM_BIT(RXCOEN);
2824 	}
2825 
2826 	if (dev->flags & IFF_ALLMULTI) {
2827 		/* Enable all multicast mode */
2828 		macb_or_gem_writel(bp, HRB, -1);
2829 		macb_or_gem_writel(bp, HRT, -1);
2830 		cfg |= MACB_BIT(NCFGR_MTI);
2831 	} else if (!netdev_mc_empty(dev)) {
2832 		/* Enable specific multicasts */
2833 		macb_sethashtable(dev);
2834 		cfg |= MACB_BIT(NCFGR_MTI);
2835 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2836 		/* Disable all multicast mode */
2837 		macb_or_gem_writel(bp, HRB, 0);
2838 		macb_or_gem_writel(bp, HRT, 0);
2839 		cfg &= ~MACB_BIT(NCFGR_MTI);
2840 	}
2841 
2842 	macb_writel(bp, NCFGR, cfg);
2843 }
2844 
macb_open(struct net_device * dev)2845 static int macb_open(struct net_device *dev)
2846 {
2847 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2848 	struct macb *bp = netdev_priv(dev);
2849 	struct macb_queue *queue;
2850 	unsigned int q;
2851 	int err;
2852 
2853 	netdev_dbg(bp->dev, "open\n");
2854 
2855 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2856 	if (err < 0)
2857 		return err;
2858 
2859 	/* RX buffers initialization */
2860 	macb_init_rx_buffer_size(bp, bufsz);
2861 
2862 	err = macb_alloc_consistent(bp);
2863 	if (err) {
2864 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2865 			   err);
2866 		goto pm_exit;
2867 	}
2868 
2869 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2870 		napi_enable(&queue->napi_rx);
2871 		napi_enable(&queue->napi_tx);
2872 	}
2873 
2874 	macb_init_hw(bp);
2875 
2876 	err = phy_power_on(bp->sgmii_phy);
2877 	if (err)
2878 		goto reset_hw;
2879 
2880 	err = macb_phylink_connect(bp);
2881 	if (err)
2882 		goto phy_off;
2883 
2884 	netif_tx_start_all_queues(dev);
2885 
2886 	if (bp->ptp_info)
2887 		bp->ptp_info->ptp_init(dev);
2888 
2889 	return 0;
2890 
2891 phy_off:
2892 	phy_power_off(bp->sgmii_phy);
2893 
2894 reset_hw:
2895 	macb_reset_hw(bp);
2896 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2897 		napi_disable(&queue->napi_rx);
2898 		napi_disable(&queue->napi_tx);
2899 	}
2900 	macb_free_consistent(bp);
2901 pm_exit:
2902 	pm_runtime_put_sync(&bp->pdev->dev);
2903 	return err;
2904 }
2905 
macb_close(struct net_device * dev)2906 static int macb_close(struct net_device *dev)
2907 {
2908 	struct macb *bp = netdev_priv(dev);
2909 	struct macb_queue *queue;
2910 	unsigned long flags;
2911 	unsigned int q;
2912 
2913 	netif_tx_stop_all_queues(dev);
2914 
2915 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2916 		napi_disable(&queue->napi_rx);
2917 		napi_disable(&queue->napi_tx);
2918 	}
2919 
2920 	phylink_stop(bp->phylink);
2921 	phylink_disconnect_phy(bp->phylink);
2922 
2923 	phy_power_off(bp->sgmii_phy);
2924 
2925 	spin_lock_irqsave(&bp->lock, flags);
2926 	macb_reset_hw(bp);
2927 	netif_carrier_off(dev);
2928 	spin_unlock_irqrestore(&bp->lock, flags);
2929 
2930 	macb_free_consistent(bp);
2931 
2932 	if (bp->ptp_info)
2933 		bp->ptp_info->ptp_remove(dev);
2934 
2935 	pm_runtime_put(&bp->pdev->dev);
2936 
2937 	return 0;
2938 }
2939 
macb_change_mtu(struct net_device * dev,int new_mtu)2940 static int macb_change_mtu(struct net_device *dev, int new_mtu)
2941 {
2942 	if (netif_running(dev))
2943 		return -EBUSY;
2944 
2945 	dev->mtu = new_mtu;
2946 
2947 	return 0;
2948 }
2949 
gem_update_stats(struct macb * bp)2950 static void gem_update_stats(struct macb *bp)
2951 {
2952 	struct macb_queue *queue;
2953 	unsigned int i, q, idx;
2954 	unsigned long *stat;
2955 
2956 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2957 
2958 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2959 		u32 offset = gem_statistics[i].offset;
2960 		u64 val = bp->macb_reg_readl(bp, offset);
2961 
2962 		bp->ethtool_stats[i] += val;
2963 		*p += val;
2964 
2965 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2966 			/* Add GEM_OCTTXH, GEM_OCTRXH */
2967 			val = bp->macb_reg_readl(bp, offset + 4);
2968 			bp->ethtool_stats[i] += ((u64)val) << 32;
2969 			*(++p) += val;
2970 		}
2971 	}
2972 
2973 	idx = GEM_STATS_LEN;
2974 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2975 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
2976 			bp->ethtool_stats[idx++] = *stat;
2977 }
2978 
gem_get_stats(struct macb * bp)2979 static struct net_device_stats *gem_get_stats(struct macb *bp)
2980 {
2981 	struct gem_stats *hwstat = &bp->hw_stats.gem;
2982 	struct net_device_stats *nstat = &bp->dev->stats;
2983 
2984 	if (!netif_running(bp->dev))
2985 		return nstat;
2986 
2987 	gem_update_stats(bp);
2988 
2989 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2990 			    hwstat->rx_alignment_errors +
2991 			    hwstat->rx_resource_errors +
2992 			    hwstat->rx_overruns +
2993 			    hwstat->rx_oversize_frames +
2994 			    hwstat->rx_jabbers +
2995 			    hwstat->rx_undersized_frames +
2996 			    hwstat->rx_length_field_frame_errors);
2997 	nstat->tx_errors = (hwstat->tx_late_collisions +
2998 			    hwstat->tx_excessive_collisions +
2999 			    hwstat->tx_underrun +
3000 			    hwstat->tx_carrier_sense_errors);
3001 	nstat->multicast = hwstat->rx_multicast_frames;
3002 	nstat->collisions = (hwstat->tx_single_collision_frames +
3003 			     hwstat->tx_multiple_collision_frames +
3004 			     hwstat->tx_excessive_collisions);
3005 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3006 				   hwstat->rx_jabbers +
3007 				   hwstat->rx_undersized_frames +
3008 				   hwstat->rx_length_field_frame_errors);
3009 	nstat->rx_over_errors = hwstat->rx_resource_errors;
3010 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3011 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3012 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3013 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3014 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3015 	nstat->tx_fifo_errors = hwstat->tx_underrun;
3016 
3017 	return nstat;
3018 }
3019 
gem_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3020 static void gem_get_ethtool_stats(struct net_device *dev,
3021 				  struct ethtool_stats *stats, u64 *data)
3022 {
3023 	struct macb *bp;
3024 
3025 	bp = netdev_priv(dev);
3026 	gem_update_stats(bp);
3027 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
3028 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3029 }
3030 
gem_get_sset_count(struct net_device * dev,int sset)3031 static int gem_get_sset_count(struct net_device *dev, int sset)
3032 {
3033 	struct macb *bp = netdev_priv(dev);
3034 
3035 	switch (sset) {
3036 	case ETH_SS_STATS:
3037 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3038 	default:
3039 		return -EOPNOTSUPP;
3040 	}
3041 }
3042 
gem_get_ethtool_strings(struct net_device * dev,u32 sset,u8 * p)3043 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3044 {
3045 	char stat_string[ETH_GSTRING_LEN];
3046 	struct macb *bp = netdev_priv(dev);
3047 	struct macb_queue *queue;
3048 	unsigned int i;
3049 	unsigned int q;
3050 
3051 	switch (sset) {
3052 	case ETH_SS_STATS:
3053 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3054 			memcpy(p, gem_statistics[i].stat_string,
3055 			       ETH_GSTRING_LEN);
3056 
3057 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3058 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3059 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3060 						q, queue_statistics[i].stat_string);
3061 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3062 			}
3063 		}
3064 		break;
3065 	}
3066 }
3067 
macb_get_stats(struct net_device * dev)3068 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3069 {
3070 	struct macb *bp = netdev_priv(dev);
3071 	struct net_device_stats *nstat = &bp->dev->stats;
3072 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3073 
3074 	if (macb_is_gem(bp))
3075 		return gem_get_stats(bp);
3076 
3077 	/* read stats from hardware */
3078 	macb_update_stats(bp);
3079 
3080 	/* Convert HW stats into netdevice stats */
3081 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3082 			    hwstat->rx_align_errors +
3083 			    hwstat->rx_resource_errors +
3084 			    hwstat->rx_overruns +
3085 			    hwstat->rx_oversize_pkts +
3086 			    hwstat->rx_jabbers +
3087 			    hwstat->rx_undersize_pkts +
3088 			    hwstat->rx_length_mismatch);
3089 	nstat->tx_errors = (hwstat->tx_late_cols +
3090 			    hwstat->tx_excessive_cols +
3091 			    hwstat->tx_underruns +
3092 			    hwstat->tx_carrier_errors +
3093 			    hwstat->sqe_test_errors);
3094 	nstat->collisions = (hwstat->tx_single_cols +
3095 			     hwstat->tx_multiple_cols +
3096 			     hwstat->tx_excessive_cols);
3097 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3098 				   hwstat->rx_jabbers +
3099 				   hwstat->rx_undersize_pkts +
3100 				   hwstat->rx_length_mismatch);
3101 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3102 				   hwstat->rx_overruns;
3103 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3104 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3105 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3106 	/* XXX: What does "missed" mean? */
3107 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3108 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3109 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3110 	/* Don't know about heartbeat or window errors... */
3111 
3112 	return nstat;
3113 }
3114 
macb_get_regs_len(struct net_device * netdev)3115 static int macb_get_regs_len(struct net_device *netdev)
3116 {
3117 	return MACB_GREGS_NBR * sizeof(u32);
3118 }
3119 
macb_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)3120 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3121 			  void *p)
3122 {
3123 	struct macb *bp = netdev_priv(dev);
3124 	unsigned int tail, head;
3125 	u32 *regs_buff = p;
3126 
3127 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3128 			| MACB_GREGS_VERSION;
3129 
3130 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3131 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3132 
3133 	regs_buff[0]  = macb_readl(bp, NCR);
3134 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3135 	regs_buff[2]  = macb_readl(bp, NSR);
3136 	regs_buff[3]  = macb_readl(bp, TSR);
3137 	regs_buff[4]  = macb_readl(bp, RBQP);
3138 	regs_buff[5]  = macb_readl(bp, TBQP);
3139 	regs_buff[6]  = macb_readl(bp, RSR);
3140 	regs_buff[7]  = macb_readl(bp, IMR);
3141 
3142 	regs_buff[8]  = tail;
3143 	regs_buff[9]  = head;
3144 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3145 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3146 
3147 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3148 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3149 	if (macb_is_gem(bp))
3150 		regs_buff[13] = gem_readl(bp, DMACFG);
3151 }
3152 
macb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3153 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3154 {
3155 	struct macb *bp = netdev_priv(netdev);
3156 
3157 	if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
3158 		phylink_ethtool_get_wol(bp->phylink, wol);
3159 		wol->supported |= WAKE_MAGIC;
3160 
3161 		if (bp->wol & MACB_WOL_ENABLED)
3162 			wol->wolopts |= WAKE_MAGIC;
3163 	}
3164 }
3165 
macb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3166 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3167 {
3168 	struct macb *bp = netdev_priv(netdev);
3169 	int ret;
3170 
3171 	/* Pass the order to phylink layer */
3172 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3173 	/* Don't manage WoL on MAC if handled by the PHY
3174 	 * or if there's a failure in talking to the PHY
3175 	 */
3176 	if (!ret || ret != -EOPNOTSUPP)
3177 		return ret;
3178 
3179 	if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
3180 	    (wol->wolopts & ~WAKE_MAGIC))
3181 		return -EOPNOTSUPP;
3182 
3183 	if (wol->wolopts & WAKE_MAGIC)
3184 		bp->wol |= MACB_WOL_ENABLED;
3185 	else
3186 		bp->wol &= ~MACB_WOL_ENABLED;
3187 
3188 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
3189 
3190 	return 0;
3191 }
3192 
macb_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * kset)3193 static int macb_get_link_ksettings(struct net_device *netdev,
3194 				   struct ethtool_link_ksettings *kset)
3195 {
3196 	struct macb *bp = netdev_priv(netdev);
3197 
3198 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3199 }
3200 
macb_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * kset)3201 static int macb_set_link_ksettings(struct net_device *netdev,
3202 				   const struct ethtool_link_ksettings *kset)
3203 {
3204 	struct macb *bp = netdev_priv(netdev);
3205 
3206 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3207 }
3208 
macb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3209 static void macb_get_ringparam(struct net_device *netdev,
3210 			       struct ethtool_ringparam *ring,
3211 			       struct kernel_ethtool_ringparam *kernel_ring,
3212 			       struct netlink_ext_ack *extack)
3213 {
3214 	struct macb *bp = netdev_priv(netdev);
3215 
3216 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3217 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3218 
3219 	ring->rx_pending = bp->rx_ring_size;
3220 	ring->tx_pending = bp->tx_ring_size;
3221 }
3222 
macb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3223 static int macb_set_ringparam(struct net_device *netdev,
3224 			      struct ethtool_ringparam *ring,
3225 			      struct kernel_ethtool_ringparam *kernel_ring,
3226 			      struct netlink_ext_ack *extack)
3227 {
3228 	struct macb *bp = netdev_priv(netdev);
3229 	u32 new_rx_size, new_tx_size;
3230 	unsigned int reset = 0;
3231 
3232 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3233 		return -EINVAL;
3234 
3235 	new_rx_size = clamp_t(u32, ring->rx_pending,
3236 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3237 	new_rx_size = roundup_pow_of_two(new_rx_size);
3238 
3239 	new_tx_size = clamp_t(u32, ring->tx_pending,
3240 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3241 	new_tx_size = roundup_pow_of_two(new_tx_size);
3242 
3243 	if ((new_tx_size == bp->tx_ring_size) &&
3244 	    (new_rx_size == bp->rx_ring_size)) {
3245 		/* nothing to do */
3246 		return 0;
3247 	}
3248 
3249 	if (netif_running(bp->dev)) {
3250 		reset = 1;
3251 		macb_close(bp->dev);
3252 	}
3253 
3254 	bp->rx_ring_size = new_rx_size;
3255 	bp->tx_ring_size = new_tx_size;
3256 
3257 	if (reset)
3258 		macb_open(bp->dev);
3259 
3260 	return 0;
3261 }
3262 
3263 #ifdef CONFIG_MACB_USE_HWSTAMP
gem_get_tsu_rate(struct macb * bp)3264 static unsigned int gem_get_tsu_rate(struct macb *bp)
3265 {
3266 	struct clk *tsu_clk;
3267 	unsigned int tsu_rate;
3268 
3269 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3270 	if (!IS_ERR(tsu_clk))
3271 		tsu_rate = clk_get_rate(tsu_clk);
3272 	/* try pclk instead */
3273 	else if (!IS_ERR(bp->pclk)) {
3274 		tsu_clk = bp->pclk;
3275 		tsu_rate = clk_get_rate(tsu_clk);
3276 	} else
3277 		return -ENOTSUPP;
3278 	return tsu_rate;
3279 }
3280 
gem_get_ptp_max_adj(void)3281 static s32 gem_get_ptp_max_adj(void)
3282 {
3283 	return 64000000;
3284 }
3285 
gem_get_ts_info(struct net_device * dev,struct ethtool_ts_info * info)3286 static int gem_get_ts_info(struct net_device *dev,
3287 			   struct ethtool_ts_info *info)
3288 {
3289 	struct macb *bp = netdev_priv(dev);
3290 
3291 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3292 		ethtool_op_get_ts_info(dev, info);
3293 		return 0;
3294 	}
3295 
3296 	info->so_timestamping =
3297 		SOF_TIMESTAMPING_TX_SOFTWARE |
3298 		SOF_TIMESTAMPING_RX_SOFTWARE |
3299 		SOF_TIMESTAMPING_SOFTWARE |
3300 		SOF_TIMESTAMPING_TX_HARDWARE |
3301 		SOF_TIMESTAMPING_RX_HARDWARE |
3302 		SOF_TIMESTAMPING_RAW_HARDWARE;
3303 	info->tx_types =
3304 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3305 		(1 << HWTSTAMP_TX_OFF) |
3306 		(1 << HWTSTAMP_TX_ON);
3307 	info->rx_filters =
3308 		(1 << HWTSTAMP_FILTER_NONE) |
3309 		(1 << HWTSTAMP_FILTER_ALL);
3310 
3311 	info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
3312 
3313 	return 0;
3314 }
3315 
3316 static struct macb_ptp_info gem_ptp_info = {
3317 	.ptp_init	 = gem_ptp_init,
3318 	.ptp_remove	 = gem_ptp_remove,
3319 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3320 	.get_tsu_rate	 = gem_get_tsu_rate,
3321 	.get_ts_info	 = gem_get_ts_info,
3322 	.get_hwtst	 = gem_get_hwtst,
3323 	.set_hwtst	 = gem_set_hwtst,
3324 };
3325 #endif
3326 
macb_get_ts_info(struct net_device * netdev,struct ethtool_ts_info * info)3327 static int macb_get_ts_info(struct net_device *netdev,
3328 			    struct ethtool_ts_info *info)
3329 {
3330 	struct macb *bp = netdev_priv(netdev);
3331 
3332 	if (bp->ptp_info)
3333 		return bp->ptp_info->get_ts_info(netdev, info);
3334 
3335 	return ethtool_op_get_ts_info(netdev, info);
3336 }
3337 
gem_enable_flow_filters(struct macb * bp,bool enable)3338 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3339 {
3340 	struct net_device *netdev = bp->dev;
3341 	struct ethtool_rx_fs_item *item;
3342 	u32 t2_scr;
3343 	int num_t2_scr;
3344 
3345 	if (!(netdev->features & NETIF_F_NTUPLE))
3346 		return;
3347 
3348 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3349 
3350 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3351 		struct ethtool_rx_flow_spec *fs = &item->fs;
3352 		struct ethtool_tcpip4_spec *tp4sp_m;
3353 
3354 		if (fs->location >= num_t2_scr)
3355 			continue;
3356 
3357 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3358 
3359 		/* enable/disable screener regs for the flow entry */
3360 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3361 
3362 		/* only enable fields with no masking */
3363 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3364 
3365 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3366 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3367 		else
3368 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3369 
3370 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3371 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3372 		else
3373 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3374 
3375 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3376 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3377 		else
3378 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3379 
3380 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3381 	}
3382 }
3383 
gem_prog_cmp_regs(struct macb * bp,struct ethtool_rx_flow_spec * fs)3384 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3385 {
3386 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3387 	uint16_t index = fs->location;
3388 	u32 w0, w1, t2_scr;
3389 	bool cmp_a = false;
3390 	bool cmp_b = false;
3391 	bool cmp_c = false;
3392 
3393 	if (!macb_is_gem(bp))
3394 		return;
3395 
3396 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3397 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3398 
3399 	/* ignore field if any masking set */
3400 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3401 		/* 1st compare reg - IP source address */
3402 		w0 = 0;
3403 		w1 = 0;
3404 		w0 = tp4sp_v->ip4src;
3405 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3406 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3407 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3408 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3409 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3410 		cmp_a = true;
3411 	}
3412 
3413 	/* ignore field if any masking set */
3414 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3415 		/* 2nd compare reg - IP destination address */
3416 		w0 = 0;
3417 		w1 = 0;
3418 		w0 = tp4sp_v->ip4dst;
3419 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3420 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3421 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3422 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3423 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3424 		cmp_b = true;
3425 	}
3426 
3427 	/* ignore both port fields if masking set in both */
3428 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3429 		/* 3rd compare reg - source port, destination port */
3430 		w0 = 0;
3431 		w1 = 0;
3432 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3433 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3434 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3435 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3436 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3437 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3438 		} else {
3439 			/* only one port definition */
3440 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3441 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3442 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3443 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3444 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3445 			} else { /* dst port */
3446 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3447 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3448 			}
3449 		}
3450 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3451 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3452 		cmp_c = true;
3453 	}
3454 
3455 	t2_scr = 0;
3456 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3457 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3458 	if (cmp_a)
3459 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3460 	if (cmp_b)
3461 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3462 	if (cmp_c)
3463 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3464 	gem_writel_n(bp, SCRT2, index, t2_scr);
3465 }
3466 
gem_add_flow_filter(struct net_device * netdev,struct ethtool_rxnfc * cmd)3467 static int gem_add_flow_filter(struct net_device *netdev,
3468 		struct ethtool_rxnfc *cmd)
3469 {
3470 	struct macb *bp = netdev_priv(netdev);
3471 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3472 	struct ethtool_rx_fs_item *item, *newfs;
3473 	unsigned long flags;
3474 	int ret = -EINVAL;
3475 	bool added = false;
3476 
3477 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3478 	if (newfs == NULL)
3479 		return -ENOMEM;
3480 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3481 
3482 	netdev_dbg(netdev,
3483 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3484 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3485 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3486 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3487 			be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3488 			be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3489 
3490 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3491 
3492 	/* find correct place to add in list */
3493 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3494 		if (item->fs.location > newfs->fs.location) {
3495 			list_add_tail(&newfs->list, &item->list);
3496 			added = true;
3497 			break;
3498 		} else if (item->fs.location == fs->location) {
3499 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3500 					fs->location);
3501 			ret = -EBUSY;
3502 			goto err;
3503 		}
3504 	}
3505 	if (!added)
3506 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3507 
3508 	gem_prog_cmp_regs(bp, fs);
3509 	bp->rx_fs_list.count++;
3510 	/* enable filtering if NTUPLE on */
3511 	gem_enable_flow_filters(bp, 1);
3512 
3513 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3514 	return 0;
3515 
3516 err:
3517 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3518 	kfree(newfs);
3519 	return ret;
3520 }
3521 
gem_del_flow_filter(struct net_device * netdev,struct ethtool_rxnfc * cmd)3522 static int gem_del_flow_filter(struct net_device *netdev,
3523 		struct ethtool_rxnfc *cmd)
3524 {
3525 	struct macb *bp = netdev_priv(netdev);
3526 	struct ethtool_rx_fs_item *item;
3527 	struct ethtool_rx_flow_spec *fs;
3528 	unsigned long flags;
3529 
3530 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3531 
3532 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3533 		if (item->fs.location == cmd->fs.location) {
3534 			/* disable screener regs for the flow entry */
3535 			fs = &(item->fs);
3536 			netdev_dbg(netdev,
3537 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3538 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3539 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3540 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3541 					be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3542 					be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3543 
3544 			gem_writel_n(bp, SCRT2, fs->location, 0);
3545 
3546 			list_del(&item->list);
3547 			bp->rx_fs_list.count--;
3548 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3549 			kfree(item);
3550 			return 0;
3551 		}
3552 	}
3553 
3554 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3555 	return -EINVAL;
3556 }
3557 
gem_get_flow_entry(struct net_device * netdev,struct ethtool_rxnfc * cmd)3558 static int gem_get_flow_entry(struct net_device *netdev,
3559 		struct ethtool_rxnfc *cmd)
3560 {
3561 	struct macb *bp = netdev_priv(netdev);
3562 	struct ethtool_rx_fs_item *item;
3563 
3564 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3565 		if (item->fs.location == cmd->fs.location) {
3566 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3567 			return 0;
3568 		}
3569 	}
3570 	return -EINVAL;
3571 }
3572 
gem_get_all_flow_entries(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)3573 static int gem_get_all_flow_entries(struct net_device *netdev,
3574 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3575 {
3576 	struct macb *bp = netdev_priv(netdev);
3577 	struct ethtool_rx_fs_item *item;
3578 	uint32_t cnt = 0;
3579 
3580 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3581 		if (cnt == cmd->rule_cnt)
3582 			return -EMSGSIZE;
3583 		rule_locs[cnt] = item->fs.location;
3584 		cnt++;
3585 	}
3586 	cmd->data = bp->max_tuples;
3587 	cmd->rule_cnt = cnt;
3588 
3589 	return 0;
3590 }
3591 
gem_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)3592 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3593 		u32 *rule_locs)
3594 {
3595 	struct macb *bp = netdev_priv(netdev);
3596 	int ret = 0;
3597 
3598 	switch (cmd->cmd) {
3599 	case ETHTOOL_GRXRINGS:
3600 		cmd->data = bp->num_queues;
3601 		break;
3602 	case ETHTOOL_GRXCLSRLCNT:
3603 		cmd->rule_cnt = bp->rx_fs_list.count;
3604 		break;
3605 	case ETHTOOL_GRXCLSRULE:
3606 		ret = gem_get_flow_entry(netdev, cmd);
3607 		break;
3608 	case ETHTOOL_GRXCLSRLALL:
3609 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3610 		break;
3611 	default:
3612 		netdev_err(netdev,
3613 			  "Command parameter %d is not supported\n", cmd->cmd);
3614 		ret = -EOPNOTSUPP;
3615 	}
3616 
3617 	return ret;
3618 }
3619 
gem_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)3620 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3621 {
3622 	struct macb *bp = netdev_priv(netdev);
3623 	int ret;
3624 
3625 	switch (cmd->cmd) {
3626 	case ETHTOOL_SRXCLSRLINS:
3627 		if ((cmd->fs.location >= bp->max_tuples)
3628 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3629 			ret = -EINVAL;
3630 			break;
3631 		}
3632 		ret = gem_add_flow_filter(netdev, cmd);
3633 		break;
3634 	case ETHTOOL_SRXCLSRLDEL:
3635 		ret = gem_del_flow_filter(netdev, cmd);
3636 		break;
3637 	default:
3638 		netdev_err(netdev,
3639 			  "Command parameter %d is not supported\n", cmd->cmd);
3640 		ret = -EOPNOTSUPP;
3641 	}
3642 
3643 	return ret;
3644 }
3645 
3646 static const struct ethtool_ops macb_ethtool_ops = {
3647 	.get_regs_len		= macb_get_regs_len,
3648 	.get_regs		= macb_get_regs,
3649 	.get_link		= ethtool_op_get_link,
3650 	.get_ts_info		= ethtool_op_get_ts_info,
3651 	.get_wol		= macb_get_wol,
3652 	.set_wol		= macb_set_wol,
3653 	.get_link_ksettings     = macb_get_link_ksettings,
3654 	.set_link_ksettings     = macb_set_link_ksettings,
3655 	.get_ringparam		= macb_get_ringparam,
3656 	.set_ringparam		= macb_set_ringparam,
3657 };
3658 
3659 static const struct ethtool_ops gem_ethtool_ops = {
3660 	.get_regs_len		= macb_get_regs_len,
3661 	.get_regs		= macb_get_regs,
3662 	.get_wol		= macb_get_wol,
3663 	.set_wol		= macb_set_wol,
3664 	.get_link		= ethtool_op_get_link,
3665 	.get_ts_info		= macb_get_ts_info,
3666 	.get_ethtool_stats	= gem_get_ethtool_stats,
3667 	.get_strings		= gem_get_ethtool_strings,
3668 	.get_sset_count		= gem_get_sset_count,
3669 	.get_link_ksettings     = macb_get_link_ksettings,
3670 	.set_link_ksettings     = macb_set_link_ksettings,
3671 	.get_ringparam		= macb_get_ringparam,
3672 	.set_ringparam		= macb_set_ringparam,
3673 	.get_rxnfc			= gem_get_rxnfc,
3674 	.set_rxnfc			= gem_set_rxnfc,
3675 };
3676 
macb_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3677 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3678 {
3679 	struct macb *bp = netdev_priv(dev);
3680 
3681 	if (!netif_running(dev))
3682 		return -EINVAL;
3683 
3684 	if (bp->ptp_info) {
3685 		switch (cmd) {
3686 		case SIOCSHWTSTAMP:
3687 			return bp->ptp_info->set_hwtst(dev, rq, cmd);
3688 		case SIOCGHWTSTAMP:
3689 			return bp->ptp_info->get_hwtst(dev, rq);
3690 		}
3691 	}
3692 
3693 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3694 }
3695 
macb_set_txcsum_feature(struct macb * bp,netdev_features_t features)3696 static inline void macb_set_txcsum_feature(struct macb *bp,
3697 					   netdev_features_t features)
3698 {
3699 	u32 val;
3700 
3701 	if (!macb_is_gem(bp))
3702 		return;
3703 
3704 	val = gem_readl(bp, DMACFG);
3705 	if (features & NETIF_F_HW_CSUM)
3706 		val |= GEM_BIT(TXCOEN);
3707 	else
3708 		val &= ~GEM_BIT(TXCOEN);
3709 
3710 	gem_writel(bp, DMACFG, val);
3711 }
3712 
macb_set_rxcsum_feature(struct macb * bp,netdev_features_t features)3713 static inline void macb_set_rxcsum_feature(struct macb *bp,
3714 					   netdev_features_t features)
3715 {
3716 	struct net_device *netdev = bp->dev;
3717 	u32 val;
3718 
3719 	if (!macb_is_gem(bp))
3720 		return;
3721 
3722 	val = gem_readl(bp, NCFGR);
3723 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3724 		val |= GEM_BIT(RXCOEN);
3725 	else
3726 		val &= ~GEM_BIT(RXCOEN);
3727 
3728 	gem_writel(bp, NCFGR, val);
3729 }
3730 
macb_set_rxflow_feature(struct macb * bp,netdev_features_t features)3731 static inline void macb_set_rxflow_feature(struct macb *bp,
3732 					   netdev_features_t features)
3733 {
3734 	if (!macb_is_gem(bp))
3735 		return;
3736 
3737 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3738 }
3739 
macb_set_features(struct net_device * netdev,netdev_features_t features)3740 static int macb_set_features(struct net_device *netdev,
3741 			     netdev_features_t features)
3742 {
3743 	struct macb *bp = netdev_priv(netdev);
3744 	netdev_features_t changed = features ^ netdev->features;
3745 
3746 	/* TX checksum offload */
3747 	if (changed & NETIF_F_HW_CSUM)
3748 		macb_set_txcsum_feature(bp, features);
3749 
3750 	/* RX checksum offload */
3751 	if (changed & NETIF_F_RXCSUM)
3752 		macb_set_rxcsum_feature(bp, features);
3753 
3754 	/* RX Flow Filters */
3755 	if (changed & NETIF_F_NTUPLE)
3756 		macb_set_rxflow_feature(bp, features);
3757 
3758 	return 0;
3759 }
3760 
macb_restore_features(struct macb * bp)3761 static void macb_restore_features(struct macb *bp)
3762 {
3763 	struct net_device *netdev = bp->dev;
3764 	netdev_features_t features = netdev->features;
3765 	struct ethtool_rx_fs_item *item;
3766 
3767 	/* TX checksum offload */
3768 	macb_set_txcsum_feature(bp, features);
3769 
3770 	/* RX checksum offload */
3771 	macb_set_rxcsum_feature(bp, features);
3772 
3773 	/* RX Flow Filters */
3774 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3775 		gem_prog_cmp_regs(bp, &item->fs);
3776 
3777 	macb_set_rxflow_feature(bp, features);
3778 }
3779 
3780 static const struct net_device_ops macb_netdev_ops = {
3781 	.ndo_open		= macb_open,
3782 	.ndo_stop		= macb_close,
3783 	.ndo_start_xmit		= macb_start_xmit,
3784 	.ndo_set_rx_mode	= macb_set_rx_mode,
3785 	.ndo_get_stats		= macb_get_stats,
3786 	.ndo_eth_ioctl		= macb_ioctl,
3787 	.ndo_validate_addr	= eth_validate_addr,
3788 	.ndo_change_mtu		= macb_change_mtu,
3789 	.ndo_set_mac_address	= eth_mac_addr,
3790 #ifdef CONFIG_NET_POLL_CONTROLLER
3791 	.ndo_poll_controller	= macb_poll_controller,
3792 #endif
3793 	.ndo_set_features	= macb_set_features,
3794 	.ndo_features_check	= macb_features_check,
3795 };
3796 
3797 /* Configure peripheral capabilities according to device tree
3798  * and integration options used
3799  */
macb_configure_caps(struct macb * bp,const struct macb_config * dt_conf)3800 static void macb_configure_caps(struct macb *bp,
3801 				const struct macb_config *dt_conf)
3802 {
3803 	u32 dcfg;
3804 
3805 	if (dt_conf)
3806 		bp->caps = dt_conf->caps;
3807 
3808 	if (hw_is_gem(bp->regs, bp->native_io)) {
3809 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3810 
3811 		dcfg = gem_readl(bp, DCFG1);
3812 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3813 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3814 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3815 			bp->caps |= MACB_CAPS_PCS;
3816 		dcfg = gem_readl(bp, DCFG12);
3817 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3818 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3819 		dcfg = gem_readl(bp, DCFG2);
3820 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3821 			bp->caps |= MACB_CAPS_FIFO_MODE;
3822 #ifdef CONFIG_MACB_USE_HWSTAMP
3823 		if (gem_has_ptp(bp)) {
3824 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3825 				dev_err(&bp->pdev->dev,
3826 					"GEM doesn't support hardware ptp.\n");
3827 			else {
3828 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3829 				bp->ptp_info = &gem_ptp_info;
3830 			}
3831 		}
3832 #endif
3833 	}
3834 
3835 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3836 }
3837 
macb_probe_queues(void __iomem * mem,bool native_io,unsigned int * queue_mask,unsigned int * num_queues)3838 static void macb_probe_queues(void __iomem *mem,
3839 			      bool native_io,
3840 			      unsigned int *queue_mask,
3841 			      unsigned int *num_queues)
3842 {
3843 	*queue_mask = 0x1;
3844 	*num_queues = 1;
3845 
3846 	/* is it macb or gem ?
3847 	 *
3848 	 * We need to read directly from the hardware here because
3849 	 * we are early in the probe process and don't have the
3850 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3851 	 */
3852 	if (!hw_is_gem(mem, native_io))
3853 		return;
3854 
3855 	/* bit 0 is never set but queue 0 always exists */
3856 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3857 	*num_queues = hweight32(*queue_mask);
3858 }
3859 
macb_clks_disable(struct clk * pclk,struct clk * hclk,struct clk * tx_clk,struct clk * rx_clk,struct clk * tsu_clk)3860 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3861 			      struct clk *rx_clk, struct clk *tsu_clk)
3862 {
3863 	struct clk_bulk_data clks[] = {
3864 		{ .clk = tsu_clk, },
3865 		{ .clk = rx_clk, },
3866 		{ .clk = pclk, },
3867 		{ .clk = hclk, },
3868 		{ .clk = tx_clk },
3869 	};
3870 
3871 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
3872 }
3873 
macb_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** tsu_clk)3874 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
3875 			 struct clk **hclk, struct clk **tx_clk,
3876 			 struct clk **rx_clk, struct clk **tsu_clk)
3877 {
3878 	struct macb_platform_data *pdata;
3879 	int err;
3880 
3881 	pdata = dev_get_platdata(&pdev->dev);
3882 	if (pdata) {
3883 		*pclk = pdata->pclk;
3884 		*hclk = pdata->hclk;
3885 	} else {
3886 		*pclk = devm_clk_get(&pdev->dev, "pclk");
3887 		*hclk = devm_clk_get(&pdev->dev, "hclk");
3888 	}
3889 
3890 	if (IS_ERR_OR_NULL(*pclk))
3891 		return dev_err_probe(&pdev->dev,
3892 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
3893 				     "failed to get pclk\n");
3894 
3895 	if (IS_ERR_OR_NULL(*hclk))
3896 		return dev_err_probe(&pdev->dev,
3897 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
3898 				     "failed to get hclk\n");
3899 
3900 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
3901 	if (IS_ERR(*tx_clk))
3902 		return PTR_ERR(*tx_clk);
3903 
3904 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
3905 	if (IS_ERR(*rx_clk))
3906 		return PTR_ERR(*rx_clk);
3907 
3908 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
3909 	if (IS_ERR(*tsu_clk))
3910 		return PTR_ERR(*tsu_clk);
3911 
3912 	err = clk_prepare_enable(*pclk);
3913 	if (err) {
3914 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
3915 		return err;
3916 	}
3917 
3918 	err = clk_prepare_enable(*hclk);
3919 	if (err) {
3920 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
3921 		goto err_disable_pclk;
3922 	}
3923 
3924 	err = clk_prepare_enable(*tx_clk);
3925 	if (err) {
3926 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
3927 		goto err_disable_hclk;
3928 	}
3929 
3930 	err = clk_prepare_enable(*rx_clk);
3931 	if (err) {
3932 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
3933 		goto err_disable_txclk;
3934 	}
3935 
3936 	err = clk_prepare_enable(*tsu_clk);
3937 	if (err) {
3938 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
3939 		goto err_disable_rxclk;
3940 	}
3941 
3942 	return 0;
3943 
3944 err_disable_rxclk:
3945 	clk_disable_unprepare(*rx_clk);
3946 
3947 err_disable_txclk:
3948 	clk_disable_unprepare(*tx_clk);
3949 
3950 err_disable_hclk:
3951 	clk_disable_unprepare(*hclk);
3952 
3953 err_disable_pclk:
3954 	clk_disable_unprepare(*pclk);
3955 
3956 	return err;
3957 }
3958 
macb_init(struct platform_device * pdev)3959 static int macb_init(struct platform_device *pdev)
3960 {
3961 	struct net_device *dev = platform_get_drvdata(pdev);
3962 	unsigned int hw_q, q;
3963 	struct macb *bp = netdev_priv(dev);
3964 	struct macb_queue *queue;
3965 	int err;
3966 	u32 val, reg;
3967 
3968 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
3969 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
3970 
3971 	/* set the queue register mapping once for all: queue0 has a special
3972 	 * register mapping but we don't want to test the queue index then
3973 	 * compute the corresponding register offset at run time.
3974 	 */
3975 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
3976 		if (!(bp->queue_mask & (1 << hw_q)))
3977 			continue;
3978 
3979 		queue = &bp->queues[q];
3980 		queue->bp = bp;
3981 		spin_lock_init(&queue->tx_ptr_lock);
3982 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll);
3983 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll);
3984 		if (hw_q) {
3985 			queue->ISR  = GEM_ISR(hw_q - 1);
3986 			queue->IER  = GEM_IER(hw_q - 1);
3987 			queue->IDR  = GEM_IDR(hw_q - 1);
3988 			queue->IMR  = GEM_IMR(hw_q - 1);
3989 			queue->TBQP = GEM_TBQP(hw_q - 1);
3990 			queue->RBQP = GEM_RBQP(hw_q - 1);
3991 			queue->RBQS = GEM_RBQS(hw_q - 1);
3992 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3993 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
3994 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
3995 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
3996 			}
3997 #endif
3998 		} else {
3999 			/* queue0 uses legacy registers */
4000 			queue->ISR  = MACB_ISR;
4001 			queue->IER  = MACB_IER;
4002 			queue->IDR  = MACB_IDR;
4003 			queue->IMR  = MACB_IMR;
4004 			queue->TBQP = MACB_TBQP;
4005 			queue->RBQP = MACB_RBQP;
4006 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4007 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4008 				queue->TBQPH = MACB_TBQPH;
4009 				queue->RBQPH = MACB_RBQPH;
4010 			}
4011 #endif
4012 		}
4013 
4014 		/* get irq: here we use the linux queue index, not the hardware
4015 		 * queue index. the queue irq definitions in the device tree
4016 		 * must remove the optional gaps that could exist in the
4017 		 * hardware queue mask.
4018 		 */
4019 		queue->irq = platform_get_irq(pdev, q);
4020 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4021 				       IRQF_SHARED, dev->name, queue);
4022 		if (err) {
4023 			dev_err(&pdev->dev,
4024 				"Unable to request IRQ %d (error %d)\n",
4025 				queue->irq, err);
4026 			return err;
4027 		}
4028 
4029 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4030 		q++;
4031 	}
4032 
4033 	dev->netdev_ops = &macb_netdev_ops;
4034 
4035 	/* setup appropriated routines according to adapter type */
4036 	if (macb_is_gem(bp)) {
4037 		bp->max_tx_length = GEM_MAX_TX_LEN;
4038 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4039 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4040 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4041 		bp->macbgem_ops.mog_rx = gem_rx;
4042 		dev->ethtool_ops = &gem_ethtool_ops;
4043 	} else {
4044 		bp->max_tx_length = MACB_MAX_TX_LEN;
4045 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4046 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4047 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4048 		bp->macbgem_ops.mog_rx = macb_rx;
4049 		dev->ethtool_ops = &macb_ethtool_ops;
4050 	}
4051 
4052 	/* Set features */
4053 	dev->hw_features = NETIF_F_SG;
4054 
4055 	/* Check LSO capability */
4056 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4057 		dev->hw_features |= MACB_NETIF_LSO;
4058 
4059 	/* Checksum offload is only available on gem with packet buffer */
4060 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4061 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4062 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4063 		dev->hw_features &= ~NETIF_F_SG;
4064 	dev->features = dev->hw_features;
4065 
4066 	/* Check RX Flow Filters support.
4067 	 * Max Rx flows set by availability of screeners & compare regs:
4068 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4069 	 */
4070 	reg = gem_readl(bp, DCFG8);
4071 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4072 			GEM_BFEXT(T2SCR, reg));
4073 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4074 	if (bp->max_tuples > 0) {
4075 		/* also needs one ethtype match to check IPv4 */
4076 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4077 			/* program this reg now */
4078 			reg = 0;
4079 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4080 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4081 			/* Filtering is supported in hw but don't enable it in kernel now */
4082 			dev->hw_features |= NETIF_F_NTUPLE;
4083 			/* init Rx flow definitions */
4084 			bp->rx_fs_list.count = 0;
4085 			spin_lock_init(&bp->rx_fs_lock);
4086 		} else
4087 			bp->max_tuples = 0;
4088 	}
4089 
4090 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4091 		val = 0;
4092 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4093 			val = bp->usrio->rgmii;
4094 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4095 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4096 			val = bp->usrio->rmii;
4097 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4098 			val = bp->usrio->mii;
4099 
4100 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4101 			val |= bp->usrio->refclk;
4102 
4103 		macb_or_gem_writel(bp, USRIO, val);
4104 	}
4105 
4106 	/* Set MII management clock divider */
4107 	val = macb_mdc_clk_div(bp);
4108 	val |= macb_dbw(bp);
4109 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4110 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4111 	macb_writel(bp, NCFGR, val);
4112 
4113 	return 0;
4114 }
4115 
4116 static const struct macb_usrio_config macb_default_usrio = {
4117 	.mii = MACB_BIT(MII),
4118 	.rmii = MACB_BIT(RMII),
4119 	.rgmii = GEM_BIT(RGMII),
4120 	.refclk = MACB_BIT(CLKEN),
4121 };
4122 
4123 #if defined(CONFIG_OF)
4124 /* 1518 rounded up */
4125 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4126 /* max number of receive buffers */
4127 #define AT91ETHER_MAX_RX_DESCR	9
4128 
4129 static struct sifive_fu540_macb_mgmt *mgmt;
4130 
at91ether_alloc_coherent(struct macb * lp)4131 static int at91ether_alloc_coherent(struct macb *lp)
4132 {
4133 	struct macb_queue *q = &lp->queues[0];
4134 
4135 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4136 					 (AT91ETHER_MAX_RX_DESCR *
4137 					  macb_dma_desc_get_size(lp)),
4138 					 &q->rx_ring_dma, GFP_KERNEL);
4139 	if (!q->rx_ring)
4140 		return -ENOMEM;
4141 
4142 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4143 					    AT91ETHER_MAX_RX_DESCR *
4144 					    AT91ETHER_MAX_RBUFF_SZ,
4145 					    &q->rx_buffers_dma, GFP_KERNEL);
4146 	if (!q->rx_buffers) {
4147 		dma_free_coherent(&lp->pdev->dev,
4148 				  AT91ETHER_MAX_RX_DESCR *
4149 				  macb_dma_desc_get_size(lp),
4150 				  q->rx_ring, q->rx_ring_dma);
4151 		q->rx_ring = NULL;
4152 		return -ENOMEM;
4153 	}
4154 
4155 	return 0;
4156 }
4157 
at91ether_free_coherent(struct macb * lp)4158 static void at91ether_free_coherent(struct macb *lp)
4159 {
4160 	struct macb_queue *q = &lp->queues[0];
4161 
4162 	if (q->rx_ring) {
4163 		dma_free_coherent(&lp->pdev->dev,
4164 				  AT91ETHER_MAX_RX_DESCR *
4165 				  macb_dma_desc_get_size(lp),
4166 				  q->rx_ring, q->rx_ring_dma);
4167 		q->rx_ring = NULL;
4168 	}
4169 
4170 	if (q->rx_buffers) {
4171 		dma_free_coherent(&lp->pdev->dev,
4172 				  AT91ETHER_MAX_RX_DESCR *
4173 				  AT91ETHER_MAX_RBUFF_SZ,
4174 				  q->rx_buffers, q->rx_buffers_dma);
4175 		q->rx_buffers = NULL;
4176 	}
4177 }
4178 
4179 /* Initialize and start the Receiver and Transmit subsystems */
at91ether_start(struct macb * lp)4180 static int at91ether_start(struct macb *lp)
4181 {
4182 	struct macb_queue *q = &lp->queues[0];
4183 	struct macb_dma_desc *desc;
4184 	dma_addr_t addr;
4185 	u32 ctl;
4186 	int i, ret;
4187 
4188 	ret = at91ether_alloc_coherent(lp);
4189 	if (ret)
4190 		return ret;
4191 
4192 	addr = q->rx_buffers_dma;
4193 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4194 		desc = macb_rx_desc(q, i);
4195 		macb_set_addr(lp, desc, addr);
4196 		desc->ctrl = 0;
4197 		addr += AT91ETHER_MAX_RBUFF_SZ;
4198 	}
4199 
4200 	/* Set the Wrap bit on the last descriptor */
4201 	desc->addr |= MACB_BIT(RX_WRAP);
4202 
4203 	/* Reset buffer index */
4204 	q->rx_tail = 0;
4205 
4206 	/* Program address of descriptor list in Rx Buffer Queue register */
4207 	macb_writel(lp, RBQP, q->rx_ring_dma);
4208 
4209 	/* Enable Receive and Transmit */
4210 	ctl = macb_readl(lp, NCR);
4211 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4212 
4213 	/* Enable MAC interrupts */
4214 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4215 			     MACB_BIT(RXUBR)	|
4216 			     MACB_BIT(ISR_TUND)	|
4217 			     MACB_BIT(ISR_RLE)	|
4218 			     MACB_BIT(TCOMP)	|
4219 			     MACB_BIT(ISR_ROVR)	|
4220 			     MACB_BIT(HRESP));
4221 
4222 	return 0;
4223 }
4224 
at91ether_stop(struct macb * lp)4225 static void at91ether_stop(struct macb *lp)
4226 {
4227 	u32 ctl;
4228 
4229 	/* Disable MAC interrupts */
4230 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4231 			     MACB_BIT(RXUBR)	|
4232 			     MACB_BIT(ISR_TUND)	|
4233 			     MACB_BIT(ISR_RLE)	|
4234 			     MACB_BIT(TCOMP)	|
4235 			     MACB_BIT(ISR_ROVR) |
4236 			     MACB_BIT(HRESP));
4237 
4238 	/* Disable Receiver and Transmitter */
4239 	ctl = macb_readl(lp, NCR);
4240 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4241 
4242 	/* Free resources. */
4243 	at91ether_free_coherent(lp);
4244 }
4245 
4246 /* Open the ethernet interface */
at91ether_open(struct net_device * dev)4247 static int at91ether_open(struct net_device *dev)
4248 {
4249 	struct macb *lp = netdev_priv(dev);
4250 	u32 ctl;
4251 	int ret;
4252 
4253 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4254 	if (ret < 0)
4255 		return ret;
4256 
4257 	/* Clear internal statistics */
4258 	ctl = macb_readl(lp, NCR);
4259 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4260 
4261 	macb_set_hwaddr(lp);
4262 
4263 	ret = at91ether_start(lp);
4264 	if (ret)
4265 		goto pm_exit;
4266 
4267 	ret = macb_phylink_connect(lp);
4268 	if (ret)
4269 		goto stop;
4270 
4271 	netif_start_queue(dev);
4272 
4273 	return 0;
4274 
4275 stop:
4276 	at91ether_stop(lp);
4277 pm_exit:
4278 	pm_runtime_put_sync(&lp->pdev->dev);
4279 	return ret;
4280 }
4281 
4282 /* Close the interface */
at91ether_close(struct net_device * dev)4283 static int at91ether_close(struct net_device *dev)
4284 {
4285 	struct macb *lp = netdev_priv(dev);
4286 
4287 	netif_stop_queue(dev);
4288 
4289 	phylink_stop(lp->phylink);
4290 	phylink_disconnect_phy(lp->phylink);
4291 
4292 	at91ether_stop(lp);
4293 
4294 	return pm_runtime_put(&lp->pdev->dev);
4295 }
4296 
4297 /* Transmit packet */
at91ether_start_xmit(struct sk_buff * skb,struct net_device * dev)4298 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4299 					struct net_device *dev)
4300 {
4301 	struct macb *lp = netdev_priv(dev);
4302 
4303 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4304 		int desc = 0;
4305 
4306 		netif_stop_queue(dev);
4307 
4308 		/* Store packet information (to free when Tx completed) */
4309 		lp->rm9200_txq[desc].skb = skb;
4310 		lp->rm9200_txq[desc].size = skb->len;
4311 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4312 							      skb->len, DMA_TO_DEVICE);
4313 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4314 			dev_kfree_skb_any(skb);
4315 			dev->stats.tx_dropped++;
4316 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4317 			return NETDEV_TX_OK;
4318 		}
4319 
4320 		/* Set address of the data in the Transmit Address register */
4321 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4322 		/* Set length of the packet in the Transmit Control register */
4323 		macb_writel(lp, TCR, skb->len);
4324 
4325 	} else {
4326 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4327 		return NETDEV_TX_BUSY;
4328 	}
4329 
4330 	return NETDEV_TX_OK;
4331 }
4332 
4333 /* Extract received frame from buffer descriptors and sent to upper layers.
4334  * (Called from interrupt context)
4335  */
at91ether_rx(struct net_device * dev)4336 static void at91ether_rx(struct net_device *dev)
4337 {
4338 	struct macb *lp = netdev_priv(dev);
4339 	struct macb_queue *q = &lp->queues[0];
4340 	struct macb_dma_desc *desc;
4341 	unsigned char *p_recv;
4342 	struct sk_buff *skb;
4343 	unsigned int pktlen;
4344 
4345 	desc = macb_rx_desc(q, q->rx_tail);
4346 	while (desc->addr & MACB_BIT(RX_USED)) {
4347 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4348 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4349 		skb = netdev_alloc_skb(dev, pktlen + 2);
4350 		if (skb) {
4351 			skb_reserve(skb, 2);
4352 			skb_put_data(skb, p_recv, pktlen);
4353 
4354 			skb->protocol = eth_type_trans(skb, dev);
4355 			dev->stats.rx_packets++;
4356 			dev->stats.rx_bytes += pktlen;
4357 			netif_rx(skb);
4358 		} else {
4359 			dev->stats.rx_dropped++;
4360 		}
4361 
4362 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4363 			dev->stats.multicast++;
4364 
4365 		/* reset ownership bit */
4366 		desc->addr &= ~MACB_BIT(RX_USED);
4367 
4368 		/* wrap after last buffer */
4369 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4370 			q->rx_tail = 0;
4371 		else
4372 			q->rx_tail++;
4373 
4374 		desc = macb_rx_desc(q, q->rx_tail);
4375 	}
4376 }
4377 
4378 /* MAC interrupt handler */
at91ether_interrupt(int irq,void * dev_id)4379 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4380 {
4381 	struct net_device *dev = dev_id;
4382 	struct macb *lp = netdev_priv(dev);
4383 	u32 intstatus, ctl;
4384 	unsigned int desc;
4385 
4386 	/* MAC Interrupt Status register indicates what interrupts are pending.
4387 	 * It is automatically cleared once read.
4388 	 */
4389 	intstatus = macb_readl(lp, ISR);
4390 
4391 	/* Receive complete */
4392 	if (intstatus & MACB_BIT(RCOMP))
4393 		at91ether_rx(dev);
4394 
4395 	/* Transmit complete */
4396 	if (intstatus & MACB_BIT(TCOMP)) {
4397 		/* The TCOM bit is set even if the transmission failed */
4398 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4399 			dev->stats.tx_errors++;
4400 
4401 		desc = 0;
4402 		if (lp->rm9200_txq[desc].skb) {
4403 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4404 			lp->rm9200_txq[desc].skb = NULL;
4405 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4406 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4407 			dev->stats.tx_packets++;
4408 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4409 		}
4410 		netif_wake_queue(dev);
4411 	}
4412 
4413 	/* Work-around for EMAC Errata section 41.3.1 */
4414 	if (intstatus & MACB_BIT(RXUBR)) {
4415 		ctl = macb_readl(lp, NCR);
4416 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4417 		wmb();
4418 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4419 	}
4420 
4421 	if (intstatus & MACB_BIT(ISR_ROVR))
4422 		netdev_err(dev, "ROVR error\n");
4423 
4424 	return IRQ_HANDLED;
4425 }
4426 
4427 #ifdef CONFIG_NET_POLL_CONTROLLER
at91ether_poll_controller(struct net_device * dev)4428 static void at91ether_poll_controller(struct net_device *dev)
4429 {
4430 	unsigned long flags;
4431 
4432 	local_irq_save(flags);
4433 	at91ether_interrupt(dev->irq, dev);
4434 	local_irq_restore(flags);
4435 }
4436 #endif
4437 
4438 static const struct net_device_ops at91ether_netdev_ops = {
4439 	.ndo_open		= at91ether_open,
4440 	.ndo_stop		= at91ether_close,
4441 	.ndo_start_xmit		= at91ether_start_xmit,
4442 	.ndo_get_stats		= macb_get_stats,
4443 	.ndo_set_rx_mode	= macb_set_rx_mode,
4444 	.ndo_set_mac_address	= eth_mac_addr,
4445 	.ndo_eth_ioctl		= macb_ioctl,
4446 	.ndo_validate_addr	= eth_validate_addr,
4447 #ifdef CONFIG_NET_POLL_CONTROLLER
4448 	.ndo_poll_controller	= at91ether_poll_controller,
4449 #endif
4450 };
4451 
at91ether_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** tsu_clk)4452 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4453 			      struct clk **hclk, struct clk **tx_clk,
4454 			      struct clk **rx_clk, struct clk **tsu_clk)
4455 {
4456 	int err;
4457 
4458 	*hclk = NULL;
4459 	*tx_clk = NULL;
4460 	*rx_clk = NULL;
4461 	*tsu_clk = NULL;
4462 
4463 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4464 	if (IS_ERR(*pclk))
4465 		return PTR_ERR(*pclk);
4466 
4467 	err = clk_prepare_enable(*pclk);
4468 	if (err) {
4469 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4470 		return err;
4471 	}
4472 
4473 	return 0;
4474 }
4475 
at91ether_init(struct platform_device * pdev)4476 static int at91ether_init(struct platform_device *pdev)
4477 {
4478 	struct net_device *dev = platform_get_drvdata(pdev);
4479 	struct macb *bp = netdev_priv(dev);
4480 	int err;
4481 
4482 	bp->queues[0].bp = bp;
4483 
4484 	dev->netdev_ops = &at91ether_netdev_ops;
4485 	dev->ethtool_ops = &macb_ethtool_ops;
4486 
4487 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4488 			       0, dev->name, dev);
4489 	if (err)
4490 		return err;
4491 
4492 	macb_writel(bp, NCR, 0);
4493 
4494 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4495 
4496 	return 0;
4497 }
4498 
fu540_macb_tx_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)4499 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4500 					       unsigned long parent_rate)
4501 {
4502 	return mgmt->rate;
4503 }
4504 
fu540_macb_tx_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)4505 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4506 				     unsigned long *parent_rate)
4507 {
4508 	if (WARN_ON(rate < 2500000))
4509 		return 2500000;
4510 	else if (rate == 2500000)
4511 		return 2500000;
4512 	else if (WARN_ON(rate < 13750000))
4513 		return 2500000;
4514 	else if (WARN_ON(rate < 25000000))
4515 		return 25000000;
4516 	else if (rate == 25000000)
4517 		return 25000000;
4518 	else if (WARN_ON(rate < 75000000))
4519 		return 25000000;
4520 	else if (WARN_ON(rate < 125000000))
4521 		return 125000000;
4522 	else if (rate == 125000000)
4523 		return 125000000;
4524 
4525 	WARN_ON(rate > 125000000);
4526 
4527 	return 125000000;
4528 }
4529 
fu540_macb_tx_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4530 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4531 				  unsigned long parent_rate)
4532 {
4533 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4534 	if (rate != 125000000)
4535 		iowrite32(1, mgmt->reg);
4536 	else
4537 		iowrite32(0, mgmt->reg);
4538 	mgmt->rate = rate;
4539 
4540 	return 0;
4541 }
4542 
4543 static const struct clk_ops fu540_c000_ops = {
4544 	.recalc_rate = fu540_macb_tx_recalc_rate,
4545 	.round_rate = fu540_macb_tx_round_rate,
4546 	.set_rate = fu540_macb_tx_set_rate,
4547 };
4548 
fu540_c000_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** tsu_clk)4549 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4550 			       struct clk **hclk, struct clk **tx_clk,
4551 			       struct clk **rx_clk, struct clk **tsu_clk)
4552 {
4553 	struct clk_init_data init;
4554 	int err = 0;
4555 
4556 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4557 	if (err)
4558 		return err;
4559 
4560 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4561 	if (!mgmt) {
4562 		err = -ENOMEM;
4563 		goto err_disable_clks;
4564 	}
4565 
4566 	init.name = "sifive-gemgxl-mgmt";
4567 	init.ops = &fu540_c000_ops;
4568 	init.flags = 0;
4569 	init.num_parents = 0;
4570 
4571 	mgmt->rate = 0;
4572 	mgmt->hw.init = &init;
4573 
4574 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4575 	if (IS_ERR(*tx_clk)) {
4576 		err = PTR_ERR(*tx_clk);
4577 		goto err_disable_clks;
4578 	}
4579 
4580 	err = clk_prepare_enable(*tx_clk);
4581 	if (err) {
4582 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4583 		*tx_clk = NULL;
4584 		goto err_disable_clks;
4585 	} else {
4586 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4587 	}
4588 
4589 	return 0;
4590 
4591 err_disable_clks:
4592 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4593 
4594 	return err;
4595 }
4596 
fu540_c000_init(struct platform_device * pdev)4597 static int fu540_c000_init(struct platform_device *pdev)
4598 {
4599 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4600 	if (IS_ERR(mgmt->reg))
4601 		return PTR_ERR(mgmt->reg);
4602 
4603 	return macb_init(pdev);
4604 }
4605 
init_reset_optional(struct platform_device * pdev)4606 static int init_reset_optional(struct platform_device *pdev)
4607 {
4608 	struct net_device *dev = platform_get_drvdata(pdev);
4609 	struct macb *bp = netdev_priv(dev);
4610 	int ret;
4611 
4612 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4613 		/* Ensure PHY device used in SGMII mode is ready */
4614 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4615 
4616 		if (IS_ERR(bp->sgmii_phy))
4617 			return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4618 					     "failed to get SGMII PHY\n");
4619 
4620 		ret = phy_init(bp->sgmii_phy);
4621 		if (ret)
4622 			return dev_err_probe(&pdev->dev, ret,
4623 					     "failed to init SGMII PHY\n");
4624 	}
4625 
4626 	ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG);
4627 	if (!ret) {
4628 		u32 pm_info[2];
4629 
4630 		ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains",
4631 						 pm_info, ARRAY_SIZE(pm_info));
4632 		if (ret) {
4633 			dev_err(&pdev->dev, "Failed to read power management information\n");
4634 			goto err_out_phy_exit;
4635 		}
4636 		ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0);
4637 		if (ret)
4638 			goto err_out_phy_exit;
4639 
4640 		ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1);
4641 		if (ret)
4642 			goto err_out_phy_exit;
4643 	}
4644 
4645 	/* Fully reset controller at hardware level if mapped in device tree */
4646 	ret = device_reset_optional(&pdev->dev);
4647 	if (ret) {
4648 		phy_exit(bp->sgmii_phy);
4649 		return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4650 	}
4651 
4652 	ret = macb_init(pdev);
4653 
4654 err_out_phy_exit:
4655 	if (ret)
4656 		phy_exit(bp->sgmii_phy);
4657 
4658 	return ret;
4659 }
4660 
4661 static const struct macb_usrio_config sama7g5_usrio = {
4662 	.mii = 0,
4663 	.rmii = 1,
4664 	.rgmii = 2,
4665 	.refclk = BIT(2),
4666 	.hdfctlen = BIT(6),
4667 };
4668 
4669 static const struct macb_config fu540_c000_config = {
4670 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4671 		MACB_CAPS_GEM_HAS_PTP,
4672 	.dma_burst_length = 16,
4673 	.clk_init = fu540_c000_clk_init,
4674 	.init = fu540_c000_init,
4675 	.jumbo_max_len = 10240,
4676 	.usrio = &macb_default_usrio,
4677 };
4678 
4679 static const struct macb_config at91sam9260_config = {
4680 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4681 	.clk_init = macb_clk_init,
4682 	.init = macb_init,
4683 	.usrio = &macb_default_usrio,
4684 };
4685 
4686 static const struct macb_config sama5d3macb_config = {
4687 	.caps = MACB_CAPS_SG_DISABLED |
4688 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4689 	.clk_init = macb_clk_init,
4690 	.init = macb_init,
4691 	.usrio = &macb_default_usrio,
4692 };
4693 
4694 static const struct macb_config pc302gem_config = {
4695 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4696 	.dma_burst_length = 16,
4697 	.clk_init = macb_clk_init,
4698 	.init = macb_init,
4699 	.usrio = &macb_default_usrio,
4700 };
4701 
4702 static const struct macb_config sama5d2_config = {
4703 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4704 	.dma_burst_length = 16,
4705 	.clk_init = macb_clk_init,
4706 	.init = macb_init,
4707 	.usrio = &macb_default_usrio,
4708 };
4709 
4710 static const struct macb_config sama5d29_config = {
4711 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4712 	.dma_burst_length = 16,
4713 	.clk_init = macb_clk_init,
4714 	.init = macb_init,
4715 	.usrio = &macb_default_usrio,
4716 };
4717 
4718 static const struct macb_config sama5d3_config = {
4719 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4720 		MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4721 	.dma_burst_length = 16,
4722 	.clk_init = macb_clk_init,
4723 	.init = macb_init,
4724 	.jumbo_max_len = 10240,
4725 	.usrio = &macb_default_usrio,
4726 };
4727 
4728 static const struct macb_config sama5d4_config = {
4729 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4730 	.dma_burst_length = 4,
4731 	.clk_init = macb_clk_init,
4732 	.init = macb_init,
4733 	.usrio = &macb_default_usrio,
4734 };
4735 
4736 static const struct macb_config emac_config = {
4737 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4738 	.clk_init = at91ether_clk_init,
4739 	.init = at91ether_init,
4740 	.usrio = &macb_default_usrio,
4741 };
4742 
4743 static const struct macb_config np4_config = {
4744 	.caps = MACB_CAPS_USRIO_DISABLED,
4745 	.clk_init = macb_clk_init,
4746 	.init = macb_init,
4747 	.usrio = &macb_default_usrio,
4748 };
4749 
4750 static const struct macb_config zynqmp_config = {
4751 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4752 		MACB_CAPS_JUMBO |
4753 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4754 	.dma_burst_length = 16,
4755 	.clk_init = macb_clk_init,
4756 	.init = init_reset_optional,
4757 	.jumbo_max_len = 10240,
4758 	.usrio = &macb_default_usrio,
4759 };
4760 
4761 static const struct macb_config zynq_config = {
4762 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4763 		MACB_CAPS_NEEDS_RSTONUBR,
4764 	.dma_burst_length = 16,
4765 	.clk_init = macb_clk_init,
4766 	.init = macb_init,
4767 	.usrio = &macb_default_usrio,
4768 };
4769 
4770 static const struct macb_config mpfs_config = {
4771 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4772 		MACB_CAPS_JUMBO |
4773 		MACB_CAPS_GEM_HAS_PTP,
4774 	.dma_burst_length = 16,
4775 	.clk_init = macb_clk_init,
4776 	.init = init_reset_optional,
4777 	.usrio = &macb_default_usrio,
4778 	.jumbo_max_len = 10240,
4779 };
4780 
4781 static const struct macb_config sama7g5_gem_config = {
4782 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4783 		MACB_CAPS_MIIONRGMII,
4784 	.dma_burst_length = 16,
4785 	.clk_init = macb_clk_init,
4786 	.init = macb_init,
4787 	.usrio = &sama7g5_usrio,
4788 };
4789 
4790 static const struct macb_config sama7g5_emac_config = {
4791 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4792 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII,
4793 	.dma_burst_length = 16,
4794 	.clk_init = macb_clk_init,
4795 	.init = macb_init,
4796 	.usrio = &sama7g5_usrio,
4797 };
4798 
4799 static const struct macb_config versal_config = {
4800 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4801 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK,
4802 	.dma_burst_length = 16,
4803 	.clk_init = macb_clk_init,
4804 	.init = init_reset_optional,
4805 	.jumbo_max_len = 10240,
4806 	.usrio = &macb_default_usrio,
4807 };
4808 
4809 static const struct of_device_id macb_dt_ids[] = {
4810 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4811 	{ .compatible = "cdns,macb" },
4812 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4813 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4814 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4815 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4816 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4817 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4818 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4819 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4820 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4821 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4822 	{ .compatible = "cdns,emac", .data = &emac_config },
4823 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */
4824 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */
4825 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4826 	{ .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4827 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4828 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4829 	{ .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config},
4830 	{ .compatible = "xlnx,zynq-gem", .data = &zynq_config },
4831 	{ .compatible = "xlnx,versal-gem", .data = &versal_config},
4832 	{ /* sentinel */ }
4833 };
4834 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4835 #endif /* CONFIG_OF */
4836 
4837 static const struct macb_config default_gem_config = {
4838 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4839 		MACB_CAPS_JUMBO |
4840 		MACB_CAPS_GEM_HAS_PTP,
4841 	.dma_burst_length = 16,
4842 	.clk_init = macb_clk_init,
4843 	.init = macb_init,
4844 	.usrio = &macb_default_usrio,
4845 	.jumbo_max_len = 10240,
4846 };
4847 
macb_probe(struct platform_device * pdev)4848 static int macb_probe(struct platform_device *pdev)
4849 {
4850 	const struct macb_config *macb_config = &default_gem_config;
4851 	int (*clk_init)(struct platform_device *, struct clk **,
4852 			struct clk **, struct clk **,  struct clk **,
4853 			struct clk **) = macb_config->clk_init;
4854 	int (*init)(struct platform_device *) = macb_config->init;
4855 	struct device_node *np = pdev->dev.of_node;
4856 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
4857 	struct clk *tsu_clk = NULL;
4858 	unsigned int queue_mask, num_queues;
4859 	bool native_io;
4860 	phy_interface_t interface;
4861 	struct net_device *dev;
4862 	struct resource *regs;
4863 	void __iomem *mem;
4864 	struct macb *bp;
4865 	int err, val;
4866 
4867 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
4868 	if (IS_ERR(mem))
4869 		return PTR_ERR(mem);
4870 
4871 	if (np) {
4872 		const struct of_device_id *match;
4873 
4874 		match = of_match_node(macb_dt_ids, np);
4875 		if (match && match->data) {
4876 			macb_config = match->data;
4877 			clk_init = macb_config->clk_init;
4878 			init = macb_config->init;
4879 		}
4880 	}
4881 
4882 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
4883 	if (err)
4884 		return err;
4885 
4886 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
4887 	pm_runtime_use_autosuspend(&pdev->dev);
4888 	pm_runtime_get_noresume(&pdev->dev);
4889 	pm_runtime_set_active(&pdev->dev);
4890 	pm_runtime_enable(&pdev->dev);
4891 	native_io = hw_is_native_io(mem);
4892 
4893 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
4894 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
4895 	if (!dev) {
4896 		err = -ENOMEM;
4897 		goto err_disable_clocks;
4898 	}
4899 
4900 	dev->base_addr = regs->start;
4901 
4902 	SET_NETDEV_DEV(dev, &pdev->dev);
4903 
4904 	bp = netdev_priv(dev);
4905 	bp->pdev = pdev;
4906 	bp->dev = dev;
4907 	bp->regs = mem;
4908 	bp->native_io = native_io;
4909 	if (native_io) {
4910 		bp->macb_reg_readl = hw_readl_native;
4911 		bp->macb_reg_writel = hw_writel_native;
4912 	} else {
4913 		bp->macb_reg_readl = hw_readl;
4914 		bp->macb_reg_writel = hw_writel;
4915 	}
4916 	bp->num_queues = num_queues;
4917 	bp->queue_mask = queue_mask;
4918 	if (macb_config)
4919 		bp->dma_burst_length = macb_config->dma_burst_length;
4920 	bp->pclk = pclk;
4921 	bp->hclk = hclk;
4922 	bp->tx_clk = tx_clk;
4923 	bp->rx_clk = rx_clk;
4924 	bp->tsu_clk = tsu_clk;
4925 	if (macb_config)
4926 		bp->jumbo_max_len = macb_config->jumbo_max_len;
4927 
4928 	bp->wol = 0;
4929 	if (of_get_property(np, "magic-packet", NULL))
4930 		bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
4931 	device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
4932 
4933 	bp->usrio = macb_config->usrio;
4934 
4935 	spin_lock_init(&bp->lock);
4936 
4937 	/* setup capabilities */
4938 	macb_configure_caps(bp, macb_config);
4939 
4940 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4941 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
4942 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
4943 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
4944 	}
4945 #endif
4946 	platform_set_drvdata(pdev, dev);
4947 
4948 	dev->irq = platform_get_irq(pdev, 0);
4949 	if (dev->irq < 0) {
4950 		err = dev->irq;
4951 		goto err_out_free_netdev;
4952 	}
4953 
4954 	/* MTU range: 68 - 1500 or 10240 */
4955 	dev->min_mtu = GEM_MTU_MIN_SIZE;
4956 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
4957 		dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
4958 	else
4959 		dev->max_mtu = ETH_DATA_LEN;
4960 
4961 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
4962 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
4963 		if (val)
4964 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
4965 						macb_dma_desc_get_size(bp);
4966 
4967 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
4968 		if (val)
4969 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
4970 						macb_dma_desc_get_size(bp);
4971 	}
4972 
4973 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
4974 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
4975 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
4976 
4977 	err = of_get_ethdev_address(np, bp->dev);
4978 	if (err == -EPROBE_DEFER)
4979 		goto err_out_free_netdev;
4980 	else if (err)
4981 		macb_get_hwaddr(bp);
4982 
4983 	err = of_get_phy_mode(np, &interface);
4984 	if (err)
4985 		/* not found in DT, MII by default */
4986 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
4987 	else
4988 		bp->phy_interface = interface;
4989 
4990 	/* IP specific init */
4991 	err = init(pdev);
4992 	if (err)
4993 		goto err_out_free_netdev;
4994 
4995 	err = macb_mii_init(bp);
4996 	if (err)
4997 		goto err_out_phy_exit;
4998 
4999 	netif_carrier_off(dev);
5000 
5001 	err = register_netdev(dev);
5002 	if (err) {
5003 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5004 		goto err_out_unregister_mdio;
5005 	}
5006 
5007 	tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task);
5008 
5009 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
5010 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
5011 		    dev->base_addr, dev->irq, dev->dev_addr);
5012 
5013 	pm_runtime_mark_last_busy(&bp->pdev->dev);
5014 	pm_runtime_put_autosuspend(&bp->pdev->dev);
5015 
5016 	return 0;
5017 
5018 err_out_unregister_mdio:
5019 	mdiobus_unregister(bp->mii_bus);
5020 	mdiobus_free(bp->mii_bus);
5021 
5022 err_out_phy_exit:
5023 	phy_exit(bp->sgmii_phy);
5024 
5025 err_out_free_netdev:
5026 	free_netdev(dev);
5027 
5028 err_disable_clocks:
5029 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
5030 	pm_runtime_disable(&pdev->dev);
5031 	pm_runtime_set_suspended(&pdev->dev);
5032 	pm_runtime_dont_use_autosuspend(&pdev->dev);
5033 
5034 	return err;
5035 }
5036 
macb_remove(struct platform_device * pdev)5037 static int macb_remove(struct platform_device *pdev)
5038 {
5039 	struct net_device *dev;
5040 	struct macb *bp;
5041 
5042 	dev = platform_get_drvdata(pdev);
5043 
5044 	if (dev) {
5045 		bp = netdev_priv(dev);
5046 		phy_exit(bp->sgmii_phy);
5047 		mdiobus_unregister(bp->mii_bus);
5048 		mdiobus_free(bp->mii_bus);
5049 
5050 		unregister_netdev(dev);
5051 		tasklet_kill(&bp->hresp_err_tasklet);
5052 		pm_runtime_disable(&pdev->dev);
5053 		pm_runtime_dont_use_autosuspend(&pdev->dev);
5054 		if (!pm_runtime_suspended(&pdev->dev)) {
5055 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5056 					  bp->rx_clk, bp->tsu_clk);
5057 			pm_runtime_set_suspended(&pdev->dev);
5058 		}
5059 		phylink_destroy(bp->phylink);
5060 		free_netdev(dev);
5061 	}
5062 
5063 	return 0;
5064 }
5065 
macb_suspend(struct device * dev)5066 static int __maybe_unused macb_suspend(struct device *dev)
5067 {
5068 	struct net_device *netdev = dev_get_drvdata(dev);
5069 	struct macb *bp = netdev_priv(netdev);
5070 	struct macb_queue *queue;
5071 	unsigned long flags;
5072 	unsigned int q;
5073 	int err;
5074 
5075 	if (!netif_running(netdev))
5076 		return 0;
5077 
5078 	if (bp->wol & MACB_WOL_ENABLED) {
5079 		spin_lock_irqsave(&bp->lock, flags);
5080 		/* Flush all status bits */
5081 		macb_writel(bp, TSR, -1);
5082 		macb_writel(bp, RSR, -1);
5083 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5084 		     ++q, ++queue) {
5085 			/* Disable all interrupts */
5086 			queue_writel(queue, IDR, -1);
5087 			queue_readl(queue, ISR);
5088 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5089 				queue_writel(queue, ISR, -1);
5090 		}
5091 		/* Change interrupt handler and
5092 		 * Enable WoL IRQ on queue 0
5093 		 */
5094 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5095 		if (macb_is_gem(bp)) {
5096 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5097 					       IRQF_SHARED, netdev->name, bp->queues);
5098 			if (err) {
5099 				dev_err(dev,
5100 					"Unable to request IRQ %d (error %d)\n",
5101 					bp->queues[0].irq, err);
5102 				spin_unlock_irqrestore(&bp->lock, flags);
5103 				return err;
5104 			}
5105 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5106 			gem_writel(bp, WOL, MACB_BIT(MAG));
5107 		} else {
5108 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5109 					       IRQF_SHARED, netdev->name, bp->queues);
5110 			if (err) {
5111 				dev_err(dev,
5112 					"Unable to request IRQ %d (error %d)\n",
5113 					bp->queues[0].irq, err);
5114 				spin_unlock_irqrestore(&bp->lock, flags);
5115 				return err;
5116 			}
5117 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5118 			macb_writel(bp, WOL, MACB_BIT(MAG));
5119 		}
5120 		spin_unlock_irqrestore(&bp->lock, flags);
5121 
5122 		enable_irq_wake(bp->queues[0].irq);
5123 	}
5124 
5125 	netif_device_detach(netdev);
5126 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5127 	     ++q, ++queue) {
5128 		napi_disable(&queue->napi_rx);
5129 		napi_disable(&queue->napi_tx);
5130 	}
5131 
5132 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5133 		rtnl_lock();
5134 		phylink_stop(bp->phylink);
5135 		phy_exit(bp->sgmii_phy);
5136 		rtnl_unlock();
5137 		spin_lock_irqsave(&bp->lock, flags);
5138 		macb_reset_hw(bp);
5139 		spin_unlock_irqrestore(&bp->lock, flags);
5140 	}
5141 
5142 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5143 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5144 
5145 	if (netdev->hw_features & NETIF_F_NTUPLE)
5146 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5147 
5148 	if (bp->ptp_info)
5149 		bp->ptp_info->ptp_remove(netdev);
5150 	if (!device_may_wakeup(dev))
5151 		pm_runtime_force_suspend(dev);
5152 
5153 	return 0;
5154 }
5155 
macb_resume(struct device * dev)5156 static int __maybe_unused macb_resume(struct device *dev)
5157 {
5158 	struct net_device *netdev = dev_get_drvdata(dev);
5159 	struct macb *bp = netdev_priv(netdev);
5160 	struct macb_queue *queue;
5161 	unsigned long flags;
5162 	unsigned int q;
5163 	int err;
5164 
5165 	if (!netif_running(netdev))
5166 		return 0;
5167 
5168 	if (!device_may_wakeup(dev))
5169 		pm_runtime_force_resume(dev);
5170 
5171 	if (bp->wol & MACB_WOL_ENABLED) {
5172 		spin_lock_irqsave(&bp->lock, flags);
5173 		/* Disable WoL */
5174 		if (macb_is_gem(bp)) {
5175 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5176 			gem_writel(bp, WOL, 0);
5177 		} else {
5178 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5179 			macb_writel(bp, WOL, 0);
5180 		}
5181 		/* Clear ISR on queue 0 */
5182 		queue_readl(bp->queues, ISR);
5183 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5184 			queue_writel(bp->queues, ISR, -1);
5185 		/* Replace interrupt handler on queue 0 */
5186 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5187 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5188 				       IRQF_SHARED, netdev->name, bp->queues);
5189 		if (err) {
5190 			dev_err(dev,
5191 				"Unable to request IRQ %d (error %d)\n",
5192 				bp->queues[0].irq, err);
5193 			spin_unlock_irqrestore(&bp->lock, flags);
5194 			return err;
5195 		}
5196 		spin_unlock_irqrestore(&bp->lock, flags);
5197 
5198 		disable_irq_wake(bp->queues[0].irq);
5199 
5200 		/* Now make sure we disable phy before moving
5201 		 * to common restore path
5202 		 */
5203 		rtnl_lock();
5204 		phylink_stop(bp->phylink);
5205 		rtnl_unlock();
5206 	}
5207 
5208 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5209 	     ++q, ++queue) {
5210 		napi_enable(&queue->napi_rx);
5211 		napi_enable(&queue->napi_tx);
5212 	}
5213 
5214 	if (netdev->hw_features & NETIF_F_NTUPLE)
5215 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5216 
5217 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5218 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5219 
5220 	macb_writel(bp, NCR, MACB_BIT(MPE));
5221 	macb_init_hw(bp);
5222 	macb_set_rx_mode(netdev);
5223 	macb_restore_features(bp);
5224 	rtnl_lock();
5225 	if (!device_may_wakeup(&bp->dev->dev))
5226 		phy_init(bp->sgmii_phy);
5227 
5228 	phylink_start(bp->phylink);
5229 	rtnl_unlock();
5230 
5231 	netif_device_attach(netdev);
5232 	if (bp->ptp_info)
5233 		bp->ptp_info->ptp_init(netdev);
5234 
5235 	return 0;
5236 }
5237 
macb_runtime_suspend(struct device * dev)5238 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5239 {
5240 	struct net_device *netdev = dev_get_drvdata(dev);
5241 	struct macb *bp = netdev_priv(netdev);
5242 
5243 	if (!(device_may_wakeup(dev)))
5244 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5245 	else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK))
5246 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5247 
5248 	return 0;
5249 }
5250 
macb_runtime_resume(struct device * dev)5251 static int __maybe_unused macb_runtime_resume(struct device *dev)
5252 {
5253 	struct net_device *netdev = dev_get_drvdata(dev);
5254 	struct macb *bp = netdev_priv(netdev);
5255 
5256 	if (!(device_may_wakeup(dev))) {
5257 		clk_prepare_enable(bp->pclk);
5258 		clk_prepare_enable(bp->hclk);
5259 		clk_prepare_enable(bp->tx_clk);
5260 		clk_prepare_enable(bp->rx_clk);
5261 		clk_prepare_enable(bp->tsu_clk);
5262 	} else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) {
5263 		clk_prepare_enable(bp->tsu_clk);
5264 	}
5265 
5266 	return 0;
5267 }
5268 
5269 static const struct dev_pm_ops macb_pm_ops = {
5270 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5271 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5272 };
5273 
5274 static struct platform_driver macb_driver = {
5275 	.probe		= macb_probe,
5276 	.remove		= macb_remove,
5277 	.driver		= {
5278 		.name		= "macb",
5279 		.of_match_table	= of_match_ptr(macb_dt_ids),
5280 		.pm	= &macb_pm_ops,
5281 	},
5282 };
5283 
5284 module_platform_driver(macb_driver);
5285 
5286 MODULE_LICENSE("GPL");
5287 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5288 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5289 MODULE_ALIAS("platform:macb");
5290